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A MIXED FINITE ELEMENT METHOD FOR A BIHARMONIC PROBLEM

WITH WEAKLY IMPOSED DIRICHLET BOUNDARY CONDITION

BISHNU P. LAMICHHANE∗

Abstract. We consider a mixed finite element method for a biharmonic equation with clamped boundary
conditions based on biorthogonal systems with weakly imposed Dirichlet boundary condition. We show that
the weak imposition of the boundary condition arising from a natural minimisation formulation allows to get
an optimal a priori error estimate for the finite element scheme improving the existing error estimate for such
a formulation without weakly imposed Dirichlet boundary condition. We also briefly outline the algebraic
formulation arising from the finite element method.
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1. Introduction. Thin plates and beams, strain gradient elasticity, phase separation of a
binary mixture and fluid flow problems are often modelled by fourth order elliptic and parabolic
problems [7, 11, 15, 30]. This difficulty of constructing H2 - conforming finite element spaces is
avoided either by using a discontinuous Galerkin method as in [11, 6, 30] or by using a mixed
formulation as in [9, 8, 12, 7, 13, 2, 26, 10].

In this paper, we start with a mixed finite method due to Ciarlet and Raviart [9, 8, 7] using
different spaces for the stream function and vorticity for a fourth order problem with clamped
boundary conditions. The great advantage of this formulation is that it allows the use of the
standard H1-conforming finite element method. Working with this formulation for clamped
boundary conditions the a priori error estimate is sub-optimal [9, 7, 27, 15, 10, 18, 31], where the

finite element method of order k converges with hk−
1

2 in the energy norm. The strong imposition
of the Dirichlet boundary condition is the main reason for the sub-optimal convergence rate.
In order to get an optimal estimate, we impose the Dirichlet boundary condition weakly using
a Nitsche type approach. This leads to an optimal order of convergence improving the existing
a priori error estimate for the biharmonic problem with clamped boundary conditions. As
in [18] we work with discrete spaces having local basis functions satisfying the condition of
biorthogonality for the discretisation of the stream function and vorticity. This yields a very
efficient finite element method to approximate the solution of a fourth order problem. While
the standard symmetric Nitsche apporach requires a penalty parameter [28], our approach does
not require a penalty parameter.

The structure of the rest of the paper is organised as follows. In the rest of this section, we
briefly recall a mixed formulation for a biharmonic equation with clamped boundary conditions
and extend the formulation to include non-homogeneous clamped boundary conditions. Section
2 is devoted for the numerical analysis of the approach. We give an algebraic formulation of
the finite element scheme in Section 3. Finally, we draw a conclusion in the last section.

1.1. Mixed formulation. We now derive a mixed formulation of a fourth order prob-
lem. We first briefly recall a mixed formulation of the biharmonic problem with homogeneous
clamped boundary conditions.

Homogeneous clamped boundary conditions. Let Ω ⊂ R
2 be a bounded convex domain with

polygonal boundary Γ = ∂Ω and outward pointing normal n on Γ. We consider the biharmonic
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equation

∆2u = f in Ω (1.1)

with clamped boundary conditions

u =
∂u

∂n
= 0 on Γ. (1.2)

Following the same approach as in [9, 7, 18] we recast the biharmonic problem as a minimi-
sation problem with a constraint and then reformulate the problem as a three-field formulation.
The main idea here is to include the weak form of the Dirichlet boundary condition. We note
that the main difficulty to get optimal error estimates using simplicial Lagrange finite element
methods for the biharmonic problem is the imposition of the Dirichlet boundary condition on
the boundary in the strong sense, which induces a loss of accuracy in the error estimates. To
rectify this we propose to impose the Dirichlet boundary condition weakly using a minimisation
formulation or equivalently Nitsche approach. In contrast to other Nitsche approaches, we do
not require a penalty parameter in our formulation.

