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ABSTRACT
We develop the theory of strong and commutative monads in the

2-dimensional setting of bicategories. This provides a framework

for the analysis of effects in many recent models which form bi-

categories and not categories, such as those based on profunctors,

spans, or strategies over games.

We then show how the 2-dimensional setting provides new in-

sights into the semantics of concurrent functional programs. We

introduce concurrent pseudomonads, which capture the funda-

mental weak interchange law connecting parallel composition and

sequential composition. This notion brings to light an intermediate

level, strictly between strength and commutativity, which is invisi-

ble in traditional categorical models. We illustrate the concept with

the continuation pseudomonad in concurrent game semantics.

In developing this theory, we take care to understand the coher-

ence laws governing the structural 2-cells. We give many examples

and prove a number of practical and foundational results.
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1 INTRODUCTION
Moggi [59, 60] famously observed that the structure of effectful

computation is captured by the category-theoretic notion of strong
monad. This gives a framework for constructing new models and

relating existing ones, abstracting away from any particular effect.

This paper lays the foundations for modelling effects using monads

in 2-dimensional category theory, where one has not just mor-

phisms between objects, but also morphisms between morphisms

(Sections 1.1 and 2). We have two motivations:

(1) Many recent semantic models are not categories but bicat-
egories (e.g. [6, 16, 17, 56]). However, we lack a unifying

framework for these models. The time is right to set up the

proper theoretical foundations for these models.
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(2) Some well-known effects are already 2-categorical (see Sec-

tions 1.1 and 1.3). Making this structure explicit lets us see

them as instances of a larger pattern, highlighting new con-

nections, theoretical insights, and examples.

In this paper we lift Moggi’s foundational framework to the

2-dimensional setting (Sections 4 and 5), and show this is a suitable

setting for modelling effectful programs (Section 5.3). In doing

so, we discover new notions that are invisible in 1-dimensional

approaches (Section 6). Throughout we give plenty of examples

(e.g. Sections 4.3 and 6.2) and take care to mathematically justify

our choice of definitions (Section 7).

1.1 Semantics in 2-dimensional categories
A 2-dimensional category comes with objects (𝐴, 𝐵, . . .), morphisms

(𝑓 , 𝑔, . . . : 𝐴→ 𝐵), often called 1-cells, and 2-cells (𝜎, 𝜏, . . . : 𝑓 ⇒ 𝑔)

between the 1-cells. There are various kinds of 2-dimensional cat-

egories. In this paper we work with bicategories, a general notion
in which the associativity and identity laws for the composition of

morphisms only hold up to isomorphism.

Bicategories typically arise when the composition of morphisms

uses a universal property (e.g. a categorical limit or colimit), because

it is then determined only up to isomorphism. There are many exam-

ples from semantics: game semantics [6, 56], recent models of linear

logic based on profunctors [16, 17, 21], and models describing the

𝛽𝜂-rewrites of the simply-typed λ-calculus [18, 31, 71]. These mod-

els come with more structure, and typically provide finer-grained

or more intensional information than categorical ones. (See also

Section 2 for detailed examples.)

In addition to these recent models, many traditional categories

from semantics are already 2-dimensional:

Domain theory: The basic idea of domain theory is to model re-

cursion using a partial order on sets of continuous functions.

This is a simple form of 2-dimensional structure on cate-

gories of domains, but there is a rich theory (e.g. [33, 74, 79]).
Non-determinism: Perhaps the simplestmodel for non-determinism

is the category of sets and relations, where programs cor-

respond to functions 𝐴 → P(𝐵). The inclusion order on

relations gives 2-dimensional structure with a natural se-

mantic interpretation in terms of possible returned values.

Concurrency: Maps of processes play a central role in models of

concurrency based on event structures or presheaves [7, 83],

and the abstract framework of concurrent Kleene Algebra is
similarly based on a partial order over processes [32].

Note that 2-dimensional aspects are also relevant on the syntactic

side (see [18, 39, 61]), and other 2-dimensional notions are also

important, e.g. lax 2-dimensional functors for comparing models

[2, 10].
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1.2 The monadic theory of effects
We recall the traditional framework (e.g. [59, 60]). A strong monad

on a monoidal category (C, ⊗, 𝐼 ) is a monad (𝑇, 𝜇, 𝜂) equipped with
natural transformations

𝐴 ⊗ 𝑇 (𝐵)
𝑡𝐴,𝐵−−−→ 𝑇 (𝐴 ⊗ 𝐵) 𝑇 (𝐴) ⊗ 𝐵

𝑠𝐴,𝐵−−−→ 𝑇 (𝐴 ⊗ 𝐵)

called the left strength and the right strength, compatible with

both the monoidal structure of C and the monad structure of 𝑇

(see e.g. [41, 53]). An effectful program (Γ ⊢ 𝑀 : 𝐴) is then mod-

elled by a Kleisli arrow Γ → 𝑇𝐴 in C.
The strength makes substitution possible even in the presence

of free variables. For example, we can substitute𝑀 for a variable

𝑥 : 𝐴 in another program (Δ, 𝑥 : 𝐴 ⊢ 𝑁 : 𝐵) using the strength and

the Kleisli extension operation:

Δ ⊗ Γ
Δ⊗𝑀−−−−→ Δ ⊗ 𝑇𝐴

𝑡Δ,𝐴−−−→ 𝑇 (Δ ⊗ 𝐴) >>=𝑁−−−−−→ 𝑇𝐵.

This paper is about a notion of pseudostrength for 2-dimensional

pseudomonads, where pseudo indicates that the equations in the

definition of a strong monad have been replaced by 2-dimensional

isomorphisms. These isomorphisms must in turn satisfy a number

of equations, which we justify in various ways; see Section 7.

1.3 Pseudo monoidality and lax monoidality:
commutativity and concurrency

The theory of strong monads provides a basis for reasoning about

sequential composition. A natural question is whether the order of

execution matters for the two components of a pair: if (Γ ⊢ 𝑀 : 𝐴)
and (Δ ⊢ 𝑁 : 𝐵) are effectful programs then typically the program

Γ,Δ ⊢ (𝑀, 𝑁 ) : 𝐴 ⊗ 𝐵

behaves differently depending on which component is evaluated

first. (We model contexts linearly to remain as general as possible,

since categories with products are instances of monoidal categories.

But this is orthogonal to the topic of this paper.)

1.3.1 Commutativity. An effect is called commutative if the choice

of evaluation order for pairs has no impact on program behaviour.

For example, random choice and divergence are commutative ef-

fects; printing and state are not. Correspondingly, a monad is called

commutative when the equation

𝑇𝐴 ⊗ 𝑇𝐵

𝑇 (𝐴 ⊗ 𝑇𝐵) 𝑇 (𝑇𝐴 ⊗ 𝐵)

𝑇𝑇 (𝐴 ⊗ 𝐵) 𝑇𝑇 (𝐴 ⊗ 𝐵)

𝑇 (𝐴 ⊗ 𝐵)

𝑠 𝑡

𝑇𝑡

𝜇

𝑇𝑠

𝜇

(1)

holds. This is a semantic counterpart to the property that the evalua-

tion order for pairs does not affect program behaviour: commutative

monads model commutative effects. In Section 5 we will define com-

mutative pseudomonads by replacing (1) with an invertible 2-cell,

subject to coherence axioms.

1.3.2 Monoidality. Kock [40, 41] showed that, for a commutative

monad 𝑇 , the family of maps

𝜒𝐴,𝐵 : 𝑇𝐴 ⊗ 𝑇𝐵 −→ 𝑇 (𝐴 ⊗ 𝐵) (2)

defined by either of the routes around (1) gives 𝑇 the structure of a

monoidal monad; and that, conversely, given maps as in (2) satisfy-

ing suitable equations we can recover a commutative strength for

𝑇 . In this paper we prove a general 2-categorical version of Kock’s

theorem (Theorem 5.9): pseudomonoidality of a pseudomonad cor-

responds to pseudocommutativity.

1.3.3 Concurrency. By moving to a 2-dimensional setting we can

give a presentation of concurrency. The starting observation is

that a monoidal structure for 𝑇 could be used to evaluate program

fragments in parallel:

𝑃 ∥ 𝑄 := Γ ⊗ Δ
𝑃⊗𝑄
−−−−→ 𝑇𝐴 ⊗ 𝑇𝐵

𝜒
−→ 𝑇 (𝐴 ⊗ 𝐵)

By Kock’s theorem, this parallel evaluation is semantically indistin-

guishable from either of the two sequential executions: modelling

concurrency in this way forces the effect to be commutative.

In a 2-dimensional category, however, we can weaken the notion

of monoidality to obtain a setting in which programs with non-
commutative effects can be evaluated in parallel, according to a

2-dimensional constraint:

𝑇𝐴 ⊗ 𝑇𝐵

𝑇 (𝐴 ⊗ 𝑇𝐵) 𝑇 (𝑇𝐴 ⊗ 𝐵)

𝑇𝑇 (𝐴 ⊗ 𝐵) 𝑇𝑇 (𝐴 ⊗ 𝐵)

𝑇 (𝐴 ⊗ 𝐵)

𝑠 𝑡

𝑇𝑡

𝜇

𝑇𝑠

𝜇

𝜒

The 2-cells above are not invertible in general, and do not make the

pseudomonad commutative. Replacing the equation (1) by a pair

of non-invertible 2-cells, as above, corresponds to replacing the

equation (𝑃 | |𝑄) ; (𝑃 ′ | |𝑄 ′) = (𝑃 ; 𝑃 ′) | | (𝑄 ;𝑄 ′) relating sequential

and parallel composition of processes by the weak interchange law
for parallel and sequental composition

(𝑃 | |𝑄) ; (𝑃 ′ | |𝑄 ′) =⇒ (𝑃 ; 𝑃 ′) | | (𝑄 ;𝑄 ′) (3)

attributed to Hoare, Möller, Struth, and Wehrman [32]. This law is

a basic feature of maps in models of concurrency. Intuitively, the

program on the left has more dependencies—and so fewer possible

traces—than the right one: see Figure 1 for an illustration with event

structures (made formal in Section 6.2).

The 2-categorical nature of the weak interchange law is already

appreciated (see [57]); in this paper we reframe it in the general

context of 2-dimensional monad theory and computational effects.

We show that the appropriate monadic abstraction for modelling

the parallel execution of effectful programs is a particular class of

lax monoidal pseudomonads, in which certain structural 2-cells

are not required to be invertible. These are a fully 2-dimensional

generalisation of the concurrent monads of Rivas and Jaskelioff [69].

Accordingly, we call these concurrent pseudomonads (Definition 6.1).

Concurrent pseudomonads are always strong (Proposition 6.4)

and, as we explain, in the Kleisli bicategory for a concurrent pseu-

domonad, the premonoidal structure determines a lax functor ⊗
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(𝑎 | | 𝑐) ; (𝑏 | | 𝑑)
𝑐

𝑑

𝑎

𝑏

(𝑎 ;𝑏) | | (𝑐 ;𝑑)
𝑐

𝑑

𝑎

𝑏

Figure 1: Theweak interchange law of sequential and parallel
composition, as a map of event structures (see Section 6.2).
of two arguments (Proposition 6.5). This corresponds precisely to

requiring a 2-cell as in (3).

1.4 Outline
We begin with an introduction to bicategories and their basic theory

(Sections 2 and 3). We then introduce a new definition of strong

pseudomonads (Section 4), and illustrate this with plenty of exam-

ples (Section 4.3).

We then turn to commutative and monoidal structure (Section 5).

We definemonoidal pseudomonads and generalise Hyland&Power’s

definition for commutative pseudomonads [34], then prove a ver-

sion of Kock’s theorem that the two are interchangeable (Theo-

rem 5.9). We also explore the structure of the Kleisli bicategory for

strong and commutative pseudomonads (Section 5.3).

In Section 6 we introduce concurrent pseudomonads and show

they are strong; we also observe their Kleisli bicategory does indeed

model the weak interchange law (3). Section 6.2 illustrates the key

ideas with an extended example in concurrent game semantics.

Finally, in Section 7 we put the definitions in their proper mathe-

matical context—namely, as internal pseudomonads—and establish

a form of coherence result. Together, these give us confidence in the

correctness of our definitions, especially the often-subtle question

of how to choose coherence axioms on the 2-cells.

The appendices contain details and proof-sketches omitted from

the main body for reasons of space.

2 TWO EXAMPLES OF BICATEGORIES
As an introduction to bicategories, we consider two illustrative

examples. First we look at a model based on spans. Spans occur

widely in models of programming languages and computational

processes (e.g. [1, 15, 24, 56]).

Example. Spans of sets. Consider a model in which objects are

sets and a morphism from 𝐴 to 𝐵 consists of a set 𝑆 and a span

of functions 𝐴 ← 𝑆 → 𝐵. We can compose a pair of morphisms

𝐴← 𝑆 → 𝐵 and 𝐵 ← 𝑅 → 𝐶 using a pullback of functions:

𝑅 ◦ 𝑆
𝑆 𝑅

𝐴 𝐵 𝐶

⌟

This correctly captures a notion of ‘plugging together’ spans but is

only associative in a weak sense: the two ways of taking pullbacks

•

•

• • •

• • • •

⌟

⌟
•

•

• • •

• • • •

⌟

⌟ (4)

are not generally equal, but they can be shown to be isomorphic by

the universal property that defines pullbacks. Similarly, the span

𝐴
id←− 𝐴 id−→ 𝐴 is only a weak identity for composition, because

pulling back along id only gives an isomorphic set.

To describe the laws of composition in this model, therefore, we

require a notion of morphism between spans. If 𝑆 and 𝑆 ′ are spans
from 𝐴 to 𝐵, then a map between them is a function 𝜎 : 𝑆 → 𝑆 ′

that commutes with the span legs on each side:

𝑆 𝑆 ′

𝐴 𝐵

𝜎

The two iterated composites in (4) are isomorphic as spans, so com-

position of spans is associative up to isomorphism. Similarly, the

identity span is unital up to isomorphism. Because these isomor-

phisms arise from a universal property, they behave well together.

Bicategories axiomatise this situation.

Definition 2.1 ([3]). A bicategoryℬ consists of:

• A collection of objects 𝐴, 𝐵, . . .

• For all objects 𝐴 and 𝐵, a collection of morphisms from

𝐴 to 𝐵, themselves related by morphisms: thus we have

a hom-category ℬ(𝐴, 𝐵) whose objects (typically denoted

𝑓 , 𝑔 : 𝐴→ 𝐵) are called 1-cells, and whose morphisms (typi-

cally denoted 𝜎, 𝜏 : 𝑓 ⇒ 𝑔) are called 2-cells. The category
structure means we can compose 2-cells between parallel

1-cells.

• For all objects 𝐴, 𝐵, and 𝐶 , a composition functor ◦𝐴,𝐵,𝐶 :

ℬ(𝐵,𝐶) ×ℬ(𝐴, 𝐵) −→ ℬ(𝐴,𝐶) and, for all 𝐴, an identity

1-cell Id𝐴 ∈ ℬ(𝐴,𝐴).
• Coherent structural 2-cells: since the composition of 1-cells

is weak, we have a natural family of invertible 2-cells a𝑓 ,𝑔,ℎ :

(𝑓 ◦ 𝑔) ◦ ℎ =⇒ 𝑓 ◦ (𝑔 ◦ ℎ) instead of the usual associativity

equation. Similarly, we have natural families of invertible

2-cells l𝑓 : Id𝐵 ◦ 𝑓 =⇒ 𝑓 and r𝑓 : 𝑓 ◦ Id𝐴 =⇒ 𝑓 instead of

the left and right identity laws. These 2-cells must satisfy

coherence axioms similar to those for a monoidal category.

