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Abstract—Doubly-selective channel estimation represents a key
element in ensuring communication reliability in wireless systems.
Due to the impact of multi-path propagation and Doppler
interference in dynamic environments, doubly-selective channel
estimation becomes challenging. Conventional channel estimation
schemes encounter performance degradation in high mobility
scenarios due to the usage of limited training pilots. Recently,
deep learning (DL) has been utilized for doubly-selective channel
estimation, where convolutional neural network (CNN) networks
are employed in the frame-by-frame (FBF) channel estimation.
However, CNN-based estimators require high complexity, making
them impractical in real-case scenarios. For this purpose, we
overcome this issue by proposing an optimized and robust bi-
directional recurrent neural network (Bi-RNN) based channel
estimator to accurately estimate the doubly-selective channel,
especially in high mobility scenarios. The proposed estimator
is based on performing end-to-end interpolation using gated
recurrent unit (GRU) unit. Extensive numerical experiments
demonstrate that the developed Bi-GRU estimator significantly
outperforms the recently proposed CNN-based estimators in
different mobility scenarios, while substantially reducing the
overall computational complexity.

Index Terms—Channel estimation, deep learning, Bi-RNN, Bi-
GRU.

I. INTRODUCTION

THe recent advances in wireless communications enable

high data rates and low latency mobile wireless applica-

tions [1]. Wireless communications offer mobility to different

nodes within the network, however, the mobility feature has a

severe negative impact on the communication reliability [2]. In

such environment, the wireless channel is said to be doubly-

selective, i.e. varies in both time and frequency. This is due

to the propagation medium, where the transmitted signals

propagate through multiple paths, each having a different

power, delay, and Doppler shift effect resulting from the

motion of network nodes. Knowing that the accuracy of the

estimated channel influences the system performance, since it

affects different operations at the receiver like equalization,

demodulation, and decoding. Therefore, ensuring communi-

cation reliability using accurate channel estimation is crucial,

especially in high mobility scenarios.

The state of the art (SoA) channel estimation schemes can

be categorized into symbol-by-symbol (SBS) estimators where

the channel is estimated for each received symbol separately

using only the previous and current pilots, and FBF estimators

where the previous, current and future pilots are employed

in the channel estimation for each received symbol [3]. The

higher channel estimation accuracy can be achieved by us-

ing FBF estimators, since the channel estimation of each

symbol takes advantage from the knowledge of previous,

current, and future allocated pilots within the frame. The well-

known FBF estimator is the conventional 2D linear minimum

mean-squared error (LMMSE) [4] where the channel and

noise statistics are utilized in the estimation, thus, leading to

comparable performance to the ideal case. However, the 2D

LMMSE suffers from high computational complexity making

it impractical in real case scenarios. Therefore, there is a need

for robust and low-complexity FBF estimators.

Recently, deep learning (DL) algorithms have been inte-

grated into wireless communications physical layer applica-

tions [5] including channel estimation [6]–[11], due to its

great success in improving the overall system performance,

especially when used on top of low-complexity conventional

estimators. DL algorithms are characterized by robustness,

low-complexity, and good generalization ability making the

integration of DL into communication systems beneficial.

Motivated by these advantages, DL algorithms have been

integrated into doubly-selective FBF channel estimation where

the initial estimated channel for the whole frame is considered

as a 2D low-resolution noisy image and CNN-based processing

is applied as super-resolution and denoising techniques.

In [12], the authors propose a CNN-based channel estimator

denoted as channel network (ChannelNet), that applies radial

basis function (RBF) interpolation as initial channel estima-

tion, after that, the RBF estimated channel is considered as a

low resolution image, where super resolution CNN (SR-CNN)

followed by denoising CNN (DN-CNN) are integrated on top

of the RBF estimated channel. Temporal spectral ChannelNet

(TS-ChannelNet) has been proposed in [13], where average

decision-directed with time truncation (ADD-TT) interpola-

tion that is based on the demodulation and averaging of

each received symbol. After that, super-resolution convo-

lutional long short-term memory (SR-ConvLSTM) is used

to improve ADD-TT interpolation accuracy. TS-ChannelNet

estimator outperforms the ChannelNet estimator especially

in low signal-to-noise ratio (SNR) regions. Moreover, the

TS-ChannelNet estimator has lower computational complex-

ity than the ChannelNet estimator since only one CNN

network is considered instead of two CNNs as proposed
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in the ChannelNet estimator. Nevertheless, ChannelNet and