We use usual notations for Sobolev spaces as [23, 1, 16, 5]. We consider the following
variational form of the biharmonic problem

J(u) = inf
v∈H2

0
(Ω)

J(v), (1.3)

with

J(v) =
1

2

∫

Ω

|∆v|2 dx−

∫

Ω

f v dx. (1.4)

Let H∗(Ω) be the dual space of H1(Ω). We now introduce a new unknown φ = ∆u and
write a weak form of this equation as

∫

Ω

φµ dx − 〈u,∆µ〉 = 0, µ ∈ Q,

where 〈u,∆µ〉 is the duality pairing between the spaces H1(Ω) and its dual H∗(Ω), and

Q = {v ∈ H1(Ω) :

∫

Ω

v dx = 0}.

This is a right choice for the Lagrange multiplier space as
∫

Ω

φdx = 0.

Let V = H1(Ω) × L2(Ω). The variational problem (1.3) can be recast as the minimization
problem [7]

J (u, φ) = inf
(v,ψ)∈V

J (v, ψ), (1.5)

where

J (v, ψ) =
1

2

∫

Ω

|ψ|2 dx+
1

2
‖v‖21

2
,Γ −

∫

Ω

f v dx,

V = {(v, ψ) ∈ V :

∫

Ω

ψ q dx− 〈v,∆q〉 = 0, q ∈ Q}.

In the following, the H
1

2 (Γ) inner product is denoted by 〈·, ·〉 1

2
,Γ and H

1

2 -norm by ‖ · ‖21
2
,Γ
. The

dual space of H
1

2 (Γ) is denoted by H−
1

2 (Γ).
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Non-homogeneous boundary conditions. In the following, we consider the biharmonic prob-
lem (1.1) with non-homogeneous clamped boundary conditions with gD ∈ H

1

2 (Γ), gN ∈

H−
1

2 (Γ). These boundary conditions are as follows:

u = gD and
∂u

∂n
= gN on Γ. (1.6)

Then, we have the minimisation problem (1.5) with

J (v, ψ) =
1

2

∫

Ω

|ψ|2 dx+
1

2
‖v − gD‖

2
1

2
,Γ −

∫

Ω

f v dx,

W = {(v, ψ) ∈ V :

∫

Ω

ψ q dx− 〈v,∆q〉 = 〈gN , q〉Γ − 〈
∂q

∂n
, gD〉Γ, q ∈ Q},

where 〈·, ·〉Γ is the duality pairing between the spaces H
1

2 (Γ) and its dual H−
1

2 (Γ)
Remark 1.1. Here, the normal derivative of an H1-function is a generalised normal

derivative as defined in [25, 24]. Lemma 4.3 of [24] gives the following bound for the normal
derivative of q ∈ H1(Ω) (see also [25])

‖
∂q

∂n
‖− 1

2
,Γ ≤ C(‖q‖1,Ω + ‖∆q‖H∗(Ω)).

The problem (1.5) can be recast as a saddle point formulation [18, 9, 7, 10]. The saddle
point problem is: Given ℓ ∈ H−1(Ω), find ((u, φ), p) ∈ V ×Q such that

a((u, φ), (v, ψ))+ b((v, ψ), p) = ℓ(v), (v, ψ) ∈ V,

b((u, φ), q) = g(q), q ∈ Q,
(1.7)

where

a((u, φ), (v, ψ)) =

∫

Ω

φψ dx+ 〈u, v〉 1

2
,Γ, (1.8)

ℓ(v) =

∫

Ω

fv dx+ 〈gD, v〉 1

2
,Γ, b((v, ψ), q) =

∫

Ω

ψ q dx − 〈v,∆q〉,

and g(q) = 〈gN , q〉Γ − 〈
∂q

∂n
, gD〉Γ.

Consistency. Let u ∈ H2(Ω) be the solution of the biharmonic problem (1.1) with the
non-homogeneous boundary conditions (1.6). Let φ = ∆u and p = −φ. An integration by
parts can be performed to show that they satisfy the saddle point equations (1.7).