To illustrate further we consider the Para construction, which is a
general way to build models of parametrized processes [20, 30] (see

also [4, 11, 13]). In this bicategory, the 2-cells are reparametrizations,

and the weakness arises because we are tracking extra informa-

tion. We will use this bicategory several times, so we spell out the

definition in detail.

Example: the Para construction. Starting from a monoidal cate-

gory (C, ⊗, 𝐼 ), the bicategory Para(C) is defined as follows:

• The objects are those of C.
• A 1-cell from 𝐴 to 𝐵 is a parametrized C-morphism, defined

as an object 𝑃 ∈ C together with a morphism 𝑓 : 𝑃 ⊗𝐴→ 𝐵

in C. The object 𝑃 is thought of as a space of parameters.

• A 2-cell from 𝑓 : 𝑃 ⊗ 𝐴 → 𝐵 to 𝑔 : 𝑃 ′ ⊗ 𝐴 → 𝐵 is a

reparametrization map, i.e. a map 𝜎 : 𝑃 → 𝑃 ′ such that

𝑔 ◦ (𝜎 ⊗ 𝐴) = 𝑓 .
Composition of 1-cells is defined using the tensor product of pa-

rameters: if 𝑓 : 𝑃 ⊗ 𝐴 → 𝐵 and 𝑔 : 𝑄 ⊗ 𝐵 → 𝐶 , then 𝑔 ◦ 𝑓 is the
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object 𝑄 ⊗ 𝑃 equipped with the map

(𝑄 ⊗ 𝑃) ⊗ 𝐴 �−→ 𝑄 ⊗ (𝑃 ⊗ 𝐴)
𝑄⊗𝑓
−−−−→ 𝑄 ⊗ 𝐵

𝑔
−→ 𝐶

where the first map is the associativity of the tensor product.

If we also haveℎ : 𝑅⊗𝐶 → 𝐷 , then the two composites (ℎ◦𝑔) ◦ 𝑓
and ℎ ◦ (𝑔 ◦ 𝑓 ) have parameter spaces (𝑅 ⊗𝑄) ⊗ 𝑃 and 𝑅 ⊗ (𝑄 ⊗ 𝑃),
respectively. Because the tensor product in a monoidal category

is generally associative only up to isomorphism, these 1-cells are

only isomorphic in Para(C). A similar argument applies to the

identity laws, so Para(C) is a bicategory with associativity and unit

isomorphisms given by C’s monoidal structure.

3 PSEUDOFUNCTORS, PSEUDOMONADS, AND
MONOIDAL BICATEGORIES

Many concepts in category theory have corresponding versions for

bicategories.We first summarise the basic definitions of pseudofunc-

tors, pseudonatural transformations, andmodifications (Section 3.1),

then discuss the bicategorical notions of monad (Section 3.2) and

monoidal structure (Section 3.3) needed for this paper. For reasons

of space we only give a brief outline and omit the coherence axioms.

For a full overview of the basic bicategorical definitions, see [45];

for the definition of (symmetric) monoidal bicategories, including

many beautiful diagrams, see [73]. Gentle introductions to the wider

subject of bicategories include [3, 36]; a more theoretical-computer

science perspective is available in [66, 67].

3.1 Basic notions
Morphisms of bicategories are called pseudofunctors. Just as bicat-

egories are categories ‘up to isomorphism’, so pseudofunctors are

functors ‘up to isomorphism’.

Definition 3.1. A pseudofunctor 𝐹 : ℬ→ 𝒞 consists of:

• A mapping 𝐹 : 𝑜𝑏 (ℬ) → 𝑜𝑏 (𝒞) on objects;

• A functor 𝐹𝐴,𝐵 : ℬ(𝐴, 𝐵) → 𝒞(𝐹𝐴, 𝐹𝐵) for each 𝐴, 𝐵 ∈ ℬ;

• A unitor 𝜓𝐴 : Id𝐹𝐴
�
==⇒ 𝐹 (Id𝐴) for each 𝐴 ∈ ℬ;

• A compositor 𝜙 𝑓 ,𝑔 : 𝐹 (𝑓 ) ◦ 𝐹 (𝑔) �==⇒ 𝐹 (𝑓 ◦ 𝑔) for every
composable pair of 1-cells 𝑓 and 𝑔, natural in 𝑓 and 𝑔.

This data is subject to three axioms similar to those for strong

monoidal functors (see e.g. [45]).

We generally abuse notation by referring to a pseudofunctor

(𝐹, 𝜙,𝜓 ) simply as 𝐹 ; where there is no risk of confusion, we shall

employ similar abuses for structure throughout. A pseudofunctor

is called strict if 𝜙 and𝜓 are both the identity.

Example 3.2. Every endofunctor 𝐹 on amonoidal category (C, ⊗, 𝐼 )
with a strength 𝑡𝐴,𝐵 : 𝐴 ⊗ 𝐹 (𝐵) → 𝐹 (𝐴 ⊗ 𝐵) (see e.g. [41]) deter-
mines a strict endo-pseudofunctor 𝐹 on Para(C). The action on

objects is the same, and on 1-cells 𝐹 (𝑃 ⊗ 𝐴
𝑓
−→ 𝐵) is the object 𝑃

together with the composite

(
𝑃 ⊗ 𝐹𝐴 𝑡−→ 𝐹 (𝑃 ⊗ 𝐴)

𝐹 𝑓
−−→ 𝐹𝐵

)
.

Transformations between pseudofunctors are like natural trans-

formations, except one must say in what sense naturality holds for

each 1-cell.

Definition 3.3. For pseudofunctors 𝐹,𝐺 : ℬ→ 𝒞, a pseudonatu-
ral transformation 𝜂 : 𝐹 ⇒ 𝐺 consists of:

• A 1-cell 𝜂𝐴 : 𝐹𝐴→ 𝐺𝐴 for every 𝐴 ∈ ℬ;

• For every 𝑓 : 𝐴→ 𝐵 inℬ an invertible 2-cell

𝐹𝐴 𝐹𝐵

𝐺𝐴 𝐺𝐵

𝐹 𝑓

𝜂𝐴
𝜂𝑓
⇐ 𝜂𝐵

𝐺𝑓

(5)

natural in 𝑓 and satisfying identity and composition laws.

Example 3.4. Every natural transformation 𝜎 : 𝐹 ⇒ 𝐹 ′ between
strong endofunctors (𝐹, 𝑠) and (𝐺, 𝑡) which is compatible with the

strengths (‘strong natural transformation’: see e.g. [53]) determines

a pseudonatural transformation 𝜎 : 𝐹 ⇒ 𝐺 on Para(C). Each com-

ponent (𝜎)𝐴 is just 𝜎𝐴 , and for a 1-cell 𝑓 : 𝑃 ⊗ 𝐴→ 𝐵 the 2-cell 𝜎𝑓

witnessing naturality is the canonical isomorphism 𝐼 ⊗ 𝑃 �−→ 𝑃 ⊗ 𝐼 .

Because bicategories have a second layer of structure, there is

also a notion of map between pseudonatural transformations.

Definition 3.5. Amodification𝒎 : 𝜂 → 𝜃 between pseudonatural

transformations 𝐹 ⇒ 𝐺 : ℬ→ 𝒞 consists of a 2-cell 𝒎𝐵 : 𝜂𝐵 ⇒
𝜃𝐵 for every 𝐵 ∈ ℬ, subject to an axiom expressing compatibility

between 𝒎 and each 𝜂𝑓 and 𝜃 𝑓 .

For any bicategoriesℬ and𝒞 there exists a bicategoryHom(ℬ,𝒞)
with objects pseudofunctors, 1-cells pseudonatural transformations,

and 2-cells modifications.

3.2 Pseudomonads and Kleisli bicategories
The bicategorical correlate of a monad is a pseudomonad.

Definition 3.6 ([50]). A pseudomonad on a bicategoryℬ consists

of a pseudofunctor 𝑇 : ℬ→ℬ equipped with:

• Unit and multiplication pseudonatural transformations 𝜂 :

id⇒ 𝑇 and 𝜇 : 𝑇 2 =⇒ 𝑇 , where 𝑇 2 = 𝑇 ◦𝑇 ;
• Invertible modifications 𝒎, 𝒏,𝒑 with components

𝑇 3𝐴 𝑇 2𝐴

𝑇 2𝐴 𝑇𝐴

𝜇𝑇𝐴

𝑇 𝜇𝐴

𝜇𝐴

𝜇𝐴𝒎𝐴

𝑇𝐴

𝑇 2𝐴 𝑇𝐴 𝑇 2𝐴

𝜂𝑇𝐴

𝜇𝐴

𝑇𝜂𝐴

𝜇𝐴

𝒏𝐴 𝒑𝐴

replacing the usual monad laws, and satisfying two further

coherence axioms.

A simple example is given by the Writer pseudomonad on Cat,
the bicategory with objects small categories, 1-cells functors, and

2-cells natural transformations. The structural isomorphisms a, l
and r are all the identity (giving a 2-category).

Example 3.7. Let (C, ⊗, 𝐼 ) be a monoidal category. The pseudo-

functor (−) × C : Cat → Cat has a pseudomonad structure with

1-cell components

𝜂D = D
�−→ D × 1 D×𝐼−−−−→ D × C

𝜇D = (D × C) × C �−→ D × (C × C) D×⊗−−−−→ D × C

and 2-cell components 𝒎, 𝒏 and 𝒑 given by the associator and

unitors for the monoidal structure in C.
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Example 3.8. Every strong monad (𝑇, 𝜇, 𝜂, 𝑡) on a monoidal cate-

gory (C, ⊗, 𝐼 ) determines a pseudomonad on Para(C): the under-
lying pseudofunctor is 𝑇 and the pseudonatural transformations

are �̃� and 𝜂 (recall Example 3.4). This remains true if the monoidal

structure is replaced by an action (as in e.g. [63]).

3.3 Monoidal bicategories
A monoidal bicategory is a bicategory equipped with a unit object

and a tensor product which is only weakly associative and unital. To

motivate the construction, we explain how a symmetric monoidal

category (C, ⊗, 𝐼 ) induces a monoidal structure on Para(C), with
the same action on objects.

The idea is that we can combine the parameters using ⊗. For
1-cells 𝑓 : 𝑃 ⊗ 𝐴→ 𝐵 and 𝑔 : 𝑃 ′ ⊗ 𝐴′ → 𝐵′, we set 𝑓 ⊗̃𝑔 to be the

object 𝑃 ⊗ 𝑃 ′ equipped with

(𝑃 ⊗ 𝑃 ′) ⊗ (𝐴 ⊗ 𝐴′) �−→ (𝑃 ⊗ 𝐴) ⊗ (𝑃 ′ ⊗ 𝐴′)
𝑓 ⊗𝑔
−−−→ 𝐵 ⊗ 𝐵′

where the first map is defined using the symmetry of ⊗. On 2-cells,

we use the tensor product of maps in C. This construction does

not strictly preserve identities and composition, but it does pre-

serve them up to isomorphism. Thus, we get a pseudofunctor

⊗̃ : Para(C) × Para(C) −→ Para(C) .
We examine the sense in which this tensor is associative and

unital, by lifting the structural isomorphisms from C. Every map

𝑓 : 𝐴 → 𝐵 in C determines a 1-cell 𝑓 in Para(C) given by the

object 𝐼 and the composite (𝐼 ⊗ 𝐴 �−→ 𝐴
𝑓
−→ 𝐵), where � is the unit

isomorphism. If 𝑓 has an inverse 𝑓 −1, the composite 𝑓 ◦ 𝑓 −1 has
parameter 𝐼 ⊗ 𝐼 and thus cannot be the identity. But it is isomorphic

to the identity: the pair (𝑓 , 𝑓 −1) is known as an equivalence (an ‘iso-

morphism up to isomorphism’). Thus, although the tensor ⊗ on C is

associative and unital up to isomorphism, the tensor ⊗̃ on Para(C)
is only associative and unital up to equivalence. The structural

1-cells are all pseudonatural in a canonical way (Example 3.4).

Following the general pattern of “bicategorification”, the triangle

and pentagon axioms of a monoidal category now only hold up to

isomorphism: one route round the pentagon has three sides and

the other has two, so one composite has parameter 𝐼⊗3 and the

other has parameter 𝐼⊗2. These are canonically isomorphic, so we

get families of invertible 2-cells witnessing the categorical axioms.

All the structure we have defined so far has used the canonical

isomorphisms of C, so these families are actually modifications on

Para(C). Moreover, by the axioms of a monoidal category, these

structural modifications satisfy axioms of their own.

In summary, a monoidal bicategory is a bicategory equipped

with an object 𝐼 , a pseudofunctor ⊗̃, pseudonatural families of

equivalences witnessing the weak associativity and unitality of ⊗̃,
and invertible modifications witnessing the axioms of a monoidal

category. We now make this precise, starting with the definition of

equivalences. These generalize equivalences of categories.

Definition 3.9. An equivalence between objects 𝐴 and 𝐵 in a

bicategory ℬ is a pair of 1-cells 𝑓 : 𝐴 → 𝐵 and 𝑓 • : 𝐵 → 𝐴

together with invertible 1-cells 𝑓 ◦ 𝑓 • ⇒ Id𝐵 and Id𝐴 ⇒ 𝑓 • ◦ 𝑓 .

A pseudonatural equivalence is a pseudonatural transformation

in which each component has the structure of an equivalence.

The definition is now as advertised. To state it, we introduce some

notation for the 2-cell diagrams—known as pasting diagrams—that
we will use in the rest of the paper.

Notation 1. To save space and improve readability,
• We use juxtaposition for the tensor product, e.g. (𝐴𝐵)𝐶 means
(𝐴 ⊗ 𝐵) ⊗ 𝐶 ;
• We omit the subscripts on the components of pseudonatural
transformations and modifications, e.g. 𝒎 instead of 𝒎𝐴 ;
• We use a subscript notation for the action of a pseudofunctor
𝑇 , e.g. 𝑇𝐴𝑇𝐵 means 𝑇 (𝐴 ⊗ 𝑇 (𝐵)).
• We write � for any pseudonaturality 2-cell as in (5), and in
equations we omit the arrows showing the directions of 2-cells.
These labels can be inferred from the type.

Definition 3.10 (e.g. [73]). A monoidal bicategory is a bicategory

ℬ equipped with a pseudofunctor ⊗ : ℬ ×ℬ→ℬ and an object

𝐼 ∈ ℬ, together with the following data:

• Pseudonatural equivalences 𝛼, 𝜆 and 𝜌 with components

𝛼𝐴,𝐵,𝐶 : (𝐴 ⊗ 𝐵) ⊗ 𝐶 → 𝐴 ⊗ (𝐵 ⊗ 𝐶) (the associator), 𝜆𝐴 :

𝐼 ⊗ 𝐴→ 𝐴, and 𝜌𝐴 : 𝐴 ⊗ 𝐼 → 𝐴 (the unitors);
• Invertiblemodifications𝔭, 𝔩,𝔪 and 𝔯with components shown

in Figure 2, subject to coherence axioms.

A symmetricmonoidal bicategory is amonoidal bicategory equipped

with a pseudonatural equivalence 𝛽 with components 𝛽𝐴,𝐵 : 𝐴 ⊗
𝐵 → 𝐵 ⊗ 𝐴, called the braiding, and invertible modifications gov-

erning the possible shufflings of three objects and expressing the

symmetry of the braiding, subject to coherence axioms.

For example (see e.g. [73] for full details), the cartesian product

on the category Set induces a monoidal structure on the bicategory

Span(Set) introduced in Section 2. The pseudofunctor ⊗ is defined

on objects as 𝐴 ⊗ 𝐴′ = 𝐴 × 𝐴′, and for spans 𝐴 ← 𝑆 → 𝐵 and

𝐴′ ← 𝑆 ′ → 𝐵′ we take the component-wise product to obtain

𝐴 ×𝐴′ ← 𝑆 × 𝑆 ′ → 𝐵 × 𝐵′.
We also record the outcome of our discussion above; this estab-

lishes a conjecture made in [4].