TS-ChannelNet suffer from a considerable performance degra-

dation in high mobility scenarios due to the high estimation

error of the employed initial estimation. The weighted inter-

polation (WI)-CNN estimators have been proposed in [14] to

further improve the performance in high mobility scenarios,

where new frame design has been utilized. Moreover, the comb

pilots allocation has been replaced by periodically inserting

pilot symbols within the transmitted frame according to the

mobility scenario. After that, the channel estimation is per-

formed according to three main steps: (i) Channel estimation at

the inserted pilot symbols employing several least square (LS)

estimation schemes. (ii) Channel estimation at the remaining

data symbols, where WI of the estimated channels at the

inserted pilot symbols are applied. (iii) Integrating optimized

SR-CNN or DN-CNN as post-processing modules after the

WI estimators. Even though, the WI-CNN estimator improves

the overall performance in comparison to the ChannelNet,

TS-ChannelNet estimators, but it employs two CNN networks

that are selected based on the mobility scenario. Moreover,

ChannelNet, TS-ChannelNet, and WI-CNN estimators suffer

from high computational complexity, due to the huge opera-

tions applied by the employed CNN architectures.

It is worth mentioning that CNN networks are used basically

to alleviate the impact of noise within the input frame, where

they improve the resolution as the case of SR-CNN [15],

whereas, DN-CNN [16] works on noise extraction using

residual learning [17], then the input frame is subtracted from

the extracted noise and the denoised output is obtained.

Motivated by the fact that Bi-RNNs are designed to perform

2D interpolation of unknown data bounded between known

data, especially, when working with correlated data [18].

This paper focuses on overcoming the limitations of the SoA

CNN-based channel estimation schemes, where a Bi-RNN

based channel estimation scheme is proposed. The proposed

scheme inherits the adaptive frame design from the WI-CNN

estimators. It performs the channel estimation at the inserted

pilot symbols, after that, it employs a Bi-GRU as an end-to-

end 2D interpolation unit to estimate the channel at the data

symbols. Unlike the WI-CNN estimators, where WI followed

by SR-CNN and DN-CNN processing in low and high mobil-

ity scenarios, respectively, the proposed channel estimator uses

the same Bi-GRU unit for all mobility scenarios. Moreover,

the 2D interpolation is performed completely by this Bi-GRU

unit without the need to any initial estimation. Simulation

results show the performance superiority of the proposed

Bi-RNN based channel estimation scheme against the SoA

CNN-based channel estimators while recording an outstanding

computational complexity reduction.

The remainder of this paper is organized as follows: in

Section II, the system model is described. The proposed

Bi-RNN based channel estimation scheme is presented in

Section III. In Section IV, the performance evaluation in terms

of bit error rate (BER) as well as the computational complexity

analysis for the studied channel estimators are presented and

discussed. Finally, the paper is concluded in Section V.

II. SYSTEM MODEL

Consider a frame consisting of I = Id + P orthogonal

frequency-division multiplexing (OFDM) symbols, where P

denotes the number of inserted pilot symbols and Id refers

to the remaining OFDM data symbols that are preserved

for actual data transmission. The i-th transmitted frequency-

domain OFDM symbol x̃i[k] ∈ CKon×1 can be expressed as

follows

x̃i[k] =

{

x̃d[k], i ∈ Id.

x̃p[k], i ∈ Ip.
(1)

where 0 ≤ k ≤ Kon − 1 and Kon refers to the allocated

active subcarriers. x̃d[k] and x̃p[k] represent the modulated

data symbols and the predefined pilot symbols allocated at

Id and Ip sets, respectively. The received frequency-domain

OFDM symbol denoted as ỹi[k] ∈ CKon×1 is expressed as

follows

ỹi[k] = h̃i[k]x̃i[k] + ṽi[k], k ∈ Kon. (2)

h̃i[k] ∈ CKon×1 refers to the frequency response of the

doubly-selective channel at the i-th OFDM symbol and k-th

subcarrier. ṽi[k] signifies the additive white Gaussian noise

(AWGN) of variance σ2. As a matrix form, (2) can be

expressed as follows

Ỹ [k, i] = H̃[k, i]X̃[k, i] + Ṽ [k, i], k ∈ Kon, (3)

where Ṽ [k, i] ∈ CKon×I and H̃ ∈ CKon×I denote the

AWGN noise and the doubly-selective frequency response of

the channel for all symbols within the transmitted OFDM

frame, respectively. The received pilot symbols are denoted

by ỸP = [ỹ
(p)
1 , . . . , ỹ

(p)
q , . . . , ỹ

(p)
P ] ∈ CKon×P . q denotes the

inserted pilot symbol index, where 1 ≤ q ≤ P .