Remark 1.2 (Existence and uniqueness of the solution). There is a difficulty in
proving the coercivity of the bilinear form a(·, ·) in the saddle point problem (1.7) as the standard
trace theorem [16] does not work for the generalised normal derivative [24, 25]. However, there
is no problem for defining the standard normal derivative for a function qh in the standard finite
element space, see the next section. Therefore, we do not analyse the existence and uniqueness
of the saddle point problem (1.7), but rather focus on its discrete counterpart in the following
section.

2. Finite element discretizations. We consider a quasi-uniform and shape-regular tri-
angulation Th of the polygonal domain Ω with the global mesh-size h, where Th consists of
triangles or parallelograms. Let Ch be the collection of boundary edges of the triangulation
of Ω. We use hK and he to denote the sizes of the elements in Th and Ch, respectively. Let
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Sh ⊂ H1(Ω) be a standard Lagrange finite element space of order k ∈ N, and Mh ⊂ L2(Ω)
be another piecewise polynomial space. We also set Vh = Sh ×Mh. We have a well-known
approximation result for every u ∈ Hk+1(Ω) [3]: there exists a function uh ∈ Sh such that

h‖u− uh‖1,Ω + ‖u− uh‖0,Ω ≤ Chk+1‖u‖k+1,Ω.

In the following, we use a generic constant C, which takes different values in different occurrences
but is always independent of the mesh-size. We impose the following assumptions on Mh.

Assumption 2.1. We assume that there is a constant C > 0 independent of the mesh-size
such that

‖qh‖0,Ω ≤ C sup
φh∈Sh

∫

Ω
φhqh dx

‖φh‖0,Ω
, qh ∈Mh, (2.1)

Assumption 2.2. The space Mh has the approximation property:

inf
λh∈Mh

‖φ− λh‖0,Ω ≤ Chk|φ|k,Ω, φ ∈ Hk(Ω). (2.2)

We use

Qh = {vh ∈ Sh :

∫

Ω

vh dx = 0}

to approximate the Lagrange multiplier space Q. Our analysis is based on the following mesh-
dependent inner product and the norm induced by this inner product on the boundary of Ω for
s ∈ [−1, 1] [28]:

〈v, w〉s,h =
∑

e∈Ch

1

h2se

∫

e

v w dσ, v, w ∈ L2(Ω). (2.3)

We will use the mesh-dependent norm for vh ∈ Sh,

‖vh‖
2
1,h = ‖vh‖

2
1,Ω + ‖vh‖

2
1

2
,h
,

where ‖ · ‖ 1

2
,h is the norm induced by the inner product (2.3). In fact,

‖uh‖
2
1

2
,h

=
∑

e∈Ch

1

he

∫

e

u2h dσ.

With the definition of ‖ · ‖s,h-norm we have the following Cauchy-Schwarz type inequality
for the inner product 〈·, ·〉 1

2
,h [3.13 of [28]]:

〈v, w〉 1

2
,h ≤ ‖v‖ 1

2
,h‖w‖− 1

2
,h, v ∈ H1(Ω), w ∈ L2(Ω). (2.4)

The discrete biharmonic problem is given as a saddle point problem: given f ∈ H−1(Ω),

gD ∈ H
1

2 (Γ), gN ∈ H−
1

2 (Γ), find ((uh, φh), ph) ∈ Vh × Sh such that

ah((uh, φh), (vh, ψh))+ bh((vh, ψh), ph) = ℓh(vh), (vh, ψh) ∈ Vh,

bh((uh, φh), qh) = gh(qh), qh ∈ Qh,
(2.5)

where

ah((uh, φh), (vh, ψh)) =

∫

Ω

φhψh dx+ 〈uh, vh〉 1

2
,h, bh((vh, ψh), qh) =

∫

Ω

ψh qh dx− 〈vh,∆hqh〉

ℓh(vh) =

∫

Ω

fvh dx+ 〈gD, vh〉 1

2
,h and gh(qh) = 〈gN , qh〉Γ −

∫

Γ

∂qh

∂n
gD dσ,
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where for q ∈ H
3

2
+ǫ(Ω) with ǫ > 0, ∆h : H

3

2
+ǫ(Ω) →Mh is defined as

〈vh,∆hq〉 = −

∫

Ω

∇vh · ∇q dx+

∫

Γ

∂q

∂n
vh dσ, vh ∈ Sh.

