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Figure 1. Generated 3D objects by NaviNeRF – a model aims to achieve fine-grained 3D disentanglement by bridging 3D reconstruction and

latent semantic manipulation. The top row presents the results of shifting along the learned semantic direction that represents continuous

changes in a man’s mouth, visually looks like a “smile” expression. The bottom row showcases the results of multi-view generation, which

demonstrates that the attribute manipulation could still remain consistent across different views.

Abstract

3D representation disentanglement aims to identify, de-

compose, and manipulate the underlying explanatory fac-

tors of 3D data, which helps AI fundamentally understand

our 3D world. This task is currently under-explored and

poses great challenges: (i) the 3D representations are com-

plex and in general contains much more information than

2D image; (ii) many 3D representations are not well suited

for gradient-based optimization, let alone disentanglement.

To address these challenges, we use NeRF as a differen-

tiable 3D representation, and introduce a self-supervised

Navigation to identify interpretable semantic directions in

the latent space. To our best knowledge, this novel method,

dubbed NaviNeRF, is the first work to achieve fine-grained

3D disentanglement without any priors or supervisions.

Specifically, NaviNeRF is built upon the generative NeRF

pipeline, and equipped with an Outer Navigation Branch

and an Inner Refinement Branch. They are complemen-

tary —— the outer navigation is to identify global-view

semantic directions, and the inner refinement dedicates to

fine-grained attributes. A synergistic loss is further devised

to coordinate two branches. Extensive experiments demon-

strate that NaviNeRF has a superior fine-grained 3D disen-

tanglement ability than the previous 3D-aware models. Its

performance is also comparable to editing-oriented models

relying on semantic or geometry priors.*

1. Introduction

3D reconstruction aims to create a virtual representa-

tion of an object or scene based on point cloud, voxel, 3D

mesh, and etc. Despite significant progress of explicit re-

construction technologies such as Structure from Motion

(SfM) [1], Multi-View Stereo (MVS) [2] and Structured

Light (SL) [3], it remains a critical problem that the recon-

structed scenes typically lack interpretability and controlla-

bility. Thus, it is important to study the 3D representation

disentanglement, in which we can identify, decompose, and

manipulate the underlying explanatory factors hidden in the

observed 3D data.

However, 3D representation disentanglement is currently

*Denotes the corresponding author. Code is available at this link.
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under-explored and faces great challenges: On one hand,

the 3D representations are complex with the prohibitive

storage costs, which in general contains much more in-

formation than 2D image, like depth, viewpoint, etc. On

the other hand, many high-dimensional 3D representations

(e.g., discrete point cloud, mesh, voxel) are essentially not

well suited for gradient-based optimization [4], which fur-

ther increases the difficulty of disentanglement. All in all,

how to efficiently and effectively achieve fine-grained 3D

disentanglement without extra auxiliary priors or supervi-

sions urgently needs to be solved.

Recently, the development of implicit representation

learning has significantly promoted 3D reconstruction w.r.t

the model flexibility and generalizability [5, 6, 7]. As

a landmark of implicit 3D reconstruction, Neural Radi-

ance Fields (NeRF) [4] maps scenes into a multi-layer

perceptron (MLP) from limited views, which results in

accurate, efficient, and differentiable 3D representations.

Moreover, as a deep neural model, NeRF has preliminary

shown its capability w.r.t disentangled representation learn-

ing in few studies [8, 9, 10]. Typically, the conditional

NeRFs [11, 12] achieve disentanglement with pre-defined

extra latent codes, which inevitably limits the diversity of

decomposed attributes. On the other branch, the editing-

oriented NeRFs [13, 14] also achieve a controllable 3D syn-

thesis. However, these approaches heavily relied on geo-

metric priors and did not identify the underlying semantic

representation, such specific priors largely limited the scope

of practical applications.

Revisit the recent success of disentanglement in 2D im-

age, we knew that traversing semantically meaningful direc-

tions in the Generative Adversarial Network’s (GAN) [15]

latent space leads to coherent variations in the generated

2D image [16, 17, 18, 19]. Typically, the way of smooth

navigation [20, 21] is investigated for GAN-based semantic

editing in the space of the generator’s parameters. These

observations indicate that the underlying explanatory prop-

erties are probably embedded in the generative latent space.

