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ABSOLUTE CONTINUITY OF THE INTEGRATED DENSITY OF
STATES IN THE LOCALIZED REGIME

JING WANG, XU XU, JJANGONG YOU, AND QI ZHOU

ABSTRACT. We establish the absolute continuity of the integrated density of states (IDS)
for quasi-periodic Schrodinger operators with a large trigonometric potential and Dio-
phantine frequency. This partially solves Eliasson’s open problem in 2002. Furthermore,
this result can be extended to a class of quasi-periodic long-range operators on ¢> (Zd)A
Our proof is based on stratified quantitative almost reducibility results of dual cocycles.
Specifically, we prove that a generic analytic one-parameter family of cocycles, suffi-
ciently close to constant coefficients, is reducible except for a zero Hausdorff dimension
set of parameters. This result affirms Eliasson’s conjecture in 2017.

1. INTRODUCTION

1.1. Quasi-periodic Schrédinger operator on ¢?(Z). Consider the one-dimensional
quasi-periodic Schrodinger operator

(He1y4,2U)n = Upy1 + Un—1 + €_1V(.%' + na)u,, n €z, (1.1)

on ¢?(Z), where the phase x € T, the frequency a € R\Q is irrational and the potential
V € C¥(T,R). The Almost Mathieu operator (AMO), given by:

(Hae1 cos,a,0W)n = Unt1 + Un—1 + 27t cos 2 (z + na)u,, n € 7Z,

is the most well-known example of the class of operators described above, where V(z) =
2cos(2mx). Peierls [56] originally introduced it as a model for an electron on a 2D lattice,
subject to a homogeneous magnetic field [43, 59]. These operators have drawn significant
attention, not just because of their importance in physics [1, 13, 54], but also as fascinating
mathematical objects [4, 8, 11, 12, 45, 47].

Our focus is on investigating the regularity of the integrated density of states (IDS). The
IDS can be regarded as the average spectral measures of an ergodic family of self-adjoint
operators {L; },cx over z:

N(E) = / el B,

where pu; is the associated spectral measure of L,. Understanding the regularity of IDS,
including absolute continuity [5, 7, 36, 41| and Holder continuity [2, 9, 10, 40, 41], is a
significant area of research in the spectral theory of quasi-periodic Schrédinger operators.
It is closely linked to other important topics, such as homogeneous spectrum [25, 26, 51],
Parreau—Widom condition [10], and Deift’s conjecture [14, 51].

This paper will specifically address the absolute continuity of the IDS. As it is common
knowledge, the pure absolutely continuous spectrum [4, 5, 9, 27, 28] leads directly to the
absolute continuity of the IDS. In the regime where the Lyapunov exponent is zero, Kotani

[48] proved a more deeper result: the absolute continuity of the IDS is equivalent to the
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absolute continuity of the spectral measures for almost every phase. Nevertheless, in the
regime where the Lyapunov exponent is positive, the spectral measure is typically singular
[17, 18, 29, 41, 45]. For instance, Eliasson [29] established that H -1y, , has pure point
spectrum for almost all  when ¢ is small, and « is Diophantine. Recall that o € T? is
Diophantine (denoted as DCy := U, rDCqy(v,T)), if there exists v > 0, 7 > d — 1, and
inf |(k,0) — j| > \/Zr’ vk € 24\ {0}.

In such cases, determining whether IDS is absolutely continuous presents a highly chal-
lenging obstacle, as Eliasson identified in his famous open problem:

Problem 1.1 ([52], Problem 4.2.1, Eliasson). What are the properties of the map F
N(E) when |e| is small? Is it singular continuous? Absolutely continuous?

In this paper, we answer his question for trigonometric polynomial potentials:

Theorem 1.1. Suppose that « € DCy and V() is a trigonometric polynomial on T. Then
there exists eg = eo(a, V') > 0 such that N(E) of (1.1) is absolutely continuous if || < .

Let us take a moment to briefly revisit the previous research concerning the absolute
continuity of IDS in the localized regime. There are two categories of results. The first cat-
egory is for a firzed analytic potential. In the positive Lyapunov exponent region, Bourgain
and Goldstein [18] proved that H.-1y, , has Anderson localization for almost all Diophan-
tine o at any x. Suppose that V' (z) is a small perturbation of a trigonometric polynomial;
Goldstein and Schlag [41] further proved that N'(E) of (1.1) is absolutely continuous for
almost every a.

A separate category pertains to a fized o € R\Q. For AMO, Jitomirskaya [45] proved
that if || < 1, then Hy.-1.4s4, displays Anderson localization for almost all z when
a € R\Q. Moreover, Avila and Damanik [7] demonstrated that N'(E) exhibits absolute
continuity iff ¢ # +1. Ge, Jitomirskaya, and Zhao [36] established that when a strong
Diophantine « is fixed, the IDS of analytically perturbed non-critical AMO is absolutely
continuous provided the perturbation is sufficiently small in a non-perturbative sense.

In summary, for a fixed Diophantine frequency, previous studies are all restricted to
cosine or cosine-like potentials within the region of positive Lyapunov exponents. However,
for general analytic potentials, the results are measure-theoretic in «, which depend on the
potentials in a very implicit way. By contrast, our study works for any fized Diophantine
frequency, and fized trigonometric polynomial.

1.2. Quasiperiodic long-range operator on ¢?(Z%). It is worth noting that our re-
sult is applicable to quasi-periodic operators located on KQ(Zd), not just one-dimensional
Schrédinger operators on £2(Z). More specifically, we study the following quasi-periodic
operator:

(LemflV’a’xu)n = Z Witin—i + eV (x + (n,))u,, neZ (1.2)

kezd

where V' € C¥(T,R), and W(0) = > ,cpa W™ H0) s real analytic on T4 = R%/Z9,
and (1,a) € R is rationally independent. There has been extensive analysis of the
localization problem of (1.2) inspired by the pioneer works of Frohlich, Spencer, Wittwer
[35] and Sinai [60]. Several studies have focused on C*-cos type potentials [22, 24] or just
V(x) = 2cos(2mz) [19, 21, 37, 39, 46].
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Though Bourgain [17| provided evidence, little advancement was observed if V' is a
general analytic potential. For a fized phase x € T, Bourgain [17]| proved that the operator
(1.2) has Anderson localization for a positive measure set of « if || is sufficiently small.
While the conceptual belief is that the answer is affirmative, it is still unresolved whether
the operator (1.2) undergoes Anderson localization for almost all z € T, when o € DCy is
fized.

At this point, it is reasonable to inquire whether A/(F) exhibits absolute continuity in
the localization regime for (1.2), similar to Problem 1.1. In this paper, we address this
inquiry in circumstances where V' is a trigonometric polynomial.

Theorem 1.2. Fiz a € DCy. Suppose that W(0) is analytic on T, and V(z) is a
trigonometric polynomial on T*. Then there exists g = eo(a,d, V,W) > 0 such that N'(E)
of (1.2) is absolutely continuous, provided |e| < &o.

Remark 1.1. To the best knowledge of the authors, this gives the first result of the absolute
continuity of IDS for quasi-periodic long-range operator on (2(Z%) with d > 1.

We will now briefly outline the main ideas of the proof. Two methods have previ-
ously been established for examining the IDS’s absolute continuity in the localized regime.
The first one, developed by Goldstein-Schlag [41], utilizes the large deviation theorem
and avalanche principle for the operator’s truncated determinants. However, due to the
problem with "double resonances", an unknown zero measure set of frequencies has to be
removed [17, 18, 41]. Ge-Jitomirskaya-Zhao [36] presented another method, which is sup-
ported by the fundamental observation made by Sodin-Yuditskii [61, 62| that the spectral
measure is absolutely continuous if the normal boundary’s real part of the Borel transform
of the measure is integrable, and its topological support is homogeneous. Nevertheless,
the aforementioned method is only applicable to Schréodinger cocycles with an accelera-
tion of 1. This paper introduces a novel method, which is based on reducibility theory
and Aubry duality. As demonstrated, proving the absolutely continuous nature of IDS
requires proving the reducibility of its dual quasi-periodic cocycles beyond a set of ener-
gies with zero Hausdorff dimension. We also note that all previous research [7, 36, 41|
pertains to one-frequency and is non-perturbative in nature (the smallness of £ does not
depend on «), whereas our research includes the multiple-frequency setting. Nonetheless,
non-perturbative results should not be anticipated in this case [16].

1.3. Stratified quantitative almost reducibility. Let’s explain the concept of reducibil-
ity and our precise results. We denote GL(m,C) as the set of all m x m invertible ma-
trices. For any rationally independent a € R? and A € C*(T%, GL(m,C)), the analytic
quasi-periodic GL(m, C)-cocycle (o, A) : T4 xC™ — T¢x C™ is defined as the skew product
(z,u) — (z + o, A(x)u).
A GL(m, C)-cocycle (a, A) is said to be C* reducible, if there exists B € C¥ (T4, GL(m, C)),
A € GL(m,C), such that
B7 Yz + a)A(z)B(z) = A.
From now on, we will always assume « to be Diophantine.
The earliest result of local reducibility was due to Dinaburg and Sinai [27]. They demon-

strated that if the potential satisfies the assumptions of being analytic and small, then for
a positive measure set of energies F, the Schrodinger cocycle is reducible. Eliasson [28],



4 JING WANG, XU XU, JIANGONG YOU, AND QI ZHOU

under the same assumptions as Dinaburg and Sinai, showed that the Schrédinger cocycle
is reducible for a full measure set of energies E. The proof is based on what is known
"resonance-cancellation” technique, which originated from Moser and Poschel’s [53] re-
search. Following this, Eliasson made a well-known conjecture [30, 32]: that a generic
one-parameter family of analytic cocycles, which are close enough to constant coefficients,
is reducible for a.e. of the parameters. Krikorian proved this conjecture in linear systems
with coefficients in so(3) and Lie algebra of compact semi-simple Lie group in general
[49, 50|, and it was further verified in linear systems, taking values in gl(m,C) [44].

Eliasson [33] recently presented a new conjecture during the conference in memory of
Jean-Christophe Yoccoz:

Conjecture 1.1 ([33|). The Hausdorff dimension of the complementary set of parameters
for reducible cocycles is zero.

