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A NEW UPPER BOUND ON THE SMALLEST COUNTEREXAMPLE

TO THE MERTENS CONJECTURE

JOHN ROZMARYNOWYCZ AND SEUNGKI KIM

Abstract. We report the finding of the new upper bound on the lowest positive
integer x for which the Mertens conjecture
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fails to hold: x < exp(1.017×1029), an improvement over previously known exp(1.59×
1040) due to Kotnik and te Riele [7].

1. Introduction

Perhaps one of the most striking application of the LLL reduction algorithm ([9]; also
see [13]) to number theory is the disproof of the Mertens conjecture by Odlyzko and te
Riele [14] in 1985. It is a conjecture made by Mertens [10] in 1897 stating that

M(x) :=
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where µ(n) is the usual Möbius function.
This conjecture lasted for nearly a century, until in [14] the authors solved the associ-

ated problem in simultaneous diophantine approximation, by reformulating it as a lattice
reduction problem and applying the then-cutting-edge LLL algorithm. There are two
natural follow-up questions to ask, both still open today:

(i) What is the correct asymptotic growth rate of M(x)?
(ii) What is the smallest x for which |M(x)| ≥ √

x?

The present paper focuses on the latter question. A theorem of Pintz [15] provides an
approach via diophantine approximation again, based on which Kotnik and te Riele [7]
showed in 2006

x < exp(1.59× 1040),

which remains the best known bound to this date. A numerical study of Kotnik and
van de Lune [8] conjectures that the smallest counterexample should be of size about
exp(5.15× 1023).

Meanwhile, there have been huge and rapid improvements in the art of lattice re-
duction, largely motivated by post-quantum cryptography. LLL itself has seen several
improvements which led to substantial speedups in practice (e.g. [11]; see also [17]). Fur-
thermore, much stronger algorithms have been proposed. Especially noteworthy is the
BKZ algorithm, originally due to Schnorr and Euchner [18], that has undergone a series
of optimizations in both output quality and complexity since the last decade (e.g. [4],
[1]). Nowadays, fpLLL’s implementation [5] of BKZ yields a result of strength — e.g. the
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quality of the diophantine approximation — unachievable by LLL in the blink of an eye
on a personal laptop.

Our idea was simply to adopt the more recent and powerful lattice reduction in place
of LLL. By randomized runs of BKZ on a personal laptop, guided by some common-sense
knowledge on lattices, we obtained the bound

x < exp(1.017× 1029)

on the smallest counterexample to the Mertens conjecture, bringing us closer to the con-
jectured x ≈ exp(5.15× 1023). Furthermore, we found a number of suggestive data points
in this conjectured range — see Section 3 below.

This paper demonstrates only a tiny portion of the current art of lattice reduction. In
a forthcoming work, we employ much more powerful tools and techniques for the goal
of attaining the conjectured bound of [8] and perhaps even further. We hope our work
motivates more applications of the recent advances in the computational lattice problems
to number theory.

Acknowledgments. Both authors acknowledge support from the NSF grant CNS-2034176.
We thank Yuntao Wang for his help with the powerful progressive BKZ, and Phong
Nguyen for helpful discussions.

2. Outline of the approach

We denote by µ(n) and ζ(s) the usual Möbius function and the Riemann zeta function,
respectively. ρ denotes a zero of ζ(s) with Re ρ = 1

2
, and for a given ρ we denote γ :=

Im ρ, α := |ρζ′(ρ)|−1, ψ := arg(ρζ′(ρ)). There are two different ways in the literature to
index the zeroes and the associated quantities: {ρi}, {γi}, {αi}, {ψi} are ordered so that
γi < γi+1 for all i, and {ρ∗i }, {γ∗i }, {α∗

i }, {ψ∗
i } are ordered so that α∗

i > α∗
i+1 for all i.

Our approach, as with [7], is based on the following result.

Theorem 1 (Pintz [15]). Let

(1) hP (y) := 2
∑

γ<14000

α exp(−1.5 · 10−6γ2) cos(γy − ψ).

If there exists y ∈ [e7, e50000] with |hP (y)| > 1 + e−40, then M(x) >
√
x for some x <

exp(y +
√
y).

The idea, due to [14], is that, to make hP as large as possible, one tries to minimize
those γy − ψ (mod 2π) with large weights, since (1) is approximately

(2) 2

n
∑

i=1

α∗
i

(

1− (γ∗i y − ψ∗
i mod 2π)

2
)

+ (“error”)

for some n ≤ 100, say. This leads them to consider the lattice in R
n+2 generated by the

columns of the matrix

(3)
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where n is as earlier, and ν is the parameter controlling the round-off of the involved
quantities. In a reduced (by LLL or other algorithms) basis of (3), one finds a vector, for
some integers pi’s and z,

(p1⌊2π
√

α∗
12

ν⌋+ z⌊
√

α∗
1γ

∗
12

ν−10⌋ − ⌊
√

α∗
1ψ

∗
12

ν⌋, . . .
. . . , pn⌊2π

√

α∗
n2

ν⌋+ z⌊
√

α∗
nγ

∗
n2

ν−10⌋ − ⌊
√

α∗
nψ

∗
n2

ν⌋,±2νn4, z)tr,

since 2νn4 was chosen to be much larger than the rest of the entries of (3). We let
y = ±z2−10, the sign being that of the second last entry; then the first n entries can be
seen to provide the minimizations of γ∗i y − ψ∗

i (mod 2π) weighted by
√

α∗
i .