Example 3.11. If (C, ⊗, 𝐼 ) is a symmetric monoidal category, this

lifts to a symmetric monoidal structure on Para(C).
General point. The coherence axioms of a monoidal bicategory

can be difficult to verify directly. However, in many cases of interest

the monoidal structure is induced from a more fundamental con-

struction, as in Span(Set) above. This gives a systematic method

for constructing (symmetric) monoidal bicategories: see [82].

3.4 Coherence theorems
As we have seen, bicategorical structures involve considerable data

and many equations. Much of the difficulty, however, is tamed

by various coherence theorems. These generally show that any two

parallel 2-cells built out of the structural data are equal. Appropriate

coherence theorems apply to bicategories [49] pseudofunctors [27],

(symmetric) monoidal bicategories [25, 28] and pseudomonads [42].

We rely heavily on the coherence of bicategories and pseudo-

functors when writing pasting diagrams of 2-cells: in particular we

omit all compositors and unitors for pseudofunctors, and ignore

the weakness of 1-cell composition. Thus, strictly speaking our dia-

grams do not type-check, but coherence guarantees the resulting



,
,

Hugo Paquet and Philip Saville

((𝐴𝐵)𝐶)𝐷 (𝐴𝐵) (𝐶𝐷) 𝐴(𝐵(𝐶𝐷))

(𝐴(𝐵𝐶))𝐷 𝐴((𝐵𝐶)𝐷)

𝛼

𝛼𝐷 𝔭

𝛼

𝛼

𝐴𝛼

𝐴𝐵

(𝐴𝐼 )𝐵 𝐴(𝐼𝐵)

𝜌𝐵

𝛼

𝐴𝜆
𝔪

(𝐼𝐴)𝐵 𝐼 (𝐴𝐵)

𝐴𝐵

𝛼

𝜆

𝜆𝐵
𝔩

(𝐴𝐵)𝐼 𝐴(𝐵𝐼 )

𝐴𝐵

𝛼

𝜌

𝐴𝜌
𝔯

Figure 2: The structural modifications of a monoidal bicategory

2-cell is the same no matter how one fills in the structural details.

This is standard practice; for precise justification see e.g. [70, §2.2].

4 STRONG PSEUDOMONADS
We follow the categorical setting by first saying what it means for

a pseudofunctor to be strong, then giving the additional data and

axioms to make a pseudomonad strong.

4.1 Strong pseudofunctors
For the moment we only consider strengths on the left. In all dia-

grams below we follow our Notation 1.

Definition 4.1. Let (ℬ, ⊗, 𝐼 ) be a monoidal bicategory. A left
strength for a pseudofunctor 𝑇 : ℬ→ℬ is a pseudonatural trans-

formation 𝑡𝐴,𝐵 : 𝐴 ⊗ 𝑇𝐵 → 𝑇 (𝐴 ⊗ 𝐵), equipped with invertible

modifications 𝒙 and 𝒚 expressing the compatibility of 𝑡 with the

left unitor and the associator:

𝑇𝐼𝐴 𝐼𝑇𝐴

𝑇𝐴

𝑡

𝑇𝜆

𝜆
𝒙

(𝐴𝐵)𝑇𝐶 𝑇(𝐴𝐵)𝐶

𝐴(𝐵𝑇𝐶 ) 𝐴𝑇𝐵𝐶 𝑇𝐴(𝐵𝐶 )

𝑡

𝛼

𝐴𝑡 𝑡

𝑇𝛼
𝒚

Thesemodificationsmust themselves be compatiblewith themonoidal

structure, as per the two axioms of Figure 3.

A left strength for a pseudofunctor 𝑇 can be used to define a

parametrised version of the functorial action: for any map Γ ⊗𝑋 →
𝑌 we can now define a map Γ ⊗ 𝑇𝑋 → 𝑇𝑌 . This suggests the

following (recall Example 3.2 and Example 3.4).

Example 4.2. If (𝐹, 𝑡) is a strong functor on a symmetric monoidal

category (C, ⊗, 𝐼 ) (see e.g. [41, 53]), then the induced pseudofunctor

𝐹 on Para(C) is also strong. The pseudonatural transformation has

components �̃�𝐴,𝐵 := 𝑡𝐴,𝐵 ; this has parameter 𝐼 , so 𝒙 and 𝒚 are both

of the form 𝐼⊗𝑖
�−→ 𝐼⊗ 𝑗 for 𝑖, 𝑗 ∈ N.

4.2 Strong pseudomonads
If a strong pseudofunctor 𝑇 : ℬ→ℬ is also a pseudomonad, then

wemust ask for additional data to relate the strength and the monad

structure, and this data must be compatible with the modifications

𝒙,𝒚 we already have.

Definition 4.3. Let (ℬ, ⊗, 𝐼 ) be a monoidal bicategory. A left
strength for a pseudomonad (𝑇, 𝜂, 𝜇) consists of a left strength

(𝑡, 𝒙,𝒚) for the underlying pseudofunctor, together with invert-

ible modifications

𝐴𝑇 2

𝐵
𝐴𝑇𝐵

𝑇𝐴𝑇𝐵 𝑇 2

𝐴𝐵
𝑇𝐴𝐵

𝐴𝜇

𝑡

𝑇𝑡 𝜇

𝒘 𝑡

𝐴𝐵 𝐴𝑇𝐵

𝑇𝐴𝐵

𝑡

𝜂

𝐴𝜂

𝒛

expressing the compatibility of 𝑡 with the pseudomonad structure.

This is subject to two axioms expressing compatibility with the

monad structure and two axioms expressing compatibility for 𝒙
with 𝒘 and 𝒛, respectively (Figure 4), and two axioms expressing

compatibility for 𝒚 with𝒘 and 𝒛, respectively (Figure 5).

Extending Example 3.8 and Example 4.2, we obtain the following.

The definitions of𝒘 and 𝒛 are similar to those for 𝒙 and 𝒚.

Example 4.4. A strong monad on a symmetric monoidal category

(C, ⊗, 𝐼 ) determines a strong pseudomonad on Para(C).

4.2.1 Note on related work. Strengths for pseudomonads were first

defined by Tanaka [77, 78] for applications in categorical universal

algebra. We improve on this definition in several ways. We make

conceptual progress by cleanly separating strong pseudofunctors

from strong pseudomonads. Then we show that only 8 axioms

suffice for a coherent definition (Lemma 4.5 below). Finally, in

Section 7 we bring a new perspective on pseudostrengths in terms

of higher monoidal actions (c.f. [23]), obtaining a form of coherence.

Inmore recent relatedwork, Slattery [72] defines strong (relative)

2-monads on 2-multicategories. An investigation in this direction

is important but seems orthogonal to the work presented here.

The details of the two compatibility conditions in the next lemma

will not appear in what follows, so we leave them for Appendix A.

Lemma 4.5. (1) Given the axioms of Definition 4.3, the modi-
fications 𝒙 and 𝒚 are suitably compatible with the monoidal
modification 𝔩.

(2) Given the axioms of Definition 4.3, the modifications 𝒛 and𝒘
are suitably compatible with the monad modification 𝒑.

4.3 Basic examples of strong pseudomonads
In this section we show that several important classes of pseu-

domonad are strong in the way one would expect from the cate-

gorical setting. Many of the proofs essentially come down to the

relevant coherence theorem; we give more details in Appendix F.2.

Recall that if (𝑀,𝑚, 𝑒) is amonoid in amonoidal category (C, ⊗, 𝐼 )
then (−) ⊗𝑀 becomes a monad with unit and multiplication given

via 𝑒 and𝑚 (c.f. Example 3.7). This monad is canonically strong,

with strength given by the structural isomorphism𝐴 ⊗ (𝐵 ⊗𝑀) �−→
(𝐴 ⊗ 𝐵) ⊗ 𝑀 . Also note that every monad 𝑇 is strong with respect

to the cocartesian structure (0, +), with strength [𝑇 inl ◦ 𝜂𝐴,𝑇 inr] :
𝐴 + 𝑇𝐵 → 𝑇 (𝐴 + 𝐵). These facts bicategorify. The bicategorical
version of a monoid is called a pseudomonoid [14, 37], and every

pseudomonoid defines a pseudomonad similarly to Example 3.7.

Lemma 4.6.

(1) For any pseudomonoid (𝑀,𝑚, 𝑒, 𝑎, 𝑙, 𝑟 ) on a monoidal bicate-
gory (ℬ, ⊗, 𝐼 ) the pseudomonad (−) ⊗𝑀 has a strength given
by the pseudo-inverse 𝛼• of the associator for ⊗.
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Figure 3: Coherence axioms for a strong pseudofunctor.
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Figure 4: Coherence axioms for a strong pseudomonad: com-
patibility with the pseudomonad structure, and relating 𝒙
with 𝒛 and𝒘.

(2) Every pseudomonad is canonically strong with respect to the
cocartesian monoidal structure (+, 0).

A pseudomonoid in (Cat,×, 1) is exactly a monoidal category, so

Lemma 4.6(1) applies in particular to the Writer pseudomonad (Ex-

ample 3.7). We can also use this lemma to derive a result about pseu-

domonads on spans. For any category C with pullbacks there exists

a bicategory of spans Span(C) similar to that defined in Section 2 for

Set. For C := Set, or more generally any lextensive category [5], the

bicategory Span(C) has finite biproducts—bicategorical products
and coproducts which coincide—by [44, Theorem 6.2]. Moreover,

by [29, Corollary A.4], every cartesian monad (monad for which the

underlying functor preserves pullbacks, and such that every natu-

rality square for 𝜇 and 𝜂 is a pullback square) lifts to a pseudomonad

on Span(C). So we have the following.

Corollary 4.7. Any cartesian monad on a lextensive category C
(such as Set) lifts to a strong pseudomonad on Span(C)

The next example covers two cases of importance in the se-

mantics of programming languages. The proof follows essentially

immediately from the corresponding categorical facts and the par-

ticularly strong form of coherence enjoyed by cartesian closed

bicategories (see [19, Principle 1.3]).

Lemma 4.8. For any cartesian closed bicategory (see e.g. [18])
(ℬ,×, 1, ⇒ ) and objects 𝑆, 𝑅 ∈ ℬ, there exist strong pseudomon-
ads 𝑆 ⇒ (𝑆 × −) (the state pseudomonad) and (− ⇒ 𝑅) ⇒ 𝑅 (the
continuation pseudomonad).

For our final class of examples, recall that every functor 𝐹 on Set
is canonically strong with respect to the cartesian structure, with

𝑡𝐴,𝐵 : 𝐴×𝐹𝐵 → 𝐹 (𝐴×𝐵) defined by 𝑡𝐴,𝐵 (𝑎,𝑤) := 𝐹 (𝜆𝑏 .⟨𝑎, 𝑏⟩)(𝑤),
and moreover that the same construction makes every monad on

Set strong [60, Proposition 3.4]. A similar fact holds for bicategories;

the statement for pseudomonads was first proved by Tanaka [77].

Proposition 4.9. Every pseudofunctor (resp. pseudomonad) on
(Cat,×, 1) has a canonical choice of strength.

5 BISTRONG, COMMUTATIVE, AND
MONOIDAL PSEUDOMONADS

Categorically, it is often the case that a monad𝑇 supports a strength

on both sides, and the two strengths are compatible:𝑇 is then called

bistrong (see e.g. [53]). This is the case, for instance, if 𝑇 has left

strength 𝑡 and the underlying category is symmetric monoidal,

because we can construct a right strength using the symmetry 𝛽 :

𝑇 (𝐴) ⊗ 𝐵
𝛽
−→ 𝐵 ⊗ 𝑇 (𝐴) 𝑡−→ 𝑇 (𝐵 ⊗ 𝐴)

𝑇𝛽
−−→ 𝑇 (𝐴 ⊗ 𝐵). (6)

For a bistrong monad (𝑇, 𝑡, 𝑠) it makes sense to ask whether the

two morphisms below coincide:

𝑇𝐴 ⊗ 𝑇𝐵 𝑡−→ 𝑇 (𝑇𝐴 ⊗ 𝐵) 𝑇𝑠−−→ 𝑇 2 (𝐴 ⊗ 𝐵)
𝜇
−→ 𝑇 (𝐴 ⊗ 𝐵) (7)

𝑇𝐴 ⊗ 𝑇𝐵 𝑠−→ 𝑇 (𝐴 ⊗ 𝑇𝐵) 𝑇𝑡−−→ 𝑇 2 (𝐴 ⊗ 𝐵)
𝜇
−→ 𝑇 (𝐴 ⊗ 𝐵) (8)

When they do, 𝑇 is said to be commutative [40, 41]. Kock showed

that, in this case, themap𝑇𝐴⊗𝑇𝐵 → 𝑇 (𝐴⊗𝐵) (defined in eitherway
above) gives 𝑇 the structure of a monoidal monad, and conversely

that any monoidal monad is in particular bistrong and commutative.

We now bicategorify these results. We introduce the notion of

bistrong pseudomonad in Section 5.1. In Section 5.2 we discuss the
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Figure 5: Coherence axioms for a strong pseudomonad: relating 𝒚 with 𝒛 and𝒘.

equivalence of commutative and monoidal pseudomonads, which

we connect to existing notions due to Hyland & Power [34]. Finally,

in Section 5.3 we show the Kleisli bicategory for a bistrong pseu-

domonad forms a bicategorical version of a well-known model for

effectful call-by-value programs.

5.1 Bistrong pseudomonads
A right strength for a pseudomonad consists of a pseudonatural

transformation 𝑠𝐴,𝐵 : 𝑇 (𝐴) ⊗ 𝐵 → 𝑇 (𝐴 ⊗ 𝐵) equipped with four

invertible modifications analogous to 𝑥,𝑦, 𝑧,𝑤 and satisfying corre-

sponding axioms (we give the data explicitly in Appendix B).

Informally, a left strength 𝑡𝐴,𝐵 : 𝐴 ⊗𝑇𝐵 → 𝑇 (𝐴 ⊗ 𝐵) and a right
strength 𝑠𝐴,𝐵 : 𝑇 (𝐴) ⊗ 𝐵 → 𝑇 (𝐴 ⊗ 𝐵) are compatible if parame-

ters on each side can be passed through 𝑇 in any order. Categori-

cally, one makes this precise by asking that the two obvious maps

(𝐴 ⊗ 𝑇𝐵) ⊗ 𝐶 → 𝑇 (𝐴 ⊗ (𝐵 ⊗ 𝐶)) are equal. For the bicategorical
definition, we replace this equation by a coherent isomorphism.

Definition 5.1. A bistrong pseudomonad on a monoidal bicate-

gory (ℬ, ⊗, 𝐼 ) is a pseudomonad 𝑇 equipped with a left strength 𝑡

and a right strength 𝑠 , and an invertible modification

(𝐴𝑇𝐵)𝐶 𝐴(𝑇𝐵𝐶)

𝑇𝐴𝐵𝐶 𝐴𝑇𝐵𝐶

𝑇(𝐴𝐵)𝐶 𝑇𝐴(𝐵𝐶 )

𝛼

𝐴𝑠𝑡𝐶

𝑠

𝑇𝛼

𝑡

𝒃

satisfying the two axioms in Figure 6.

Example 5.2 (Extending Lemma 4.6). If (ℬ, ⊗, 𝐼 ) is a braided

monoidal bicategory and 𝑀 ∈ ℬ has the structure of a braided
pseudomonoid (see [14]), the pseudomonad (−) ⊗ 𝑀 is canonically

bistrong, with 𝑠 defined using the braiding 𝛽 and 𝒃 defined using

the pentagonator 𝔭 forℬ. The axioms follow by coherence [26, 80].