Our paper aims to prove this conjecture. We will firstly provide necessary notations to
clarify our approach. Let A C R be a bounded interval and A : A — GL(m, C) is analytic
in A € A. Denote Ws(A) := {z € C : dist(z,A) < d}. For any analytic *-valued function
f A — %, where % can be R, C, GL(m,R), GL(m,C), we set

[fls == sup [If(2)],
ZEW(;(A)
where || - || denotes the absolute value or matrix norm correspondingly, and we say f €
C¥(A, %) if |f|s < oo. For an integrable *-valued function f: T% x A — x, let

|flns = sup |f(2)|n,
ZEW(;(A)

where h,6 > 0, and for any integrable function g : T% —  we set

lgln ==Y llg k)|,

kezd

with g(k) = [pa f(p)e 2k dp and || - || denoting the absolute value or matrix norm
correspondingly. We say f € C’;’;é(']l'd x A, %) if | f|ps < o00.

Denote X(A(N)) =: X(A) as the set of eigenvalues of A(\) € GL(m,C), and for any
u €T, let

g\ u) = H (0; — ¥, (1.3)

0410 €X(N),
i#]

Definition 1.1. We say that A()\) satisfies the non-degeneracy condition on an interval

A, if there exists r € N, ¢ > 0 such that for Vu € T, the following inequality holds for all
AEA,

[
ax |89(>\,U)| -

o<i<r' OMN =7 (1.4)

where g is defined as in (1.3).
We can now declare our reducibility result.

Theorem 1.3. Let h > 0, a € DCy, and A C R be an interval. Suppose that A €
C“(A,GL(m,C)) is non-degenerate on A in the sense of (1.4) with some r € NT ¢ > 0.
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Then there exists § > 0, g = eo(a, d,m, 8, h, 7, ¢,|Als,|A™s) >0, and S C A with Haus-
dorff dimension zero, such that if F' € C}‘;é(']l“d x A, gl(m,C)) satisfying |F|ps < eo and X €
A\S, the cocycle (a, A(N) + F(-,\)) is reducible, i.e., there exists By € C%(T% GL(m, C))
such that !

BN+ a)(AN) + F(, \)Ba(-) = A(N) € GL(m, C).

In addition, the A(\) has simple eigenvalues.

Remark 1.2. The non-degenerate condition (1.4) is generic in C* (A, GL(m, C)) [44], and
thus Theorem 1.3 solves Eliasson’s conjecture (Conjecture 1.1).

We would like to provide some insight on both our result and its proof. Specifically, we
in fact prove a bit more, i.e., non-reducible cocycles and reducible cocycles with multiple
eigenvalues form a zero Hausdorff dimensional set, and this is essential for our spectral
applications. Additionally, a crucial aspect of our proof involves demonstrating strong
almost reducibility in the strip [Sz| < % for any A\ € A to establish the analytic reducibility
of the cocycle (ar, A(X) + F(X,-)) in the strip [Sz| < £ for any A € A\S.

Recall that (o, 4) € C¥(T% GL(m,C)) is almost reducible if there exist B; € G, (T,
GL(m,C)), A; € GL(m,C) and F; € Cy. (T4, gl(m, C)) such that

B Mz + a)A(x)Bj(x) = Aj + Fj(x),
with [Fj[p, — 0 and A; — Ax € GL(m,C). If h; — 0, then (o, A) is said to be
(weak)-almost reducible or C*° almost reducible; if h; — hy, > 0, then («, A) is said to be
(strong)-almost reducible. We in fact have the following:

Theorem 1.4. Suppose all assumptions of Theorem 1.3. If F € C}‘fé(Td x A, gl(m,C))
satisfies |F|p s < €0, where g9 depends on «,d, h,6,m,c,r, A, then for’ every ¢ > 0,e > 0,
there exists a partition of A, denoted by II, and n = n(e, s, h, 8, m,c,r, A) > 0, such that
for every A € TI, there is B € O;:/Zn(Td x A, GL(m,C)) such that

BTN+ a, (AN) + F(, N))B(A) = AN + F(-, \),
where |F|h/2,n < e, |B|h/2m|15|2/2777 <1 and |B_l|h/2,n|ﬁ|2/2,n < 1.

Remark 1.3. We will prove a stratified and quantitative almost reducibility result, and the
precise version can be seen in Proposition 5.1.

Remark 1.4. With minor modifications, the conjugation can be defined in any strip with
width hy < h, not necessarily %

We shall provide an overview of previous results about almost reducibility. Eliasson
[28] demonstrated that if an SL(2,R) cocycle is close to constant, then it is (weak)-almost
reducible. Leguil, You, Zhao, and Zhou [51] later proved the (strong)-almost-reducible
version (see also [20]). While these results are perturbative (dependent on «), the non-
perturbative version such as the one-frequency case was proved by Avila and Jitomirskaya
[9]. We must also note that Avila’s Almost Reducibility Conjecture(ARC) is the global
version of almost reducibility. It states that for any subcritical cocycle, (strong)-almost
reducibility holds. The proof of ARC was announced in [3] and set to appear in [5,
6]. To understand its various spectral applications, one may refer to the survey [63].
Furthermore, Eliasson demonstrated (weak)-almost reducibility for quasi-periodic cocycles
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that take values in higher dimensional groups GL(m,R) close to constants. Recently, the
(strong)-almost reducibility in this context has also been established [23, 38].

In conclusion, we would like to address the proof. Despite the lack of explicit mention,
it has been shown that Conjecture 1.1 holds for the SL(2,R) group case by Avila in [4].
His proof strongly depends on the existence of fibred rotation number. However, in higher
dimensions, the concept of a fibred rotation number is non-existent. While the Maslov
index can be defined in the context of symplectic groups [34, 55|, it is not sufficient for
reducibility as it involves all eigenvalues {o;(A)}; of the constant part. In higher dimen-
sions, a more detailed comprehension of the non-reducible set, or the exceptional set S, is
required. This kind of stratified almost reducibility was initiated by Krikorian [50]|. Dif-
ferent from [50], we are able to give quantitative (strong)-almost reducibility for GL(m, C)
cocyles, while the almost reducibility result in [50] is the weak version and restricted to
the semi-simple case. As highlighted in [63|, quantitative estimates are crucial for spectral
applications. With the scheme we have developed in this paper, it is our expectation that
further applications can be explored.

2. PRELIMINARIES

2.1. Linear cocycles. We consider the linear cocycle (o, A) : T% x C™ — T x C™ defined
as

(0,u) — (0 + a, A(Q)u).
The cocycle iterations are given by (a, A)" = (na, A(-;n)), where
A@;n) =AO+ (n—1)a)--- A(9) n >0,
A(O;n) = 1d n =0,
AB;n)=A"1O+na)--- A1 O —a) n<O.
Let v (a, A) > -+ > v, A) be the Lyapunov exponents of («, A), repeated according
to their multiplicity, i.e.,

(e, A) = Tim /T ok (A(6; ),

where 01(B) > -+ > o,(B) are singular values of a matrix B € GL(m,C). For a
matrix B € GL(m,C), H?:l 0j(B) = |A¥B||, where A*B is the k-th exterior product of
B. Therefore, we have

Sk_1y; = lim l/ In ||[AFA(6;n)|d6.
Td

n—oo M,

2.2. Aubry duality. Let V(z) = Zf;:_é Vie2™k*  Suppose that the quasi-periodic long-
range operator

(Lg‘ilv,a,xu)n = Z Witin—i + eV (2 + (n,))u,, neZ (2.1)
kezd

has a C* quasi-periodic Bloch wave u,, = >0 (z 4 (n,a)) for some 1 € C*(T,C) and
6 € T¢. It is easy to see that the Fourier coefficients of 1) satisfy the following long-range
operator:

(L;/W’aﬂu)n =3 Vitn_p + W (0 + na)u,, neZ. (2.2)
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We call LZW’aﬂ the dual operator of L}:‘/‘ilv,oc,x' Denoting by N(E) the IDS of LZW’aﬂ, it
is well-known [58]:
N(E) =N(E). (2.3)
The eigenvalue equations of (2.2) are

Ef;:_gf/kun_k +eW (0 + na)u, = Eu,, n€Z.

Without loss of generality, we assume 1% = 0. Then the eigenvalue equations can be viewed
as a GL(2¢,C)-cocycle (a, A.) : T4 x C* — T x C%*, where

Ve 0 W E=Y—eW(®) _ Vo . _ Ve _ Ve
7 7 7 Vi 7 7
1
A(E,0) = 1
’ 1
1
1 0

Let 4 be the fibred entropy (i.e. sum of the positive Lyapunov exponents) of the corre-
sponding cocycle (a, Az). Then it relates the IDS by Thouless formula [42]:

S(E) = / I |E — EdN'(E') — In | V4. (2.4)
R
2.3. Hausdorff measure and Hausdorff dimension. Let (X, p) be a metric space. We
denote by diam(2) the diameter of Q for any subset Q C X.

Definition 2.1. For any Q C X, any n € (0,00] and any o € [0,00), let
HZ(Q) := inf{Z(diain)Q 0 Q C U, and diam(€;) < n}.
i=1

Then H9(Q) := lim, 0 Hy(Q) is called the Hausdorff o-dimensional measure of Q, and
dimpg(Q) :=inf{p: H?(Q) = 0} is called the Hausdorff dimension.
3. PREPARATION LEMMAS

In this section, we first introduce some useful concepts and preparation lemmas:

3.1. Roots of an algebraic equation. In the following we consider polynomials in
Cn[X] of the form

x(X)=aX"+a X" '+ +a, n<N.

Let |x| := sup; |a;|. We say x(\)(X) € C¥(A,Cn[X]) if its coefficients a; € C¥(A). Given
YN)(X) € C¥(A, C[X]), we set

Ix|s = sup(|ails).
(2

Denote by 3, be the multiset of zeroes of x (counting the multiplicity). Conversely, for a
given finite multiset ¥ whose elements z € C may repeat, we call xx(X) = [[,cx(X — 2)



8 JING WANG, XU XU, JIANGONG YOU, AND QI ZHOU

the characteristic polynomial of ¥.. Supposing x1, x2 € Cn[X] with degrees mi,may < N,
we define their resultant as

Res(x1,x2) := Res(2y,, Xy,) = H (o —T7j).
;€8 ,TiE€EXx,
More generally, we denote
Res(x1, x2;u) := Res(EXl,ezﬂi“Em) = Res(x1, e27rim2“X2(e_2”i“-)).

