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We investigate a 2+1-D interacting Dirac semimetal with onsite flavor SU(2) symmetry. Topolog-
ical considerations imply that the skyrmions in the flavor-symmetry-breaking phase carry electron
quantum numbers, motivating a dual bosonized low energy description in terms of two complex
scalars coupled to an abelian Chern-Simons field. We propose that the transition between a nearby
Chern insulator and the flavor symmetry-broken phase is a bicritical point in the bosonized de-
scription, and also suggest that the Gross-Neveu-Heisenberg (GNH) transition between the Dirac
semimetal and the flavor symmetry-broken phase is a tricritical point. Heuristically, the dual descrip-
tion corresponds to the gap closing of fermionic skyrmions. We discuss implications and potential
issues with our proposal, and motivated from it, perform extensive unbiased Determinantal Quan-
tum Monte Carlo (DQMC) simulations on a lattice regularized Hamiltonian for the GNH transition,
extending previously available results. We compare DQMC results with the estimates in the pro-
posed dual to available perturbative renormalization group results. We also numerically demonstrate
the presence of fermionic skyrmions in the symmetry-broken phase of our lattice model.

I. INTRODUCTION

Quantum numbers associated with solitonic textures
and topological defects are crucial in a wide range of phe-
nomena, including fractionalization, quantum criticality,
and the determination of exchange statistics for emergent
excitations [1–12]. These quantum numbers also play a
role in dualities relating seemingly different theories that
have led to new connections between exotic quantum crit-
icality, interacting topological insulators, and compress-
ible quantum Hall systems [13–36]. In this paper, we
explore a setup where skyrmions of an SU(2) flavor sym-
metry breaking phase carry electron quantum numbers.
Inspired by this observation, we consider a proposal for
a dual of a Gross-Neveu-type [37] phase transition be-
tween the ordered phase and a Dirac semimetal. This
phase transition can be realized in a lattice-regularized
Hamiltonian that can be simulated without the fermion
sign problem [38]. We perform detailed Quantum Monte
Carlo (QMC) simulations on the corresponding Hamilto-
nian, obtaining new results for the universal scaling expo-
nents relevant to our duality proposal. A notable feature
of the field theory we investigate is it cannot arise in
a purely local two-dimensional lattice model with time-
reversal symmetry and on-site flavor symmetry. This
characteristic is evident in the sign-problem-free lattice
model that we simulate.

The starting point of our discussion is a Dirac
semimetal in 2+1-D with two flavors of a two-component
Dirac spinor. Interactions can lead to the spontaneous
breaking of the SU(2) flavor symmetry down to U(1). Us-
ing standard arguments, this transition can be described
by the so-called ‘Chiral Gross-Neveu-Heisenberg’ (GNH)
field theory, where electrons are coupled to a fluctuating
O(3) order-parameter [37, 39–44]. As already mentioned,
a noteworthy aspect of the symmetry-broken phase in
our model is that the skyrmions of the order parame-
ter carry the same quantum numbers as the microscopic

electrons [10, 45]. This suggests a physical picture where,
as one approaches the transition from the ordered side,
the gap to skyrmions closes at the transition, resulting
in the semimetal phase. The low-energy theory in the
ordered phase can be reformulated as a Chern-Simons-
matter theory where a two-component complex scalar
is coupled to a dynamic U(1) Chern-Simons gauge field
whose flux corresponds to the skyrmion density [5]. This
motivates us to explore the phase diagram of our model
by tuning the parameters in a Chern-Simons-matter the-
ory whose field content is similar to the aforementioned
field theory deep within the ordered phase. We find that
the mass change of the complex scalar describes a tran-
sition between the flavor-symmetry broken phase and a
Chern insulator. This motivates us to suggest that the
GNH critical point where the three phases, the Dirac-
semimetal, the Chern insulator, and the ordered phase
meet, is dual to an interaction-tuned tricritical point in
this Chern-Simons-matter theory. We discuss implica-
tions and potential issues with such a proposal, and mo-
tivated from it, compare our QMC results with available
results from large-N expansions on the tricritical theory.

From a numerical standpoint, the lattice-regularized
GNH model we employ was originally introduced and
studied by Läuchli and Lang in Ref.[38]. However, con-
nections to any potential duality or topological aspects,
such as the quantum numbers of skyrmions, were not
considered. Ref.[38] obtained scaling exponents of several
operators corresponding to the GNH transition. Inspired
by the proposed duality, we will provide universal expo-
nents of several additional operators, such as the two-
point correlation function of skyrmion density, fermion
mass, and electron pairs.

Since the exchange statistics of skyrmions plays a
key role in the proposed duality, we will also imple-
ment a lattice regularized numerical demonstration of the
skyrmions’ fermionic statistics. The main idea is to mea-
sure the Berry’s phase associated with a process that gen-

ar
X

iv
:2

30
4.

13
71

6v
2 

 [
co

nd
-m

at
.s

tr
-e

l]
  7

 A
pr

 2
02

4



2

erates a skyrmion-antiskyrmion pair from the vacuum,
rotates one of them by 2π, and then annihilates the pair
back into the vacuum [5].

The paper is organized as follows: In Sec.II we in-
troduce the lattice regularized model which exhibits the
GNH transition. In Sec.III we consider a bosonized de-
scription of various phases and phase transitions in terms
of a Chern-Simons-matter theory. In Sec.IV we dis-
cuss our QMC results in light of the dual formulation.
In Sec.V we provide a numerical demonstration of the
fermionic exchange statistics of the skyrmions. We con-
clude in Sec.VI with a discussion of our main results,
potential issues and future directions.

II. PHASE DIAGRAM OF A LATTICE
REGULARIZED GNH MODEL

The theory we are interested in involves two flavors of
two-component Dirac fermions in 2+1-D. One way to re-
alize such a theory is by considering spinless fermions at
half-filling with opposite sublattice hopping on a honey-
comb lattice. In the absence of interactions, one obtains
two Dirac nodes in the momentum space, whose low en-
ergy degrees of freedom correspond to the two flavors.
However, if one desires a theory where the flavor sym-
metry acts locally in real-space, then the most physical
way to realize the theory of our interest is at the 2+1-D
boundary of a 3+1-D C-I class topological superconduc-
tor [46]. Alternatively, and for numerical feasibility, one
can consider long-range hopping of electrons on a two-
dimensional lattice, i.e., the ‘SLAC fermion’ approach
originally proposed in Ref.[47]. Specifically, we consider
the Hamiltonian originally introduced in Ref.[38], where
the Hilbert space on site i corresponds to four differ-
ent species of complex fermions denoted as ci,τ,σ where
τ = a, b is an index that becomes the Dirac-spin at low
energies while σ =↑, ↓ denotes flavor index. Correspond-
ingly, we define Pauli matrices τa and σa with a = x, y, z
that act on the Dirac-spin index and the flavor index
respectively. The Hamiltonian is given by

H = H0 +HU , where (1)

H0 =
∑
i,x

it(x)c†i τ
yci+x −

∑
i,y

it(y)c†i τ
xci+y,

HU =
U

2

∑
i,τ=a,b

(ρi,τ − 1)2

Here t(r) = (−)riπt0
L sin(πr

L ) with L being the linear system size

of the lattice while ρi,τ =
∑

σ c
†
i,τ,σci,τ,σ is the fermion

density operator for τ = a, b. From now on, we will
set t0 to unity so that all energy scales are measured
in units of t0. The global continuous symmetry of H is
SU(2)flavor × U(1)charge.

The long-range hopping t(r) is precisely the Fourier
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FIG. 1. (a) The phase diagram of our model consists of a
Dirac semimetal phase separated from a QSH insulator. (b)
The critical point between the Dirac semimetal phase and the
QSH phase in our lattice model can be located using the cross-

ing point for the correlation ratio r defined as r = 1− C(δq⃗)

C(⃗0)
,

where C(q⃗) = 1
L4

∑
i,j⟨N⃗i · N⃗j⟩eiq⃗·r⃗ij is the spin-structure-

factor and δq⃗ = ( 2π
L
, 2π

L
). The location of the transition point

is consistent with Ref. [38], Uc/t ≈ 6.76.

transform of a dispersion linear in momentum [47], so
that in the thermodynamic limit, H0 realizes two fla-
vors of two-component massless Dirac electrons: H0 =∑

k⃗,σ c
†
k⃗,σ

k⃗ · τ⃗ ck⃗,σ (see Appendix A for details). One no-

table aspect is that HU is not Lorentz invariant, and the
QMC results in Ref.[38] imply that the Lorentz invari-
ance in the Dirac semimetal phase and at the GNH tran-
sition is emergent. In addition to the lattice-related sym-
metries and onsite symmetries corresponding to charge
U(1) and flavor SU(2), the model also possesses an on-
site anti-unitary symmetry, which we denote as CT , that
involves a combination of charge-conjugation and time-

reversal: ci,σ
CT−−→ τzc†i,σ, i (=

√
−1)

CT−−→ −i, and time

t
CT−−→ −t. The CT symmetry is analogous to the one re-

alized at the 2+1-D boundary of a 3+1-D C-I class topo-
logical superconductors [46]. Crucially, a combination of

CT and flavor rotation, ci → (iσy)τzc†i , is an antiuni-
tary symmetry that squares to −1, and allows one to
simulate our model without sign problem [48]. Indeed,
as mentioned earlier, the phase diagram as a function of
U/t has already been mapped out using unbiased QMC
simulations in Ref. [38].