Definition 5.1 is sufficient to recover the categorical situation:

if (ℬ, ⊗, 𝐼 ) is symmetric monoidal and (𝑇, 𝑡) is a left-strong pseu-
domonad, then the composite pseudonatural transformation with

components as in (6) can always be given the structure of a right

strength for 𝑇 .

Proposition 5.3. Every left-strong pseudomonad on a symmetric
monoidal bicategory is bistrong in a canonical way.

Corollary 5.4 (Extending Example 4.4). If (𝑇, 𝑡) is a strong
monad on a symmetric monoidal category (C, ⊗, 𝐼 ), the induced pseu-
domonad on Para(C) is canonically bistrong.

5.2 Commutative and monoidal pseudomonads
We now define commutativity for bistrong pseudomonads. Follow-

ing the usual pattern for bicategorification, the definition is in terms

of an invertible 2-cell between the morphisms defined in (7) and (8).

Our definition is a straightforward adaptation of Hyland & Power’s

[34, Definition 5] to the weaker setting of bistrong pseudomonads

on a monoidal bicategory.

Definition 5.5. A commutative pseudomonad on a monoidal bi-

category (ℬ, ⊗, 𝐼 ) is a bistrong pseudomonad (𝑇, 𝜇, 𝜂, 𝑡, 𝑠) equipped
with an invertible modification

𝑇𝐴𝑇𝐵 𝑇𝐴𝑇𝐵 𝑇 2

𝐴𝐵

𝑇𝑇𝐴𝐵 𝑇 2

𝐴𝐵
𝑇𝐴𝐵

𝑡

𝑠 𝑇𝑡

𝑇𝑠 𝜇

𝜇𝒄

subject to coherence axioms as in [34, Definition 5] (we give these

explicitly in Appendix D).

Example 5.6 (Extending Example 5.2). If (ℬ, ⊗, 𝐼 ) is a symmetric

monoidal bicategory and𝑀 ∈ ℬ has the structure of a symmetric
pseudomonoid (see [14]), the pseudomonad (−) ⊗ 𝑀 is canonically

commutative, with 𝒄 defined using the braiding on𝑀 and symmetric

structure on ℬ; the axioms follow by coherence [28, 80].

Example 5.7 (Extending Corollary 5.4). If (𝑇, 𝑡) is a commutative

monad on a symmetric monoidal category (C, ⊗, 𝐼 ), the induced
pseudomonad on Para(C) is canonically commutative.

With the axioms of Definition 5.5 we can verify those of a

monoidal pseudomonad, and conversely, so Kock’s correspondence

result ([41, Theorem 2.3]) holds at this level. We begin by defining

monoidal pseudomonads. For the definition of monoidal pseudo-

functors, transformations, modifications, see [8, 70].

Definition 5.8. A monoidal pseudomonad on a monoidal bicate-

gory (ℬ, ⊗, 𝐼 ) is a pseudomonad (𝑇, 𝜇, 𝜂) with additional structure:

• A 1-cell 𝜄 : 𝐼 → 𝑇 𝐼 , and pseudonatural transformation

𝜒 : 𝑇𝐴 ⊗ 𝑇𝐵 → 𝑇 (𝐴 ⊗ 𝐵) with three (omitted) invertible

modifications making 𝑇 a monoidal pseudofunctor;

• invertible 2-cells making 𝜂 a monoidal pseudonatural trans-

formation:

𝐼 𝑇𝐼

𝜂

𝜄

𝜂0

𝐴𝐵 𝑇𝐴𝑇𝐵

𝑇𝐴𝐵

𝜂𝜂

𝜒

𝜂

𝜂2
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Figure 6: Coherence axioms for a bistrong pseudomonad.

• invertible 2-cells making 𝜇 a monoidal pseudonatural trans-

formation:

𝐼 𝑇𝐼 𝑇 2

𝐼

𝑇𝐼

𝜄 𝑇𝜄

𝜇
𝜄

𝜇0

𝑇 2

𝐴
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𝐵
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𝑇𝑇𝐴𝑇𝐵 𝑇 2

𝐴𝐵
𝑇𝐴𝐵

𝜇𝜇

𝜒𝜒

𝑇𝜒 𝜇

𝜇2

The pseudomonad modifications (𝒎, 𝒏,𝒑) must then satisfy the

axioms of monoidal modifications and the two pseudomonad laws.

Theorem 5.9. For any pseudomonad 𝑇 : every monoidal structure
on 𝑇 canonically induces a commutative structure on 𝑇 , and every
commutative structure on𝑇 canonically induces a monoidal structure
on 𝑇 .

Note that when constructing monoidal structure there is a choice

between two isomorphic structures, since our commutativity is

only pseudo. The proof is a (long) direct verification; we detail the

constructions in Appendix E.

5.3 Premonoidal Kleisli bicategories
A generalisation of Moggi’s framework, which does not require a

monad explicitly in the syntax, is given by Freyd categories [48, 68].
This includes Moggi’s approach: the functor 𝜂 ◦ (−) : C → C𝑇 ,
which describes the interaction between pure programs (interpreted

in C) and effectful ones (interpreted in C𝑇 ), forms a Freyd cate-

gory. In this section we study the Kleisli bicategories associated to

the structures discussed above, and show they form Freyd bicat-
egories [62]. Thus, the categorical interpretation of call-by-value

programs lifts to the bicategorical setting as expected.

Kleisli bicategories. If 𝑇 is a pseudomonad on a bicategory ℬ,

the Kleisli bicategory ℬ𝑇 (e.g. [9]) has the same objects asℬ and

hom-categories ℬ𝑇 (𝐴, 𝐵) := ℬ(𝐴,𝑇𝐵). The identity on 𝐴 is the

1-cell 𝜂𝐴 ∈ ℬ(𝐴,𝑇𝐴) and the composition of 𝑓 ∈ ℬ(𝐴,𝑇𝐵) and
𝑔 ∈ ℬ(𝐵,𝑇𝐶) is given by

𝐴
𝑓
−→ 𝑇𝐵

𝑇𝑔
−−→ 𝑇 2𝐶

𝜇
−→ 𝑇𝐶 .

The structural 2-cells a, l, r in ℬ𝑇 are constructed using the 2-

dimensional structure of the pseudomonad 𝑇 .

Premonoidal structure. Ifℬ is equipped with a monoidal struc-

ture (⊗, 𝐼 ), then some of this structure is inherited by ℬ𝑇 when

𝑇 is strong. More precisely, if 𝑇 has a left strength 𝑡 , then for any

object 𝐴 ∈ ℬ the mapping

𝐵
𝑓
−→ 𝑇𝐵′ ↦−→ 𝐴 ⊗ 𝐵

𝐴⊗𝑓
−−−−→ 𝐴 ⊗ 𝑇𝐵′ 𝑡−→ 𝑇 (𝐴 ⊗ 𝐵′) (9)

can be extended to a pseudofunctor ℬ𝑇 → ℬ𝑇 denoted 𝐴 ⋊ −.
Similarly, if 𝑇 is right-strong, then for every object 𝐴 we have a

pseudofunctor − ⋉𝐴 : ℬ𝑇 →ℬ𝑇 .

Proposition 5.10. For a bistrong pseudomonad (𝑇, 𝑠, 𝑡) on amonoidal
bicategory (ℬ, ⊗, 𝐼 ) the families of pseudofunctors (−⋉𝐴) and (𝐴⋊−)
assemble into a premonoidal structure on ℬ𝑇 . Together with the
canonical pseudofunctorℬ→ℬ𝑇 , which regards pure morphisms
as effectful ones, they determine a Freyd bicategory.

Monoidal Kleisli bicategories. When the pseudomonad 𝑇 is com-

mutative, the premonoidal structure on ℬ𝑇 canonically extends to

a (pseudo) monoidal structure. The only missing ingredient is the

isomorphism 𝜙 making ⊗ a pseudofunctor of two arguments. One
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constructs this using 𝑐 , yielding the interchange law below:

𝐴 ⊗ 𝐵 𝐴′ ⊗ 𝐵

𝐴 ⊗ 𝐵′ 𝐴′ ⊗ 𝐵′

𝑓 ⋊𝐵

𝐴′⋉𝑔𝐴⋉𝑔

𝑓 ⋊𝐵′

𝑓 ⊗𝑔
𝜙

𝜙−1

This gives an isomorphism in (3). Next we will consider a gener-

alised setting in which 𝜙 is not invertible.

6 CONCURRENT PSEUDOMONADS
Concurrent pseudomonads illustrate the expressive power of 2-

dimensional category theory. Their definition is unequivocally 2-

categorical because, for the first time in this paper, we make use

of non-invertible 2-cells (and so it would not be sufficient to work

with a category ‘up to isomorphism’, as is commonly done).

6.1 Definition and strength
Definition 6.1. A concurrent pseudomonad on a monoidal bicate-

gory (ℬ, ⊗, 𝐼 ) consists of the same data as amonoidal pseudomonad

(Definition 5.8), with axioms modified as follows:

• The modification 𝜇2 is no longer required to be invertible;

• The composite 2-cells

𝐴𝑇 2

𝐵
𝑇𝐴𝑇

2

𝐵
𝑇 2

𝐴
𝑇 2

𝐵
𝑇𝐴𝑇𝐵

𝑇𝑇𝐴𝑇𝐵 𝑇 2

𝐴𝐵
𝑇𝐴𝐵

𝜇𝜇

𝜒𝜒

𝑇𝜒 𝜇

𝜂𝑇 2

𝐵
𝜂𝑇 2

𝐵

𝜇2

𝑇 2

𝐴
𝐵 𝑇 2

𝐴
𝑇𝐵 𝑇 2

𝐴
𝑇 2

𝐵
𝑇𝐴𝑇𝐵

𝑇𝑇𝐴𝑇𝐵 𝑇 2

𝐴𝐵
𝑇𝐴𝐵

𝜇𝜇

𝜒𝜒

𝑇𝜒 𝜇

𝑇 2

𝐴
𝜂 𝑇 2

𝐴
𝜂

𝜇2

are now required to be invertible.

The coherence axioms are the same as for a monoidal pseudomonad.

There are likely many examples of this structure.

Example 6.2. Let Poset be the 2-category of posets andmonotone

functions, with 2-cells given by the pointwise order on functions.

The decreasing natural numbersN = (N, ≥) form amonoid in Poset
under addition, which induces a (strict) 2-monad

N × − : Poset→ Poset.

This 2-monad has a concurrent structure: the monotone function

max : N×N→ N, induces a natural transformation (N×𝐴) × (N×
𝐵) → N × (𝐴 × 𝐵), with the 2-cell 𝜇2 representing the fact that

max(𝑛 +𝑚,𝑘 + 𝑙) ≤ max(𝑛, 𝑘) +max(𝑚, 𝑙) .
Note that we recover an equality if either 𝑛 =𝑚 = 0 or 𝑘 = 𝑙 = 0,

giving invertible composite 2-cells as required by Definition 6.1.

Example 6.3. For any non-empty set Σ the set of finite strings Σ∗

is a monoid in (Set,×, 1) and so also in the monoidal category of

sets and relations (Rel,×, 1). Now, Rel is a (degenerate) bicategory
with the 2-cells given by the inclusion of relations, and the induced

writer pseudomonad (−) × Σ∗ is strong but not commutative. It has

a concurrent structure with 𝜒 defined by

(𝐴 × Σ∗) × (𝐵 × Σ∗) → P((𝐴 × 𝐵) × Σ∗)
(𝑎,𝑢, 𝑏, 𝑣) ↦→

{
(𝑎, 𝑏,𝑤) | 𝑤 is an interleaving of 𝑢 and 𝑣

}
and 𝜇2 given by the inclusion, which is in general strict.

A careful analysis of the proof of Theorem 5.9 shows that the

invertibility of 𝜇2 is not needed, except where it is precomposed

with units as in the definition above. This yields the following:

Proposition 6.4. Every concurrent pseudomonad has a canonical
bistrong structure.

The next result shows that Definition 6.1 does indeed capture

the weak interchange law (3). Lax normal functors are defined like

pseudofunctors, without the constraint that the compositor 2-cell

𝜙 is invertible (e.g. [22]).

Proposition 6.5. For any concurrent pseudomonad𝑇 on amonoidal
bicategory (ℬ, ⊗, 𝐼 ), the families of pseudofunctors (− ⋊ 𝐴) and
(𝐴 ⋉ −) in the premonoidal structure of ℬ𝑇 assemble into a lax

normal functor ⊗ of two arguments.

6.2 Illustration in concurrent game semantics
In this section we illustrate concurrent pseudomonads with the

continuation pseudomonad from concurrent games [6]. (Game se-

mantics plays no role in this paper outside this section.) Our model

is “truly concurrent”, in the sense that programs are represented

as partially ordered sets of computational events, rather than as

sets of possible traces. This makes the concurrent structure of our

pseudomonad clear. The model is a simplified, deterministic version

of [6].

6.2.1 Event structures. A (deterministic) event structure is a partially
ordered set of events related by a partial order modelling causal

dependency. Formally it is a partial order (𝐸, ≤𝐸 ) such that every

𝑒 ∈ 𝐸 depends on finitely many events, i.e. the set {𝑒′ | 𝑒′ ≤𝐸 𝑒} is
finite. Thus a finite, down-closed subset of 𝐸 represents a possible

(partial) execution of the concurrent process modelled by 𝐸.

A map of event structures (𝐸, ≤𝐸 ) → (𝐷, ≤𝐷 ) is an injective

function 𝑓 : 𝐸 → 𝐷 such that if 𝑥 ⊆ 𝐸 is down-closed, then the

image 𝑓 𝑥 is also down-closed. The map 𝑓 can be understood as

a simulation of 𝐸 in 𝐷 , or in terms of possible execution traces.

For example the map in Figure 1 (in which the arrows are a Hasse

diagram for ≤) is valid because every possible execution of the

domain is also an execution in the codomain.

Event structures support a parallel composition operator 𝐸 ⊗ 𝐷
(sometimes 𝐸 ∥ 𝐷), defined as the disjoint union of partial orders.

6.2.2 Games and strategies. In what follows we use somewhat

informal language to focus on illustrating the concepts. A game is
an event structure 𝐴 equipped with a polarity function 𝐴→ {+,−}
assigning “moves” to the program (+) and the environment (−). The
game 𝐴⊥ swaps the moves of the program and the environment in

𝐴: it has the same events, with polarity reversed. A strategy over

the game𝐴 is an event structure 𝑆 with a projection map 𝑝 : 𝑆 → 𝐴

satisfying a lifting condition which plays no role in this section [6].

There is a bicategory of concurrent games𝒢 as follows:
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• objects are negative games: games whose minimal events are

all negative (“the environment always acts first”).

• 1-cells from 𝐴 to 𝐵 are negative strategies over the game

𝐴⊥ ⊗ 𝐵. Intuitively, these encode a program’s moves as a

function of the environment’s behaviour.

• 2-cells from a strategy 𝑝 : 𝑆 → 𝐴⊥ ⊗ 𝐵 to a strategy 𝑝′ :
𝑆 ′ → 𝐴⊥ ⊗ 𝐵 are maps of event structures 𝑓 : 𝑆 → 𝑆 ′ which
commute with the projections.

Strategies are composed using a pullback construction in the

category of event structures and maps. (This is only determined

up to isomorphism, and therefore is only weakly associative.) The

identity on a game 𝐴 is the copycat strategy on 𝐴⊥ ⊗ 𝐴, in which

every environment move is copied by the program.

6.2.3 A double-negation concurrent pseudomonad. We can turn a

negative game 𝐴 into a positive game ¬𝐴 by appending a single

minimal positive move. Similarly we can append a negative move

at the beginning of a positive game 𝐴′ to get a negative game ¬𝐴′.
The induced operation ¬¬ is a pseudomonad on𝒢, as shown below.

(In each diagram, moves of the strategy are positioned underneath

the game to which they project. For each strategy we only display

the initial portion of appended ¬-moves; the rest follows a copycat

strategy.)