Suppose that there is a decomposition of X, i.e. ¥ = ¥ U---UX;. Let x := x» and
Xi = Xy, For u € T, we have

Res(x, x;u) = [ Res(xixji ).
1<i <

By direct computations, we can obtain the following estimates.

Lemma 3.1 ([50]). Let x, x1, x2 € Cn[X]| of degrees n,mi, ma < N. Their corresponding
multisets of zeroes are 32,31, %5. Foru € T, we have the following:

Xezmius| = [x],
[Res(x1, x2)| < (ma 4+ m2) (1 + [xa )™ (1 + [x2)™,
[Res(x1, x2; w)| < (ma1 +ma)! (1 + [xa)™ (1 + |x2[)™.
If the degrees of X', x4 are also my, ma, then we have:
[Res(x1, X5; u) — Res(x1, x2; u)
<(ma +ma + DL+ [xa )™ (L + [x2))™ max{|n], [n2]},
where M1 = X} — X1, M2 = X — X2, provided ||, |m| < 1.

In this paper we always consider the case A € C§'(A,GL(m,C)). Denote its spectrum
Y(A) := X(A(N\)) which surely does not contain zero. Thus there is R > 0, such that
Y(A) € D(R) for A € Ws(A), where

1
D(R) ::{zEC:EgMgR}.
Then we have the following basic estimates:

Lemma 3.2. Suppose that £(\) C D(R) for A € C§(A,GL(m,C)), where A € Ws(A) and
E(A) :=X(A(N)). Then

Ixx
<m!R™ ——Z < . 3.1
[xsls < m!R™, e 6_m|X2|6 (3.1)
Furthermore, we have
|X2 — XZ’|(5 < m!Mm_1|A — A/|5, (3.2)

where X' (X\) := 3X(A'(N)) and M = max{1,|A|s, |A|s}.

Proof. Suppose the characteristic polynomials of A(\) and A’(\) are
s (X) = X7+ ar ()X 4 am(N),
Xy (X) = X™ 4+ by (AN)X™ 7 4 b (V).
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Then we have
IXs(\)
0X

Since X(A\) € D(R) for A € W5(A), by Vieta’s Formula, we can obtain that for any
1<j<m,

=mX"™ 1 (m—1D)ay (VX" 2+ amo1 (V).

la;j(\)] < CJ, R <m!R,
then (3.1) follows. To prove (3.2), we recall the following result:

Lemma 3.3 ([15], Proposition 20.3). Denote by ap and by, (k=1,--- ,m) the k-th coeffi-
cients of their characteristic polynomials of A and B in GL(m,C) respectively. Then we
have

Jar, — by < kCj,M*1| B — Al
where M = max{||Al|, || B||}
As a consequence, for any A € W5(A) and 1 < j < m,
Jaj(X) = b;(M] < 5O MITHAMN) = AW < mIMITHIAR) = A (V)]].
Then (3.2) follows directly. O

Now we analyze the function g(\, u) defined in (1.3). In the case u € Z, we have

ghu) = [ i—op= I C I[ (ei—0y)

0;,0;€S(N), 0, €X(N) o;€2N),
i#£j i#]
IXs(\) IXs(\)
- H X (UZ) = ReS(XE()\)7 67)7 (33)
g €3(N)

where the coefficients of xx(x), 8%2)?) are all analytic in A\, and hence g(\,u).

In the case u € T\Z, it is obvious that the function g(\, u) can be expressed as
g\ u) = ReS(XE()\)a Xz(A);P) _ RGS(XE(,\yXE(,\)_; u) ’

(ILesp 2) (1 —e2m)m  det A(A)(1 — e?m)™

where #% = m. Moreover, by the analyticity of Res(xs(A), xs(A);u) and det A(X) in A,

together with det A(\) # 0, we have g(\, u) is also analytic in A. In this case, we have the
following observation:

(3.4)

Lemma 3.4. Suppose x(X) = X" +a;(\)X™ '+ + ap (). Foru € T\Z, we have
Res(x, x; u) = (€™ — 1)™Res(x, Xu)-

where
e47riu -1 e2m7riu -1

Ku(X) = a (N X™ 4+ ap(N) X" 2 4. 4 am(N).

Proof. Since
2Ty (=2TUX) XM g (V2R XL Ly g (A2 2mimug o))
= Xu(X),
then by the definition of Res(x, x;u), we have

Res(x, x;u) = Res(X, Xu)-
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Now by the fact that for any two polynomials f(X) = ag X" +a; X" ' +--- +a,, g(X) =
boX™ + b X™ 1 + ... 4+ b,,, their resultant

ayp ai az - 0 0 0
0 ay a1 --- 0 0 0
0O 0 O Ap—1 an 0
g | 000 o o
o by by -
0 by b 0 0 0
0O 0 0 bn—1  bm 0
0O 0 O bp—2 bm—1 b
we can obtain that
Res(x; Xu)
1 ai as te 0 0 0
0 1 aq 0 0 0
0 O 0 A—1 A, 0
_ 0 O 0 Ayp—2 Ayp—1 A
::(62WML__1)W1 0 a egﬁU_IGQ o 0 0 0
eﬂ'lu_l
0 0 aq 0 0 0
2(m—1)mwiu __ 2m7riu._
0 0 0 W(Lm—l Q(Wam 0
0 0 0 %am—2 ecTu_l_lam—l ﬁam
= (€™ — 1)™Res(X, Xu);
where ¥y (X) = a1(\)X™ 1 + S=Lay (VX2 + - S22 La, (V). O

3.2. Transversality. As we will see in the proof, the transversality of the function g(\, u)
is crucial for us. Here we first generalize the notion of transversality introduced in [29, 31,
49, 50| following Pyartii [57].

Definition 3.1. A function f : (a,b) — C is said to be (C,c,r)-Pyartli, if f € C™! and
for any x € (a,b), we have
sup [ f(x)| < C,
0<j<r+1
sup |07 f(x)] > ¢ > 0.
0<j<r

Pyartli function will imply some good estimates of preimages:
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Lemma 3.5. Let f be (C,c,r)-Pyartli on (a,b). Then for 0 < ¢ < §, there is a disjoint
union of intervals U;e 71; such that

#J < 27(

2¢. 1
max |L| < 2(=)~
ieaj{|2|_ (c)’

[f(@)] =<, Vze(a,b)\Uics L.

Proof. Similar estimates appeared in [31, 50], we include the proof just for completeness.
If » = 0, then the result is obvious. For r > 1, we assume that there exists 2y € (a,b) with
|zo —a| < 55, and 1 <79 < 7 such that
07 f(zo)| = c.

Otherwise, for all x € (a,b) N (a,a+ 5], we have |f(z)| > ¢, and we only need to consider
the interval (a + 55, b) instead of (a,b). Here, without loss of generality, we assume that
b—a> 5.

Now, let

2C(b —a) L),

fla) = R(e e @) ().
Then we have 8" f(x) > 5 forx € I = (a,70 + 5] N (a,b). Now we consider do~1fin I.
Due to the fact that 90! f is monotonic in I, there is at most one interval 11 C I with
minimal length, such that

1
—(?)%, Vo € I\Il’l.
Then by the fact that 8 f (r) > § for x € I, we can get that
26 L
[ < 2(=—).

We continue to consider 9"°~2f. It is monotonic on each component of I \I1,1. So there
are at most two intervals I 1, Io 2 C I\I; ; such that

ro—2 7 c,2c. 2
0772 f(z)] > 5(?)”)7 Vo € IN[11 Uly; Ulyo,

Tl o] < 2(2)75.
Iterating the process for r¢ times, we get at most 2" — 1 intervals I; ; such that
f(z)| >, Vzel\ Ut<i<ro,i<j<2i-1 Lij,
gl < 22)%.
It is obvious that

[f(@)] = [T B0 T@0) f )| > [R(e7 M) f ()| = | f ().

Now we consider f(z) on the interval (a + 55,b), and repeat the above process as for I. In
the end, the length of the considered interval is no more than 55 and the we do the above
operation the last time. Then the result follows. O

Following [49, 50|, we also introduce a slightly stronger definition of transversality for a
better control of the derivatives of functions (also its products).
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Definition 3.2. Let f : (a,b) — C be an analytic function. We say f is (M,0,¢,1)-
transverse if:

(1) f is (M,0)-bounded, i.e., f € C¥((a,b),C) and |f|s < M;

(2) for any x € (a —$,b+3), Supg<j<, |0’ f(x)] > ¢ > 0.
Remark 3.1. By Cauchy’s estimate, if f is (M,J,c,r)-transverse, then automatically f
. (r+1)!M .
is (m, c,r)-Pyartli.

The following lemmas are quite important for us: Lemma 3.6 says that a product of

transverse functions is also transverse; Lemma 3.7 shows that if a product of "not too
large" functions is transverse, then so is each of them.

Lemma 3.6 ([49, 50]|). Suppose f1,---, fi are (M;,0;,c;,ri)-transverse. Let M = sup M;,
d =infd;, c =inf¢; and r =ry+ -+ 1. Then f = fr1--- fy is (M', 8, ,r)-transverse
where 5

I 1 /I rl
M=M= ()

Lemma 3.7 ([49, 50|). Suppose fi,---, fi are functions belong to C¥(A) with |fils < M.

If f = fi--fi is (M,0d,c,r)-transverse, then each f; is (M,d,c ,r)-transverse with ¢ =
(2

lr+1

If we restrict the function to g(\,u), then we extend the notation of transversality to
the multiset X(A).

Definition 3.3. We say a finite multiset () is (M, 0, c,r)-transverse on A if for any
ueT, A= g(\u) is (M,d,c,r)-transverse on A.

Suppose that () can be decomposed into X(A) = L1 (A)U---UX;(N). Let gi(A\u) (i =
1,---,1) be functions defined as in (1.3) with respect to 3;(\). Then one has

l l
g\, u) = (H%(&@) I Res(xsionsxs,00i) | - (3.5)
i=1 i,j=1,i#j

This motivated the following definition:

Definition 3.4. We say a decomposition L(\) = X1(A) U---UXi(A) on A is (M,6,¢,7)-

transverse if

(1) For all 1 < i <1, the multiset ¥;(\) is (M, 9, c,r)-transverse on A;

(2) For alli# j and all w € T, A = Res(xs, (), Xz, u) s (M, d,c,r)-transverse on A.
Now, thanks to Lemma 3.6 and Lemma 3.7, transversality of decomposition will imply

transversality of the multiset (), and it is also true conversely.