At small U/t, the system is in a stable, gapless Dirac
semimetal phase. In the continuum limit, the gapless

Dirac modes near Γ point (Q⃗ = (0, 0)) can be written

as cr⃗ ∼ eiQ⃗·r⃗Ψ. Although the QMC simulations effec-
tively involve simulating an imaginary time action, for
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the purposes of discussing symmetries and the duality
in the subsequent sections, we will employ a real-time
notation (except in Section V where we study exchange
statistics of skyrmions). Defining γ0 = τz, γ1 = −iτy,
γ2 = iτx, Ψ = Ψ†γ0, the free part of the Hamiltonian,
namely H0, is then described by the standard contin-
uum Dirac Lagrangian L0 = Ψ(i∂µγ

µ)Ψ. QMC sim-
ulations show that as the interaction strength U/t is
increased, the system eventually undergoes a second-
order phase transition to a phase with non-zero expec-

tation value N⃗ = ⟨Ψσ⃗Ψ⟩, see Fig.1. In Ref.[38], the
symmetry-broken phase was referred to as an antiferro-
magnet. However, we will call it a ‘quantum spin-Hall
insulator’ (QSH) since, as discussed below, it exhibits a
non-zero spin-Hall response. The phase transition be-
tween the semimetal and the QSH phase is expected to
be second-order, and can be described by the following

field theory: L = Ψ
(
i∂µγ

µ +mN N⃗ · σ⃗
)
Ψ+(∂µN⃗)2 + ...

where the order parameter N⃗ is normalized as N⃗2 = 1.
In addition to sign-problem-free QMC [38, 43, 49–53],
this critical theory can also be studied using perturbative
renormalization group (RG) schemes [39–41, 44, 54–58].

We will find it useful to couple fermions to probe gauge
fields. For most of our discussion, it will suffice to intro-
duce two U(1) gauge fields Ac and As that couple to
conserved currents ΨγµΨ and ΨγµσzΨ respectively. It
is useful to know the transformation properties of these
gauge fields, as well as those of various operators rele-
vant to our discussion under discrete symmetry CT , and
mirror symmetries Mx,My defined as Mx : cσ(x, y) →
τxcσ(x,−y),My : cσ(x, y) → −iτycσ(−x, y), see Table
I. One notices that both charge and flavor currents, i.e.
ΨγµΨ and ΨγµσzΨ respectively have the same symme-

tries as the skyrmion current jµtopo = 1
8π ϵ

µνλN⃗ · ∂νN⃗ ×
∂λN⃗ . One also notices that in addition to ‘diagonal’
Chern-Simons terms such as AcdAc/4π and AsdAs/4π,
even the off-diagonal Chern-Simons term associated with
spin-Hall response AcdAs/4π is odd under CT . The ta-
ble also mentions operators involving an internal gauge
field a which will be introduced in the next section (see
Eq.(6) below).

Operator CT My Mx

Ψσ⃗Ψ, N⃗ - - -

ΨΨ, N⃗ · ∂2
xN⃗ × ∂2

yN⃗ - - -

Ψγ0Ψ,Ψγ0σzΨ, Ac
0, A

s
0, N⃗ · ∂xN⃗ × ∂yN⃗ - + +

Ψγ1Ψ,Ψγ1σzΨ, Ac
x, A

s
x, N⃗ · ∂tN⃗ × ∂yN⃗ + - +

Ψγ2Ψ,Ψγ2σzΨ, Ac
y, A

s
y, N⃗ · ∂xN⃗ × ∂tN⃗ + + -

a0 + - -
ax - + -
ay - - +

AcdAc, AsdAs, AcdAs, ada - - -
Acda,Asda + + +

TABLE I. Symmetry transformations of a few operators rel-
evant to our discussion.

III. BOSONIZATION OF
GROSS-NEVEU-HEISENBERG TRANSITION

One approach to find a bosonized dual for the GNH
transition is to utilize dualities for free fermions for which
considerable evidence exists at large-N [17–21], and then
append them with appropriate interactions to reach the
GNH fixed point. For example, consider the following
two Lagrangians with SU(2)flavor×U(1)charge symmetry:

LF =

2∑
a=1

Ψai /DAΨa + u(Ψσ⃗Ψ)2 −mΨΨ+CS(A)(2)

LB = |Da+Aϕ|2 −
(
ϕ†ϕ

)2
+CS(a) + u

(
ϕ†σ⃗ϕ

)2
(3)

−v|ϕ†ϕ|3 − rϕ†ϕ

where CS(X) = 1
4π tr

[
XdX − 2i

3 X
3
]
denotes the non-

abelian Chern-Simons term for a gauge field X, Ψa with
a = 1, 2 represents the two flavors of Dirac fermions
(Pauli matrices σ⃗ act on the flavor-space) coupled to a
background U(2) = SU(2)flavor×U(1)charge gauge field A
in the fundamental representation, and ϕa with a = 1, 2
denote 2 complex scalars that are coupled to a fluctuating
U(N) gauge field a as well as the background gauge field
A in the fundamental representation. When u = m = 0,
LF , the Lagrangian for two flavors of gapless free Dirac
fermions, has been conjectured to be dual to LB, the
Wilson-Fisher fixed point Lagrangian of a non-abelian
Chern-Simons-matter theory for any value of N ≥ 2 [17–
21]. Under this duality, r ↔ −m, i.e., turning on the
operator ±ϕ†ϕ on the boson side corresponds to turning
on the operator ∓ΨΨ on the fermion side. For exam-
ple, giving a positive mass to the boson yields a non-
topologically ordered phase (i.e. a unique ground state
on a torus) [21, 22] and a Hall response−AdA/4π, match-
ing the fermion theory at negative mass, while giving a
negative mass Higgses out the internal gauge field a, re-
sulting in a unique, gapped ground state with Hall re-
sponse AdA/4π, which again matches with the fermion
theory at positive mass. As discussed above, in the pres-
ence of time-reversal symmetry (i.e. m = 0), tuning the
interaction term u in the fermionic Lagrangian LF be-
yond some critical strength drives the GNH transition
between the Dirac semimetal and a flavor symmetry bro-
ken phase with two Goldstone modes. Due to duality,
it is reasonable to expect that the same fixed point can
also be reached in the bosonized description LB by per-
turbing the Wilson-Fisher point with a term of the form

u
(
ϕ†σ⃗ϕ

)2
with sufficiently large u. Therefore, LB , at the

appropriate fixed point values of the coefficients of |ϕ|4
and

(
ϕ†σ⃗ϕ

)2
can be thought of as the dual description of

the GNH transition.

The aforementioned duality proposal for the GNH
transition may be worthwhile to analyze in detail, partic-
ularly using perturbative methods such as large-N calcu-
lations. However, working with non-abelian gauge fields
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can be a bit challenging. On that note, for the Gross-
Neveu-Yukawa phase transition for a single Dirac fermion
Ψ, where the order parameter corresponds to ⟨ΨΨ⟩, a
duality involving only an abelian Chern-Simons-matter
theory has been proposed in Ref. [24]. This duality
can be obtained from the ‘seed duality’ between a sin-
gle Dirac fermion and a single complex scalar coupled
to a level-1 Chern-Simons gauge field, with the fermion
mass mapping to the boson mass. Using the seed duality
one can also argue for a duality between Gross-Neveu-
Yukawa phase transition in a two-flavor QED-3 and an
SU(2) symmetric CP 1 theory, as discussed in Ref.[34].
This motivates us to ask if there might exist a dual of
the GNH transition as well involving only abelian gauge
fields. One possible approach is to combine the seed-
duality for two different flavors of free Dirac fermions,
leading to a dual theory with two complex scalars z1, z2
coupled to two distinct U(1) gauge fields [34, 59]. One
would expect that adding flavor symmetric interactions
in such a bosonized description would then drive the
GNH transition (in such an approach, the dual of ΨσxΨ
and ΨσyΨ would involve monopole operators) [60]. Here
we will follow a different route and consider an alterna-
tive candidate duality for the GNH transition, which is
motivated from the quantum numbers of skyrmions in
the symmetry-broken phase of our theory.