We note that ∆hq is well-defined due to Assumption 2.1.
In order to analyse the finite element problem we introduce the mesh-dependent graph

norm on Vh defined as

‖(vh, ψh)‖a =
√

‖ψh‖20,Ω + ‖vh‖21,h (2.6)

and the following mesh-dependent norm for the Lagrange multiplier qh ∈ Qh defined as

‖qh‖
2
Qh

= ‖qh‖
2
0,Ω + ‖∆hqh‖

2
−1,h,

where

‖∆hqh‖−1,h = sup
vh∈Sh

〈∆hqh, vh〉

‖vh‖1,h
.

We can see that the continuity of the bilinear form ah(·, ·) and linear forms ℓh(·) and gh(·)
follows from the Cauchy-Schwarz and trace inequalities [14]. The continuity of the bilinear form
bh(·, ·) follows from

‖wh‖1,h‖∆hqh‖−1,h = ‖wh‖1,h sup
vh∈Sh

〈∆hqh, vh〉

‖vh‖1,h
≥ |〈∆hqh, wh〉| , wh ∈ Sh, qh ∈ Qh.

Thus

|bh((wh, ψh), qh)| ≤ ‖ψh‖0,Ω‖qh‖0,Ω + ‖wh‖1,h‖∆hqh‖−1,h.

We now show the inf-sup condition for the bilinear form bh(·, ·). We need to show the existence
of a mesh-independent constant C such that

sup
(vh,ψh)∈Vh

bh((vh, ψh), qh)

‖(vh, ψh)‖a
≥ C‖qh‖Qh

. (2.7)

First we set vh = 0 on the left hand side of the above inequality and use (2.1) to obtain

sup
(vh,ψh)∈Vh

bh((vh, ψh), qh)

‖(vh, ψh)‖a
≥ sup

ψh∈Mh

∫

Ω
qhψh

‖ψh‖0,Ω
≥ C‖qh‖0,Ω.

In the second step, we set ψh = 0 on the left hand side of the inequality (2.7) and use the
definition of the norm ‖ · ‖−1,h to obtain

sup
(vh,ψh)∈Vh

bh((vh, ψh), qh)

‖(vh, ψh)‖a
≥ sup
vh∈Sh

〈vh,∆hqh〉

‖vh‖1,h
= ‖∆hqh‖−1,h.

Now we turn our attention to prove the coercivity of the bilinear form ah(·, ·) on the kernel
space Vh defined as

Vh = {(vh, ψh) ∈ Vh :

∫

Ω

ψh qh dx− 〈∆hqh, vh〉 = 0, qh ∈ Qh}. (2.8)
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First, we note that

ah((vh, ψh), (vh, ψh)) = ‖ψh‖
2
0,Ω + ‖vh‖

2
1

2
,h
.

If (vh, ψh) ∈ Vh, we have
∫

Ω

(ψh qh +∇vh · ∇qh) dx =

∫

Γ

∂qh

∂n
vh dσ, qh ∈ Qh. (2.9)

Let

qh = vh −
1

|Ω|

∫

Ω

vh dx ∈ Qh.

Then we have

∂qh

∂n
=
∂vh

∂n
and ∇qh = ∇vh.

Hence for (vh, ψh) ∈ Vh, using this qh in (2.9), we obtain

‖∇vh‖
2
0,Ω =

∫

Γ

∂vh

∂n
vh dσ −

∫

Ω

ψh

(

vh −
1

|Ω|

∫

Ω

vh dx

)

dx. (2.10)

We now apply the Cauchy-Schwarz type inequality for the boundary integral of the first term
on the right of the above equation

∣

∣

∣

∣

∫

Γ

∂vh

∂n
vh dσ

∣

∣

∣

∣

≤

∥

∥

∥

∥

∂vh

∂n

∥

∥

∥

∥

− 1

2
,h

‖vh‖ 1

2
,h ,

so that (2.10) yields

‖∇vh‖
2
0,Ω ≤

∥

∥

∥

∥

∂vh

∂n

∥

∥

∥

∥

− 1

2
,h

‖vh‖ 1

2
,h + ‖ψh‖0,Ω

∥

∥

∥

∥

vh −
1

|Ω|

∫

Ω

vh dx

∥

∥

∥

∥

0,Ω

. (2.11)