𝐴
𝜂
−→ ¬¬𝐴

¬¬¬¬𝐴
𝜇
−→ ¬¬𝐴

The effect of the pseudomonad ¬¬ is to track the sequential order

of function calls or argument calls. This may be unsurprising: dou-

ble negation, and game semantics in general, are strongly related

to continuation-passing style. This pseudomonad has a strength

𝑡 . It also has a transformation 𝜒 showing that we can represent

calls being made in parallel, using the true concurrency of event

structures:

𝐴 ⊗ ¬¬𝐵 𝑡−→ ¬¬(𝐴 ⊗ 𝐵) ¬¬𝐴 ⊗ ¬¬𝐵
𝜒
−→ ¬¬(𝐴 ⊗ 𝐵)

However, ¬¬ is not commutative: it is only concurrent. Indeed,

one can calculate that the 2-cell 𝜇2 : 𝜇 ◦ ¬¬𝜒 ◦ 𝜒 ⇒ 𝜒 ◦ (𝜇 ⊗ 𝜇)
is the following non-invertible map of strategies:

¬(4)𝐴 ⊗ ¬(4)𝐵 → ¬¬(𝐴 ⊗ 𝐵) ¬(4)𝐴 ⊗ ¬(4)𝐵 → ¬¬(𝐴 ⊗ 𝐵)

This makes plain the constraints of a midway synchronization point

as in the left-hand side of (3), and generalizes the basic example of

Figure 1 to a polarized setting.

In summary, game semantics gives a very concrete illustration of

a concurrent pseudomonad, in which concurrency is modelled by

the true concurrency of event structures. There are more abstract

semantics, which we will explore in further work.

7 FORMAL ASPECTS OF STRONG AND
MONOIDAL PSEUDOMONADS

A central challenge in developing higher-categorical definitions is

to identify suitable axioms on 2-cells to ensure coherence.

In this technical section we justify the definitions in this paper

in two ways. First, we lift a correspondence between strengths and

certain actions from the categorical setting (see e.g. [53]) to the

bicategorical one. This is important from a semantic perspective,

but also yields a form of coherence result. Second, we show our defi-

nitions arise naturally from higher-categorical considerations. This

is a standard approach to verifying the correctness of a definition:

c.f. e.g. [23, 51].

7.1 Strengths as actions
Moggi’s monadic metalanguage [60] extends the simply-typed λ-
calculus with explicit monadic types. It is modelled by a strong

monad on a cartesian (more generally, monoidal) category. His com-
putational λ-calculus, on the other hand, has the same types as the

simply-typed λ-calculus. It is modelled by a Freyd category, which

can equivalently be defined as an action extending the monoidal

structure (see [46, B.3]). We can see these capture the same notion of

program, because giving a left strength for a monad𝑇 on (C, ⊗, 𝐼 ) is
equivalent to giving a left action of (C, ⊗, 𝐼 ) on the Kleisli category

C𝑇 which extends the monoidal structure (e.g. [53, Proposition 4.3]).
This correspondence also holds bicategorically. For the definition

of bicategorical actions, we use [62, Definition 19]. We first observe

that every strong pseudomonad induces an action.

Proposition 7.1. Every strong pseudomonad (𝑇, 𝑡) on (ℬ, ⊗, 𝐼 )
induces an action ofℬ on the Kleisli bicategoryℬ𝑇 , where the pseud-
ofunctor ⊲ : ℬ ×ℬ𝑇 → ℬ𝑇 is given on objects by 𝐴 ⊲ 𝐵 = 𝐴 ⊗ 𝐵,
and on morphisms as

𝑓 ⊲ 𝑔 :=
(
𝐴 ⊗ 𝐵

𝑓 ⊗𝑔
−−−→ 𝐴′ ⊗ 𝑇𝐵′ 𝑡−→ 𝑇 (𝐴′ ⊗ 𝐵′)

)
for 𝑓 : 𝐴→ 𝐴′ and 𝑔 : 𝐵 → 𝑇𝐵′, with the same action on 2-cells.

The action ⊲ : ℬ ×ℬ𝑇 → ℬ𝑇 of Proposition 7.1 extends the

canonical action ⊗ : ℬ ×ℬ→ℬ given by the monoidal structure.
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Indeed, we have a pseudonatural transformation

ℬ ×ℬ𝑇 ℬ𝑇

ℬ ×ℬ ℬ

⊲

𝐾ℬ×𝐾

⊗

𝜃 (10)

where 𝐾 : ℬ → ℬ𝑇 is the identity-on-objects pseudofunctor

sending 𝑓 : 𝐴 → 𝐴′ to 𝜂𝐴′ ◦ 𝑓 : 𝐴 → 𝑇𝐴′. Moreover, the two

actions ⊲ and ⊗ agree on objects, and the 1-cell components 𝜃𝐴,𝐵
of the transformation are all the identity. Such a transformation is

known as an icon [43]. The 2-cell components of 𝜃 are nontrivial:

for each 𝑓 : 𝐴→ 𝐴′ and 𝑔 : 𝐵 → 𝐵′ we have an isomorphism

𝜃 𝑓 ,𝑔 : 𝑓 ⊲ 𝐾 (𝑔)
�
=⇒ 𝐾 (𝑓 ⊗ 𝑔)

derived from the modification 𝒛, satisfying the coherence laws.

We now prove an equivalence between left strengths and left

actions. Our correspondence theorem uses the following two cate-

gories for a pseudomonad 𝑇 on (ℬ, ⊗, 𝐼 ):
• LeftStr(𝑇 ), the category whose objects are left strengths for

𝑇 , andwhosemorphisms from 𝑡 to 𝑡 ′ aremodifications which

commute with all the strength data;

• LeftExt(𝑇 ), the category whose objects are extensions of

the canonical action of ℬ on itself, in the sense they are a

0-strict morphism of actions as defined in [62], and whose

morphisms from (⊲, 𝜃 ) to (⊲′, 𝜃 ′) are icons ⊲ ⇒ ⊲′ which
commute with 𝜃 and 𝜃 ′.

Theorem 7.2. For any pseudomonad 𝑇 on a monoidal bicategory
(ℬ, ⊗, 𝐼 ), the categories LeftStr(𝑇 ) and LeftExt(𝑇 ) are equivalent.

This theorem gives a slick way to prove Proposition 5.10, because

constructing an action is easier than constructing the strength.

Moreover, Section 5.3 suggests the following extension. For closely-

related results proven using sophisticated strictification techniques,

see [? ? ? ].

Theorem 7.3. For any pseudomonad 𝑇 on a monoidal bicategory
(ℬ, ⊗, 𝐼 ), there is an equivalence of categories between monoidal
structures on ℬ𝑇 and commutative structures on 𝑇 , where in each
case morphisms are defined analogously to Theorem 7.2.

7.1.1 Coherence. Because they are degenerate tricategories, coher-

ence for monoidal bicategories is a subtle matter. While it is true

that in certain freely-generated monoidal bicategories all diagrams

of structural 2-cells commute [27, Corollary 10.6], one must take

care about the basic data one is using. Indeed, in any monoidal

bicategory (ℬ, ⊗, 𝐼 ) with non-equal endo-1-cells 𝑎, 𝑏 : 𝐼 → 𝐼 there

exist diagrams of structural 2-cells involving 𝑎 and 𝑏 which the

coherence theorem does not require to commute (see [27, §10.3]).

Accordingly, because the identity pseudomonad has canonical

strong, monoidal, commutative, and concurrent structures, one can-

not hope for every diagram involving such structures and the un-

derlying monoidal bicategory (ℬ, ⊗, 𝐼 ) to commute for any choice

of (ℬ, ⊗, 𝐼 ).
Nonetheless, Theorems 7.2 and 7.3 may be seen as showing both

strong and monoidal pseudomonads are as coherent as one would

expect. Roughly, the argument for strong pseudomonads is as fol-

lows. By Theorem 7.2 every strong pseudomonad is isomorphic to

one induced by an action. But such actions are equivalently ‘triho-

momorphisms’ between degenerate tricategories (see [62, §4]); ac-

cordingly, Gurski’s coherence theorem [27, Corollary 10.15] applies.

It follows that this coherence applies likewise in the induced strong

pseudomonad, and hence in the starting strong pseudomonad. Sim-

ilar remarks hold for the monoidal case.

7.2 Strengths as internal pseudomonads
We now place our definitions in a wider mathematical context.

We shall show the axioms for strong and monoidal pseudomonads

(and hence also for concurrent pseudomonads) arise from stan-

dard higher-categorical definitions. It follows that our choice of

coherence axioms is canonical.

We first recall the 1-dimensional situation. The axioms for strong

monads and monoidal monads both arise from the definition of a

monad internal to a 2-category𝒞. This is defined by taking the cate-

gorical definition and replacing the underlying functor𝑇 by a 1-cell

and the natural transformations 𝜇 and𝜂 by 2-cells (see e.g. [75]). Tak-
ing𝒞 := Cat recovers plainmonads. Taking the 2-categoryMonCat
ofmonoidal categories, laxmonoidal functors, andmonoidal natural

transformations recovers monoidal monads. For a monoidal cate-

gory (V, ⊗, 𝐼 ), taking the 2-category V-Act of V-actions, equivari-
ant functors, and equivariant transformations (as defined in e.g. [52])
recovers strong monads.

Just as one can define monads in any 2-category, so one can

define pseudomonads in any weak 3-category (known as a tricate-
gory [25]): see e.g. [42]. Our definition of monoidal pseudomonads—

and hence concurrent pseudomonads—was carefully chosen to guar-

antee the following.

Theorem 7.4. A monoidal pseudomonad such that 𝜄 and 𝜒 are
equipped with the structure of an adjoint equivalence is exactly a
pseudomonad internal to the tricategoryMonBicat of monoidal bi-
categories [8].

To justify strong pseudomonads we need to work a little harder,

because we cannot rely on a pre-existing tricategory of actions.

However, for any monoidal bicategory (𝒱, ⊗, 𝐼 ) we can define a tri-

category𝒱-Act by small adjustments to the definition ofMonBicat.
We sketch the definitions, reserving more details for Appendix C.

The objects of𝒱-Act are left𝒱-actions. The 1-cells (⊲, 𝛼⊲, 𝜆⊲) →
(★, 𝛼★, 𝜆★) are equivariant morphisms, which consist of a pseudo-

functor 𝐹 : ℬ→ 𝒞 between the bicategories acted on, a pseudonat-

ural transformation 𝜒 with components 𝜒𝑋,𝐵 : 𝑋 ★𝐹𝐵 → 𝐹 (𝑋 ⊲𝐵),
and invertible modifications 𝜔 and 𝛾 with components as shown

below, subject to an associativity law and two unit laws:

(𝑋 ⊗ 𝑌 ) ★ 𝐹𝐴 𝑋 ★ (𝑌 ★ 𝐹𝐴) 𝑋 ★ 𝐹 (𝑌 ⊲𝐴)

𝐹
(
(𝑋 ⊗ 𝑌 ) ⊲𝐴

)
𝐹
(
𝑋 ⊲ (𝑌 ⊲𝐴)

)𝜒

𝑋★𝜒𝛼★

𝜒

𝐹𝛼⊲

𝜔

𝐼 ★ 𝐹𝐴

𝐹 (𝐼 ⊲𝐴) 𝐹𝐴

𝜒

𝐹𝜆⊲

𝜆★

𝛾

The 2-cells (𝐹, 𝜒, 𝜔,𝛾) → (𝐹 ′, 𝜒 ′, 𝜔′, 𝛾 ′) are equivariant transfor-
mations, consisting of a pseudonatural transformation 𝜎 : 𝐹 ⇒ 𝐹 ′

and an invertible modification Γwith components Γ : 𝜒 ′◦(𝑋★𝜎) ⇒
𝜎 ◦ 𝜒 subject to an associativity law and unit law. The 3-cells

(𝜎, Γ) → (𝜎′, Γ′) are equivariant modifications, which are mod-

ifications 𝑞 : 𝜎 → 𝜎′ subject to a law relating Γ and Γ′.
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Because the data and axioms is similar to that forMonBicat, it
is relatively easy to show𝒱-Act forms a tricategory (c.f. [8]).

In the 1-dimensional setting a V-action on a C is equivalently

a strong monoidal functor V → [C,C] into the strict monoidal

category of endofunctors on C. We verify our definition of𝒱-Act
with a bicategorical version of this result. To state the proposition,

we restrict to equivariant data that strictly preserves the base bicate-

gories: write LAct(ℬ) for the bicategory with objects𝒱-actions on

ℬ, 1-cells equivariant morphisms with underlying pseudofunctor

idℬ, and 2-cells equivariant transformations of the form (id, Γ).
Proposition 7.5. For any monoidal bicategory (𝒱, ⊗, 𝐼 ) and bi-

categoryℬ, the currying biequivalence of [76, §1.34] lifts to a biequiv-
alence between LAct(ℬ) ≃ MonBicat

(
𝒱,Hom(ℬ,ℬ)

)
.

We can now see that strong pseudomonads have a canonical

status:

Theorem 7.6. A strong pseudomonad on 𝒱 is equivalently a
pseudomonad on the canonical action of 𝒱 on itself in𝒱-Act.

8 CONCLUSION
In this paper we have laid amethod formodelling effectful programs

in 2-dimensional categories, using bicategorical versions of strong

and commutative monads (Sections 4 and 5). The extra structure

available in this setting can be used to capture phenomena that

are otherwise invisible (Section 6). In doing so, we have brought

together observations in concurrency theory (c.f. [32, 57]) with new

kinds of models motivated by entirely different concerns (e.g. [6,
11, 17]). Our definitions arise as expected from purely category-

theoretic concerns (Section 7).

Moggi’s framework paved the way for understanding effectful

programming from various new perspectives (e.g. [35, 38, 55, 64]).
We see this paper as the beginning of a fruitful line of future work,

mirroring these developments. Syntactically, it would be natural to

develop the internal languages of the various pseudomonad struc-

tures presented here (c.f. [18]). Semantically, the development of

Section 6 suggests making explicit the 2-dimensional structure im-

plicit in long-standing models such as those detailed in Section 1.1.

The precise structure of the Kleisli bicategory of a concurrent

pseudomonad remains to be understood (c.f. [22]), as are the con-
nections between “graded pseudomonads”, strong pseudomonads,

and pseudo-distributive laws (e.g. [81]). In another direction, strong

monads are induced by strong adjunctions [12, 47, 55], which should

also be generalized to a 2-dimensional setting, to provide a finer

setting for studying concurrency. An important (and simpler) spe-

cial case is the class of dialogue categories [54, 58], which includes

examples based on games.
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Strong, commutative, and concurrent pseudomonads

,
,

A TWO REDUNDANT AXIOMS FOR
LEFT-STRONG PSEUDOMONADS

The two equations below are derivable from the 8 presented in the

main body.