Quantum numbers of solitons: Let us first discuss the

effective field theory of the order-parameter-field N⃗ deep
in the ordered phase in the presence of probe gauge fields
that couple to the charge and flavor degrees of freedom
of the electrons. Coupling SLAC fermions to gauge fields
can lead to various inconsistencies [61–63] and it is per-
haps more appropriate to consider our subsequent dis-
cussion in a setup where hopping of fermions is local,
e.g., spinful fermions at the boundary of a C-I topologi-
cal superconductor. After minimal coupling to the probe
gauge fields, one may write the effective Lagrangian as

L = Ψ
((

i∂µ +Ac
µ + σ⃗ · A⃗s

µ

)
γµ +mN N⃗ · σ⃗

)
Ψ+ (∂µN⃗)2

(4)

where Ac is a U(1) probe gauge field for the conserved

charge, A⃗s is an SU(2) probe gauge field for the con-
served flavor, while mN is a parameter that can be
thought of as a Hubbard-Stratonovich parameter for the
interaction of the form (Ψσ⃗Ψ)2. Since we are deep in the
ordered phase, we neglect fluctuations of the magnitude

of the order-parameter and set |N⃗ | = 1. After integrating
out the electrons, one finds the following effective action
[10, 45]:

SQSH[N⃗ , Ac, As] =

∫
d2x dt

( |mN |
16

tr(∂µN⃗)2 + πH(N⃗)

+jµtopoA
c
µ +

1

2π
ϵµνλ (∂µA

c
ν) A⃗

s
λ · N⃗

)
(5)

Here H(N⃗) is the Hopf invariant that equals the winding
number associated with the homotopy group π3(S

2) = Z,
where the base manifold S3 corresponds to the space-
time because one has identified the field configurations

of N⃗ at space-time infinity, while the target manifold

S2 corresponds to N⃗ with N⃗2 = 1. The coefficient

π in front of H(N⃗) implies that the skyrmions of field

N⃗ , whose current in the above equation is denoted as

jµtopo = 1
8π ϵ

µνλN⃗ · ∂νN⃗ × ∂λN⃗ , have fermionic statistics
[5, 10, 45, 64, 65]. The physical electromagnetic current

is given by jµc = δS
δAc

µ

∣∣∣
Ac=As=0

, and Eq.5 implies that

jµc = jµtopo. The time-component of this equation implies
that skyrmions carry the same electric charge as the phys-
ical electron. This is consistent with the fermionic statis-
tics of the skyrmions and also the fact that the skyrmion
density j0topo has the same symmetries as the electron

density Ψ†Ψ (Table I). In Sec.V, we will perform a numer-
ical calculation that provides support for the fermionic
exchange statistics of the skyrmions in our model. Fi-
nally, the mixed Chern-Simons term between the gauge

fields Ac and A⃗s implies that the symmetry-broken phase
has a quantized spin-Hall response, and therefore should
be identified as a QSH insulator. All of this is quite
analogous to the more familiar case of Nf = 4 flavors of
Dirac fermions (e.g. in graphene), except in that case,
one finds bosonic, charge-2 skyrmions whose condensa-
tion can lead to a deconfined critical point between a
QSH insulator and an s-wave superconductor [66–69]. We
also note that the idea of fermionic skyrmions as induced
by a Hopf term was originally discussed in the context of
two dimensional antiferromagnets in Refs.[64, 65]. How-
ever, as later shown, such a possibility does not occur in
a strictly two-dimensional antiferromagnet [46, 70].

It is useful to re-write the Hopf invariant H(N⃗) in
terms of a Chern-Simons field [5]. Let us introduce a CP 1

representation for the order parameter, N⃗ = z†σ⃗z, where
z is a two-component complex vector that satisfies z†z =

1. This is a redundant description since N⃗ is unchanged
under the local transformation z(r⃗, τ) → eiθ(r⃗,τ)z(r⃗, τ),
which implies that z is coupled to a fluctuating U(1)
gauge field aµ. In this representation, the Hopf invari-

ant, an integer, can be re-written as H(N⃗) =
∫
S3

1
4π2 ada

[5, 71], so that the term πH(N⃗) in the above action pre-
cisely has the same form as a Chern-Simons term at
level-1. Further, the skyrmion current is simply given

by jµtopo = ϵµνλ∂νaλ/2π. In the absence of the A⃗s probe
field, the effective field-theory deep in the ordered phase
may then be written as:

SQSH =

∫
d2x dt

( |(∂µ − iaµ)z|2
g2

+
adAc

2π
+

ada

4π

)
(6)

where g2 is a coupling constant analogous to 1/|mN | in
Eq.5. The level-1 Chern-Simons term for the gauge field
a implies that the ‘flux-charge composite’ operator z†σM
where M is a monopole operator that creates 2π flux of
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FIG. 2. (a) Schematic phase diagram of the Lagrangian in
Eq.(7) in the (u,m) plane, in the vicinity of the GNH critical
point. CI1 and CI2 denote the two Chern insulators, QSH de-
notes the quantum spin Hall phase, GNH denotes the Gross-
Neveu-Heisenberg transition between the Dirac semimetal
(blue line along the u axis) and the QSH phase. (b) Transla-
tion of the phase diagram to an RG flow.

the gauge field a, has the same quantum numbers as the
electron creation operator Ψ†

σ. This composite operator
does not carry any gauge charge of the internal gauge
field a because both the CP 1 bosons zσ, as well as a bare
monopole M carry a unit gauge charge of a. Physically,
the action of this composite operator on a given state
corresponds to creation of a skyrmionic texture that is
bound to an electron. The mixed Chern-Simons term
between a and Ac implies that skyrmions carry a unit
electric charge.

Proximate phases: To motivate a dual field theory for
the GNH critical point, it’s useful to explore proximate
phases that emerge if one perturbs our model Hamilto-
nian H with terms that break the discrete symmetries
CT ,Mx and My explicitly. Although we do not know
how to simulate the resulting model Hamiltonian due to
the fermion sign problem, one may still make a reason-
able guess about the phase diagram by considering var-
ious limits. Therefore, consider the following effective
Lagrangian in the vicinity of the GNH transition:

L = Ψ
((
i∂µ +Ac

µ + σzAs
µ

)
γµ −m

)
Ψ+ u(Ψσ⃗Ψ)2 (7)

We have supplemented the GNH critical theory with a
fermion mass that explicitly breaks the aforementioned

discrete symmetries (see Table I) and restricted ourselves
to probe gauge field As that couple only to the z com-
ponent of the flavor (we will assume that in the QSH
phase, the flavor-symmetry-breaking occurs along the z-
direction in the flavor space, so that the spin-rotation
symmetry along the z-direction is preserved). Let us
write the contribution to the action from the probe fields

as
σc
xy

4π AcdAc+
σs
xy

4π AsdAs+
σsc
xy

2π AcdAs. Integrating out a
single flavor of fermion coupled to a U(1) gauge field b, a
mass m generates a Chern-Simons response sign(m) bdb8π .
At m = 0, as a function of u, the system undergoes
the GNH phase transition from the semimetal phase to
the QSH phase where ⟨ΨσzΨ⟩ ̸= 0. This phase has
σc
xy = σs

xy = 0 and σsc
xy = ±1 (the sign of σsc

xy depends

on the sign of ⟨ΨσzΨ⟩). On the other hand, when u = 0,
for m > 0, one obtains a flavor-symmetric Chern insula-
tor (which we will denote as ‘CI1’) with σc

xy = σs
xy = 1

and σsc
xy = 0, while for m < 0, one obtains a flavor-

symmetric Chern insulator (‘CI2’) with σc
xy = σs

xy = −1
and σsc

xy = 0. Assuming that the phase diagram consists
of just these three stable phases, we schematically expect
a phase diagram shown in Fig.2. We propose the follow-
ing field theory for the transition between the QSH and
CI2:

S =

∫
d2x dt

(
|(∂µ − iaµ + iAs

µσ
z)z|2 − r|z|2 + adAc

2π
+

ada

4π
+ u(z†σ⃗z)2 − AsdAs

4π

)
(8)

where now z is a two-component complex scalar without
the constraint z†z = 1, and

√
r is the mass for this scalar.