One can also aim for a large negative value of hP by a similar construction, in which
we replace ψ∗ in (3) by ψ∗ + π.

From a slightly different perspective, what the reduction of (3) achieves is a solution
to a certain approximate closest vector problem (aCVP), that is, finding a vector of the
lattice in R

n+1 generated by the columns of

(4)
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that is very close to the “target vector”

t := (−⌊
√

α∗
1ψ

∗
12

ν⌋, . . . ,−⌊
√

α∗
nψ

∗
n2

ν⌋, 0)tr ∈ R
n+1.

The matrix (3) is designed so that reducing it will execute what is nowadays known as
Babai’s nearest plane algorithm [2] (see also [16, Chapter 2]), one of the main approaches
to aCVP to this day. The output quality, i.e. the distance from the found lattice vector
to t, is affected by the strength of the reduction algorithm used.

Let

D =

n
∏

i=1

⌊2π
√

α∗
i 2

ν⌋,

the determinant of (4). We expect a cube in R
n+1 of volume D to contain one lattice

vector on average. Hence one expects a lattice vector v whose L∞-norm distance from t

is at most about 1

2
D

1
n+1 . Since the mass of a cube in a large dimension is concentrated

on its corners, we expect each coordinate of v − t to be of size ≈ 1

2
D

1
n+1 . Provided our

reduction algorithm is strong enough, such v can indeed be found. In our experiments,

we observed this heuristic to be correct up to a factor of a few hundreds, while D
1

n+1 is
of magnitude 1030 to 1040.

This observation leads to an estimate on the expected size of the intended main term

in (2): each term is of size On(2
− 2ν

n+1 ). This partially explains the first inequality in the
condition 2n ≤ ν ≤ 4n that [14] imposed in their experiments. (The second inequality
seems unnecessary to us though.) It also gives a heuristic estimate on the size of y as
a function of ν; a convenient simple rule we found to work well in practice is log10 y ∼
log10 ν − 5 or −6.

3. Experiment and result

In search of the smallest y for which hP (y) > 1+ e−40, we reduced lattices of the form
(3) for 105 ≤ ν ≤ 125, 2n ≤ ν ≤ 4n, using BKZ-β for β = 20, 30, 40 — briefly speaking,
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higher β makes the algorithm stronger and costlier. For each of these parameter choices,
we took 500 randomized bases of (3) to reduce, and for the randomization, we used the
method of [12] (see also [3] for more on basis randomization). For each ν and β, the
computations took about one to two days on a personal laptop. We also ran the same
experiment looking for a large negative value of hP .

Randomizing the input also randomizes the output to some extent, and the hope is
that at least one of them yields |hP (y)| > 1 + e−40. In fact, this turned out to be a far
more efficient strategy than applying a single high-quality (and high-cost) reduction to
(3). The reason is that a near-optimal solution to the associated aCVP problem, while
taking a disproportionately longer time to compute, does not necessarily lead to a higher
value of hP . While the sum in (2) is controllable by lattice reduction, the “error” part is
not, and yet its size may fluctuate large enough to affect the outcome, either in or against
our favor.

The values γ, α, ψ are taken from the data made public by Hurst [6] who computed them
up to almost 10000 decimal digits of precision, for which we are grateful. Our computations
were made with 1024 binary digits of precision; it is easy to show that this is more than
enough to estimate (1) well enough for our purpose. For the values presented below,
they were checked again with 16384 binary digits of precision. The source code is made
available on the second-named author’s website: https://sites.google.com/view/seungki/

The lowest working value of y is found with ν = 112, n = 53, β = 20, in which

y = 1017256208 7569945816 8018857216.806640625, hP(y) = 1.0034372 . . .

By Theorem 1, this shows that the first counterexample x to the Mertens conjecture
satisfies x < exp(1.017× 1029).

The conjecture of [8] that x ≈ exp(5.15× 1023) corresponds to ν ≈ 95. We also found
several very suggestive data points in this range (all with β = 40):

y = 7272 5861306259 2936179649.8388671875, hP(y) = 9.6027706 . . . for ν = 95, n = 50

y = 3276 1262680303 1941538273.2919921875, hP(y) = 9.6084449 . . . for ν = 95, n = 56

y = 258 4924462692 5200109819.8173828125, hP(y) = −9.5313433 . . . f or ν = 95, n = 61

y = 5714 9077379396 8420303581, hP(y) = −9.6006767 . . . for ν = 95, n = 64

y = −81 4638194152 4511993798.2373046875, hP(y) = −9.7588934 . . . for ν = 96, n = 58

These examples encourage a further investigation; it is currently in progress.
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