𝐼 (𝐴𝑇𝐵) (𝐼𝐴)𝑇𝐵

𝐼𝑇𝐴𝐵 𝐴𝑇𝐵

𝑇𝐼 (𝐴𝐵) 𝑇(𝐼𝐴)𝐵

𝑇𝐴𝐵

𝛼

𝐼𝑡

𝑡

𝑡

𝑇𝜆𝐵𝑇𝜆

𝜆

𝑡

𝜆𝑇𝐵

𝜆

𝒙

�

�

𝔩

=

𝐼 (𝐴𝑇𝐵) (𝐼𝐴)𝑇𝐵

𝐼𝑇𝐴𝐵

𝑇𝐼 (𝐴𝐵) 𝑇(𝐼𝐴)𝐵

𝑇𝐴𝐵

𝛼

𝐼𝑡

𝑡

𝑡

𝑇𝜆𝐵𝑇𝜆

𝑇𝛼

𝑇𝔩

𝒚

𝐴𝑇 2

𝐵
𝐴𝑇𝐵

𝑇𝐴𝑇𝐵 𝐴𝑇𝐵

𝑇 2

𝐴𝐵
𝑇𝐴𝐵

𝑡

𝑇𝑡

𝜇

𝐴𝑇𝜂

𝑡

𝐴𝜇
𝐴𝒑

𝒘

=

𝐴𝑇 2

𝐵
𝐴𝑇𝐵

𝑇𝐴𝑇𝐵 𝑇𝐴𝐵

𝑇 2

𝐴𝐵
𝑇𝐴𝐵

𝐴𝑇𝜂

𝑇𝑡

𝜇

𝑡 𝑡

𝑇𝐴𝜂

𝑇𝜂

�

𝑇𝒛

𝒑

B THE DATA FOR RIGHT-STRONG
PSEUDOMONADS

The data of a right-strong pseudomonad is shown below. The 8

axioms are essentially those of a left-strong pseudomonad, with the

action of parameters on the left replaced by the the corresponding

action on the right so that, for example, 𝐼𝑇𝐴 is replaced by 𝑇𝐴𝐼 and

𝜆 is replaced by 𝜌 .

𝑇𝐴𝐼 𝑇𝐴𝐼

𝑇𝐴

𝑠

𝑇𝜌
𝜌

𝒙′

(𝑇𝐴𝐵)𝐶 𝑇𝐴 (𝐵𝐶) 𝑇𝐴(𝐵𝐶 )

𝑇𝐴𝐵𝐶 𝑇(𝐴𝐵)𝐶

𝛼 𝑠

𝑠𝐶

𝑠

𝑇𝛼
𝒚′

𝐴𝐵 𝑇𝐴𝐵

𝑇𝐴𝐵

𝜂𝐵

𝑠
𝜂

𝒛′
𝑇 2

𝐴
𝐵 𝑇𝑇𝐴𝐵 𝑇 2

𝐴𝐵

𝑇𝐴𝐵 𝑇𝐴𝐵

𝑠 𝑇𝑠

𝜇𝜇𝐵

𝑠

𝒘′

C THE TRICATEGORY OF𝒱-ACTIONS
We give the coherence axioms for the tricategory𝒱-Act. Through-
out this section we fix a monoidal bicategory (𝒱, ⊗, 𝐼 ) with left

𝒱-actions (⊲, 𝛼⊲, 𝜆⊲) : 𝒱 ×ℬ→ℬ and (★, 𝛼★, 𝜆★) : 𝒱 ×𝒞 → 𝒞

defined as in [62]. Composition and identities are defined using the

definition of composition of pseudonatural transformations and

modifications. Similarly, the structural transformations and struc-

tural modifications are all defined by endowing the corresponding

structure in Bicat with equivariant structure in the obvious way.

In each case, most of the work lies in showing the coherence con-

ditions still hold; the various axioms hold because they hold in

Bicat.

Definition C.1. An equivariantmorphism (⊲, 𝛼⊲, 𝜆⊲) → (★, 𝛼★, 𝜆★)
consists of:

(1) A pseudofunctor 𝐹 : ℬ→ 𝒞;

(2) A pseudonatural transformation 𝜒𝑋,𝐵 : 𝑋 ★ 𝐹𝐵 → 𝐹 (𝑋 ⊲ 𝐵);
(3) Invertible modifications 𝜔 and 𝛾 as shown below, subject to

the associativity law and two unit laws in Figure 7:

(𝑋 ⊗ 𝑌 ) ★ 𝐹𝐴 𝑋 ★ (𝑌 ★ 𝐹𝐴) 𝑋 ★ 𝐹 (𝑌 ⊲𝐴)

𝐹
(
(𝑋 ⊗ 𝑌 ) ⊲𝐴

)
𝐹
(
𝑋 ⊲ (𝑌 ⊲𝐴)

)𝜒

𝑋★𝜒𝛼★

𝜒

𝐹𝛼⊲

𝜔

𝐼 ★ 𝐹𝐴

𝐹 (𝐼 ⊲𝐴) 𝐹𝐴

𝜒

𝐹𝜆⊲

𝜆★

𝛾

Definition C.2. An equivariant 2-cell (𝐹, 𝜒, 𝜔,𝛾) → (𝐹 ′, 𝜒 ′, 𝜔′, 𝛾 ′)
between action morphisms of type (⊲, 𝛼⊲, 𝜆⊲) → (★, 𝛼★, 𝜆★) con-
sists of:

(1) A pseudonatural transformation 𝜎 : 𝐹 ⇒ 𝐹 ′;
(2) An invertible modification Γ with components as shown:

𝑋𝐹𝐴 𝑋𝐹 ′
𝐴

𝐹𝑋𝐴 𝐹 ′
𝑋𝐴

𝜒

𝑋★𝜎

𝜒 ′

𝜎

Γ

subject to the following unit and associativity laws:

(1)

𝐼𝐹𝐴 𝐼𝐹 ′
𝐴

𝐹𝐼𝐴 𝐹 ′
𝐼𝐴

𝐹𝐴 𝐹 ′
𝐴

𝐼★𝜎

𝜒

𝐹𝜆⊲

𝜎

𝐹 ′
𝜆⊲

𝜒 ′

𝜎 𝜆★

Γ

�

𝛾 ′ =

𝐼𝐹𝐴 𝐼𝐹 ′
𝐴

𝐹𝐼𝐴

𝐹𝐴 𝐹 ′
𝐴

𝐼★𝜎

𝜒

𝐹𝜆⊲

𝜎

𝜆★𝜆★𝛾 �

(2)

(𝑋𝑌 )𝐹𝐴 𝑋 (𝑌𝐹𝐴) 𝑋𝐹𝑌𝐴

(𝑋𝑌 )𝐹 ′
𝐴

𝑋 (𝑌𝐹 ′
𝐴
) 𝑋𝐹 ′

𝑌𝐴
𝐹𝑋 (𝑌𝐴)

𝐹 ′(𝑋𝑌 )𝐴 𝐹 ′
𝑋 (𝑌𝐴)𝐹 ′

𝛼⊲

𝜒

𝜎

𝛼★ 𝑋★𝜒

(𝑋⊗𝑌 )★𝜎 𝑋★(𝑌★𝜎 )

𝛼★

𝜒 ′
𝑋★𝜒 ′

𝑋★𝜎

𝜒 ′

Γ

𝑋★Γ

𝜔 ′

�

=

(𝑋𝑌 )𝐹𝐴 𝑋 (𝑌𝐹𝐴) 𝑋𝐹𝑌𝐴

(𝑋𝑌 )𝐹 ′
𝐴

𝐹 (𝑋𝑌 )𝐴 𝐹𝑋 (𝑌𝐴)

𝐹 ′(𝑋𝑌 )𝐴 𝐹 ′
𝑋 (𝑌𝐴)𝐹 ′

𝛼⊲

𝜒

𝜎

𝛼★ 𝑋★𝜒

(𝑋⊗𝑌 )★𝜎

𝜒 ′

𝜒

𝜎

𝐹𝛼⊲

�

𝜔

Γ

Definition C.3. Let (𝐹, 𝜒, 𝜔,𝛾) → (𝐹 ′, 𝜒 ′, 𝜔′, 𝛾 ′) : (⊲, 𝛼⊲, 𝜆⊲) →
(★, 𝛼★, 𝜆★) be equivariant 1-cells related by equivariant 2-cells

(𝜎, Γ), (𝜎′, Γ′) : (𝐹, 𝜒, 𝜔,𝛾) → (𝐹 ′, 𝜒 ′, 𝜔′, 𝛾 ′). An equivariant 3-
cell (𝜎, Γ) → (𝜎′, Γ′) consists of a modification 𝑞 : 𝜎 → 𝜎′ such
that

𝑋𝐹𝐴 𝑋𝐹 ′
𝐴

𝐹𝑋𝐴 𝐹 ′
𝑋𝐴

𝑋★𝜎

𝜒 𝜒 ′

𝜎 ′

𝑋★𝜎 ′

𝑋★𝑞

Γ′

=

𝑋𝐹𝐴 𝑋𝐹 ′
𝐴

𝐹𝑋𝐴 𝐹 ′
𝑋𝐴

𝑋★𝜎

𝜒 𝜒 ′

𝜎 ′

𝑞

Γ
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(1)

(
(𝑋𝑌 )𝑍

)
𝐹𝐴

(𝑋𝑌 ) (𝑍𝐹𝐴)
(
𝑋 (𝑌𝑍 )

)
𝐹𝐴 𝐹 ( (𝑋𝑌 )𝑍 )𝐴

𝑋
(
𝑌 (𝑍𝐹𝐴)

)
𝑋
(
(𝑌𝑍 )𝐹𝐴

)
𝐹 (𝑋 (𝑌𝑍 ) )𝐴

𝑋 (𝑌𝐹𝑍𝐴) 𝑋𝐹 (𝑌𝑍 )𝐴

𝑋𝐹𝑌 (𝑍𝐴) 𝐹𝑋 ( (𝑌𝑍 )𝐴)

𝐹𝑋 (𝑌 (𝑍𝐴) )

𝛼★
𝛼★𝐹𝐴

𝛼★

𝑋★𝛼★
𝛼★

𝑋★𝜒

𝑋★𝐹𝛼⊲ 𝜒

𝜒 𝐹𝑋 ⊲𝛼⊲

𝜒

𝐹𝛼⊲𝐴

𝐹𝛼⊲

𝜒

𝑋★(𝑌★𝜒 )

𝑋★𝜒

�

𝔭★
�

𝜔𝑋★𝜔

=

(𝑋𝑌 ) (𝑍𝐹𝐴)
(
(𝑋𝑌 )𝑍

)
𝐹𝐴

𝐹 ( (𝑋𝑌 )𝑍 )𝐴

𝑋
(
𝑌 (𝑍𝐹𝐴)

)
(𝑋𝑌 )𝐹𝑍𝐴 𝐹 (𝑋𝑌 ) (𝑍𝐴) 𝐹 (𝑋 (𝑌𝑍 ) )𝐴

𝑋 (𝑌𝐹𝑍𝐴) 𝐹𝑋 ( (𝑌𝑍 )𝐴)

𝑋𝐹𝑌 (𝑍𝐴) 𝐹𝑋 (𝑌 (𝑍𝐴) )

𝛼★

𝛼★

𝜒

𝐹𝑋 ⊲𝛼⊲

𝜒

𝐹𝛼⊲𝐴

𝐹𝛼⊲𝑋★(𝑌★𝜒 )

𝑋★𝜒

(𝑋𝑌 )★𝜒

𝛼★

𝜒

𝐹𝛼⊲

𝜔

𝐹𝔭⊲

�

𝜔

The following two diagrams are equal to the canonical structural isomorphisms:

(2)

(𝑋𝐼 )𝐹𝐴 𝑋 (𝐼𝐹𝐴)

𝑋𝐹𝐴 𝑋𝐹𝐼𝐴 𝑋𝐹𝐴

𝐹 (𝑋𝐼 )𝐴 𝐹𝑋 (𝐼𝐴)

𝐹𝑋𝐴 𝐹𝑋𝐴

𝛼★

𝑋★𝜒

𝜒

𝜒

𝐹𝛼⊲

𝑋 ⊲𝐹𝜆⊲

𝑋★𝜆★

𝜒

𝐹𝑋 ⊲𝜆⊲

𝜆★𝐹𝐴

𝜒

𝐹𝜆⊲𝐴

Id

𝜔

�

𝑋★𝛾

�

𝐹𝔪⊲

Id

𝔪★

(3)

𝑋𝐹𝐴 𝐼 (𝑋𝐹𝐴) (𝐼𝑋 )𝐹𝐴

𝐼𝐹𝑋𝐴

𝐹𝐼 (𝑋𝐴)

𝐹𝑋𝐴 𝐹 (𝐼𝑋 )𝐴

𝛼★

𝐼★𝜒

𝜒 𝜒

𝐹𝛼⊲𝐹𝜆⊲

𝜆★

𝜒
𝜆★

𝐹𝜆⊲𝐴

𝐹𝔩⊲

�
𝜔

𝛾

Id

𝔩★

Figure 7: Axioms for equivariant morphisms.

D COHERENCE AXIOMS FOR COMMUTATIVE
PSEUDOMONADS

We collect the axioms for the commutativity modification 𝒄 of a
commutative pseudomonad. These are obtained from Hyland &

Power’s axioms [34] by explicitly adding in the structural isomor-

phisms of the monoidal bicategory and the bistrong pseudomonad.

The axioms are shown in Figures 8 and 9. We have numbered them

so they match [34, Definition 5].

E RELATING COMMUTATIVE, CONCURRENT
AND MONOIDAL PSEUDOMONADS

We outline the construction of a commutative pseudomonad from

a monoidal pseudomonad (Appendix E.1), and the construction

of a monoidal pseudomonad from a commutative pseudomonad

(Appendix E.2). In doing so, we see how to construct a bistrong

pseudomonad from a concurrent pseudomonad (Appendix E.1).

Here we just show how to construct the data. The axioms are all

checked directly: this is long-winded, but relatively straightforward.

E.1 From monoidal to commutative
Fix a monoidal pseudomonad as in Definition 5.8, with the three

modifications of the underlying monoidal pseudofunctor denoted

by 𝛾, 𝛿 and 𝜛 as in [8].

We give the data for a commutative pseudomonad. In doing so

we need to construct bistrong structure; because we only use the

invertibility of 𝜇2 in the definition of 𝒄 , this also shows how to

construct a lax bistrong pseudomonad from a lax monoidal pseu-

domonad. A short check then shows that the invertibility conditions

of a concurrent pseudomonad (Definition 6.1) suffice to make all

the modifications for the induced bistrong pseudomonad invertible.

For the two strengths, we take:

𝑡𝐴,𝐵 := 𝐴𝑇𝐵
𝜂𝑇𝐵−−−→ 𝑇𝐴𝑇𝐵

𝜒
−→ 𝑇𝐴𝐵

𝑠𝐴,𝐵 := 𝑇𝐴𝐵
𝑇𝐴𝜂−−−→ 𝑇𝐴𝑇𝐵

𝜒
−→ 𝑇𝐴𝐵

We give the structural modifications making the pseudomonad

(𝑇, 𝜇, 𝜂) left strong; the ones for the right strength are very similar.