Note that (z†σ⃗z)2 = |z†z|2. The transition from the CI2
to the QSH phase is driven by changing the sign of r.
When r ≪ 0 or when u ≫ |r|, we expect that z con-
denses leading to spontaneous symmetry breaking of the
flavor SU(2) down to U(1), resulting in the QSH phase,
with ⟨z†σ⃗z⟩ ≠ 0, and two Goldstone modes. Deep in this
phase, if one neglects the fluctuations of |z|, one recovers
the effective action discussed above using gradient expan-
sion, Eq.(5), or equivalently Eq.(6). Choosing ⟨z1⟩ ≠ 0 in
this phase, one finds a = As due to the Higgs effect. This
correctly reproduces the Hall response σc

xy = σs
xy = 0

and σsc
xy = 1 of the QSH phase. On the other hand when

r ≫ 0 and r ≫ u, the field z will be gapped and one
may integrate it out. After solving for the equations of
motion for the gauge fields, one finds σc

xy = σs
xy = −1

and σsc
xy = 0, which we then identify as CI2. One may

similarly describe the phase transition between the QSH
phase and the CI1 phase by writing down a similar action
where the sign of the ada and AsdAs terms are reversed,
and one chooses ⟨z2⟩ ≠ 0.
Above we haven’t specified the relation between the

fermion mass m in Eq.(7) and boson mass
√
r in Eq.(8).

Here we simply mention that at a fixed interaction
strength u, the CI2 to QSH transition can be accessed
by increasing m in the fermionic description (see Fig.2),
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and by decreasing r in the bosonized description, which is
somewhat similar to standard bosonization dualities. We
will elaborate on our understanding and potential issues
in more detail below.

A dual of the GNH transition: The aforementioned
theory for the transition between QSH to Chern insu-
lator (Eq.(8)), and the phase diagram (Fig.2) motivates
us to conjecture that the GNH theory written in terms
of fermions and the order-parameter field, i.e.,

L = Ψ
((

i∂µ +Ac
µ + σzAs

µ

)
γµ +mN N⃗ · σ⃗

)
Ψ+ (∂µN⃗)2

is dual to the following theory written in terms of a two-
component complex scalar z and a dynamic, compact
U(1) gauge field a:

L =

(
|(∂µ − iaµ + iAs

µσ
z)z|2 + adAc

2π
+

ada

4π
+ u(z†σ⃗z)2

−v|z†z|3 − AsdAs

4π

)
(9)

Since we are interested in the tricritical point, one needs
to keep terms upto |z|6 in Eq.(9). This ensures that the
symmetry broken phase obtained by changing the sign of
u has a well-defined minima for the order parameter |z|
[72]. Higher order terms are not expected to be relevant.
The Lagrangian in Eq.(9) has identical field content and
similar form as the one for the QSH to Chern insulator
transition (Eq.(8)), except that scalar mass

√
r = 0. We

require that the scalar mass |z|2 is not allowed by the
symmetry CT . We will discuss justification for imposing
this requirement below. This suggests a single parame-
ter (= u) tuned transition between the QSH phase and a
gapless phase without any obvious instabilities that hosts
a gauge-neutral (with respect to a) field z†σM with the
quantum numbers of the electron. We posit that the
latter phase corresponds to the gapless Dirac semimetal.
This suggestion for the dual of Dirac fermion is some-
what similar to that proposed in Ref.[64, 65], although
we do not know any controlled calculation, or a known
duality that justifies this assumption. Nonetheless, as-
suming that such an identification is correct, and that
there is a unique universality for the phase transition be-
tween the Dirac semimetal and the QSH phase, we iden-
tify the tricritical theory with the standard GNH tran-
sition. Although this is a tricritical point from the per-
spective of the Chern-Simons-matter theory in Eq.(8),
it is a single-parameter-tuned transition when the bo-
son mass |z|2 is prohibited (we assume v > 0). This is
reminiscent of other Bose-Fermi dualities where a Gross-
Neveu-type theory maps to a tricritical theory of bosons
coupled to gauge fields [17–21, 24] although our under-
standing of the theory in Eq.(9) is comparatively limited.
A heuristic picture for the transition is as follows. The
aforementioned flux-charge composite z†σM is gapless in
the semimetal phase, while it is gapped out in the QSH
phase. In the QSH phase, it carries the same quantum

numbers as the electron, as discussed above and has the
interpretation of an electron bound to a skyrmionic tex-
ture (see the discussion following Eq.6). Therefore, clos-
ing the gap to the flux-charge composite is tantamount to
closing the electron gap. This suggests that the standard
GNH Lagrangian (Eq.(4)) is dual to the Chern-Simons-
matter theory in Eq.(9). In the following, we will explore
consequences and potential issues related to this duality
conjecture.

Above, we already identified the electron creation oper-
ator with the flux-charge composite z†σM, and the topo-
logical current jµtopo with the electromagnetic current

ΨγµΨ. One may be inclined to identify the negative of

electron mass −ΨΨ with the boson mass z†z, analogous
to other Bose-Fermi dualities involving a Chern-Simons
term [21, 23]. Heuristically, at the level of semiclassi-
cal equation of motion for gauge field a, Im(z†∂µz) +
2aµz

†z + ϵµνλ∂νaλ/2π = 0, which suggests that the op-
erator z†z has the same symmetries as ada, which is odd
under CT , see Table I. This is also natural from the per-
spective of the phase diagram in the vicinity of the GNH
transition where |z|2 acts as a tuning parameter for phase
transitions (e.g. between QSH and CI1) that are accom-
panied by a change in the Hall response, as discussed
above. However, such an identification does not quite
work. When the coefficient r of z†z is large and positive,
the z fields have a mass gap, and one finds a Hall response
for the probe fields which is consistent with the Chern-
insulator phase CI2. This indeed matches with the Hall
response in the GNH theory (Eq.(7)) when the fermion
mass m ≪ 0. However, when the coefficient of z†z is
large and negative, one expects to obtain the QSH phase
with no charge Hall response and two Goldstone modes.
In contrast, in the fermionic theory (Eq.(7)), reversing
the sign of the mass simply reverses the sign of the Hall
conductance, and one obtains the CI1 phase. We don’t
have a satisfactory resolution to this issue (as an aside,
such an issue does not arise if one considers aforemen-
tioned duals of GNH that are based on standard Bose-
Fermi dualities, such as Eq.(2), or the one involving two
complex scalars coupled to two abelian gauge-fields). A
guess for the dual of the fermion mass ΨΨ is the topolog-
ical mass term that drives the bosonic integer quantum
Hall transition for the z fields between a trivial gapped
phase of z bosons, and a non-trivial phase where z bosons
are in an integer quantum Hall state with Hall conduc-
tance of two. Such a transition will be accompanied by a
change in the sign of the ada/4π term in Eq.(9), result-
ing in a change in the Hall conductance of our original
fermions. Such an identification would be analogous to
that obtained for the standard particle-vortex applied to
two flavors of Dirac fermions [34, 59]. However, we do
not know how to write down such a mass term explicitly
in terms of complex scalars z.

Similarly, it is not clear to us how to write down the
dual of the boson mass z†z under the proposed duality.
One naive possibility is that perhaps it corresponds to a
linear combination of the two relevant operators at the
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transition, i.e., z†z ∼ αΨΨ + β(Ψσ⃗Ψ)2, where α, β are
O(1) numbers. Such an identification would imply that
z†z is still prohibited at the GNH transition due to the
discrete symmetries, but it is neither even nor odd under
these symmetries. As one tunes the coefficient of the z†z
term, one moves along a line with slope α

β in the phase

diagram in the (u,m) plane. An appropriate choice of
α and β would then be consistent with the requirement
that one obtains the QSH phase for r ≪ 0 and a Chern
insulator for r ≫ 0. On the other hand, when |r| ≪ 1,
so that one is in the scaling regime corresponding to the
GNH critical point, z†z will effectively correspond to the
operator that has the lower scaling dimension out of ΨΨ
and (Ψσ⃗Ψ)2 at the GNH critical point (assuming they
have different scaling dimensions). Ref.[38] found scaling
dimension of (Ψσ⃗Ψ)2, ∆u ≈ 1.98(1), and our numerics
discussed in the next section found the scaling dimension
of ΨΨ to be ∆m ≈ 2.2(3). Therefore, error bars preclude
a definitive conclusion on which of them is larger. At
large N , ∆m = 2 + c/N where c > 0 [58, 73] which, in
light of the QMC results, is suggestive that ∆u < ∆m.
If so, then in the regime |r| ≪ 1, for one sign of r the
GNH critical point will be unstable towards QSH mass
opening (since (Ψσ⃗Ψ)2 will dominate ΨΨ), while for the
opposite sign of r, at the leading order, there will be no
mass opening while the subleading term proportional to
ΨΨ will lead to a Chern-insulator-type mass opening.