Lemma 3.8. Suppose A € C§ (A, GL(m,C)) with A = diag{A11,--- , Ay} and X(A(N)) =:
Y(A) € D(R) for A\ € W5(A), where A;;(1 < i < 1) are block matrices, and ¥;(\) :=
(1) If the decomposition ¥ = X1 U --- U X is (M, 0, c,r)-transverse on A, then X is
2
((2R)™ 5, ¢, 12r)-transverse on A with ¢ = ( (w)_rﬂc )1212T+2.
(2) If the finite multiset X is (M, 9, c,r)-transverse on A, then the decomposition ¥ =

m2
S1U--- Uy s ((2R)™,6,¢",r)-transverse on A with ¢ = (L@f) ).
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Proof. Notice that ¥(\) C D(R) implies

m2
’g(’7u)’57 ‘gi(’uu)’57 ’ReS(XE7XZ;u)‘57 ‘ReS(XZ“XEjQU)LS S (2R) . (36)

IfY =% U---UX;is (M,0,cr)-transverse on A, by (3.6), it is also ((2R)m2,5, e, r)-
transverse on A. Then by (3.5) and Lemma 3.6, we obtain that g(\, u) is ((2R)m2l2, s5,c, 1%r)-
transverse on A, which is also ((2R)™", 8, ¢, [2r)-transverse by (3.6). By similar reasoning,

(2) follows from Lemma 3.7.
U

3.3. Separation of spectrum and normal form.

Definition 3.5. Given v > 0, we say a partition > = 1 U --- U X} s v-separated if
lo — 7| > v forV(o,7) € ¥; X ¥j with i # j. In addition, if there exists ( > 0 such that
diam(X;) < ¢ for 1 <i <1,! then we say the decomposition of ¥ is (v, ()-separated.

For any multiset ¥ with #% < m and p > 0, there is always a (u, ()-separated decom-
position with ¢ < mpu. We call it the mazimal (p,()-separated decomposition.

It is well-known that if the eigenvalues of A(\) is separated, then it can be block diag-
onalized:

Lemma 3.9 ([31, 44]). Suppose A € C¥(A,GL(m,C)) and the decomposition X(A(N)) =:
EA) =21(A)U---UX(N), is v-separated for X\ € Ws(A). If v < const - |A|s, where const
is a constant only depending on m, then there exists S € C¥ (A, GL(m,C)), such that for
any A € Ws(A),

STHNAMNS(N) = diag{Ai (V). -+, Au(M)},
with 3;(\) = (A (N)). Moreover, we have estimates

|Asils, |Sl5, 1S5 < 5(@)#@%2),

where the constant b > (120m)™ 4™ only depends on m.

In the sequel of the article we will fix b> (120m)m2 +4m t6 be a constant depending only
on m. As a consequence, we have the following:

Proposition 3.1. Let A € C¥(A,GL(m,C)) with |Als < M, where M > 1. Suppose that
Y(N) = 2(AN)) is (M, 9, c,r)-transverse on A and X(\) C D(R) for A € Ws(A). For any
0< v <1, welet

M' = (2R)™, 8 = b ((REM)~1)3ms,
= (6Ry/—15—1M)—7“m3(m+6)07 r' =,
¢ =10mv/, M’ = b/~ My (m+2)

where b > (120m)m2+4m is the constant in Lemma 3.9 depending only on m. If v <
const - M, where const is a constant only depending on m, then there exists a partition
IT={A} of A with
A
#1I < % +1,
such that for any X € Wy (A), X(\) has a decomposition

YA =B U U,

IRecall that for a set X C C, we denote diam(X) as the diameter of X.
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where | only depends on A, satisfying the following properties:

(1) The decomposition L(N) = X1 (A)U---UX(N) is (v, (’)-separated for all X € Wy (A)

and (M', &', ¢, r")-transverse in A.
(2) There exists \g € A such that the decomposition X(Ng) = L1(Ao) U -+ U X;(No) is

(8, (")-separated. Moreover, for any A € Wy (A), #3:(N\) = #X:(No) and
dr(Zi(N), 2 (M) < V.2
(3) There exists S € C4(A, GL(m,C)) such that
STHAAMNS(A) = diag{An (A), -, Au(N)},

with %i(N) = (Ai(N)) and |Agls, |S]s, 1S~ e < M.

Proof. Due to ¥(\) € D(R), for any u € T, we have
lg(\,u)ls < (2R)™
[A]

and by Lemma 3.2, we also have [xx)[s < m!R™. We divide the interval A into 1+ ['5]
intervals with equal length no more than ¢’. Then we have

2

A , ~ A
#II <1+ |5—,| =1+ b(RzMV’_l)?’m%.
On each subinterval A, we now give the decomposition of the multiset 3()\) on Wy (A).
Fix some Ao € A, take the maximal (8¢, 8muv/)-separated decomposition 3(Ag) = X;1(Ag)U
-+ UX;(No), and define

S == Wi (Zi(Xo)) NE(A) € (V). (3.7)

Now for any A € Wy (A) and ¢ € X()), by Cauchy’s estimate and (3.1), we have

II le=¢ = xsp0(©) = xsm(©)l (3.8)

o€X (o)

IN

mmax{1, [¢[™" "} [xs0) — Xs00) o
d
mR 1’5)(2
2mR™ !
—5— xsoolslA = Aol

4Am - mIRZm—1¢
< 5 <™,

This implies that for any ¢ € X(\), there exists o0 € X(Ag) = Z1(Ag) U -+ U X;(Ao)
such that | — o] < v/, which means that ( € W,/ (2;(\g)) for some ¢ = 1,--- I, that is,
Y(A) € E1(A)U---25(A). On the other hand, X(A\g) = X1(Ao)U- - -UX;(Ag) is 8v/'-separated,
which implies that 3;(A) N X;(X) = 0 for ¢ # j. Consequently, we get that

E(A) =E1(A) U UE(A),

IN

s IA = Aol

IN

is a decomposition for any A € Wy (A).

2We denote dr(Q1,2) as the Hausdorff distance between Q1 and Q.
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By similar arguments, for any 1 < i < [, 6 € X;(Ag) € X(\g), there exists at least
one o € X(\) such that |o — | < v/. This just means o € X;(\) by definition, and thus
Yi(Ao) € Wy (2;(N)). Together with the fact that X;(A) € W,/ (3;(N\g)), we have

dH(EZ‘(/\), Ez(/\O)) < I/

Next we show this decomposition is indeed 6V, (8m+2)1)-separated. For any A1, \y €
Wy (A), ¢ € Bi(\1) and ¢’ € B;(\g), there exist o € ¥;(\g) and o’ € %;()g), such that
IC—ol <V, |¢'=d' (M) < V. Then for i # j, we have

(= zlo=d'|=|¢—0a[—|o" = (| > 6V, (3.9)
and for i = j, we have
= <lo=d|+]¢—a|+]|o" = ('] < Bm+2)

and they also hold if A\; = A\y. Furthermore, by (3.9) and the continuity of (), we have
#5;(\) = #5(No) for any A € Wy (A) and i =1,--- 1.

Once we have these, (3) directly follows from Lemma 3.9, and the transversality of
decomposition follows from Lemma 3.8. We finish the whole proof. O

In the following, we will prove that separability and transversality of the decomposition
is stable with good estimates:

Lemma 3.10. Suppose that
A= diag{AH, s ,Au} S Cg)(A, GL(m, (C)),
A/ = diag{A/lh T il} € CSU(Av GL(mv (C))a

where Aj;, AL, are block matrices with the same order for 1 < i <. Let RM > 1. If
|Als < M, |Aii — Al;ls < e<1, B(A(N) =: 2(\) € D(R) for A € W5(A), and

64m>M2Rem < 1, (3.10)
then the following hold:
(1) For any A € Ws(A),
A (Zi(\), £I(N) < 4m2N2em, (V1< i < 1), (3.11)
where X;(A\) = X(A;(N)), and ZL(N) := X(AL(N)). Consequently,
Y(\) :=%(A'(\) € D(R) (3.12)

with R' = R + 8m>M>R%e.
(2) If ¥ = X1 U--- Uy is (v,()-separated in Ws(A), then ¥ = ¥ U---UX] is
(v, (')-separated in Ws(A), with
V=v-— 8m2]\~426%, ¢'=¢ + 8m2M2em .

(3) If the decomposition ¥ = 3y U ---UX; is (M, 6, ¢, r)-transverse on A, then ¥/ =
YU uUX)as (M0, r)-transverse on A, with

~ 2
M = (2R/)m2, d=c— 28mm10m2R3m2Mm(§) €
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(4) For any 1 <i <1, u €T, we have
’ 8 10m? p3m? 37
lgi (- u) — g; ()]s < 2°Mm o™ RO™ M ™e,
where we denote

gi()‘v u) = H (0'51 - e27riu0,£2)7 gg()V u) = H (0'51 - ezﬂmafz)'
741905 €Z;(N) Ty 00y €5F(N)
L1744 01#4o
Proof. Due to |A;; — A%|s < € and |Ay|s < M, by (3.2), we have
X5 = xsils < m!(M + )™ e, (3.13)

To prove (3.11), by symmetry, we only need to prove for any o' € X.(\), there exists
o € ¥;()) such that

o — 0’| < 4m2 N 2em. (3.14)
Indeed, this follows directly from the following estimate
T @ =0 = s = xso0 (@)
O'EEZ‘()\)

< m-m!(M + e temax{l, |0’}

< (4m2]\~426%)m,

where the first inequality holds by (3.13), and the second inequality holds because |o/| <
|A'|ls < M + e. As a consequence, by (3.10) and (3.14), for any o’ € ¥'(\), we have

0] < RA+4m2M2ew < R
1 ~ 1 1
o’ > = — Am2M2em > = — = =
R R(1 +8m2M2Rem) R
which just means ¥/(A\) € D(R’). These finish the proof of (1), and (2) follows directly
from (3.11).
Now, we will prove (3) and (4). For convenience we denote x; = xx, and x, = X5,
Since for A € Ws(A) and any 1 <i <1, ¥;(A) C D(R), by Lemma 3.2, we have

[xils < m!R™. (3.15)

For any i,j € {1,2,...,l} and for any u € T, by (3.12) we have

[Res(x}, Xjiu)ls = sup 11 ok, — €2y, < (2R)™. (3.16)

ACWS () 6y €1 ()00, €3 ()
Moreover, by Lemma 3.1 and (3.13), (3.15), we have
[Res(x;, xj; u) — Res(xi, xj3 )]s
< @mA+ DU+ Ixals)™ (1 + Ixle)™ max{|x; — xils, Ix; — xjls}

(2m + DI(1 4+ m!R™)*™m(M + €)™ Le
98m p6m* p2m? rm. (3.17)

A

IA
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Then for any A € W5 (A) and any ¢ € {0,1,...,r}, this implies that
2
|05 Res(x}, X )| > |05Res(xi, x5; w)| — 05 (Res(x}, xj; w) — Res(xi, xj; w)))|

2 -
> [05Res(xi, x5 )| — 7‘!(5)’" . 98m6m? p2m?® yrme.