In terms of the following trace inequality [(4) of [14]]
∥

∥

∥

∥

∂vh

∂n

∥

∥

∥

∥

−
1

2
,h

≤ C‖∇vh‖0,Ω,

and Poincaré-Friedrichs inequality
∥

∥

∥

∥

vh −
1

|Ω|

∫

Ω

vh dx

∥

∥

∥

∥

0,Ω

≤ C‖∇vh‖0,Ω,

we get from (2.11)

‖∇vh‖
2
0,Ω ≤ C

(

‖∇vh‖0,Ω ‖vh‖ 1

2
,h + ‖ψh‖0,Ω‖∇vh‖0,Ω

)

.

Hence we have

‖∇vh‖0,Ω ≤ C(‖ψh‖0,Ω + ‖vh‖ 1

2
,h).

Moreover, we have a mesh-independent constant C such that [4]

‖vh‖0,Ω ≤ C(‖∇vh‖0,Ω + ‖vh‖ 1

2
,h).
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Thus we have the following lemma for the coercivity of the bilinear form ah(·, ·) on Vh.
Lemma 2.3. There exists α0 > 0 independent of the mesh-size h such that

ah((vh, ψh), (vh, ψh)) ≥ α0(‖vh‖
2
1,h + ‖ψh‖

2
0,Ω), (vh, ψh) ∈ Vh.

Hence we have obtained the well-posedness of the saddle point problem (2.5).
Lemma 2.4. The saddle point problem (2.5) has a unique solution ((uh, φh), ph) ∈ Vh×Sh.

We use the following lemma to prove the a priori error estimate for the discrete solution [18].
Lemma 2.5. Let u be the solution of the biharmonic equation (1.1) with non-homogeneous

boundary condition (1.6), and φ = ∆u as well as p = −φ. Let p ∈ Hk+1(Ω). Let ((uh, φh), ph) ∈
Vh × Qh be the solution of the discrete problem (2.5). Then there exists a constant C > 0
independent of the mesh-size h so that

‖(u− uh, φ− φh)‖a ≤ C

(

inf
(wh,ξh)∈Wh

‖(u− wh, φ− ξh)‖a + hk‖p‖k+1,Ω

)

, (2.12)

where

Wh = {(wh, ξh) ∈ Vh|

∫

Ω

ξhqh dx− 〈∆hqh, wh〉 = 〈gN , qh〉Γ − 〈
∂qh

∂n
, gD〉Γ, qh ∈ Qh}.

Proof. Let (wh, ξh) ∈ Wh. Then (wh, ξh) satisfies
∫

Ω

ξhqh dx− 〈∆hqh, wh〉 = 〈gN , qh〉Γ − 〈
∂qh

∂n
, gD〉Γ, qh ∈ Qh.

Thus (2.5) implies (uh − wh, φh − ξh) ∈ Vh, and hence coercivity of ah(·, ·) on Vh yields

α0‖(uh − wh, φh − ξh)‖a ≤ sup
(vh,ψh)∈Vh

ah((uh − wh, φh − ξh), (vh, ψh))

‖(vh, ψh)‖a
.

Since from (2.5) and (1.7) ah((u−uh, φ−φh), (vh, ψh))+bh((vh, ψh), p) = 0 for all (vh, ψh) ∈ Vh,
we have

ah((uh − wh, φh − ξh), (vh, ψh)) = ah((u − wh, φ− ξh), (vh, ψh)) + ah((uh − u, φh − φ), (vh, ψh))

= ah((u − wh, φ− ξh), (vh, ψh)) + bh((vh, ψh), p).