III. PROPOSED BI-RNN BASED CHANNEL ESTIMATION

SCHEMES

RNN is a type of DL designed to work with sequential data.

This sequential data can be in form of time series, text, audio,

video etc. Regular RNN uses the previous and the current

information in the sequence to produce the current output,

whereas, Bi-RNN networks are designed to predict unknown

data that are bounded within known data [18]. They are based

on making the data flows through any RNN unit in both direc-

tions forward (past to future), and backward (future to past).

In regular RNN, the input flows in one direction, whereas, in

Bi-RNN the input flows in both directions to get the advantage

of both past and future information. By doing so, the Bi-RNN

network will be able to predict the unknown information in

the middle based on their correlation with the known past

and future information. In this context, the proposed Bi-RNN

channel estimator aims to utilize the interpolation ability of

Bi-RNN networks in the FBF channel estimation instead of

employing high-complexity CNN networks as it is the case in

the SoA CNN-based channel estimation schemes.

The proposed Bi-RNN channel estimation scheme uses Bi-

GRU unit and it inherits the adaptive frame design from the
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Figure 1: Proposed Bi-RNN based channel estimator block diagram.

Table I: Parameters of the proposed Bi-RNN-based channel

estimation scheme.

(Bi-GRU; Hidden size (Q)) (1;32)

Activation function ReLU (y = max(0, x))

Number of epochs 500

Training samples 16000

Testing samples 2000

Batch size 128

Optimizer ADAM

Loss function MSE

Training SNR 40 dB

WI-CNN estimators as shown in Figure 1. We note that the

frame structure can be adapted according to the considered

scenario. For example, in vehicular communications, the low

mobility frame structure is used in urban environments since

the car velocity must not exceed 40 Kmphr. Similarly, for

the highways environment. Recall that WI-CNN channel esti-

mation performs WI interpolation at the data symbols, where

the initial estimated channels are modeled as a 2D noisy

image and CNN processing is applied to alleviate the impact

of noise. However, Bi-RNN performs 2D interpolation at the

data symbols using the estimated channel at the pilot symbols

without the need for any initial channel estimation at the data

symbols. The proposed Bi-RNN channel estimator proceeds

as follows

• Accurate LS (ALS) estimation at the inserted pilot sym-

bols. The ALS relies on estimating the channel impulse

response hq,L ∈ CL×1 at the q-th received pilot sym-

bol and then applying discrete Fourier transform (DFT)

interpolation as follows

ĥq,L = F †
on
ˆ̃
hLSq

, k ∈ Kon, (4)

ˆ̃
hALSq

= Fonĥq,L, k ∈ Kon. (5)

where F
†
on = [(F H

onFon)
−1F H

on] is the pseudo inverse of

the scaled DFT matrix Fon ∈ C
Kon×L. Moreover,

ˆ̃
hLSq

[k]
denotes the LS channel estimation at the q-th pilot symbol

that can be calculated in terms of the pre-defined pilot

symbol p̃[k] such that

ˆ̃
hLSq

[k] =
ỹ
(p)
q [k]

p̃[k]
, k ∈ Kon. (6)

• After that, zero insertion at all the data symbols is applied.

The obtained frame
ˆ̃
Hρ ∈ CKon×I is converted to the

real-valued domain by vertically stacking the real and

imaginary values to get ˆ̄Hin ∈ R2Kon×I .

• Bi-RNN end-to-end interpolation, where ˆ̄Hin is fed as

an input to the optimized Bi-GRU unit. By doing so, the

Bi-GRU unit learns the weights of the estimated channels

at the OFDM data symbols taking into consideration the

influence of the estimated channel at the pilot symbols

within the frame. Employing the 2D interpolation using

the proposed Bi-GRU unit leads to a considerable per-

formance superiority in comparison with the WI-CNN

estimators while recording a significant decrease in the

required computational complexity, as shown in Sec-

tion IV. We note that the proposed Bi-GRU architecture

is optimized using the grid search algorithm [19] and

trained using the parameters listed in Table I.
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(a) BER employing QPSK modulation.
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(b) BER employing 16QAM modulation.

Figure 2: BER performance, mobility from left to right: low (v = 45 Kmph, fd = 250 Hz), high (v = 100 Kmph, fd = 500
Hz), very high (v = 200 Kmph, fd = 1000 Hz). The CNN refers to SRCNN and DNCNN in low and high/very high mobility

scenarios, respectively.

IV. SIMULATION RESULTS

In this section, the performance evaluations as well as the

computational complexity analysis of the CNN-based estima-

tors, conventional 2D LMMSE estimator, and the proposed Bi-

RNN based channel estimator are presented in terms of BER.