First, the unit laws:

𝒙 :=

𝐼𝑇𝐴

𝑇𝐼𝑇𝐴 𝑇𝐴

𝑇𝐼𝐴

𝜂𝑇𝐴 𝜄𝑇𝐴

𝜒
𝑇𝜆

𝜆
𝜂0𝑇𝐴

𝛾 𝒛 :=

𝐴𝐵

𝐴𝑇𝐵 𝑇𝐴𝑇𝐵 𝑇𝐴𝐵

𝐴𝜂

𝜂𝑇𝐵 𝜒

𝜂

𝜂𝜂
�

𝜂2



Strong, commutative, and concurrent pseudomonads

,
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(1)

𝑇(𝐴𝐵)𝑇𝐶 𝑇 2

(𝐴𝐵)𝐶 𝑇(𝐴𝐵)𝐶

(𝐴𝑇𝐵)𝑇𝐶 𝑇𝐴𝐵𝑇𝐶 𝑇(𝐴𝐵)𝐶

𝑇(𝐴𝑇𝐵 )𝐶 𝑇𝑇𝐴𝐵
𝐶 𝑇 2

(𝐴𝐵)𝐶 𝑇𝐴(𝐵𝐶 )

𝑇𝐴(𝑇𝐵𝐶 ) 𝑇𝐴𝑇𝐵𝐶 𝑇 2

𝐴(𝐵𝐶 )

𝑡𝑇𝐶

𝑠

𝑇𝑡

𝑇𝛼
𝑡

𝑇𝑠

𝜇

𝜇

𝑇 2

𝛼 𝜇

𝑡

𝑇𝑡𝐶

𝑇𝛼

𝑇𝐴𝑠 𝑇𝑡

𝑇 2

𝛼

𝜇

�

𝒄

�

𝑇𝒃

�

=

𝑇(𝐴𝐵)𝑇𝐶 𝑇 2

(𝐴𝐵)𝐶

𝑇𝐴𝐵𝑇𝐶 𝑇𝐴(𝐵𝑇𝐶 ) 𝑇𝐴𝑇𝐵𝐶 𝑇(𝐴𝐵)𝐶

𝐴𝑇𝐵𝑇𝐶 𝐴𝑇 2

𝐵𝐶

(𝐴𝑇𝐵)𝑇𝐶 𝐴(𝑇𝐵𝑇𝐶 ) 𝐴𝑇𝐵𝐶 𝑇𝐴(𝐵𝐶 )

𝑇(𝐴𝑇𝐵 )𝐶 𝐴𝑇𝑇𝐵𝐶 𝐴𝑇 2

𝐵𝐶
𝑇 2

𝐴(𝐵𝐶 )

𝑇𝐴(𝑇𝐵𝐶 ) 𝑇𝐴𝑇𝐵𝐶

𝑡𝑇𝐶

𝑠

𝑇𝑡

𝜇
𝑡

𝑇𝛼

𝑇𝐴𝑠

𝑇𝑡

𝑇 2

𝛼

𝜇

𝑡

𝐴𝜇

𝑡𝛼

𝐴𝑠

𝑇𝛼

𝑡

𝑇𝐴𝑡 𝑇𝑡

𝐴𝑇𝑡

𝑡

𝐴𝜇

𝐴𝑡

𝐴𝑇𝑠

𝑡

𝑇𝒚

�

𝒘

𝒘

𝐴𝒄

�

𝒚

𝒃

(2)

𝑇𝐴(𝐵𝑇𝐶 ) 𝑇𝐴𝑇𝐵𝐶 𝑇 2

𝐴(𝐵𝐶 )

(𝑇𝐴𝐵)𝑇𝐶 𝑇𝐴 (𝐵𝑇𝐶 ) 𝑇𝐴𝑇𝐵𝐶 𝑇𝐴(𝐵𝐶 )

𝑇(𝑇𝐴𝐵)𝐶 𝑇𝑇𝐴 (𝐵𝐶 ) 𝑇 2

𝐴(𝐵𝐶 ) 𝑇(𝐴𝐵)𝐶

𝑇𝑇𝐴𝐵𝐶 𝑇 2

(𝐴𝐵)𝐶

𝛼

𝑇𝐴𝑡

𝑠

𝑇𝑡

𝜇

𝑡

𝑇𝑠

𝜇
𝑡

𝑇𝛼

𝑇𝑠𝐶

𝑇𝑠

𝑇 2

𝛼 𝜇

𝑇𝛼

𝑠

𝑇𝐴𝑡

�

�

𝒚

𝑇𝒚′

𝒄

=

𝑇𝐴 (𝐵𝑇𝐶 ) 𝑇𝐴(𝐵𝑇𝐶 ) 𝑇𝐴𝑇𝐵𝐶 𝑇 2

𝐴(𝐵𝐶 )

(𝑇𝐴𝐵)𝑇𝐶 𝑇𝐴𝐵𝑇𝐶 𝑇(𝐴𝐵)𝑇𝐶 𝑇 2

(𝐴𝐵)𝐶 𝑇 2

𝐴(𝐵𝐶 ) 𝑇𝐴(𝐵𝐶 )

𝑇(𝑇𝐴𝐵)𝐶 𝑇𝑇𝐴𝐵𝐶 𝑇 2

(𝐴𝐵)𝐶 𝑇(𝐴𝐵)𝐶

𝛼

𝑇𝑡

𝜇

𝑡

𝑇𝑠𝐶 𝑇𝑠 𝜇

𝑇𝛼

𝑠 𝑇𝐴𝑡

𝑠𝑇𝐶 𝑠

𝑇𝛼

𝑇𝑡 𝑇 2

𝛼

𝑇 2

𝛼

𝜇

�

𝑇𝒚

𝑡

𝒚′

� 𝒄

(3)

𝑇𝐴𝑇𝐵𝐶 𝑇(𝐴𝑇𝐵 )𝐶 𝑇𝐴(𝑇𝐵𝐶 ) 𝑇𝐴𝑇𝐵𝐶 𝑇 2

𝐴(𝐵𝐶 )

(𝑇𝐴𝑇𝐵)𝐶 𝑇𝐴 (𝑇𝐵𝐶) 𝑇𝐴𝑇𝐵𝐶 𝑇𝐴(𝐵𝐶 )

𝑇𝑇𝐴𝐵𝐶 𝑇(𝑇𝐴𝐵)𝐶 𝑇𝑇𝐴 (𝐵𝐶 ) 𝑇 2

𝐴(𝐵𝐶 ) 𝑇(𝐴𝐵)𝐶

𝑇 2

𝐴𝐵
𝐶 𝑇𝑇𝐴𝐵𝐶 𝑇 2

(𝐴𝐵)𝐶

𝛼 𝑇𝐴𝑠

𝑠

𝑇𝑡

𝜇

𝑇𝑠

𝜇
𝑡𝑡𝐶

𝑇𝛼𝑠

𝑇𝑠𝐶

𝑇𝑠

𝑇 2

𝛼 𝜇

𝑇𝛼

𝑠

𝑇𝐴𝑠

𝒃

𝑠𝐶

𝑠 𝑇𝛼

𝑇𝑠𝐶

𝑠

𝑇𝒚′

�

𝒄

�𝒚′

�

=

𝑇(𝐴𝑇𝐵 )𝐶 𝑇𝐴(𝑇𝐵𝐶 ) 𝑇𝐴𝑇𝐵𝐶

𝑇𝐴𝑇𝐵𝐶 𝑇 2

𝐴(𝐵𝐶 )

(𝑇𝐴𝑇𝐵)𝐶 𝑇 2

𝐴𝐵
𝐶 𝑇𝑇𝐴𝐵𝐶 𝑇 2

(𝐴𝐵)𝐶 𝑇𝐴(𝐵𝐶 )

𝑇𝑇𝐴𝐵𝐶 𝑇𝐴𝐵𝐶 𝑇(𝐴𝐵)𝐶

𝑇 2

𝐴𝐵
𝐶 𝑇𝑇𝐴𝐵𝐶 𝑇 2

(𝐴𝐵)𝐶

𝜇

𝑡𝐶

𝑇𝑠

𝜇

𝑇𝛼

𝑠𝐶

𝑠

𝑇𝑠𝐶

𝑠

𝑇𝑡𝐶

𝜇𝐶

𝜇𝐶

𝒄𝐶

𝑠

𝑠 𝑇𝑠

𝜇

𝑇 2

𝛼

𝑇𝑡𝐶

𝑇𝛼 𝑇𝐴𝑠

𝑇𝑡

𝑇𝒃

𝒘′

𝒘′

�

�

(4)

𝑇𝐴𝑇𝐵 𝑇 2

𝐴𝐵

𝐴𝑇𝐵 𝑇𝐴𝑇𝐵 𝑇𝐴𝐵

𝑇𝐴𝐵 𝑇𝑇𝐴𝐵 𝑇 2

𝐴𝐵

𝜂𝑇𝐵

𝑠

𝑇𝑡

𝜇

𝑡

𝑇𝑠

𝜇𝑡

𝑇𝜂𝐵

𝜂

�

𝒛′

𝒄 =

𝑇𝐴𝑇𝐵 𝑇 2

𝐴𝐵

𝐴𝑇𝐵 𝑇𝐴𝐵

𝑇𝐴𝐵 𝑇 2

𝐴𝐵

𝑇𝑇𝐴𝐵

𝑇𝑡

𝜇

𝑇𝑠

𝜇𝑡

𝑇𝜂𝐵

𝜂

𝜂

Id

𝑇𝜂

𝑇𝒛′

𝒑

𝒏

�

(5)

𝑇𝐴𝐵 𝑇𝐴𝑇𝐵 𝑇 2

𝐴𝐵

𝑇𝐴𝐵 𝑇𝐴𝑇𝐵 𝑇𝐴𝐵

𝑇𝑇𝐴𝐵 𝑇 2

𝐴𝐵

𝑇𝐴𝜂

𝑠

𝑇𝑡

𝜇

𝑡

𝑇𝑠

𝜇

𝑠

𝑇𝐴𝜂

𝜂

𝒄

�

𝒛

=

𝑇𝐴𝑇𝐵

𝑇𝐴𝐵 𝑇 2

𝐴𝐵

𝑇𝐴𝐵 𝑇𝐴𝐵

𝑇𝑇𝐴𝐵 𝑇 2

𝐴𝐵

𝑇𝑡

𝜇

𝑇𝑠

𝜇

𝑠

𝑇𝐴𝜂

𝜂

𝑇𝜂

Id
𝜂

𝑇𝒛

𝒑

�

𝒏

Figure 8: Axioms (1)–(5) for a commutative pseudomonad.
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(6)

𝑇𝑇𝐴𝑇𝐵 𝑇 2

𝐴𝑇𝐵
𝑇 3

𝐴𝐵
𝑇 2

𝐴𝐵

𝑇 2

𝐴
𝑇𝐵 𝑇𝐴𝑇𝐵 𝑇𝐴𝑇𝐵 𝑇 2

𝐴𝐵
𝑇𝐴𝐵

𝑇𝑇 2

𝐴
𝐵 𝑇𝑇𝐴𝐵 𝑇 2

𝐴𝐵
𝑇 2

𝐴𝐵

𝑇 2

𝑇𝐴𝐵
𝑇 3

𝐴𝐵

𝜇𝑇𝐵 𝑠 𝑇𝑡 𝜇

𝑇𝑠

𝜇𝑡
𝑡

𝑇𝜇𝐵

𝑇𝑠

𝑇 2

𝑠

𝑇𝜇 𝜇

𝜇

𝑠

𝑇𝑠

𝜇

𝑇 2

𝑡

𝜇

𝑇𝜇

𝜇

𝒄�

𝑇𝒘′

𝒎

𝒘′ � 𝒎

=

𝑇𝑇𝐴𝑇𝐵 𝑇 2

𝐴𝑇𝐵
𝑇 3

𝐴𝐵

𝑇 2

𝐴
𝑇𝐵 𝑇 2

𝑇𝐴𝐵
𝑇 3

𝐴𝐵
𝑇 2

𝐴𝐵

𝑇𝑇 2

𝐴
𝐵 𝑇𝑇𝐴𝐵 𝑇𝐴𝐵

𝑇 2

𝑇𝐴𝐵
𝑇 3

𝐴𝐵
𝑇 2

𝐴𝐵

𝑡

𝑇𝑠

𝑇 2

𝑠
𝜇

𝜇

𝑠

𝑇𝑠 𝑇 2

𝑡

𝑇𝜇

𝜇

𝑇𝑡

𝜇
𝑇𝑠

𝜇

𝑇 2

𝑠
𝑇𝜇

𝜇

𝒄

�

�

𝑇𝒄

𝒎

(7)

𝑇 2

𝐴𝑇𝐵
𝑇 3

𝐴𝐵

𝑇𝐴𝑇 2

𝐵
𝑇𝐴𝑇𝐵 𝑇 2

𝐴𝐵
𝑇 2

𝐴𝐵

𝑇𝐴𝑇
2

𝐵
𝑇𝐴𝑇𝐵 𝑇𝑇𝐴𝐵 𝑇 2

𝐴𝐵
𝑇𝐴𝐵

𝑇𝑇𝐴𝑇𝐵 𝑇 2

𝑇𝐴𝐵
𝑇 3

𝐴𝐵
𝑇 2

𝐴𝐵

𝑇𝐴𝜇

𝑠

𝑇𝑡

𝜇

𝑇𝑠 𝜇𝑡

𝑠

𝑇𝐴𝜇

𝑡

𝑇𝑡

𝜇

𝑇 2

𝑠

𝜇

𝑇𝜇

𝜇

𝑇𝑡

𝑇 2

𝑡

𝑇𝜇
𝜇

𝜇𝒄�

𝒘 � 𝒎

𝑇𝒘

𝒎

=

𝑇 2

𝐴𝑇𝐵
𝑇 3

𝐴𝐵

𝑇𝐴𝑇 2

𝐵
𝑇𝐴𝑇𝐵 𝑇 2

𝐴𝐵

𝑇𝐴𝑇
2

𝐵
𝑇 2

𝐴𝑇𝐵
𝑇𝐴𝐵

𝑇𝑇𝐴𝑇𝐵 𝑇 2

𝑇𝐴𝐵
𝑇 3

𝐴𝐵
𝑇 2

𝐴𝐵

𝑠

𝑡

𝑇𝑡 𝑇 2

𝑠
𝑇𝜇

𝜇

𝑇𝑡

𝑇 2

𝑡

𝜇

𝜇

𝜇

𝑇𝑠

𝜇

𝑇 2

𝑡

𝑇𝑡

�

�

𝑇𝒄

𝒄

Figure 9: Axioms (6) & (7) for a commutative pseudomonad.

Next, we give the two associativity laws. Note that if 𝑇 is con-

current,𝒘 is invertible even though 𝜇2 is not.

𝒚 :=

(𝐴𝐵)𝑇𝐶

𝐴(𝐵𝑇𝐶 ) (𝑇𝐴𝑇𝐵)𝑇𝐶 𝑇𝐴𝐵𝑇𝐶

𝐴(𝑇𝐵𝑇𝐶 ) 𝑇𝐴 (𝑇𝐵𝑇𝐶 ) 𝑇(𝐴𝐵)𝐶

𝐴𝑇𝐵𝐶 𝑇𝐴𝑇𝐵𝐶 𝑇𝐴(𝐵𝐶 )

𝛼

𝐴(𝜂𝑇𝐶 )

𝐴𝜒

𝜂𝑇𝐵𝐶 𝜒

𝜂 (𝑇𝐵𝑇𝐶 )
𝑇𝐴𝜒

(𝜂𝜂 )𝑇𝐶

�

𝜂 (𝜂𝑇𝐶 ) 𝛼

𝜒𝑇𝐶

𝜒

𝑇𝛼

𝜂𝑇𝐶

�

�
𝜛

𝜂2𝑇𝐶

𝒘 :=

𝐴𝑇 2

𝐵
𝐴𝑇𝐵

𝑇𝐴𝑇
2

𝐵

𝑇𝐴𝑇
2

𝐵
𝑇 2

𝐴
𝑇 2

𝐵
𝑇𝐴𝑇𝐵

𝑇𝐴𝑇𝐵 𝑇𝑇𝐴𝑇𝐵 𝑇 2

𝐴𝐵
𝑇𝐴𝐵

𝜂𝑇 2

𝐵

𝜒

𝑇𝜂𝑇𝐵 𝑇𝜒 𝜇

𝑇𝜂𝑇
2

𝐵

𝜒 𝜒

𝜇𝜇

𝜇𝑇 2

𝐵

𝑇𝐴𝜇

Id

𝐴𝜇

𝜂𝑇𝐵

𝜇2

�𝒑𝑇 2

𝐵

�

For the bistrong structure:

𝒃 :=

(𝐴𝑇𝐵)𝐶 𝐴(𝑇𝐵𝐶) 𝐴(𝑇𝐵𝑇𝐶 ) 𝐴𝑇𝐵𝐶

(𝑇𝐴𝑇𝐵)𝐶 (𝑇𝐴𝑇𝐵)𝑇𝐶 𝑇𝐴 (𝑇𝐵𝑇𝐶 ) 𝑇𝐴𝑇𝐵𝐶

𝑇𝐴𝐵𝐶 𝑇𝐴𝐵𝑇𝐶 𝑇(𝐴𝐵)𝐶 𝑇𝐴(𝐵𝐶 )𝑇𝛼𝜒𝑇𝐴𝐵𝜂

𝜒𝐶

(𝜂𝑇𝐵 )𝐶

𝛼 𝐴(𝑇𝐵𝜂 ) 𝐴𝜒

𝜂𝑇𝐵𝐶

𝜒

(𝜂𝑇𝐵 )𝜂

(𝑇𝐴𝑇𝐵 )𝜂
𝜒𝑇𝐶

𝜂 (𝑇𝐵𝑇𝐶 )

𝑇𝐴𝜒

𝜂 (𝑇𝐵𝜂 )

𝛼

𝜛�

�
�

�
�

Finally, for the commutative structure we take the following.