By the assumption, for i # j, Res(xs, xj;u) is (M, 6, c,r)-transverse on A, and thus for
AeWs(A)NR,
2

2 ~
sup |95Res(x}, Xiu)| >e—ri(3)" - 98m6m® p2m® rme > /.
0<e<r )
Combining with (3.16), we obtain Res(x;, xj;u) is (M, 4, ¢, r)-transverse on A for i # j.
We are left to prove the transversality of 3;(\) and (4). First, by (3.12), we have
lgi( A, u)ls < (2R")™. Now we denote m; := #3; = #X.
Case a: u € Z. By (3.3), Lemma 3.1 and Lemma 3.2, we have for any A € Ws(A),

X Ix;
, —q = AT 4 L
‘gl()VU) gz()‘au)’ ‘RGS(X“ Z?X) ReS(Xw 8X)’
- X\
< @mII+ Pald)™ 7 0+ [l mil — xils

< 2m)!A+m-m!R™)* b m!(M + €)™ e
< 28m7nlOm2 R2m2 Mme.
Case b: u € T\Z. We denote

i) = DA i, ) o= TSN

Then by Lemma 3.4, Lemma 3.1, and Lemma 3.2, we have for any A € Ws(A),
[fihw) = fiw)] = [Res(xi (), Xiu(A) — Res(x;(A), Xiu (V)]
< @2m)NL+ [xals)™ (1 + [Xiuls)™ max{]xi — xils, [Xi — Xiuls}
< 2m)!(1 + (m+ DIR™)* (m + 1)!(M + )™ e
< 9Tm,2m?+6m p2m? prm—1

By (3.4), we can obtain that for any A € Ws(A)

, 1 , det A}, — det Ay
i _ 4 < - . —_— .
l9i( A u) — gi(Au)| < det Aii||fz(>\az) fi(\2)] + det A,

< R™|fi(\2) = fl0 2)| + R™xi — X5 (2R)™

< 28m7n8m2 R3m2 Mme'

|9i(A, )

Then (4) follows in both cases. Furthermore, in both case, for any A € W5 (A) N R and
2
any ¢ € {0,1,...,r}, we can get

9 -
> [08giA\ )] = rl(5)" - 25 m !0 R AT e,

implying supg< <, [059,(A, u)| > ¢. Therefore, &' = £) U--- U] is (M, 6, ¢, r)-transverse
on A, which finishes the proof.
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4. KEY ITERATION STEPS

In this section, we prove the key KAM iteration steps for stratified quantitative almost
reducibility.

4.1. Structure of resonance. In this subsection, we always assume that [ < m, where
[ is the number of the multisets {3;}. We now give the definitions of resonance and
non-resonance between two sets.

Definition 4.1. Fiz N,¢ > 0. We say two different multisets 1 and Xo are (N,<)-
resonant if there are o1 € X1 and o9 € Yo such that for some |k| < N,

— MR | < . (4.1)

If such k is unique, we say X1 and Xo are (N,<)-resonant with unique k, and we call k
as the resonant integer between 1 and Yo. If it does not exist such k, we say 31 and o
are (N, ¢)-nonresonant. In addition, we say a multiset 3 is (N, )-nonresonant, if for any

01,02 € X and 0 < |k| < N, (4.1) does not hold.

o1

It is obvious that —k is the resonant integer between 5 and X1, if £ is a resonant integer
between X1 and Y.

Before giving the structure of resonance, we introduce the following notation for conve-
nience.

Definition 4.2. Let 0 < N < N’, K > 0. We say the decomposition
S0 = 1) U- USH())
satisfies H(N,N', K) on Ws(A), if {1,--- ,1} can be divided into disjoint union:
{1, ,l}zslUSQU”-US[,
and the following hold:
(a) 2;(\) is (N', (2K)~Y)-nonresonant for any i € {1,2,--- ,1}.
(b) Ti(A), Z;(N) are (mN',2mK 1Y) -resonant with the same unique k;; for all \, where
‘kij’ <mN, ifi,j€ Sll with i # j.

(¢c) kij + kjs = kis, if i,j,s € S, are different.
(d) Zi(N), B;(\) are (N, (2K)~1)-nonresonant, if i € Si,, j € Sy, with Iy # ls.

For N € N, j € Ngand a > 1, let N; = a’N. The basic observation is that if the de-

composition is separated, then the decomposition will essentially satisfy some H(N, N’ K)
condition. The precise result is the following:

Lemma 4.1. Let « € DCy(v, 7). Suppose that the decomposition X(N) = L1 (A)U- - U (N)
is (v,()-separated and 3(\) C D(R) for A € Ws(A), and one can find Ao € A such that

dH(EZ'()\), 22()\0)) < I//, (4.2)
#X;(N) = #Xi(Xo) for X € Ws(A). Then the decomposition satisfies H(Np, Np+1, K) in
Ws(A) for some integer p € [0,m], if

y

8my' < 8 K1 )
mv < 8ml < m < 0RGBMN, )

(4.3)
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Proof. We first check (a). For any A € Ws(A), i € {1,--- .1}, 01,02 € 3;(\), since
a € DCy(v,7), 3(N\) € D(R) and the decomposition is (v, ¢)-separated, then for 0 < |k| <
mNp11, we have

|0_1 o e27ri(k,a)o_2| > |O'2||1 o eQWi(k,a>| o |0_1 _ O'2|

i -1
> Y skl
Z RNy ¢

This just means ;(\) is (mN, 11, K~ !)-nonresonant with itself for any A € Ws(A).
To verify (b)-(d), we fist need the following observation:

Claim 1. For any A\ € Ws(A), if i # j and Si(N), X;(A) are (mNyi1,2mK 1) -resonant,
then they are resonant with the unique |k| < mNpy,41.

Proof. If there exist 01,07 € %;()), 02,04 € () and distinct |k, |k2| < mNp41, such
that
’0,1 - e27ri<k1,a)0,2‘7 ’0,3 - e27ri<k2,a)0,é‘ < 27n[(—17

then we obtain that

i 2mi(k1 —ko,c) 2mi(ky,00)
_— < ’ — < — )
Rl — o 72 o2l < o —e 72
+loy — o] + o] — T F Nl + |oh — o3| < 4mK T +2¢
This contradicts to (4.3). O
Now we denote X;(Ag) by %; for convenience, and give the division of the set {1,--- ,l}

according to A\g. First of all, we need to introduce two concepts: (L, n)-connected and
maximal (L, n)-connected component. For L,n > 0, we say that X;, 3; are (L, n)-connected
if there exists a (L,n)-resonant path of length ¢:

Eioyzip"' 721',57 with iOZiait:jv

such that (3;,,%;,), (X, 2iy), -+ (24, ,,%4,) are all (L,n)-resonant. Notice that if ¥;,
¥; are (L, n)-connected of length ¢ then they are (¢L,tn + (¢t — 1)¢)-resonant. Moreover,
if ¥;,3; and X;,3, are both (L,n)-connected, then ¥;, ¥, are also (L, n)-connected. Let
S:={1,---,1}. We say a set S" C S is a mazimal (L, n)-connected component of S if the
following hold:

1) For all 4,5 € S” with i # j, we have X;,3; are (L, n)-connected.
2) For alli € " and j ¢ S, ¥;,%; are not (L, n)-connected.

Let’s finish our proof. We divide S into #; maximal (N;, K ~!)-connected components
where 0 < i < . Notice that if S is a maximal (N;, K ~!)-connected component, then there
exists some maximal (N;i1, K~!)-connected component S such that S’ € S. So we have
liv1 < ¥;. Combining 1 < ¢; <1, there exists p with 0 < p < such that ¢, = ¢,;1. We let

{Si}gzl be the maximal (N,, K ~!)-connected components. Then we have the following:

(1) If 4, j with i # j belong to the same subset Sy, , then ;, 3; are (N, K ~!')-connected,
and hence (mN,,mK ! + (m — 1)()-resonant with a unique k;;, where the uniqueness
follows from Claim 1. Then there exist o1 € ¥;, 02 € 3; such that

loy — 2™k oo | < MK~ 4 (m — 1)C.
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It is obvious that kj; = —k;;. For any A € Ws(A), by (4.2), there exist 61 € ¥;(\), 02 €
¥;(A), so that |01 — 71|, |02 — F2] < ¢/, and thus

|61 — 2G| < MK~ 4 (m+1)¢ < 2mK L

Therefore, again by Claim 1, we have ;(A\) and X;()\) are (mN,41,2mK ~!)-resonant
with the same unique k;; for all A € Wi(A), where |k;;| < mN,. We have verified (b) in
H(NP7NP+17K)'

(2) If distinct i, j, s belong to the same subset Sj, , then X;, 3; and X, are (mN,, mK ~1 +
(m — 1)¢)-resonant with each other, with the resonant terms k;j, kjs, ks; respectively. This
means that there exist 0y, 0] € ¥;, 0,07 € 3; and 05,04 € ¥ such that

lo; — e27ri<kij’°‘>0;| <mK™' 4+ (m - 1),

o — e2™kis @ | <K= 4 (m - 1),

og — 2kl ol < K 4 (m — 1)¢,
with |kij|, [kjs, [ksi] < mNp. So if kij + kjs + ke # 0, we have

v
QRU%]' + kjs + kg

This contradicts our assumption (4.3), and we verify (¢) in H(Np, Npi1, K).