Based on the above discussions, in this paper, we ex-

plore to use NeRF as a differentiable 3D representation

, and introduce a self-supervised navigation to identify

interpretable semantic directions in the generative la-

tent space. We name this novel method as NaviNeRF. As

shown in Figure 1, NaviNeRF achieves a fine-grained 3D

disentanglement by bridging 3D reconstruction and latent

semantic manipulation. When shifting along the disentan-

gled semantic direction that represents the mouth, we obtain

a group of continuously changed visual results, look like a

“smile”. In addition, the generated results of NaviNeRF

could remain 3D consistency well across different views.

Specifically, Figure 2 showcases that NaviNeRF is com-

posed of two main components: an outer navigation branch

and an inner refinement branch. The outer navigation aims

to identify the traversal directions as global-view factors

in the latent space for disentangled representation learning

—— this process employs a learnable matrix to append a

shift on a latent code. The shifted code, paired with the orig-

inal one, are used to generate a pair of images through the

pre-trained generator. A trainable decoder is then devised to

predict the shift (i.e., semantic direction) based on such

paired images, with a reconstruction loss [20]. Similarly,

the inner branch dedicates to more fine-grained attributes by

appending shifts on the specific dimensions of intermediate

latent code. Finally, a synergistic loss function is further de-

signed to combine these two complementary branches well.

Compared to off-the-shelf solutions, NaviNeRF does not re-

sort to explicit conditional codes or any geometry priors. In

summary, our contributions are:

1. To our best knowledge, the proposed NaviNeRF is the

first work that could achieve fine-grained 3D disentan-

glement at feature-level, without any priors and addi-

tional supervision.

2. We take full advantage of both latent semantic nav-

igation (the outer branch) and NeRF representation

(the inner branch) in a complementary way. The

outer branch learns to identify semantic directions for

global disentangled representation learning, and the in-

ner branch learns to focus on fine-grained attributes.

3. As a by-product, a simple synergistic loss is designed

to collaborate well two outer-inner branches within

NaviNeRF.

We evaluate NaviNeRF on two popular benchmarks:

FFHQ [22] for the human face and AFHQ [23] for the an-

imal face. NaviNeRF outperforms typical 3D-aware GANs

including pi-GAN [24], GIRAFFE [25] and StyleNeRF [26]

in attribute manipulation. Furthermore, the model obtains

comparable performance to editing-oriented models which

rely on semantic or geometric priors. Extensive ablation

studies are also conducted to support our claims.

2. Related Works

Our work strongly relys on NeRF, GAN and theory of the

latent semantic analysis. This section describes the relevant

studies in these areas.

Neural implicit representations. Encoding a scene into

neural networks has shown great promise as a research di-

rection. This includes, but is not limited to: parameterizing

the geometry of a scene via signed distance functions or

occupancy field [27, 28], encoding both geometry and ap-

pearance [4], etc. One notable contribution in this field, is

the work known as NeRF that has drawn extensive atten-

tion recently. It encodes a scene as 5D vector-valued func-

tion approximated by a MLP, where the function denotes
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Figure 2. Workflows of standard conditional NeRFs and NaviN-

eRF. NaviNeRF combines an outer navigation branch and an inner

refinement branch by a synergistic loss, for fine-grained 3D dis-

entanglement. Compared with existing solutions, NaviNeRF does

not require conditional latent codes or semantic/geometric priors.

spatial coordinates, viewing direction, color and density.

This network can be repeatedly called by any of the vol-

ume rendering techniques to produce novel views [29, 30].

The impressive performance of NeRF inspired follow-up

works to extend it in alternative settings, such as training

from unstructured images [31, 32], training without camera

poses [33, 29, 34], training with generative models [35, 36],

etc. As a differentiable representation, NeRF and its vari-

ants have demonstrated strong capabilities at generating

3D scenes with high accuracy, efficiency and consistency.

However, these approaches are commonly deficient in inter-

pretable control over partial properties, such as shape, color,

texture, and lighting.

3D-aware GAN models. Recently, generative models

have brought NeRF a certain degree of scene control capa-

bilities. The early attempts in this routine are GRAF [37]

and pi-GAN [24]. The former handles category-specific

generation by conditioning NeRF on shape and appearance

codes. Following the NeRF pipeline, the generator can syn-

thesize an image by taking random codes and camera poses.