Note that this is the only pasting diagram that uses both 𝜇2 and its

inverse.

𝒄 :=

𝑇𝐴𝑇𝐵 𝑇𝐴𝑇
2

𝐵
𝑇𝐴𝑇𝐵 𝑇𝑇𝐴𝑇𝐵

𝑇 2

𝐴
𝑇 2

𝐵
𝑇 2

𝐴𝐵

𝑇 2

𝐴
𝑇𝐵 𝑇 2

𝐴
𝑇 2

𝐵
𝑇𝐴𝑇𝐵 𝑇𝐴𝐵

𝑇𝑇𝐴𝐵 𝑇𝑇𝐴𝑇𝐵 𝑇 2

𝐴𝐵

𝜂𝑇𝐵

𝜒

𝑇𝑇𝐴𝜂 𝑇𝜒

𝜇

𝑇 2

𝐴
𝑇𝜂

𝜒

𝜒
𝜇𝜇

𝑇𝐴𝜂 𝜒 𝑇𝜂𝑇𝐵

𝑇𝜒

𝜇

𝑇𝜂𝑇
2

𝐵
𝜒�

Id

𝜇𝜇 𝜇2

𝒑𝒏

𝒏𝒑

� 𝜇2
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E.2 From commutative to monoidal
Fix a commutative pseudomonad as in Definition 5.5, with right-

strong data denoted as in Appendix B. We define a monoidal pseu-

domonad structure by taking 𝜄 to be the identity and

𝜒 :=
(
𝑇𝐴𝑇𝐵

𝑠−→ 𝑇𝐴𝑇𝐵
𝑇𝑡−−→ 𝑇 2

𝐴𝐵

𝜇
−→ 𝑇𝐴𝐵

)
We may therefore take 𝜂0 to be the identity. The modifications 𝜛,𝛾

and 𝛿 making𝑇 a monoidal pseudofunctor as in [70, Definition 2.5]

are then defined as follows.

𝛾 :=

𝐼𝑇𝐴 𝑇𝐼𝑇𝐴

𝑇𝐼𝐴 𝑇𝐼𝑇𝐴

𝑇 2

𝐼𝐴

𝑇𝐴 𝑇𝐼𝐴

𝜂𝑇𝐴

𝑠

𝑇𝑡

𝜂
𝑡

𝜇

𝜂

Id

𝑇𝜆

𝜆

𝒙

𝒛′

𝒏

�

𝛿 :=

𝑇𝐴𝐼 𝑇𝐴𝑇𝐼

𝑇𝐴𝐼 𝑇𝐴𝑇𝐼

𝑇 2

𝐴𝐼

𝑇𝐴 𝑇𝐴𝐼

𝑇𝐴𝜂

𝑠

𝑇𝑡

𝜇

𝑇𝜌

𝜌

𝑠

𝑇𝐴𝜂

𝑇𝜂

Id

�

𝑇𝒛

𝒑

𝒙′

𝜛 :=

(𝑇𝐴𝑇𝐵)𝑇𝐶 𝑇𝐴𝑇𝐵𝑇𝐶 𝑇 2

𝐴𝐵
𝑇𝐶 𝑇𝐴𝐵𝑇𝐶

𝑇𝐴 (𝑇𝐵𝑇𝐶 ) 𝑇(𝐴𝑇𝐵 )𝑇𝐶 𝑇𝑇𝐴𝐵𝑇𝐶 𝑇(𝐴𝐵)𝑇𝐶

𝑇𝐴(𝑇𝐵𝑇𝐶 ) 𝑇 2

(𝐴𝐵)𝑇𝐶

𝑇𝐴𝑇𝐵𝑇𝐶 𝑇𝐴𝑇𝐵𝑇𝐶
𝑇 2

𝐴(𝐵𝑇𝐶 ) 𝑇 2

(𝐴𝐵)𝐶

𝑇𝐴𝑇
2

𝐵𝐶
𝑇𝐴𝑇 2

𝐵𝐶
𝑇 2

𝐴𝑇𝐵𝐶
𝑇 3

(𝐴𝐵)𝐶 𝑇(𝐴𝐵)𝐶

𝑇 3

𝐴(𝐵𝐶 ) 𝑇 2

(𝐴𝐵)𝐶

𝑇𝐴𝑇𝐵𝐶 𝑇𝐴𝑇𝐵𝐶 𝑇 2

𝐴(𝐵𝐶 ) 𝑇𝐴(𝐵𝐶 )

𝑠𝑇𝐶 𝑇𝑡𝑇𝐶

𝑠

𝑇𝑡

𝜇

𝑇𝛼

𝛼

𝑇𝐴𝑠

𝑇𝐴𝑡

𝑇𝐴𝜇

𝑠 𝑇𝑡 𝜇

𝜇𝑇𝐶

𝑠

𝑇𝛼𝑠

𝑇𝑡𝑇𝐶

𝑠

𝑇𝑠 𝜇

𝑇 2𝑡

𝜇

𝑇𝐴𝑠

𝑇𝑡

𝑇 2

𝛼

𝑇𝜇 𝜇

𝑇 2

𝛼

𝑇 2

𝐴𝑡

𝑇 3

𝛼
𝑇 2

𝑡

𝑇𝐴𝑇𝑡

𝑇𝑡

𝑇𝜇

𝑇𝐴𝜇

𝑠

𝑠

𝒚′
𝒘′

�

𝑇𝒃

�

𝒎

�

�

�

�

�

�

𝑇𝒚

𝑇𝒘

Finally, for the modifications 𝜂2, 𝜇0 and 𝜇2 we take:

𝜂2 :=

𝐴𝐵 𝐴𝑇𝐵 𝑇𝐴𝑇𝐵

𝑇𝐴𝑇𝐵

𝑇𝐴𝐵 𝑇 2

𝐴𝐵

𝑇𝐴𝐵

𝐴𝜂 𝜂𝑇𝐵

𝑠

𝑇𝑡

𝜇

𝜂

𝑡

𝜂

Id

𝜂

𝒛′

𝒏

�

𝒛

𝜇0 :=

𝐼 𝑇𝐼 𝑇 2

𝐼

𝑇𝐼

𝑇𝜂

𝜇

𝜂

Id

𝒑

𝜇2 :=

𝑇 2

𝐴
𝑇 2

𝐵
𝑇𝐴𝑇

2

𝐵
𝑇𝐴𝑇𝐵

𝑇𝑇𝐴𝑇 2

𝐵
𝑇 2

𝐴𝑇 2

𝐵

𝑇𝐴𝑇 2

𝐵
𝑇𝐴𝑇𝐵

𝑇 3

𝐴𝑇𝐵
𝑇 2

𝐴𝑇𝐵
𝑇 3

𝐴𝐵
𝑇 2

𝐴𝐵

𝑇 2

𝑇𝐴𝑇𝐵
𝑇 3

𝐴𝑇𝐵
𝑇 2

𝐴𝑇𝐵
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F SKETCHES OF PROOFS OMITTED FROM
THE MAIN BODY

F.1 Proofs for Section 4.1
Lemma 4.5. (1) Given the axioms of Definition 4.3, the modi-

fications 𝒙 and 𝒚 are suitably compatible with the monoidal
modification 𝔩.

(2) Given the axioms of Definition 4.3, the modifications 𝒛 and𝒘
are suitably compatible with the monad modification 𝒑.

Proof. The first of these axioms is proved using that 𝔩 is com-

pletely determined by the other structural data of a monoidal bi-

category (see [27, p. 64]). For the second axiom, while 𝒑 is not

determined by the rest of the data, the composite 𝜇 ◦𝒑𝑇 is uniquely

expressible using 𝒏 and 𝒎. This suffices for the proof. □

F.2 Proofs for Section 4.3
Lemma 4.6.

(1) For any pseudomonoid (𝑀,𝑚, 𝑒, 𝑎, 𝑙, 𝑟 ) on a monoidal bicate-
gory (ℬ, ⊗, 𝐼 ) the pseudomonad (−) ⊗𝑀 has a strength given
by the pseudo-inverse 𝛼• of the associator for ⊗.

(2) Every pseudomonad is canonically strong with respect to the
cocartesian monoidal structure (+, 0).

Proof. For both claims, one constructs the data by following the

corresponding 1-categorical argument and filling the commuting

diagrams with the appropriate 2-cells; the equations hold by coher-

ence. For (1), for instance, the structural modifications 𝒙 and 𝒚 are

given using 𝔩 and𝔭, respectively, while𝒘 and 𝒛 are given using 𝔯 and
𝔭, respectively, together with the pseudonaturality of 𝛼•. The ax-
ioms hold by the coherence of pseudomonoids [42]. Similarly for (2):

the strength has components [𝑇 inl◦𝜂𝐴,𝑇 inr] : 𝐴+𝑇𝐵 → 𝑇 (𝐴+𝐵)
and the structural modifications are given by taking the categorical

proof and filling in the commuting diagrams with the appropriate

2-cells. The equations hold by coherence for bicategories with finite

products [65] and the fact all the structural 2-cells are invertible. □

Proposition 4.9. Every pseudofunctor (resp. pseudomonad) on
(Cat,×, 1) has a canonical choice of strength.

Proof. Similarly to the categorical proof, for any pseudofunctor

𝐹 : Cat→ Cat, and 𝑎 ∈ A one has 𝐹 (𝜆𝑏 .⟨𝑎, 𝑏⟩) : 𝐹 (B) → 𝐹 (A×B).
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However, since 𝐹 is now a pseudofunctor we also have a natural

transformation 𝐹 (𝜆𝑏 .⟨𝑓 , 𝑏⟩) for each 𝑓 : 𝑎 → 𝑎′ in A, with com-

ponents 𝐹 (𝜆𝑏 .⟨𝑓 , 𝑏⟩)𝑤 : 𝐹 (𝜆𝑏 .⟨𝑎, 𝑏⟩) → 𝐹 (𝜆𝑏 .⟨𝑎′, 𝑏⟩) in 𝐹 (A×B).
We may therefore define a functor 𝑡A,B : A × 𝐹B → 𝐹 (A × B)
sending a pair of objects (𝑎,𝑤) to 𝐹 (𝜆𝑏 .⟨𝑎, 𝑏⟩)(𝑤) and a pair of

morphisms (𝑎
𝑓
−→ 𝑎′,𝑤

𝑔
−→ 𝑤 ′) to the composite 𝐹 (𝜆𝑏 .⟨𝑎′, 𝑏⟩)(𝑔) ◦

𝐹 (𝜆𝑏 .⟨𝑓 , 𝑏⟩)𝑤 . This is functorial because 𝐹 is functorial on natural

transformations and 𝐹 (𝜆𝑏 .⟨𝑎, 𝑏⟩) is a functor, and pseudonatural

via the compositor for 𝐹 .

Then 𝒙 and 𝒚 are defined using the compositor and unitor for

𝐹 , and the coherence of pseudomonads ensures the axioms hold.

Finally, if 𝑇 is a pseudomonad then one defines 𝒘 and 𝒛 using

the pseudonaturality of 𝜂 and 𝜇: this is similar to the proof in the

categorical setting, where one uses the naturality of the unit and

multiplication to show the two compatibility laws hold. Again, the

axioms follow from coherence. □

F.3 Proofs for Section 5.3
Proposition 5.10. For a bistrong pseudomonad (𝑇, 𝑠, 𝑡) on amonoidal

bicategory (ℬ, ⊗, 𝐼 ) the families of pseudofunctors (−⋉𝐴) and (𝐴⋊−)
assemble into a premonoidal structure on ℬ𝑇 . Together with the
canonical pseudofunctorℬ→ℬ𝑇 , which regards pure morphisms
as effectful ones, they determine a Freyd bicategory.

Proof. We use Theorem 7.2. The binoidal structure is as in (9).

Then, the proof consists in constructing a compatible pair of a left

action and a right action, where “compatible” means that the two

associators coincide on 1-cells, and the structural 2-cells �̃� and �̃�

coincide. All of this is verified directly, based on the construction

of the actions in Theorem 7.2.

The only remaining difficulty is the pseudonaturality of 𝛼 in its

middle argument, since this is not required for either of the actions.

This is where the 2-cell given by the bistrong structure is used. □

F.4 Proofs for Section 7.1
Proposition 7.1. Every strong pseudomonad (𝑇, 𝑡) on (ℬ, ⊗, 𝐼 )

induces an action ofℬ on the Kleisli bicategoryℬ𝑇 , where the pseud-
ofunctor ⊲ : ℬ ×ℬ𝑇 → ℬ𝑇 is given on objects by 𝐴 ⊲ 𝐵 = 𝐴 ⊗ 𝐵,
and on morphisms as

𝑓 ⊲ 𝑔 :=
(
𝐴 ⊗ 𝐵

𝑓 ⊗𝑔
−−−→ 𝐴′ ⊗ 𝑇𝐵′ 𝑡−→ 𝑇 (𝐴′ ⊗ 𝐵′)

)
for 𝑓 : 𝐴→ 𝐴′ and 𝑔 : 𝐵 → 𝑇𝐵′, with the same action on 2-cells.

Proof. The action on 2-cells is the same as that on morphisms.

The compositor and unitor for ⊲ are given by the modifications𝒘
and 𝒛 that come with the strength. We use 𝒙 and 𝒚 to construct the

strength data 𝜆 and 𝛼 from the monoidal data 𝜆 and 𝛼 , and finally

we use 𝒛 again to lift 𝔭,𝔪, 𝔩 to �̃�, �̃�, �̃�. The strength axioms ensure

that this forms an action. □

Theorem 7.2. For any pseudomonad 𝑇 on a monoidal bicategory
(ℬ, ⊗, 𝐼 ), the categories LeftStr(𝑇 ) and LeftExt(𝑇 ) are equivalent.

Proof. The proof follows the categorical construction (see [53,

Prop. 4.3]). For every left strength 𝑡 for 𝑇 , the induced action

⊲ : ℬ × ℬ𝑇 → ℬ𝑇 extends the canonical action of ℬ on it-

self, by construction. Conversely, any extension (⊲, 𝜃 ) induces a

Strength Action

Axioms for a strong

pseudofunctor (Fig. 3)

Modification axioms

for the 2-cells �̃�, �̃�, �̃�

determined by the action extension

Compatibility between

m, n, p and z,w
Pseudofunctor axioms

for ⊲ : ℬ ×ℬ𝑇 →ℬ𝑇

Compatibility between

x and z,w

Pseudonaturality of

the transformation

𝜆 determined by the action extension

Compatibility between

y and z,w

Pseudonaturality of

the transformation

𝛼 determined by the action extension

Table 1: Relating the data and equations on each side of the
correspondence in Theorem 7.2.

strength 𝑡𝐴,𝐵 = id𝐴 ⊲ id𝑇𝐵 , where id𝑇𝐵 is regarded as an element of

ℬ𝑇 (𝑇𝐵, 𝐵). These constructions are inverses, up to isomorphism,

as we verify directly. We then verify the axioms. In each direction,

there is a tight match-up between the equations of the given struc-

ture and the equations for the required structure; for an outline,

see Table 1. □
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