’T <loi(1 — e2ni(kz—j+kjs+ksi,a>)| < 3m(K‘1 +0).

3) Ifi € Sy, j € S, i.e. i,j belong to different subsets, then 3;, ¥; are not
Npi1, K~ Y-connected. In particular, they are (IN,41, K~ !)-nonresonant. For any A €
p+ p+
Ws(A), 6; € Ei(N), 5 € X;(A), by (4.2), there exist o; € %;, 0; € ¥j, such that
o; — 04|, |oi — ;| < v'. Then for |k| < N,+1, we have
j 9 P+
|6 — 2k > K719/ > (2K) 7L

This means X;()\), X;()\) are (Npt1, (2K)~1)-nonresonant for any A € Ws(A), and verifies
(d) in H(Np, Npy1,K). We finish the proof. O

4.2. Eliminate the non-resonant terms. For given h,0,7 > 0, a € R% and A €
C5 (A, GL(m,C)), we decompose C’;’;é(']l'd x A, gl(m,C)) =: Bys = B}(:ge)(n) @ B,(:g)(n)

(nre)

(depending on A, cr,n) in such a way that for any Y € B, 5 (n), we have
AY,YTA€BYS), |AY — YT Alys 2 0|Y |ps, (4.4)

where we use YT to represent the function Y (- + «) here and in the sequel. Moreover,

(nre) (77)

we denote P, and P, as the standard projective operators from By s onto B, s

and B}(LTE) (n) respectively. For any N > 0, we define the truncating operators 7y on
}‘:5(']I'd x A, gl(m,C)) as

(TN )0, )) = Z Bk, \)e2m (00)
keZd |k|<N
and Ry on C,‘;’,é(’]rd x A, gl(m,C)) as

(Rnf)(0,)) = Z Bk, N)e2miho)
keZd,|k|>N
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Furthermore, we assume a > m in the sequel.
Using the above notations, we can apply the quantitative implicit function theorem in
[20] to get the following result:

Lemma 4.2 ([20]). Assume that € < (4max{1,|A|s})~* and n > 48max{1,|A|s}e"/?.
Then for any F € By s with |F|, s < €, there exist Y € By, s and Flre) ¢ B,(Lrg) (n) such that

e Y (A+ F)e¥ = A+ FUe),
where Y5 < €'/ and |F"9)|;, s < 3emax{1, |A|s}.
Then one can prove the following:

Proposition 4.1. Given N, K,M >1,a>1,h > I > 0, assume that o € DCy(y,71), A €
CSJ(A7 GL(m7(C))7 A()‘) = diag{All()‘)v e 7All()‘)} and |A|5 <M. Let E()‘) = E(A()\))?
Yi(A) :=2(A;(N)). Suppose that the decomposition

EA) =X (AU UE(A)
satisfies H(N,aN,K) on Ws(A). Then for any F € C}‘;é(']l‘d x A, gl(m,C)) with
|Flns < e < (12m° M2K) 2™,
there exist Y, f(r¢) F' ¢ Cﬁﬁ(']l‘d x A, gl(m,C)), such that
eV FN AL F())eYO = A4 (I L F() (4.5)
= diag{Ay, - A} + FUO0) + F()
with estimates:

|Au - A22|6 < 3ME, |F/|h’,5 < 3Me—27r(h—h’)aN€’
V]ns < €'/, |f0) s < 3Me.

Moreover, viewing f"®) as a block matriz with the same partition as A, we have fi(;e)(Q) =

fi(;e)(kij)ez’d<kif’9>, where ki; is the resonant integer between 3;(\) and () defined in
H(N,aN, K) with |k;i;| <mN, and f}}“”(e) =0, if 3; and X; are non-resonant or i = j.

Proof. In the sequel, we take the matrices as block matrices with the same partition as
A. Since X(\) = E1(\) U--- U () satisfies H(N,aN, K) for A € Ws(A), then the set
{1,--- ,1} can be divided into disjoint union:

{1+, 1} =8 U8 U---US;

where properties (a) — (d) hold. Let

. G = (Gijh<ij<i, RanG = 0;Gii(0) = 0;Gij(kij) = 0
" if i # j belong to the same S, for some 1 <y <1 ’

Claim 2. We have B}m - B,(:Lge)(n), with n = 48M /2.
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Proof. For any G € B} s, one can check that AG = (A4;Gij)i<ij<i € Bis, GTA =
(G;;Ajj)lgi,jgl S Bilt,é' Suppose

AG—GYA=HeB},

With the Fourier expansion of the (7,7)-th matrix block, we have for any A € Ws(A),
1<i4,5 <1 |kl <aN,

Aii(N)Gij (k, X) = Gk, A) - €m0 45,(0) = Hig(k, X).
Let
Lij(k; A) = Td @ A (A) — T 00 (45;(0)T @ 1d,
where ® represents Kronecker product between matrices. If we view Gi;(k, A) and H;j(k, )
as vectors, then
Gij(k, N) = L' (ks \) Hij(k, M),

If i # j belong to the same subset Sj, for some 1 < I; < I, then for k # kij, [k| < aN,

we have

- (m?]| Lij (k: M) ])™
R e
m AEW5(A) |det Llj(k‘7 )\)|
(m?]| Lij (ks ) [)™
infrew;a) Res(xs; () xz; (A); (s @)
(2m* )™
< TR
where the inequality follows from property (b) of H(N,alN, K), that is ¥;(\) and 3;())
are (maN,2mK ~1)-resonant with the same resonant term k;;.

If i # j belong to different subsets Sy, ,.S,, similarly, by property (d) of H(N,aN, K),
for any |k| < aN, we obtain that

(4.6)

= 2mAMEK)™.

1L (ks V| < (4m* DK™,
If i = j, by property (a) of H(N,aN, K), then for 0 < |k| < aN, we can also get
L5 (ks V| < (4m* ME)™.
Since G, H € Bflué’ then for any A\ € Wy5(A) we have
GigWl =D [1Ga (ke < (@m NTK)™ [Hig (),
|k|<aN
and thus

~ 2
Glns < m(Am* MEK)™ |H |5 < |H|p.s,

1
48 M el/2
which implies that

|AG — GY Alp s > 48MeY?|Glp s

Therefore, we have B}m C Bﬁfge)(n) with n = 480 /2. O
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Applying Lemma 4.2, there exist Y € C'}‘:(;(Td x A, gl(m,C)) and F(e) ¢ B,(Lr?(n) such
that
e Y (A+ F)e¥ = A+ FUe),
with |Y]; 5 < €2, |F(Te)|h75 < 3Me. Then by Claim 2, for 1 <i <1,
TvEL S (0) = F9(0),
and if ¢ # j belong to the same S;,, then
TanF7(0) = F 7 (k)i

otherwise, 7;NFZ-(;6) (#) =0.
Finally we let F’ := Ry F(®), and

A= A+ diag{F{{7(0), - B9(0)},
f9 = TunFU) — diag{F{7(0), - £ (0)}
Then one can compute
Fllus = sup > B0 (kA2

AEWs(A) |k|>aN

< sup e—27raN(h—h’) Z HF(TG)(]C, )\)||e27r\k|h
AEWs(A) |k|>aN
< 3M6—27raN(h—h’)6.

We finish the whole proof. O
4.3. Remove the resonances.
Lemma 4.3. Let A’ € C¥(A,GL(m,C)), f"9) € C’;%(']I‘d x A, gl(m,C)), where

A'(X) = diag{A}, (A), -+, Ap(\)}

for X € Ws(A), and view f® as block matrices with the same block partition as A’.
Suppose that there exists a disjoint partition of {1,--- ,l}

{1,---, i} =51USuU---US;,

such that the following hold:
a) Ifi,j € Sy, with i # j, then there exists a unique k;j such that j;(;e)(k) =0 for k # k;j,

and we have k;j + kj; = 0.
b) Ifi,j and t are different and belong to the same subset S;,, we have ki; + kji = kit.
c) If i = j, then fge)(ls) =0 for any k, and we denote k;; = 0.
d) Ifi € Sy, j €Sy, withly # la, then fi(;e)(k) =0 for any k, and we denote k;; = 0.
Then there exists H € C;;’(Td, GL(m,C)), independent of \, such that

B (4 a)(A 4 fU)H() = A"

where |H|p, [H™ |, < maxi<;j<{e*™Filh}y, A” e C¢(A, GL(m,C)), |A};]s = |fi(;e)(kij)|6
fori#j, and for 1 <i <1, Al = e 2™ki0) AL for some j that belongs to the same subset
Sy, as .
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Proof. For each 1 <1 <[ we can find S,,(; such that ¢ € S,,,;). Let

n(i) = min {j}.
]Esm(l)

We view H as a block matrix with the same block partition as A’, and let H;; = 2™ Kin(i).0) Id,
H;j := 0 for i # j. Then H € C’;j(']I'd,GL(m,(C)) does not depend on A. Moreover, we
have . .

1O+ a)A'H(9) = diag{e 2™ k@@ A, ... o7 2mRma ) 41
Furthermore, the (i, j)-th block of H=*(6 + a)f")(0)H(#) is 0 if i = j or 4,5 belong to
different subsets 5y, , S,; otherwise, we have ¢ 7 j belong to the same subset .5;, for some
1 <l; <1, implying n(i) = n(j), and then the (i, j)-th block is

27k i) 0) F(e) 27ilki;+k;p Kin(i)s
e~ 2mi(Kin i) >fij (kij)e (ki +hin () ~Kin() 0

where
kij + kji =0, if n(]) = n(z) =1,
kij + Rjn(gy = Kiniy = Fij — ki =0, if n(j) =n(i) =
kij + k«’jn(j) _ km(j) =0, otherwise,

and thus equals e~ 2™ Fin)@) j;(;e)(kij). Let

A" = H Y0+ a) (A + f)0)H(0).

and we finish the proof.
O

4.4. Block diagonalization. The following lemma assures that if the spectrum of the
diagonal block elements of the new constant matrix is separated again, then the new
constant matrix can be diagonalized by a matrix close to identity.