Let p̃h ∈ Qh be a finite element interpolant for p. Using the fact that

bh((vh, ψh), p) =

∫

Ω

ψhp dx+

∫

Ω

∇p · ∇vh dx− 〈
∂p

∂n
, vh〉Γ, and (vh, ψh) ∈ Vh,

we get

bh((vh, ψh), p) = bh((vh, ψh), p−p̃h) =

∫

Ω

ψh(p−p̃h) dx+

∫

Ω

∇(p−p̃h)·∇vh dx−〈
∂(p− p̃h)

∂n
, vh〉Γ.

We note that the interpolant p̃h satisfies [29, Lemma 2.3]
∣

∣

∣

∣

〈
∂(p− p̃h)

∂n
, vh〉Γ

∣

∣

∣

∣

≤ hk‖p‖k+1,Ω‖vh‖ 1

2
,h.

And hence

|bh((vh, ψh), p)| ≤ Chk‖p‖k+1,Ω ‖(vh, ψh)‖a.
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Thus

α0‖(uh − wh, φh − ξh)‖a ≤ sup
(vh,ψh)∈Vh

ah((u− wh, φ− ξh), (vh, ψh))

‖(vh, ψh)‖a
+ Chk‖p‖k+1,Ω

≤ ‖(u− wh, φ− ξh)‖a + Chk‖p‖k+1,Ω,

where we have used the fact that the continuity constant of the bilinear form a(·, ·) is 1. Finally,
a triangle inequality yields the estimate (2.12):

‖(u− uh, φ− φh)‖a ≤ ‖(u− wh, φ− ξh)‖a + ‖(wh − uh, ξh − φh)‖a

≤

(

1 +
1

α0

)

‖(u− wh, φ− ξh)‖a +
C

α0
hk‖p‖k+1,Ω.

Theorem 2.6. Let u be the solution of the biharmonic equation (1.1) with non-homogeneous
boundary condition (1.6), and φ = ∆u as well as p = −φ. Let ((uh, φh), ph) ∈ Vh ×Qh be the
solution of the discrete saddle point problem (2.5). Let u ∈ Hk+1(Ω) ∩H1

0 (Ω), φ ∈ Hk(Ω), p ∈
Hk+1(Ω), and Assumptions (2.1) and (2.2) are satisfied. Then there exists a constant C > 0
independent of the mesh-size h so that

‖(u− uh, φ− φh)‖a ≤ Chk (‖u‖k+1,Ω + |φ|k,Ω + ‖p‖k+1,Ω) . (2.13)

Proof. Let Πh : L2(Ω) →Mh and Π∗
h : L2(Ω) → Sh be two projections defined by

∫

Ω

Πhv qh dx =

∫

Ω

v qh dx, qh ∈ Sh, and

∫

Ω

Π∗
hv ηh dx =

∫

Ω

v ηh dx, ηh ∈Mh.

These projectors are well-defined by Assumption 2.1. Moreover, using Assumptions 2.1 and 2.2
we have [20]

‖Πhv‖0,Ω ≤ C‖v‖0,Ω, and ‖Πhw−w‖0,Ω ≤ Chk‖w‖k,Ω for v ∈ L2(Ω), and w ∈ Hk(Ω). (2.14)

Similarly, for v ∈ L2(Ω) and w ∈ H1(Ω), we have [20]

‖Π∗
hv‖0,Ω ≤ C‖v‖0,Ω, and ‖Π∗

hw‖1,Ω ≤ C‖w‖1,Ω. (2.15)

We also have for r = {0, 1} and w ∈ Hk+1(Ω)

‖Π∗
hw − w‖r,Ω ≤ Chk+1−r‖w‖k+1,Ω. (2.16)

Moreover, for w ∈ Hk+1(Ω), for the projector Π∗
h, we have [Lemma 1 of [28]]

‖w −Π∗
hw‖1,h ≤ Chk‖w‖k+1,Ω. (2.17)

For the exact solution φ = ∆u, we get

∫

Ω

φ qh dx− 〈∆hqh, u〉 = 〈
∂qh

∂n
, gD〉Γ + 〈gN , qh〉Γ, qh ∈ Qh. (2.18)
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Since ∆hqh ∈Mh, we have

〈∆hqh,Π
∗
hu〉 =

∫

Ω

∆hqh u dx.