IV. QMC RESULTS AND COMPARISON WITH
PROPOSED DUAL

In the last section, we discussed two different phase
transitions. The first phase transition we discussed is be-
tween the QSH phase and the Chern insulator phase. We
argued that this transition is described by the field the-
ory in Eq.(8). Although one can estimate the scaling di-
mensions of various operators for this transition within a
large-N RG calculation [74, 75], the Hamiltonian/action
for this transition (using either the fermionic description
or the bosonic description) suffers from sign problem, and
therefore, we are unable to make any numerical compari-
son with the field theory results. The second phase tran-
sition we discussed, which is the main focus of this work,
is the GNH transition between the Dirac semimetal and
the QSH phase. We argued that it admits a dual descrip-
tion as a tricritical Chern-Simons matter theory (Eq.(9)).
For this transition, although there is a sign-problem in
the conjectured bosonic description (Eq.(9)), there is no
sign problem in the fermionic description [38]. This offers
an opportunity to potentially compare universal expo-
nents obtained from the QMC with those obtained from
large-N RG calculations. One potential obstacle with
such a comparison is that not much is known about the
tricritical theory directly using large-N methods. How-
ever, as we will discuss below, in the large-N limit, the
critical value of the interaction strength uc at the bi-
critical point is very small, which suggests that in the

large-N limit, the exponents of the bicritical point are
likely close to those for the tricritical point. At the very
least, such a comparison can be a starting point for fu-
ture investigations of the proposed duality. We will also
compare QMC exponents with the mean-field theory for
the tricritical point.

Scaling dimension of fermion operator: The con-
jectured duality predicts that the scaling dimension of
the electron creation operator in the GNH theory cor-
responds to the (dressed) monopole operator that cre-
ates 2π flux in the tricritical Chern-Simons-matter the-
ory, Eq.(9). Based on the QMC calculations in Ref.[38],
the electron creation operator Ψ† has a scaling dimen-
sion of approximately 1.09(1), which is also consistent
with our QMC simulations, and is also quite close to the
large-N result on the GNH theory upto O(1/N3) [57],
which yields an approximate scaling dimension of ap-
proximately 1.10. The monopole scaling dimension in the
standard bicritical theory (Eq.(8)) has been performed in
Ref.[76]. It was found that when the ratio k/N = 1/2
where k is the level of the Chern-Simons and N is the
number of complex scalars, at large N , the saddle point
value of the critical interaction uc at the bicritical theory
is almost zero (≈ 0.02) for a dressed monopole of flux
2π [76]. Therefore, one expects that the leading large-N
result for the scaling dimension of a 2π flux monopole in
the tricritical theory is close to that in the bicritical the-
ory. Assuming this is the case, one finds that the scaling
dimension of the monopole operator that creates flux 2π
is approximately 0.53N [76]. Therefore, for the problem
of our interest, namely N = 2, one finds that the scaling
dimension of the operator that creates a flux-charge com-
posite dual to the electron is approximately 1.06 at the
leading order, which is rather close to the QMC result in
the GNH theory.

Scaling dimension of charge-2 operator: Op-
erators that are Lorentz scalars and carry charge-2 of
the global U(1)charge correspond to 4π flux dressed
monopoles under the duality, and it is instructive to com-
pute their scaling dimensions using QMC as well [77]. We
consider two-point correlations of two distinct pairing op-

erators, the onsite pairing operator Pos(i) = c†i,a,↑c
†
i,b,↓ −

c†i,b,↑c
†
i,a,↓, and the nearest neighbor pairing opera-

tor Pnn(i) =
∑

δ

(
(c†i,a,↑c

†
i+δ,b,↓ + c†i,a,↓c

†
i+δ,b,↑)− a ↔ b

)
,

where δ denotes the four nearest neighbors on a square
lattice, that is, ±x̂,±ŷ. One may verify that both of these
are Lorentz scalars (i.e. Dirac-spin singlet). The scaling
dimensions for either of these operators are close to each
other: ∆Pos ≈ 2.5(2), and ∆Pnn ≈ 2.6(1), see Fig.3(a)
in the main text, and Figs.12,13 in Appendix B. Assum-
ing our duality conjecture is correct, this number should
be compared with the scaling dimension of the dressed
4π monopole in the tricritical theory, Eq.(9). One again
expects that the leading large-N result is close to the
one in the bicritical theory obtained in [76], since the
saddle point value of the critical interaction uc for this
calculation at the bicritical theory is again very small
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FIG. 3. Measurement of the scaling dimension of vari-
ous operators at the GNH quantum critical point (Uc/t ≈
6.76). The data in (a), (b) and (d) are obtained from
equal-(imaginary) time unequal-space correlations, while (c)
is based on unequal-(imaginary) time, equal-space correla-
tions. The unequal-space correlations are more accurate than
the unequal-time since the latter requires two steps of fit-
ting: we first perform a power-law fit for the imaginary time
decay at a fixed system size L, and then further perform a
1/L extrapolation to the thermodynamic limit. The power
law fitting of Ψ†Ψ correlations, ΨΨ correlations, Pnn corre-
lations, and Pos correlations at the largest possible separa-
tion (R⃗max = (L−1

2
, L−1

2
)) with system size L gives 2∆Ψ†Ψ =

4.1(1), 2∆ΨΨ = 4.5(6), 2∆Pnn = 5.3(1), and 2∆Pos = 5.0(3)
(the corresponding numbers obtained from unequal time cor-
relations are 2∆Ψ†Ψ = 3.2(1), 2∆ΨΨ = 4.6(1), 2∆Pnn =
3.8(1), and 2∆Pos = 4.6(3)). From unequal-time skyrmion
correlations, we find 2∆j0topo

≈ 3.8(3). The data quality for

this calculation is further limited by the rather challenging na-
ture of the calculation of skyrmion density correlations. Note
that data in grey color are from “density-channel” calculation,
while that in black color are from “spin-channel” calculation.
See Appendix B for more details.

(≈ 0.05), see Ref.[76]. The leading order result for the
4π monopole in the bicritical theory at N = 2 is approx-
imately ∆4πmonopole ≈ 2.69 [76], which is again close to
our QMC estimate.

Scaling dimension of electron charge density
and skymion density: As discussed above, the con-
servation of total electron number is realized as the con-
servation of the topological current jµtopo in the Chern-

Simons-matter theory. Since conserved charges do not
acquire any anomalous dimension, this correspondence
predicts that ∆Ψ†Ψ = ∆j0topo

= 2, where both ∆Ψ†Ψ

and ∆j0topo
are obtained using QMC simulations in the

model Hamiltonian H by looking at the two-point cor-
relations of the electron density Ψ†Ψ and the skyrmion

density = 1
8π ϵ

0νλN⃗ · ∂νN⃗ × ∂λN⃗ respectively. Numeri-
cally, we find that ∆Ψ†Ψ ≈ 2.0(1) while ∆j0topo

≈ 1.9(2),

see Fig.3 (b),(c) in the main text and Figs.6,7,8,9 in
the Appendix B. We note that the calculation for the
skyrmion density correlations is rather challenging since
this correlation function involves a product of twelve
fermion creation or annihilation operators. We used a
Mathematica code to generate all possible Wick con-
tractions and after the simplification, each such corre-
lation has 2,064,384 terms, where each term involves a
product of six single-particle Green’s functions. As an
aside, the prefactor CJ for the power-law decay, defined
as Ψ†(x)Ψ(x)Ψ†(0)Ψ(0) ∼ CJ/x

4 is also universal, and
will take a different value for the GNH fixed point com-
pared to the free-fermion fixed point. However, we do
not have the numerical precision to estimate it reliably.
Critical exponent ν for diverging correlation

length: The tuning parameter for the GNH transition is
the interaction term u(Ψσ⃗Ψ)2. In Ref.[38], it was found
that various quantities are a scaling function of uL1/ν

with ν ≈ 0.98(1). Therefore, the correlation length ξ
diverges as ξ ∼ u−ν , and the scaling dimension of the
operator (Ψσ⃗Ψ)2 is 3 − 1/ν ≈ 2. We do not have a
large-N estimate for this scaling dimension in the tri-
critical theory. However, the value obtained from the
mean-field theory of the tricritical theory is surprisingly
close. In particular, within the mean-field theory, the in-

verse propagator at momentum k⃗ for the complex scalar
is (k2 + u⟨|z|⟩2), and since ⟨|z|⟩ ∼

√
u/v within mean-

field, this implies that the mean-field correlation length
exponent νMF = 1. Alternatively, one notes that the
scaling dimension of z is 1/2 within mean-field, and that
of (z†σ⃗z)2 ∼ (Ψσ⃗Ψ)2 is 2. The close match between the
mean-field tricritical theory and the QMC results might
well be a coincidence, but it’s still worth noting.