We note that, we only consider the ALS-WI-CNN among the

WI-CNN estimators since it has the best performance. It is

noted that there exist three main types of Bi-RNNs: (i) Bi-

Simple RNN (Bi-SRNN), (ii) Bi-long short-term memory (Bi-

LSTM), and (iii) Bi-GRU. The Bi-SRNN is used for simple

interpolation tasks where the interpolation at each symbol is

only affected by the neighboring symbols. However, for longer

correlated series, Bi-LSTM and Bi-GRU can be employed,

where Bi-GRU provides better performance-complexity trade-

off in comparison to other Bi-RNN units. Hence, the perfor-

mance of employing Bi-SRNN and Bi-LSTM units instead of

the proposed Bi-GRU unit are also investigated.

Vehicular communications are considered as a simulation

case study, where three mobility scenarios are defined as: (i)

low mobility (v = 45 Kmph, fd = 250 Hz) (ii) High mobility

(v = 100 Kmph, fd = 500 Hz) (iii) Very high mobility

(v = 200 Kmph, fd = 1000 Hz). The considered OFDM

parameters are based on the IEEE 802.11p standard [20],

where Kon = 52 active subcarriers. The power-delay pro-

files of the employed channel models are provided in [3]

(Table 4). These simulations are implemented using QPSK

and 16QAM modulation orders, I = 100 as a frame length,

P = {1, 2, 3} for low, high, and very high mobility scenarios,

respectively. The SNR range is [0, 5, . . . , 40] dB. In addition,

the performance evaluation is made according to the employed

modulation order and the mobility scenario.

A. BER Performance

1) Modulation Order: Figure 2a and Figure 2b depict the

BER performance employing QPSK and 16QAM modula-

tion orders, respectively. The ChannelNet and TS-ChannelNet
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Figure 3: Computational complexity comparison of the studied DL-based FBF channel estimators [3].

use predefined fixed parameters in the applied interpolation

scheme, where the RBF interpolation function and the ADD-

TT frequency and time averaging parameters need to be

updated in a real-time manner. On the contrary, in the ALS-

WI-CNN estimator there are no fixed parameters and the time

correlation between the previous and the future pilot symbols

is considered in the WI interpolation operation. These aspects

lead to the performance superiority of the ALS-WI-CNN

compared to the ChannelNet and TS-ChannelNet estimators.

Although CNN processing is applied in the ChannelNet,

TS-ChannelNet, and ALS-WI-CNN estimators, they suffer

from a considerable performance degradation that is dominant

in very high mobility scenario. This show that the CNN

processing is not able to effectively alleviate the impact

of Doppler interference, especially in very high mobility

scenarios, where the proposed ALS-Bi-GRU based channel

estimation scheme outperforms the WI-ALS-CNN estimator

by at least 5 dB and 12 dB gain in terms of SNR for a

BER = 10−5 employing QPSK and 16QAM modulations,

respectively. We note that the robustness of the proposed

Bi-RNN based channel estimator against high mobility is

mainly due to the accuracy of the end-to-end 2D interpolation

implemented by the utilized Bi-GRU unit. Moreover, we can

see that employing Bi-LSTM performs similar to using Bi-

GRU unit in the proposed estimator, this due to the used frame

structure, where the variation of the doubly-selective channel

within each sub-frame is low. However, it can be noticed that

the ALS-WI-CNN performs better than the Bi-SRCNN unit in

low and high mobility scenarios, while using Bi-SRCNN unit

leads to around 2 dB gain in terms of SNR for a BER = 10−4

in comparison with the ALS-WI-CNN estimator in very high

mobility scenario as shown in Figure 2b.

As a result, we can conclude that employing Bi-GRU unit

instead of CNN network leads to more accurate channel

estimation with lower complexity. Finally, we note that the

performance of the 2D-LMMSE estimator is comparable to the

performance of ideal channel but it requires huge complexity

as discussed in Section IV-B, which is impractical in real

scenario. Moreover, the proposed estimator records almost

close performance as the 2D-LMMSE estimator. Therefore,

the proposed ALS-Bi-GRU based channel estimator is an

alternative to the 2D-LMMSE estimator where it provides a

good performance-complexity trade-off.