Thus we have
∫

Ω

Πhφ qh dx− 〈∆hqh,Π
∗
hu〉 = 〈

∂qh

∂n
, gD〉Γ + 〈gN , qh〉Γ, qh ∈ Qh. (2.19)

Hence we have obtained that (Π∗
hu,Πhφ) ∈ Wh, and

‖(u−Π∗
hu, φ−Πhφ)‖a ≤ Chk (‖u‖k+1,Ω + |φ|k,Ω) .

The proof now follows from Lemma 2.5.
Remark 2.7. The existing error estimate approaches require an extra regularity of the

solution u [22, 18]. The energy error estimate in [18, 10] is sub-optimal even with the ex-
tra regularity, whereas the error estimate in [22] is optimal but the approach works only on
rectangular meshes with a special structure.

3. Algebraic formulation. To obtain an efficient numerical scheme in which all the
auxiliary variables (the vorticity φh and the Lagrange multiplier ph) can be statically condensed
out from the system, we construct a biorthogonal system for the sets of basis functions of Qh
and Mh. Let {ϕ1, · · · , ϕn} be a finite element basis for the space Qh. A finite element basis
{µ1, · · · , µn} for the space Mh with suppµi = suppϕi, 1 ≤ i ≤ n, is constructed in such a way
that the basis functions of Qh and Mh satisfy a condition of biorthogonality relation

∫

Ω

µi ϕj dx = cjδij , cj 6= 0, 1 ≤ i, j ≤ n, (3.1)

where n := dimMh = dimQh, δij is the Kronecker symbol, and cj a scaling factor proportional
to the area | suppφj |. The basis functions of Mh are constructed in a reference element and
they satisfy (2.1), (2.2) and (3.1) [19, 17, 21].

Let ~u, ~φ and ~p be the vector representations of the solution uh, φh and ph, respectively.
Let A~u, M~φ and D~φ be algebraic representations of the bilinear forms

∫

Ω
uh∆hqh dx,

∫

Ω
φhψh dx

and
∫

Ω φhqh dx, respectively, where uh ∈ Sh, qh ∈ Qh, φh, ψh ∈ Mh. We also denote the
algebraic representation of the bilinear form 〈uh, vh〉 1

2
,h by BΓ~u. Although the bilinear form

〈uh, vh〉 1

2
,h is restricted to the boundary Γ of the domain Ω, BΓ is the extended form of the

algebraic representation so that the number of columns of the matrix BΓ is equal to the number
of components in ~u, where entries of the matrix BΓ corresponding to interior nodes of the mesh
are all set to zero. Then the algebraic formulation of the saddle point problem (2.5) is given by





BΓ 0 −A
T

0 M D

−A D 0









~u
~φ

~p



 =





~f

0
~g



 , (3.2)

where ~f is the vector associated with the linear form ℓh(vh), and ~g is the vector representation

of gh(qh). Since the matrix D is diagonal, we can do the static condensation of unknowns ~φ and
~p and arrive at the following linear system based on the unknown ~u associated only with the
stream function:

(

MΓ + A
T
D
−1

MD
−1

A

)

~u = (~f − (ATD−1
MD

−1)~g). (3.3)

Since the inverse of the matrix D is diagonal, the system matrix in (3.3) is sparse. It is important
to have the system matrix to have sparse structure if an iterative solver is to be applied. The
vector corresponding to the vorticity ~φ and the Lagrange multiplier ~p can be computed by
simply inverting the diagonal matrix using the second and third blocks of (3.2).
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4. Conclusion. We have proposed a finite element formulation for the biharmonic equa-
tion with clamped boundary conditions leading to an optimal convergence rate improving the
existing a priori error estimate in the energy norm. The main idea is to impose the Dirichlet
boundary condition weakly using the Nitsche technique. The new formulation also allows to
use a biorthogonal system that gives an efficient finite element approach. In contrast to other
Nitsche approaches, we do not require a penalty parameter in our formulation.
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