Scaling dimension of the order parameter N⃗ :
Both Ref.[38] and our simulations find the scaling dimen-

sion of the order-parameter N⃗ , ∆N⃗ ≈ 0.75, see Fig.10 in

Appendix B. Although the scaling dimension of N⃗ in the
bicritical theory has been calculated, see Ref.[78] (one
finds ∆N⃗ ≈ 1.12 if one sets N = 2 within the large-N
calculation in Ref.[78]), we are not aware of a similar
calculation for the tricritical theory. Within the mean-
field of the tricritical point, since the order parameter is
bilinear in the scalar z, ∆N⃗,MF = 1.

Scaling dimension of fermion mass ΨΨ: To obtain
scaling dimension of ΨΨ, we perform finite size scaling
in our QMC simulations of upto system sizes with linear
length L = 25 and find an approximate scaling dimen-
sion ∆ΨΨ = 2.2(3), see Fig.3 (d) in the main text, and
Fig.11 in Appendix B. As discussed above, we do not
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know the precise form the operator dual to fermion mass
ΨΨ, although naively one might expect that the oper-
ator with which it has the largest overlap is the boson
mass operator z†z in the tricritical theory. Although we
do not know any reliable estimate of ∆z†z in the tricriti-
cal theory, within a large-N calculation for the bicritical
Chern-Simons theory, Refs.[74, 75], at the leading order
one finds ∆z†z = 2. Within mean field, this scaling di-
mension would be 1.

Estimates for universal entanglement F : The
universal part of quantum entanglement for a circular
bipartition, generally denoted as F , has been shown
to monotonically decrease between two renormalization
group fixed points in 2+1-D Lorentz invariant field the-
ories [79–86]. For various Bose-Fermi dualities that hold
true in the large-N limit [18–20], the equality between
the F on two sides of duality has already been demon-
strated in Ref.[87]. A judicious choice of RG flows
connecting theories of interest can constrain phase di-
agrams [88], and could potentially rule out our conjec-
tured duality. Using the monotonicity property, FGNH >
FDirac semimetal = 2FD where FD ≈ 0.2190 is the value of
F for a single two-component Dirac fermion. This bound
motivates one to find an upper bound for the tricritical
Chern-Simons-matter theory (Eq.(8)), so as to possibly
find contradiction with the conjectured duality. However,
unlike the standard O(N) Wilson-Fisher fixed point for
which the Gaussian fixed point provides an obvious up-
per bound, here the presence of the Chern-Simons term
makes it difficult to find an analogous bound. There-
fore we will simply estimate the two sides using results
from large-N expansions. Using results from Ref.[85],
for an SU(2) GNH fixed point with N doublets of two-
component Dirac spinor, FGNH = 2NFD + 3ζ(3)/8π2 +
O(1/N). Substituting N = 1, one finds that to this
order FGNH ≈ 0.48. To estimate F for the tricriti-
cal Chern-Simons-matter theory, we use the inequality
Ftricritical CS > Fbicritical CS where Fbicritical CS can be es-
timated from the large-N results in Ref.[89]. It was found
that for the CPN−1 theory with a level k Chern-Simons

term, Fbicritical CS = NFS + 1
2 log

(√
k2 + (πN/8)2

)
+

O(1/N) where FS ≈ 0.1276 is the F for a free com-
plex scalar. Substituting N = 2, k = 1, one finds
Ftricritical CS > Fbicritical CS ≈ 0.38, which is not too far
from the aforementioned estimate for FGNH .

V. NUMERICAL DEMONSTRATION OF
FERMIONIC SKYRMIONS

To provide evidence for the presence of fermionic
skyrmions in the ordered phase, we consider the imag-
inary time motion of electrons in a specific space-time

configuration of the order parameter N⃗(r⃗, τ). In partic-

ular, starting with a uniform configuration of N⃗ , we first
create a skyrmion-antiskyrmion pair, then separate them,
followed by a continuous 2π rotation of the skyrmion

τ

FIG. 4. The schematic diagram showing the rotation of
skyrmion in a skyrmion-antiskyrmion pair so as to obtain the
exchange statistics of a skyrmion.

while keeping the antiskyrmion static, and finally bring-
ing them close together and annihilating them, see Fig.4
[5]. We also consider a reference path where we ro-
tate the skyrmion from zero to π and then back to zero

such that the net rotation is zero. We chose N⃗(r⃗, τ)
so that these two paths lead to the identical contribu-
tion to the lattice analog of the ‘kinetic energy’ term∫
d2xdτ |mN |

16 tr(∂µN⃗)2 and therefore, differ only in the
topological Berry phase picked up during the rotation.
Since rotation of a fermion leads to a minus one sign,
we expect that the ratio of the imaginary-time parti-
tion function for these two paths will be minus one if
the skyrmions are indeed fermions. This calculation is
implemented in the same SLAC fermion lattice regular-
ization of the GNH model that we used for our QMC
simulations discussed above (Eq. (1)). The path-integral

corresponding to a configuration N⃗(r⃗, τ) with τ ranging

from 0 to β is K(0, β) =
∫
D[Ψ,Ψ]T exp{−S[N⃗ ]}, where

S[N⃗ ] =
∫ β

0
dτ

∫
d2r⃗Ψ(i/∂ + imN N⃗ · σ⃗)Ψ. The skyrmion-

antiskyrmion configuration can be generated by setting

N⃗ = (Nx, Ny, Nz), where Nx = 2ReW
1+|W |2 , Ny = 2ImW

1+|W |2 ,

and Nz = |W |2−1
|W |2+1 [90]. For the skyrmion-antiskyrmion

pair, we set W (z, τ) = a
z+R(τ) − a

z−R(τ) , where z = x+iy,

a controls the size the skyrmion, and 2R(τ) is the time-
dependent seperation between the skyrmion and the an-
tiskyrmion. We find a systematic relative sign change
for K(0, β) associated with the rotated skyrmion con-
figuration and the reference path (unrotated skyrmion)
for a wide-range of parameters, including different sys-
tem sizes, skyrmion size and the maximum separation
between the pair (see Appendix C for a detailed discus-
sion), which is consistent with the presence of spin-1/2
skyrmions in our model.
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VI. SUMMARY AND DISCUSSION

In this work we studied a model of interacting fermions
that displays Gross-Neveu-Heisenberg transition. Moti-
vated from the quantum numbers of skyrmions, we con-
sidered a duality between the standard 2+1-D Gross-
Neveu-Heisenberg (GNH) critical point for two flavors of
two-component Dirac fermions, and a tricritical Chern-
Simons-matter theory with two complex scalars coupled
to a level-1 abelian Chern-Simons field (Eq.(9)). The
lattice model we studied was originally introduced and
studied in Ref.[38], and we obtained new results on the
scaling dimensions of various operators in the GNH crit-
ical theory, and compared them with the operators in
the conjectured dual using available results from vari-
ous perturbative renormalization group calculations. We
also discussed a numerical demonstration of the fermionic
statistics of the skyrmions in the ordered phase.

There are several open questions and potential issues
pertinent to our proposal. Firstly, we do not know how
to show that at weak interactions, and in the absence
of scalar mass, the Chern-Simons-matter theory flows to
the Dirac semimetal phase. As also emphasized, we do
not fully understand the relation between the operators
on the two sides of the proposed duality, in contrast to
other bosonization dualities. In particular, unlike stan-
dard Bose-Fermi dualities, identifying the boson mass
with the fermion mass does not quite work, which may
indicate that either the duality conjecture is incorrect,
or perhaps it is unrelated to known bosonization dual-
ities. It could also be interesting to pursue bosoniza-
tion of GNH transition using approaches that are better
understood, at least within large-N , such as Eq.(2), or
the duality for the two complex fermions obtained from
the duality between a single complex scalar coupled to
a level-1 U(1) Chern-Simons field and a single complex
fermion [34, 59, 60].

Recent large-N calculations indicate that tricritical
Chern-Simons theories may have a vacuum instability
[91], and in fact if the estimates from the leading large-N
results in Ref.[91] are applied to our case, namely Chern-
Simons level k = 1 and two complex scalars, one would
conclude that our theory may not be stable. At the same
time, the estimates for the regime of stability obtained
from large-N may not be accurate for small values of N .
For example, large-N calculations on the CPN theories
without Chern-Simons term also indicate absence of a
second-order transition at small values of N (see, e.g.,
Refs.[92, 93]), contrary to the numerical evidence of well
defined second-order transition at small values of N (see,
e.g., Refs.[94, 95]).