The generated image is fed into the discriminator along with

real images, thus implementing a GAN. pi-GAN is similar

to GRAF, but conditions on a single latent code and utilizes

FiLM-SIREN layers [38, 39] instead of simple MLPs. En-

coding additional latent codes enriches the model with dis-

entangled capability, but double-edgedly, limits the range of

disentangled attributes.

Another impressive work in this domain is GI-

RAFFE [25], which represents scenes as compositional

generative NeRFs without any additional supervision. It is

in capacity of disentanglement on separating background

and foreground of the scene. Although the compositional

architecture delivers control capacity over object-level, in-

dividual’s local attributes are not yet fully disentangled.

More recently, [26] integrates NeRF into a StyleGAN [40]

based generator to produce high-resolution and multi-view

consistent 3D scenes. As a by-product, it inherits the style

control ability from StyleGAN baseline but still, fails to dis-

entangle on detailed attributes.

3D representation editing methods. Except embedding

additional codes into latent space, many editing-oriented

NeRFs adopt option to enhance 3D perception by leverag-

ing semantic or geometric priors [13, 41, 42]. With GAN

inversion technology [17, 43, 44], these approaches can edit

specific regions of a 3D scene under interactive controls

given by user. Typically, [45] trains the model using paired

monocular images and semantic maps, and obtains locally-

editable images. Furthermore, [46] extracts an explicit

triangular mesh representation as geometric priors, which

can then be intuitively deformed by the user for 3D editing.

Although these methods could obtain promising results on

pixel-wise editing, they are still inapplicable to perform in-

terpretable disentanglement since the underlying semantic

representations are not essentially learned.

Latent semantic analysis. Empirical studies have re-

vealed that GAN latent spaces are embedded with inter-

pretable semantic information [16, 47, 48, 49]. Represen-

tatively, [50] verifies that GANs trained with face images

have latent spaces that contain semantic directions corre-

sponding to specific facial features. Since such interpretable

directions provide a straightforward route to robust image

editing, their discovery currently receives much research at-

tention. [48] further proposes the classifiers pre-trained on

the facial data, to predict certain face attributes. These clas-

sifiers are then used to produce pseudo-labels for the gener-

ated images and their latent codes. Furthermore, [17] con-

ducts series of experiments to verify that the interpretable

directions are responsible for diverse specific features, by

maximizing the score of pre-trained generative models. The

aforementioned semantic analysis could potentially enrich

the exploration of latent space in generative NeRFs, which

therefore resolve the defectiveness of semantic information

in 3D scenarios. Motivated by this idea, our model is pro-

posed to complementally take advantage of NeRF repre-

sentation and semantic direction manipulation, targeting on

fine-grained 3D disentanglement.

3. Methodology

In this section, we elaborate the three key modules that

constitute our model: an outer navigation branch, an in-

ner refinement branch and a synergistic loss for interac-

tion. The architecture of the model is illustrated in Figure

4. Correspondingly, we start the introduction of the navi-
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inal code z to shifted code zs. Traversing along this direction lead

to continue changes on a disentangled representation of generated

image.

gation branch in Section 3.1, and elaborate the structure of

the refinement branch in Section 3.2. Then in Section 3.3,

the synergistic loss coordinating the two branches are de-

scribed, along with other loss functions we employed.

3.1. Outer Navigation Branch

The navigation branch, inspired by previous studies of

latent semantic manipulation [20, 21, 51], is proposed to

identify interpretable semantic directions in the latent space.

Specifically, given a pre-trained GAN generator G, which

maps the samples z ∼ N(0, I) drawn from the latent space

Z to generate multi-view images. Our objective is to learn a

set of semantic directions, that facilitate continuous changes

of specific attributes in the generated image upon being

shifted along each direction. For example, Figure 3 visual-

izes the alter on the object’s whiskers in RGB space, which

aroused by the traverse from z to zs in latent space.

Towards this target, we propose a learnable matrix S ∈
R

d that enables the identification of a shift with a specific

direction index β and scale ǫ. Here, d represents the dimen-

sionality of the matrix, where the columns of S correspond-

ing to candidate directions. The shift S is appended on z

for conducting a shifted code zs. Both z and zs are then

input to the pre-trained G to produce paired images I0 and

I1 respectively:

I0 = G(z), I1 = G(S(ǫ · zβ))

where the diversity between the two images being solely

attributed to this latent shift. In other words, I1 is the trans-

formation of I0, corresponding to moving by ǫ along the

direction β.