Lemma 4.4. Let R, M’ > 1. Given A, G where A € C¥(A,GL(m,C)),G € C¥(A, gl(m,C))
with A(X) = diag{A11(N\), -+, Ay(A\)} for A € W5(A), and A;i(1 < i <) being block ma-
trices, suppose |Als < M’, |Gls < €, the decomposition X(\) = L1(A) U --- U 5y(\) is
(v, ¢)-separated in Ws(A) with 0 < v < 1, (M, §,c,r)-transverse on A, and 3(\) C D(R)
for X € Ws(A), where 3(N\) := X(A(N)) and 3;(N) := X(Au(N) for 1 <i <. If

(6m* My )™ ez < 1, (4.7)
and 2"m2 M Re'/™ < 1, then there exists S € C¢(A, GL(m,C)) such that
STHA+G)S = A4, (4.8)

where A € C¥(A,GL(m,C)), A = diag{A11,---, Ay} in Ws(A),
|Asi — Ayils < 3M'e,

1S — Id|s < 2e2,
and the decomposition ~i()\) N 1A U U i\ is (v, ¢')-separated in Ws(A), with
N(A) = Z(A()\)) and X;(A) = Z(Au(\ )) for 1 <i < 1. In addition, we have 3(\) =
SN U--- U\ is (M, 6, ,r)-transverse on A, 2(\) C€ D(R') for A € Ws(A), and for

any 1 <1 <1, A\ € Ws(A),
dir (i), 55(N)) < 8m2MBem,
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where
R =R+ 16m2R2]\~4’3e%, V= v — 16m2MBem
M' = (2R")™*, ¢ =+ 16m2M3em
d=c— 28m—|—27n10m2R3m2 M/m—l—l(%’)re.

Proof. Let Bs := C§' (A, gl(m,C)), and it can be viewed as a special case of By, 5 in Section
4.2, where the functions are constant for the variable in T¢ and we omit & here. Let

Bj = {Y € C§ (A, gl(m,C)) : Yy =0, V1 <i <},

Bf :={Y € C§ (A, gl(m,C)) : Yij =0, V1 <i#j<lI}.

Then By = B} & B2, and for any Y € B}, we have the (i, 5)-th block matrices of AY and
Y A are A;Y;; and Y;;A;; respectively. It is obvious that AY,Y' A € Bg. Moreover, if we
let

AY —YA=H e B},
then for ¢ # j, the (7, 7)-th block matrix equation is
AiYij = YijAjj = Hij.
Let
Lij(A) =1d @ Ay (N) — (A;;(\)" @ 1d.
Then for any A € Ws(A) and i # j, if we view Y;; and H;; as vectors, we have
Yii(A) = Li; (A Hig(A).

v

By the fact that dist(3;(X), X;(\)) > v for ¢ # j and A € Ws(A), we have

m2

|det Li;(M)] = [Res(xx,(n), x=;00) | = ™

which implies that
L s < (2m*v=ar)™,
Therefore, we have
|Hls

A8M€l/2
which means |[AY — Y Als > 48M'e'/?|Y |, and thus B} C Bgme)(n) with 7 = 48M'e'/2,
Then by Lemma 4.2, there exist Y € C¥(A, gl(m,C)) and GU®) € B((;Te)(ﬁ) C B? with
V|5 < €/? and |G("9)|5 < 3M’e, such that

eV (A+ @) =A+GU.

Y5 < m(2m4y—1M')m2\H\5 <

Denote A=A+ GU¢) and § = e¥. Then A = diag{Ay1,---, Ay}, and
|Aii — Ayls = nge’y(; < 3Me,
1S —1d|5 = |e¥ —Id|s < 2¢/2.

Since |A; — flmg < 3M'e, then by Lemma 3.10, the rest of the lemma holds, and we finish
the proof. O
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5. STRATIFIED QUANTITATIVE ALMOST REDUCIBILITY AND REDUCIBILITY

We will use the KAM steps developed in Section 4 to prove the stratified quantitative al-
most reducibility for all parameters, as well as the quantitative reducibility for full measure
set of parameters.

Let A C R be an interval, o € DCy(y,7) with v > 0,7 > d, d1,¢; > 0, r; € NT,
M;,Ry > 1,R = 2Ry, and II; be a partition of A. For each A € II; and A; €
Cs (A, GL(m, C)), we suppose X(A1(\)) € D(Ry) for A € A, and (A (N)) is (My, 81, ¢1,71)-

transverse on A.

5.1. Stratified quantitative almost reducibility. In this subsection, we state the iter-
ative lemma (Proposition 5.1) for the stratified quantitative almost reducibility. We first
give the iteration parameters. Let 0 < e < 1, e = ¢'/2, and for n > 1,

n on?+n 1 1

4
n — - 9 hn — \5 hy. 5.1
€nt1 = €y €1 (2 + 2n) 1 ( )

We now define

n+1 | IOg En|]

1 =gt
97hy + 1, apn m,

N, =2

Npp =l N,, K, =144mRy ' (3mN,m+1)"
Let by(m, R, 7,7) = 160m 2+ 127+2 Ry =1 by (m, 7) = (6m + 7)7 and

4dmh Vo
Uy = bl_l(|log;| )Te_b2e v
Set s1 =1, and we define s,, iteratively:
sip1 = min{n : K, ' < dyu,,}, (5.3)
where d; = 160m™*!. We denote
&n = #{1:8 <n}.
By (5.3) we have

1
< b1(| 0g€1|

log €| 2
. T2b2812+1 —b | T2b28i+1.
i+1 — 27Th1 ) 1( )

47Th1

ug ' < di K

Then we can get

VSi+1 > 6\/s_i.

Similarly, by the fact d1 K, , 1 < u;_l, we obtain that
Vi1 < dgeV®i,

where dy = da(m) is a constant. Thus for any k& € N we have
& < 2P (n) +k+1,

where In®)(n) means In-- - In(n), and if &, < k we denote In*)(n) = 1.
——

k
Suppose €7 is small enough such that

1 i 6m(m+2)7 i 3 i
(27Th1 In 61) < o 36(m+7)°T <In o (5.4)
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Moreover, it is obvious that for €; sufficiently small, we have for all k € N
6m(m + 2)boeVSh < 25t 35kF2| I ¢ |, (5.5)

In the sequel, we assume ¢; is small enough such that (5.4) and (5.5) hold.

Suppose I, (n > 1) is a partition of A. We denote by b,  the constants only depending on
m with b > max{(120m)®™" b} and x > m?™° 10 where b is the constant only depending
on m in Lemma 3.9. For all n > 2, we introduce the following notation for convenience.

Property P(n,I1,,,I1,_1): For matrices-valued functions A4,, A,,—1 on A, on each Aell,,
where II,, is a sub-partition of II,_1, for sequences of numbers R, s, Vpn, Cny On, My, ¢y
defined according to A, the following hold:

(P1)n, We have A, € C§, (A,GL(m,C)), |Anl5, < M,, and for any A € W;, (A),
An(A) = diag{An11(N), -+ An g1, (N}

where S (A) := (4, (X)) € D(Ry), and B (V) = S(Ap.i(\).

(P2), The decomposition X (\) = Egn)()\) U-- -UEI(:)(/\) is (Un, ¢ )-separated in Ws, (A)
and ((2Rn)m2,5n, Cn, T )-transverse on A.

(P3),, For n = s, there exists \g € A such that Zgn)()\o) U---u El(:)()\o) is (8vy, (n)-
separated and

dr (S (0), 5 (A)) < v, YA € Wy, (A),
bR6m MSm A
#1L, < HILoy + et mag oy

where d,,_1 may be different for different A~ eIl,_4, and

1
R, =R, 1—|—bRn lM € 1,
Vp = Ugy,, Cn = 10mu5k7 T'n = m27’n_1,
On = b7 R OT (v M )P 81, My = b(vy M) 072,
cn=O"R 18, 1Vn]\~4;_110n_1)’$r"71 — 7 e
(P4),, For s <n < sgy1, we have for any A ell,_q, € W57L71(1~X_)
An—l(A) — diag{An—l,ll()\)y e 7An—1,ln711n71 ()\)}7

and the following: . .
(P4.1),, If l,, < l,,—1, then there exists a partition II,,(A™) of A~ with

R2m 1|A |

M,(A") <14 —n=t 12 1
#I1,,(A7) vrd 1 (A)
Where~ 0n—1 may change with A~ €~Hn_1, and for any A€ Hn(]&_) there exists
Ao € A such that for any A € W5 (A)

M), £ (Ag)) < v,

7

dp (2
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with
1

Rn—Rnl—i-bRn 1M €15

Vp = Up_1 — bM4 e;? 1 G =m(Cp1 + Tvp—1),

T =mM*rp_1, 6, =0 1R (2m 1 Uyt On—1, M, = M,_1 + 2Om]\~4,2l_len_1,
cn = (b 1Rn o 15n 16n-1)" R (bRn_an_lé,;_llrn_l)””*en_l.

(P4.2), Ifl, =1l,_1, then #II,(A~) = 1 and there exists k:Z(n) € Z%i=1,2,---,1,) such
that for any A\ € W, (A~) we have

du (S (), 2 s )y

)

Upn—1—"VUn
2 )
with
- 1
Ry, = Ry 1 +bR:_ M} je" |,

o= vy~ By, G = ot + DV,

T =Tn_1, Op=0n_1, My = M,_1+20mM?>_je, 1,

Cp = Cp_1 — be’f_nng"_ﬁz(Zrn_lég_ll)T7L*16n_1.
(P4.3),, We have

a1, <,y 4 e AL
Vn' Aetl,—1 dp—1(A)
where II,, = U[\*enn,lﬂn(*&_)'

We say (1) holds if there exists some partition II; of A, that the properties (P1);-

(P3); hold for A;. For m > 2, we say B(m) holds if (1) holds and for any 2 < n < m,
there exists a partition II,, of A such that P(n,II,,II,_1) holds for A,, A, 1.

Now we are in the position to state the iterative lemma for the stratified quantitative
almost reducibility.