As recently argued [96], the long-range hopping associ-
ated with SLAC fermion regularization can lead to a gap
for the Goldstone modes in the symmetry-broken phase.
We did not find any signature of a similar gap at the crit-
ical point, which is our focus in this work. As shown in
previous works (e.g. Refs.[97]), the critical exponents ob-
tained using SLAC regularization are in agreement with

those obtained from other approaches, e.g., conformal
bootstrap [98]. Nonetheless, it will be useful to obtain a
field-theoretic understanding of the effect of long-range
hopping associated with SLAC regularization.
Another direction that may be worth pursuing is to

supplement our model with interactions that favor bind-
ing of skyrmions and which may therefore result in
skyrmionic superconductivity, similar to the scenario dis-
cussed in the context of deconfined criticality in Refs.
[66–69], or more recently in the context of magic-angle
graphene [99–102].
Finally, if the proposed duality is correct, then it would

be fruitful to use it to derive other dualities, e.g., by gaug-
ing the probe fields, similar to the derivation of multitude
of dualities using a ‘seed’ Bose-Fermi duality [21, 23].
For example, if one elevates the probe gauge field Ac in
Eq.(9) to a fluctuating one, then on the fermion side of
the duality, one obtains the GNH transition in a two-
flavor-QED-3, while on the bosonic side, the gauge field
a gets Higgsed and one obtains the tricritical O(4) theory
(based on the expectation that the SU(2) symmetry is
enlarged to O(4), see, e.g.,[103–105]). The critical expo-
nents for the O(4) tricritical point are essentially mean-
field since the interactions are only marginally relevant
[106–108]. Therefore, this argument is suggestive that
the QED-3 GNH transition is dual to simply the O(4)
Gaussian fixed-point. We leave further explorations of
such implications to the future.
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Appendix A: SLAC fermion
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FIG. 5. SLAC fermion energy-momentum dispersion. The left figure is for odd L (L = 17) and the right for even L (L = 16).
The blue dots correspond to discrete set of allowed momentum on a lattice, the red lines are the dispersion for continuous kx
on a finite-size lattice. It will approach a straight line in the thermodynamic limit.

As we discussed in the main text, we use SLAC fermion [47] to regularize a single four component Dirac cone on a
square lattice. The non-interacting part H0 has the form

H0 =
∑
i,x

t(x)c†i,a,σci+x,b,σ −
∑
i,y

it(y)c†i,a,σci+y,b,σ + h.c. (A1)

where L is the linear system size of the lattice. The hopping parameter t(r) has the following form for odd L

t(r) =

{
(−)riπt
L sin(πr

L ) r ̸= 0

0 r = 0
, (A2)

and the following form for even L

t(r) =

{
(−)riπte−iπr

L

L sin(πr
L ) r ̸= 0

πt
L r = 0

. (A3)

In Fig. 5, we plot the dispersion along kx direction. The dots corresponding to the discrete set of momenta on the
lattice are all located on a straight line.

Appendix B: Details of QMC estimation of scaling dimensions

Since our low-energy theory is relativistic, we expect that the dynamical exponent z = 1 both in the Dirac semimetal
phase and at the GNH critical point. In principal, if one has access to arbitrary large system sizes with enough accuracy,
one should be able to calculate the scaling dimension of various operators using either the equal-time correlations
or unequal-time correlations. However, in practice we find that for some operators, it is easier to estimate their
scaling dimension using equal-time, unequal-space correlations, while for others, unequal-time, equal-space yields
better estimates.

In Figs. 6-7, we compare the imaginary-time correlation and the real-space correlation for electron-density operator
and the skyrmion-density operator for non-interacting Dirac fermions. The exact value of the scaling dimension for
either of these operators is two, and from these figures, we notice that both the imaginary-time correlation as well as
the real-space correlation yields an accurate estimate in the thermodynamic limit.

In Figs. 8-13, we estimate the scaling dimensions of various operators at the GNH critical point. To improve
the estimation, we tried two different kinds of Hubbard-Stratonovich transformations (see Appendix. D), the “spin-
channel” and the “density-channel”. The “spin-channel” one (denoted by colored points in the figures) has a higher
quality of data for unequal-time skyrmion density correlations, and the “density-channel” one (denoted by grey points
in the figures) has a higher quality of data for unequal-time Ψ̄Ψ correlations and Ψ†Ψ correlations. See Figs.8,9,11 for
details. The calculation of skyrmion-density correlation is particularly challenging, as they involve Wick contractions
of a product of twelve fermion operators. With the help of a Mathematica code, we perform the Wick contractions



12

1.5 2.0 2.5 3.0 3.5 4.0 4.5

ln(L)

−18

−16

−14

−12

−10

−8

−6

ln
[〈Ψ

† (
~ R

m
a

x
)Ψ

(
~ R

m
a

x
)Ψ
† (

0)
Ψ

(0
)〉]

(a)

2∆Ψ†Ψ = 4.01(1)

−2 −1 0 1 2

ln(τ)

−30

−25

−20

−15

−10

−5

ln
[〈Ψ

† (
τ
)Ψ

(τ
)Ψ
† (

0)
Ψ

(0
)〉]

(b)

L=11

L=13

L=15

L=17

L=19

L=21

L=23

L=25

L=33

L=41

L=49

0.00 0.05 0.10
1/L

0
1
2
3
4
5

2
∆

Ψ
† Ψ

FIG. 6. Measurement of scaling dimension of density operator for non-interacting Dirac fermions. (a) Real-space density

operator correlation at largest possible separation (R⃗max = (L−1
2

, L−1
2

)) for different system size L. We obtain 2∆Ψ†Ψ = 4.01(1)
based on a power-law fitting. (b)Imaginary-time correlation of density operator. We drop the initial 8 points for each L fitting
and the fitting range is indicated by a solid line in the figure. Explicitly, the fitting range is τt ∈ (0.9, 8). The inset is a linear
extrapolation of 2∆Ψ†Ψ with 1/L, and we get 2∆Ψ†Ψ = 4.05(2) in the thermodynamic limit.
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FIG. 7. Measurement of scaling dimension of skyrmion-density operator for non-interacting Dirac fermions. (a) Real-space

skyrmion-density operator correlation at largest possible separation (R⃗max = (L−1
2

, L−1
2

)) for different system size L. We
obtain 2∆j0topo

= 4.0(1) based on a power-law fitting. (b)Imaginary-time correlation of skyrmion-density operator. We drop

the initial 8 points for each L fitting and the fitting range is indicated by a solid line in the figure. Explicitly, the fitting range
is τt ∈ (0.9, 8). The inset is a linear extrapolation of 2∆j0topo

with 1/L, and we get 2∆j0topo
= 3.8(1) in the thermodynamic

limit.

and after the simplification, each two-point correlation of the skyrmion density has 2,064,384 terms, where each term
involves a product of six single-particle Green’s functions. It appears that the unequal-time, equal-space correlation
has a much higher quality than the equal-time, unequal-space correlation, see Fig. 9 for details.

Appendix C: Skyrmion rotation calculation

As discussed in the main text (see Sec.V), conceptually we consider adiabatic motion of electrons in the background

of a specific space-time configuration of the order parameter N⃗(r⃗, τ) that corresponds to skyrmion rotation (Fig.4),
and compare the phase picked up by the electron with a reference configuration where skyrmion is not rotated.
In the actual calculation, we use SLAC fermion to regularize the Dirac fermion on a lattice, and make a Trotter
decomposition of the imaginary time β ≡ Lτ∆τ , where ∆τ is taken to be very small so as to implement the adiabatic
motion. In the calculation, we set Lτ = 400, and ∆τ t = 0.1. The space-time Hamiltonian is written as

H[N⃗ ] = H0 −m
∑
i

N⃗(r⃗i, τ) · c†i τzσ⃗ci ≡ c†h(τ)c (C1)
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FIG. 8. Measurement of the scaling dimension of the density operator at the GNH critical point. (a) Real-space density

operator correlation at largest possible separation (R⃗max = (L−1
2

, L−1
2

)) for different system size L. We obtain 2∆Ψ†Ψ = 4.1(1)
based on a power-law fitting. (b)Imaginary-time correlation of density operator. We drop the initial 4 points for each L fitting
, and the fitting range is indicated by a solid line in the figure. The inset is a linear extrapolation of 2∆Ψ†Ψ with 1/L, we
get 2∆Ψ†Ψ = 3.2(1) in the thermodynamic limit. Note that the “spin-channel” Hubbard-Stratonovich transformation data is
denoted by colored points, while the “density-channel” one is denoted by grey points. Similar notation is used in the following
figures.
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FIG. 9. Measurement of the scaling dimension of the skyrmion-density operator at GNH critical point. (a) Real-space skyrmion-

density operator correlation at largest possible separation (R⃗max = (L−1
2

, L−1
2

)) for different system size L. We obtain 2∆j0topo
=

3.0(5) based on a power-law fitting. (b)Imaginary time correlation of skyrmion-density operator. We drop several small τ and
large τ points for each L fitting, and the fitting range is indicated by a solid line in the figure. The inset is a linear extrapolation
of 2∆j0topo

with 1/L, and we get 2∆j0topo
= 3.8(3) in the thermodynamic limit.