After the reconstruction, a trainable decoder D is pro-

posed to project generated images from RGB space back to

latent space. More specifically, D is a function that maps

images pairs into the shift increment, parameterized by a

MLP network. The shift increment (∆β′, ∆ǫ′) from I0 to

I1, is constrained with the ground truth by the reconstruc-

tion loss LR.

Although the outer module is devised to discover seman-

tic directions, it alone is insufficient for 3D scenarios owing

to the deficiency of geometric consistency. Nevertheless,

additional instructions are expected, for model to concen-

trate on fine-grained attributes over discovered directions.

Towards it, we propose an inner refinement branch for two

goals: obtaining the perception of fine-grained representa-

tions and, preserving 3D consistency.

3.2. Inner Refinement Branch

Within the inner branch, we adopt StyleNeRF baseline as

the generator, which takes integrated advantages of NeRF

and StyleGAN. In a basic GAN, latent code z is sampled

directly from a Gaussian distribution and determines the

global style of the generated image. However, the limited

capacity of the normal distribution constraints the disentan-

glement capability of Z [52]. Differently, StyleGAN maps

native z to a layer-wise style code w by a 8-layer mapping

network M . The intermediate latent space is referred as

W+ space that contains more disentangled features than Z .

Magnetized by the disentanglement capability of W+, we

devise to build paired codes (original and shifted) similar as

the outer branch, but with the shifts over w.

Tentatively, semantic shifts are appended on each dimen-

sion of latent code w, which however, leads to an unex-

pected entanglement among global style and fine-grained

details. To our knowledge, the phenomenon is attributed

to the different control scope of distinct dimensions in w.

Specifically, it has been observed that dimensions of w

correspond to different levels of details, roughly in three

groups: global, coarse, and fine [40, 53, 54, 55]. Condi-

tioning partial details together with global and coarse style

can pose a challenge for disentanglement. In this sense, we

turn to align the shifts on 9th - 18th dimensions of w which

theoretically, controls the fine-grained attributes, therefore

encouraging the model to learn partial representations.

Following the architecture of StyleNeRF, we perform

NeRF++ behaving as the NeRF synthesis network. It com-

prises a foreground (FG) NeRF in a unit sphere and a back-

ground (BG) NeRF represented using an inverted sphere pa-

rameterization [56]. As shown in Figure 4, two MLPs are

utilized separately to predict the density. A shared MLP is

then employed with up-sample blocks for color prediction.

To achieve disentangled semantic manipulation, the

shifted dimensions (9th - 18th) of w are two-to-one fed into

5th - 9th NeRF MLP layers through an affine transforma-

tion, followed by a decoder to predict shift increment (∆β′′,

∆ǫ′′).
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Figure 4. NaviNeRF is characterized by two complementary branches, termed as the outer navigation branch and the inner refinement

branch. The former, depicted in green, appends a shift on sampled latent code z through a learnable matrix S. z and shifted code zs are

used to generate paired images, which are devoted to train the decoder D for semantic direction identification. The latter, shown in orange,

produces fine-grained awareness and 3D consistency by appending shifts on specific dimensions of intermediate latent vector w. The two

branches are combined by a synergistic loss, ultimately achieving feature-level 3D disentanglement.

3.3. Loss Functions

The heart of the NaviNeRF is at the complementarity of

navigation and refinement branches. To combine these two

modules, a synergistic loss is devised in three steps: (i) de-

coding generated image pairs into the shift with the direc-

tion index β and scale ǫ; (ii) calculating the increments of

both branches, termed as (∆β′, ∆ǫ′) and (∆β′′, ∆ǫ′′) re-

spectively; (iii) minimizing the distance of two increments.

The variation of the two modules can be calculated as:

(∆β′,∆ǫ′) = D(G(z)), G(S(ǫ · zβ)))

(∆β′′,∆ǫ′′) = D(G(z)), G(ǫ · wβ))

Generally, the synergistic loss is proposed to be a cross-

entropy loss, which therefore can be demonstrated as:

LS = CrossEntropy((∆β′,∆ǫ′), (∆β′′,∆ǫ′′))

In addition to the synergistic loss, we utilize the recon-

struction loss LR on generated images and ground truth to

optimize the reconstruction quality of outer branch using a

MSE loss.