2) Mobility: The impact of mobility can be clearly ob-

served in Figure 2b, where the performance of the the

ChannelNet and TS-ChannelNet channel estimation schemes

degrades as the mobility increases, and the impact of the time

diversity gain is not dominant due to the high estimation

error of the 2D RBF and ADD-TT interpolation techniques

employed in the ChannelNet and TS-ChannelNet estimators,

respectively. In contrast, the time diversity gain is dominant

in the ALS-WI-CNN and the proposed ALS-Bi-GRU channel

estimator, since the ALS and WI estimations are accurate,

thus, the SR-CNN and DN-CNN networks are capable of

overcoming the Doppler interference. However, using the ALS

estimation at the pilot symbols followed by Bi-GRU unit for

2D interpolation at the data symbols reveal a considerable

robustness against mobility. This is due to the ability of the

optimized Bi-GRU unit in significantly alleviating the impact

of Doppler interference, where it can be noticed that the

proposed estimator is able to outperform the ALS-WI-CNN

estimators in different mobility scenarios.

B. Computational Complexity Analysis

This section provides a detailed computational complexity

analysis of the studied channel estimation schemes. The com-

putational complexity analysis is performed in accordance with

the number of real-valued arithmetic multiplications/divisions

necessary to estimate the channel for one received OFDM

frame [3].

The computational complexity of any Bi-RNN unit is twice

the required complexity for the regular RNN unit, since

both forward and backward data flow are applied. Accord-

ing to [21], the overall computational complexity required

by Bi-SRNN, Bi-LSTM, and Bi-GRU can be expressed by

2QKin +4Q2, 8QKin +8Q2+6Q, and 6QKin +6Q2 +6Q



multiplications/divisions, respectively, where Q denotes the

RNN hidden size. The proposed Bi-GRU estimator is opti-

mized where Q = 32. Moreover, we use P = 3, i.e. assuming

very high mobility scenario, in order to have fair comparison

with the ALS-WI-CNN estimator, and Kin = 2KonI . The

ALS channel estimation at the inserted pilot symbols requires

4K2
onP + 2KonP + 2Kon multiplications/divisions. Therefore,

the overall computational complexity of the proposed Bi-GRU

channel estimation scheme can be expressed by 16K2
on +

39946Kon + 6336 multiplication/divisions.

We note that employing Bi-LSTM instead of the GRU unit

increases the computational complexity by around 26.29%
where 16K2

on + 53258Kon + 8384 multiplications/divisions

are needed without any gain in the BER performance as

discussed in IV. Moreover, using Bi-SRNN requires 16K2
on +

13322Kon + 4096 multiplications/divisions. Therefore, the

overall computational complexity is decreased by 73.63% and

64.22% in comparison to the ALS-Bi-LSTM and ALS-Bi-

GRU estimators, respectively. However, Bi-SRNN unit suffers

from limited performance due to its simple architecture.

Figure 3 illustrates the computational complexities of the

studied CNN-based FBF channel estimators. We can no-

tice that the conventional 2D LMMSE estimator records

the highest computational complexity [4], making it im-

practical in real-time scenarios. Moreover, the ChannelNet,

TS-ChannelNet, and the WI-CNN estimators did not provide

a good complexity vs. performance trade-off. In contrast, the

complexity is significantly decreased by the proposed ALS-Bi-

GRU channel estimator where it is 10x and 115x times less

complex than the ALS-WI-SRCNN and the ALS-WI-DNCNN

estimators, respectively. Moreover, the proposed ALS-Bi-GRU

channel estimator is 106x less complex than the conventional

2D LMMSE channel estimator. Therefore, we can conclude

that employing the optimized Bi-RNN networks instead of

CNN networks in the channel estimation is more feasible and

at the same time it offers better performance due to the good

interpolation ability of the Bi-RNN networks. Thus making

the proposed estimator a good alternative to the 2D LMMSE

as well as the CNN-based channel estimation schemes.

V. CONCLUSION

In this paper, DL-based FBF channel estimation in doubly-

selective environments is studied. The recently proposed CNN-

based channel estimators have been extensively surveyed,

where their limitations besides the drawbacks of the conven-

tional 2D LMMSE estimator are presented. In this context,

we have proposed a low-complexity, robust, and adaptive

Bi-RNN based channel estimation scheme, where the great

potential of Bi-GRU in performing end-to-end 2D interpola-

tion is exploited. Unlike the recently proposed ChannelNet,

TS-ChannelNet, and WI-CNN estimators that suffer from

high computational complexity and performance degradation

in high mobility vehicular scenarios, the proposed Bi-RNN

based estimator have substantially reduced the computational

complexity, while recording a significant performance supe-

riority over the SoA CNN-based channel estimators in all

mobility scenarios. Moreover, the proposed estimator is less

complex than the conventional 2D LMMSE estimator by at

least 106 times while recording a convenient BER performance

especially in high mobility scenarios, which makes it a good

alternative to the conventional 2D LMMSE estimator.
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