where h(τ) is the coefficient matrix of the space time Hamiltonian at imaginary time. After tracing out fermions, one
obtains

K(0, β) = det

[
1 +

Lτ∏
l=1

e−∆τh(l∆τ )

]
(C2)

The skyrmion configuration can be generated by setting N⃗ = (Nx, Ny, Nz), where Nx = 2ℜW
1+|W |2 , Ny = 2ℑW

1+|W |2 , and

Nz = |W |2−1
|W |2+1 [90]. For the skyrmion-antiskyrmion pair, we can set W (z) = a

z+R − a
z−R , where z = x + iy, a is the

size the skyrmion, and 2R is the separation of the skyrmion and the antiskyrmion. To describe the separation process
we make R to be time-dependent, and similarly, W (z) depends on the time as well to implement the rotation:

W (z) =
a

z +R(τ)
− a

z −R(τ)
eiα(τ) (C3)
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FIG. 10. Measurement of the scaling dimension of the QSH order parameter N⃗ at the GNH critical point. (a) (a) Real-

space QSH operator correlation at largest possible separation (R⃗max = (L−1
2

, L−1
2

)) for different system size L. We obtain
2∆N⃗ = 1.47(3) based on a power-law fitting. (b)Imaginary-time correlation of the QSH order parameter. We drop the initial
4 points for each L fitting and the fitting range is indicated by a solid line in the figure. The inset is a linear extrapolation
of 2∆N⃗ with 1/L, and we get for both the “spin-channel” calculation and “density-channel” calculation 2∆N⃗ = 1.52(2) in the
thermodynamic limit, which matches with the previously reported value in Ref.[38].
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FIG. 11. Measurement of the scaling dimension of Ψ̄Ψ operator at the GNH critical point. (a) Real-space Ψ̄Ψ operator

correlation at largest possible separation (R⃗max = (L−1
2

, L−1
2

)) for different system size L. We obtain 2∆Ψ̄Ψ = 4.5(6) based on
a power-law fitting. (b)Imaginary-time correlation of the Ψ̄Ψ operator. We drop the initial 8 points for each L fitting and the
fitting range is indicated by a solid line in the figure. The inset is a linear extrapolation of the 2∆Ψ̄Ψ with 1/L, and we get for
“density-channel” calculation 2∆Ψ̄Ψ = 4.6(1) in the thermodynamic limit.

During the period when the skyrmion-antiskyrmion is created out of the vacuum and slowly separated, we set α(τ) = 0
as R(τ) changes from zero to R0 in this process. The reverse process of annihilating is also carried out similarly.
During the period when skyrmion is being rotated, we set R(τ) = R0 fixed, and slowly increase α(τ) from zero to 2π.
The rotation process is made very slow by dividing the angle 2π into 300 small steps. As mentioned above and in
Sec.V, we also consider a reference configuration, where we rotate the skyrmion from zero to π and then from π back to
zero, such that in total there is no rotation. We tried a range of parameters: We consider different sets of system sizes,
{Lx = 4R0 + 1, Ly = 2R0 + 1} with R0 = 5, 6, 7, 8. We also considered different values of a = 2, 3, 4 corresponding
to different sizes for the skyrmion. Larger a is not suitable due to limited total system size we can simulate. Finally,
we also considered a different set of mass ratios in the range 0 ≲ m/t ≲ 4. We obtained a relative sign change for
the propagator K(0, β) corresponding to the rotated skyrmion compared to that of the unrotated one for all sets of L
and a when 1.0 ≲ m/t ≲ 2.5, as shown in Table II. For larger m/t, we do not find a sign change which may be related
to the fact that when m/t becomes large, ultraviolet physics may affect the result of the calculation since the phase

stiffness of the N⃗ is proportional to |m|. This provides a numerical demonstration of spin-1/2 skyrmions, at least for
a range of parameters.
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FIG. 12. Measurement of the scaling dimension of Pnn operator at the GNH critical point. (a) Real-space Pnn operator

correlation at largest possible separation (R⃗max = (L−1
2

, L−1
2

)) for different system size L. We obtain 2∆Pnn = 5.3(1) based on
a power-law fitting. (b)Imaginary-time correlation of the Pnn operator. We drop the initial 12 points for each L fitting and the
fitting range is indicated by a solid line in the figure. The inset is a linear extrapolation of the 2∆Pnn with 1/L, and we get for
“spin-channel” calculation 2∆Pnn = 3.8(1) in the thermodynamic limit.

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2

ln(L)

−16

−14

−12

−10

ln
[〈P

† o
s(
~ R

m
a

x
)P

o
s(

0)
〉]

(a)

2∆Pos = 5.0(3)

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

ln(τ)

−22.5

−20.0

−17.5

−15.0

−12.5

−10.0

−7.5

−5.0

ln
[〈P

† o
s(
τ
)P

o
s(

0)
〉]

(b)(b)

L=11

L=13

L=15

L=17

L=19

L=21

L=23

L=25

0.00 0.05 0.10
1/L

0

2

4

6

2
∆
P

o
s

FIG. 13. Measurement of the scaling dimension of Pos operator at the GNH critical point. (a) Real-space Pos operator

correlation at largest possible separation (R⃗max = (L−1
2

, L−1
2

)) for different system size L. We obtain 2∆Pos = 5.0(3) based on
a power-law fitting. (b)Imaginary-time correlation of the Pos operator. We drop the initial 12 points for each L fitting and the
fitting range is indicated by a solid line in the figure. The inset is a linear extrapolation of 2∆Pos with 1/L, and we get for
“spin-channel” calculation 2∆Pos = 4.6(1) in the thermodynamic limit.

R0 = 5 R0 = 6 R0 = 7 R0 = 8
m/t a = 2 a = 3 a = 4 a = 2 a = 3 a = 4 a = 2 a = 3 a = 4 a = 2 a = 3 a = 4
0.5 + + + + + − + + − + + −
0.6 + + − + − − + − − + − −
0.7 + − − + − − + − − + − −
0.8 + − − + − − + − − + − −
1.0 − − − − − − − − − − − −
1.5 − − − − − − − − − − − −
2.0 − − − − − − − − − − − −
2.5 − − − − − − − − − − − −
3.0 + − − + + − + + − + + +
4.0 + + + + + + + + + + + +
5.0 + + + + + + + + + + + +

TABLE II. Relative sign change for K(0, β) for different parameters.



16

Appendix D: Details of Quantum Monte Carlo calculation

We perform projection Quantum Monte Carlo calculation. The observables are written as

⟨O⟩ = ⟨Ψ0|O|Ψ0⟩
⟨Ψ0|Ψ0⟩

(D1)

where |Ψ0⟩ is the ground state wavefunction, and is obtained via projection

|Ψ0⟩ = e−ΘH |ΨT ⟩ (D2)

where Θ is the projection time, |ΨT ⟩ is the trial wavefunction which is set to be the ground state wavefunction of the
non-interacting part of H. In the calculation, we set 2Θt = 60, which is large enough both for the equal-time and
dynamical calculations. The trotter decomposition step is set as ∆τ t = 0.1. To deal with the interaction, we perform
a symmetric trotter decomposition,

e−∆τ (H0+HU ) ≈ e−
1
2∆τH0e−∆τHU e−

1
2∆τH0 (D3)

and then considering the following two kinds of Hubbard Stratonovich (HS) transformation. For convinience we

rewrite c̃i,a/b,↑ = ci,a/b,↑, c̃i,a,↓ = c†i,a,↓, c̃i,b,↓ = −c†i,b,↓. The first type of HS transformation is in the so called
“spin-channel”.

e−
U
2 ∆τ (ρ̃i,τ,↑−ρ̃i,τ,↓)

2 ≈ 1

4

∑
si,τ=±1,±2

γ(si,τ )e
iα1η(si,τ )(ρ̃i,τ,↑−ρ̃i,τ,↓) (D4)

where α1 =
√

U
2 ∆τ , γ(±1) = 1 +

√
6/3, γ(±2) = 1 −

√
6/3, η(±1) = ±

√
2(3−

√
6), η(±2) = ±

√
2(3 +

√
6). The

second type of HS transformation is in the so called “density-channel”.

e−
U
2 ∆τ (ρ̃i,τ,↑−ρ̃i,τ,↓)

2+U
2 ∆τ =

1

2

∑
si,τ=±1

eα2si,τ (ρ̃i,τ,↑+ρ̃i,τ,↓−1) (D5)

where α2 = acoshe
∆τU

2 . It turns out the “spin-channel” calculation is more stable for spin type unequaltime corre-
lations such as skyrmion density correlation, and the “density-channel” calculation is more stable for density type
unequaltime correlations such as Ψ̄Ψ correlations and Ψ†Ψ correlations.
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