LR = MSE((∆β′,∆ǫ′), (β, ǫ))

We also apply the consistency loss LC to enforce 3D con-

sistency, as instituted by [26]. More formally, we propose

another original NeRF path without up-sampling blocks in

the NeRF generator, for producing a low-resolution but con-

sistent image to supervise I2 by the consistency loss. In this

way, I2 can be closer to the NeRF results, which have multi-

view consistency. The loss is calculated as follows:

LC =
1

|P |

∑
(i,j)∈P (I2[i, j]− INeRF [i, j]))

2

where P denotes randomly sampled pixels. I2 is instan-

tiated as the image generated from the inner branch and

INeRF is the image from the original NeRF.

In such setting, the total loss can be summarized as:

Ltotal = LS + λRLR + λCLC

where the λR and λC are the hyper-parameter. In default,

we adopt λR = 0.8 and λC = 0.6 to balance the disentangle-

ment capability and reconstruction quality.

4. Experiments

4.1. Experimental Settings

We conduct a set of experiments on several datasets:

FFHQ [22] consists of 70,000 high-quality images of hu-

man faces; AFHQ [23] contains 15,000 high-quality im-

ages at a resolution of in three categories of cat, dog, and

wildlife; CompCars [57] contains 136726 images captur-

ing the entire cars with different styles; LSUN [58] consists

of about one million images for multiple object categories.

We pre-train the generator with resized images from afore-

mentioned datasets at 256×256 resolution for a trade-off on

quality and controllability. For pre-training, we follow the

instructions outlined in StyleNeRF adopting batch size in

64 and a learning rate as 0.0025. To train outer and inner

branches, we apply batch sizes of 64 and 32 for FFHQ and
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Figure 5. Fine-grained 3D Disentanglement Results of NaviNeRF. The left columns present the results of attribute manipulation and the

right columns showcase corresponding 3D reconstruction results. Respectively, (a) demonstrates the semantic manipulation on the FFHQ

dataset including the man’s mouth, whiskers and the girl’s hair; (b) shows the manipulation results on the puppy’s ears, tongue and cheeks.

AFHQ, respectively, with a learning rate of 0.0005. All ex-

periments were performed on 4 Nvidia GPUs (Tesla A100

80GB) with CUDA version 11.6.

4.2. Results

4.2.1 Fine-grained 3D Disentanglement

We firstly conduct experiments on two popular datasets:

FFHQ and AFHQ, in aim to evaluate the effectiveness of

our proposed model in feature-level 3D disentanglement.

These benchmarks consist of high-resolution images of sin-

gle objects and cover a diverse range of real-world scenar-

ios, highlighting the robustness of our results. We further

expand the model’s applicability to more intricate scenes

by leveraging CompCars and LSUN datasets, which effec-

tively showcasing the model’s capacity for generalization.

In Figure 5, we present several visual effects on different

objects induced by the discovered directions, paired with

their reconstruction results. More specifically, we illustrate

the attribute manipulation results on the left side. And the

results of the 3D reconstruction are demonstrated on the

right, visually formed as the multiple perspectives of the im-

age after manipulation (the 5th image on the left). It is worth

mentioning that the quality of the reconstructed images is

highly dependent on the pre-trained generator. But even the

model is fully configured as StyleNeRF in the pre-training

stage, artifacts still exist in generated images for the AFHQ

dataset. However, with such ambiguous and challenging

data, the model still achieves fine-grained awareness, which

validates its robustness.

Different from those pixel-level editing works, our

model achieves semantic manipulation in latent space,

which is easily extendable to more scenes per the theory

of disentangled representation learning [59]. Moreover, the

differentiable and continuous nature of the NeRF-based im-

plicit representation makes it more flexible and geometry-

free for novel view synthesis. Furthermore, NaviNeRF also

inherits the well-studied properties of StyleGAN, leading to

a universal feature generation capability. To emphasize the

generalization capability of the model, we showcase extra

fine-grained disentanglement results within more generic

scenes in Figure 6. Supplementary examples can be found

in the appendix and in the repository.

4.2.2 Qualitative Comparison

NaviNeRF vs. typical 3D-aware GANs. Typical 3D-

aware GAN such as pi-GAN, GIRAFFE and StyleNeRF
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Figure 6. Fine-grained 3D disentanglement results on LSUN and

CompCars datasets that covering more general scenes, to demon-

strate both the disentanglement and generalization capability of

the model.

claim a certain degree of disentanglement in their model.

Thereinto, pi-GAN and GIRAFFE provide scene control

over object appearance, style, and rotation by altering shape

code zshape and appearance code zapp. On the other hand,

StyleNeRF allows for the manipulation of global styles

by leveraging the disentanglement capacity of StyleGAN.

Since GIRAFFE and StyleNeRF provide pre-trained mod-

els on the FFHQ, we directly load their checkpoints and

re-trained pi-GAN with the same data. However, as these

models control the scenes in different ways, comparing and

visualizing the results of 3D semantic manipulation can be

a challenging task. To ensure fairness, we adopt style in-

terpolation for each typical GAN over the same attribute to

demonstrate their capability of fine-grained control. Specif-

ically as shown in Figure 7, we manually select two im-

ages to determine an assumed direction for these 3D-aware

GANs without the function of direction manipulation. In

the first image, the mouth of the object is closed while in

the second image, the mouth is smiling. The other regions

of the face in both images are identical. We then extract the

paired latent code z and zs corresponding to these two im-

ages. By further manipulating along the direction from z to

zs, we can thus conduct specific attribute (mouth) control

results for each model.

In the first three rows of Figure 7, we represent the com-

parison results of continue interpolation upon the man’s

mouth. The results obtained by pi-GAN and GIRAFFE

show that global styles such as beard, skin tone and eye

socket are changing simultaneously during the manipula-

tion on the mouth. Although StyleNeRF produces better

Pi-GAN

GIRAFFE

StyleNeRF

Ours

FENeRF

CGOF++

Figure 7. Comparison results of NaviNeRF with typical 3D-aware

GANs and 3D editing-oriented models on the FFHQ dataset. The

first three rows present disentanglement results on manipulating

object’s mouth from pi-GAN, GIRAFFE and StyleNeRF, respec-

tively. The 4th - 5th rows demonstrate the manipulation results of

two editing-oriented models.

results, some partial representations remain entangled such

as hairstyle. NaviNeRF demonstrates better overall per-

formance on disentangling specific attributes compared to

other baselines, which confirms the superiority of the model

for feature-level 3D disentanglement.

NaviNeRF vs. 3D editing-oriented models. Alternately,

another bunch of work tends to attain 3D scene control by

incorporating semantic or geometric priors. Encoded pri-

ors can enrich the model 3D perception and enable edit-

ing of specific attributes through inversion techniques. Ac-

cordingly, we compare NaviNeRF with two novel works

reported in 2022 within this domain: FENeRF [45] and

CGOF++ [13]. The former learns 3D representation from

widely available monocular images and semantic mask

pairs. The model uses the semantic mask to manipulate

partial attributes via GAN inversion. The latter is a condi-

tional NeRF that incorporates a mesh-guided sampling pro-

cess and a depth-aware density regularizer. For comparison,

we load their pre-trained models on the FFHQ dataset and

conduct the samples for editing object’s mouth.

The last three rows of Figure 7 demonstrate compari-



son results for FENeRF, CGOF++, and NaviNeRF. Three

methods achieve approximate results on editing the par-

tial attribute. Although the extra priors offer a shortcut

for scene disentanglement, the editing-oriented models in-

evitably suffer from its redundancy, inflexibility and inef-

ficiency. In addition, these models are dictated to edit a

specific pixel area but not essentially understand the under-

lying semantic meanings. As emphasized earlier, our model

aims to autonomously learn the latent semantic information,

without any priors and additional supervision. Therefore,

the comparable results demonstrate the superiority of our

model.

4.2.3 Quantitative Comparison

Table 1 reports the results of Frechet Inception Distance

(FID) [60] and Kernal Inception Distance (KID) [60] scores

to measure the quality of the generated images. Our model

outperforms other typical 3D-aware models and is slightly

inferior to StyleNeRF. To our understanding, the decrease

in generation quality compared with StyleNeRF can be a

trade-off for fine-grained control (i.e.,we did not fine-tune

the pre-trained generator in attribute manipulation). Fur-

thermore, the performance decrease in the AFHQ dataset,

which we believe, is caused by the non-fully trained gener-

ator as noted in Section 4.2.1.

Table 1. Quantitative comparison results with typical 3D-aware

models in FID and KID ×10
3.

FFHQ AFHQ

Models FID KID FID KID

pi-GAN 87 99 53 35.4

GIRAFFE 38 25.7 36 14.7

StyleNeRF 10.4 4.6 16 4.3

Ours 13 6.9 22 9.1

Figure 8 demonstrates the FID scores for images with

various shifting magnitudes in the “baldness” direction. The

results indicate that the model can maintain the generation

quality across the attribute manipulation. It supports our

claims that the model has learned to manipulate fine-grained

features while maintaining a consistent global style.

Table 2 and 3 presents the method budget on the FFHQ

to reveal that NaviNeRF is high-efficient. Table 2 shows

that two-branch design did not increase the feature size and

we also use the pre-trained generator for lower cost, thus

avoid high memory issue in rendering. As demonstrated in

Table 3, NaviNeRF achieves significant speedup over pure

NeRF-based methods and is comparable to StyleNeRF.
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Figure 8. FID scores of images with different shifting magnitudes

on the man’s baldness.

Table 2. Training Budget report on parameters size, FLOPs, mem-

ory cost and training time (TT).

Budget Params(M) FLOPs(G) Mem(G) TT(hrs)

Single Branch 11.9 142.9 23 5.8

Double Branches 12.2 162.4 25 7.5

Table 3. Rendering time (RT) comparisons with other methods at

256
2.

Models pi-GAN GIRAFFE StyleNeRF Ours

RT(ms/image) 785 181 75 97

4.3. Ablation study

To validate the effectiveness of some key designs in

NaviNeRF, we conduct ablations over w/o synergistic loss,

choice of shifting dimensions and choice of latent space.

Shifting on w dimensions. As previously mentioned, dif-

ferent w dimensions correspond to three levels of partial

style: 1st - 4th layers determine the global features, 5th -

8th layers for coarse features and 9th - 18th layers for fine-

grained details. In Figure 9, we compare the reconstruction

results of shifting on 9th - 18th layers (full model) against

with shifting on every 18 layer (second row) in w. When

shifting on every w dimension, global features such as face

shape, skin texture and wrinkle style are variously entan-

gled, resulting in an older appearance for the girl. It indi-

cates that shifting on specific dimensions can enforce the

model to concentrate on fine-grained representations.

W space vs. W+ space. Referring to StyleNeRF, W is

an intermediate space with a distribution matching better to

the real data compared with the original Z space. It con-

tains a single intermediate w vector, whereas the W+ space
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Figure 9. Ablation studies on manipulating the object’s “hair” over

the choice of shifting dimensions, the choice of latent space and

w/o synergistic loss.

comprises 18 different style vectors. To examine the im-

pact of latent space choice, we append identical shifts on

W and W+. In the case of W space, we duplicate the

single w into 18 dimensions. The semantic shifts are then

appended on the 9th - 18th dimensions of the intermediate

vectors from both spaces. The third row in Figure 9 demon-

strates that, shifting on W space enable the model to control

global styles but fails to achieve fine-grained manipulation.

That is why we choose to propose our model on W+ for

feature-level 3D disentanglement.

w/o synergistic loss. We perform NaviNeRF with or with-

out the synergistic loss to study its impact. Since the in-

ner branch cannot be directly trained without the synergis-

tic loss, we replace it with a reconstruction loss which is

in the same configuration as LR. The 4th row of Figure 9

demonstrates that removing the synergistic loss leads to se-

vere 3D inconsistent artifacts during disentanglement. The

result supports the notion that synergistic loss combines the

outer and inner branches in a complementary way to achieve

fine-grained disentanglement and 3D consistency.

5. Conclusion

In this paper, we present NaviNeRF, a NeRF-based 3D

reconstruction model that achieves fine-grained disentan-

glement while preserving 3D accuracy and consistency

without any priors and supervision. The model consists of

two complementary branches: an outer navigation branch

delicate to identify the traversal directions as factors in the

latent space, while an inner refinement branch produces

fine-grained awareness and 3D consistency. We also design

a synergistic loss to combine the two modules. The model is

evaluated on challenging datasets to demonstrate its ability

of fine-grained disentanglement in 3D scenarios. The exper-

imental results indicate that NaviNeRF outperforms typical

conditional NeRFs. Furthermore, its performance is also

comparable to editing-oriented models relying on semantic

or geometry priors, which supports our claims.
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