Proposition 5.1 (Iterative Lemma). Assuming P(m) holds for any m > 1, |Fy|h, 5, <

€,
Ki' < EETTy oy i vy 8 (5.6)
Efjm < BRON (5.7)
and
C(d) (bR, M, K, )™ +1(3 2" }anw) (277;2TN)m2rn/3C;1/3 < e;%, (5.8)
n

for all n < m, then there exists a sub-partition Ilz1 of Iz, such that on each Ac s,
there exists Zy € Cy | 5m+1(']1‘d x A, GL(m,C)) such that

Zat (4 @) (As + Fa() Za () = Ajgr + Faga (),
satisfying P(m + 1). Moreover, we have estimates:

g |Fm+1|hm+1,5m+1 < €41, |Fm+1|hm+1,5m+1 < |Fm|hm75m)
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—1 1
hd |Z |h |Zm |hm+175m+1 < 6ﬁ1+2m+27
m?/2

hit1,6 m+1| m+1|hm+176m+1 <L

m+17 m+1’
1
° |Z |hm+1 6m+1| m+1|h7—h+176m+17 |Z~

We leave the proof to Section 5.3.

5.2. Stratified quantitative reducibility. Now we state the key proposition (Proposi-
tion 5.2) to prove stratified full measure reducibility (Theorem 1.3), indeed reducibility out
of a zero Hausdorff dimensional set. We first give the iteration parameters.

Let 0 < 61,h1,51,cl < 1, Ml,R1,01 > 1,7 € Nt 7 = m?7, and define sequences
inductively for 7 > 1:

e = &V e —hy - DL — il K=& ™
Jj+L — ¢ J 2j+17 J = 7T;:Ll ) J— % )
. -
Vi _ rl ®, 220713 P2=m 5. _ J
Mj-l—l = M] + 3Mj€.77 Rj+1 R] + 16m M] RJEJ s 5]+1 = 74(2R])MZKJ’
~ ~ 1 -~ A -
Ciy1=Cj+ %(877@43]-1\4’)37” &, =0 - Nrilﬂ(gm‘*RjM;)?’m &
P (0j4+1/2)"

Prop051t10n 5.2. Let 0 < g,’y,el,hl,51,cl <1, 7 > d, Ml,Rl,Cl > 1, 71 € NT,
7= m27, A C R is an interval, and e],h],N K; M/ R],éj,C]
If &, M{, Ry, 01,71, h1, 01 satisfy

) ] are defined as above.

o

00772 ~ -

&"" < min{ (9R)"CFD, &, (2/mé)) D), (5.9)
& < (YR (16m2 Ry M7 671 "2 (5.10)

then the following holds for j > 1: .

Suppose there exists a disjoint union of intervals AU C A, such that for any AY) e

C(AY)), where C(AY)) denotes the set of all the connected components of AN(j), we have

gotten A; € C“(A(J) GL(m,QC)), F; € s (Td x AW gl(m,C)), with Ajl5, < M,

|Fj|ﬁy‘75j < €, Ej()\) = Y(A;(N) being ((2R; ) 5], ., T1)-transverse on AY) and3;(\) C

D(Rj) for X € ng (AU)).

Furthermore, we assume that for any A € AY), w € T, we have

algj()‘7u)

sup  |[— 7|

0<I<# +1 2%

IN

Cj,

where gj(A,u) = H051,0Z26f}j(>\) (o¢, — €2™gy,)). Then there exists AU C AU such
L1#Lo B o _
that for any AUTD € C(AUTD), there are Ajq € C(%‘;H(A(J“),GL(m,(C)), Y;, Fj11 €

— . 1
C%j75j+1('ﬂ'd x AUTD gl(m,C)), with |Y; |h S S €, such that

e (A + ()P = Aja + B (),
|4 — Aj‘8j+1 < 3]\2]{6]-, and fljﬂ,ﬁ’jﬂ satisfy the same assumptions of flj,Fj with j
being replaced by j + 1, where

AGTD = AUNR,(R), Ry(A) = 7,

ZEJ()
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2
25’n=’1E

with {I }, C AU being disjoint intervals, \I-(j)\ < E;

T and

w1 (R) < 2T1+de(801 IAD| + #C(AD)Y),

#C(AUTD) < 24:C(RV(A)).
5.3. Proof of Proposition 5.1. By the assumption, we have obtained Iz and Az, F,
where for any A € Il5, we have Ay, = diag{ A 11, -, Am i, b 0 Ws, (A). In the sequel,
we fix A € Ilz. Without loss of generality, we assume |Fy|p,, 5, > €m41; otherwise, we
let Apq1 = Am, Fate1 = Fi, and if necessary, we divide A into 1+ {ﬁ] intervals with
equal length less than §,511 as the partition H,;H_l(]X) of A. Then the result follows.
Without loss of generality, we assume that s < m < sgi1.

5.3.1. Step 1: Eliminate the non-resonant terms.

Claim 3. There exists p € {0,1,--- ,m} such that the decomposition Egm) U---u EZ(ZL)
satisfies H( Ny p, Nivpt1, Kom) in Wi ([X)
Proof. Let

mi =max{n € NN [sg,m) : I, > ln},
and if no such n exists, let m; = sx. Then by properties (P3);, and (P4), with m; +1 <
n < m, we have

Sk

A (™ (), 2 (A0)) < 20, — vim, (5.11)
for some Ao € A. By the definition of v,, and ¢, for s; < n < fm and (5.8), we obtain that
% < vp S gy, 10mag, < Gy < 20m™ (5.12)
where ug, is defined as in (5.2). Then by (5.3) and (5.6), we have
— v
16muy,, < 8mém < mK;! < .
m mé R 10Rm(3mNm7m+1)T

Together with (P1),7,-(P2),7, we can apply Lemma 4.1, and then the result follows. O

Then by (5.8), we can apply Proposition 4.1 to Az + Fi(-), and get Ym,fge),FmJ €
I 6 (T x A, gl(m,C)) such that

e (A 4 Fa ()0 = A+ fﬁm’c) + P (),
where A1 = diag{Am,111, ALl 1> | Yalhsn < 6 |f ", b < 3Mpem,
| A1 — Amiils,, < 3Mpem,
|Fm 1|hm+176~ < 3Mm€me—2ﬂh1aﬁ1Nﬁl’p/2ﬁl+l,

(re)

and fg satisfies the properties of "¢ in Proposition 4.1 with N = Ny, ,,a = a5, K =
K. Moreover, if we denote (\) := B(Az 1(N)), and %;(N) := S(Am.1.4:(N)) for 1 < i <
Ly, then by (5.8), we can apply Lemma 3.10, and obtain that

1) Al <M,

2) dpr(3:(\), zf.m’(x)) < 8m2M3 Y™ () C D(R') for A € Wy, (A),

3) X =%,U---UY,, is (v, )-separated in W, (A),
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4) X =%U---UXy is (M’ 84, ¢, 7m)-transverse on A,

where
R' = Ry + 16m*R2 M,?;Le;;;, M’ = My, + 3Men,
V' = vy — 16m2M3 e € ¢'=Cm+ 16m2M5; €,
d = Ciy — 28m+2,, 10m? R3m Mm+1(26_m)r,ﬁ€m’ M = (ZR/)

5.3.2. Step 2: Remove the resonances. Now applying Lemma 4.3 to Az 1 and fr(;e), there
exists Hy, € C}; (T, GL(m, C)), independent of ), such that

H -+ 0) (A + f59 () Hin () = Ao,
with Ap 24 = e2ﬂi<k§’°‘>Am71,ii for some k, € 7%, where k! is independent of A for all
i=1,---,ls, and

2mm Ny, phoy
’Hﬁl‘hm+1 S e m,p erl7

| Az — diag{Am211,-+ » Am 20t Hom < 3(m — 1) M.
Let Fo(-) = H-'(- + @) Faa(-)H(-). Then we have

1+ Arn _9 2m+1 ~ "
m,2|h < [Hp Fialn mem o P A
F m+17 m H hm+1 m+17 < 3M (2 o m
Furthermore, if we denote A7, , := diag{Am 211, ", Am 21505} S(N) = Y (A%, 2(N)), and

3% (A) i= (A2 (N) for 1 <i <z, then the following hold:

Lemma 5.1. The decomposition $(\) = Sy (A\)U---US;_ (\) is (M, 0, ¢, 73 )-transverse
on A, for X € Wy, (A), ©(A) € D(R'), diam(2;())) < ¢, and

| A%, 2155, <M, (N = 2tk (). (5.13)
Proof. Since Ag, 24 = e2mi(k;, O‘>Am71,ii, we can get (5.13) and then by the properties of

2i(A), we have for A\ € Ws_(A), B(\) € D(R'), diam(2;(\)) < ¢’. Moreover, one can
check that for any v € T and A € W;_ (A),

gz()\ju) _ emel(ml—l)( )~ (}\ u)
ReS(Xii(A)’Xij(A)?U) = ezﬁmimﬂ'<ki’°‘>Res(Xii(A),Xij()\);u + (k‘; — k),

where m; = #3; is independent of A and 6, gi(Au) = Hall,gezegi(k) (0p, — €¥™U0y,), and
G #L2
gi(Au) = H% 1y €8 (04, — €2™4gy,). Then the decomposition X(A\) = S1(A) U -+ U
e B
Y. (A) is (M, 5, , s )-transverse on A. O

5.3.3. Step 3: Block diagonalization. We will divide this step into three cases according to

the spectrum of Am o, and one of the following situations will happen:

Casea:sy <m<spy —1and 3;U-- U3, is (/,(')-separated in W;_(A). In
this case, since by (5.8)

(6m* NV~ Y™ ¥ (8(m — D) Mmen)? < 1, 27m2NPR/(3(m — 1)Men)w < 1,
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then Lemma 4.4 applies and there exists Z;z;,1 € Cf (A, GL(m, C)) such that
Z;b,llAmQZm,l = diag{Am 311, A3l >

1 1

with ’ZmJ — Id’gm < 4m]\~4§16§1 and !Am,za,u' - Am,2,ii‘6m < 18mM%6m. Let ls+1 = U,

# s (A) =1, A = diag{Ams11, » Ansinis s
Fai = Z,%,llFngm,l, Zn =" HyZma.

Then
|Apiils, < Mg +20mMZ2es = Mg,
| Fint b1 60 < 6Mie 1+4m8m AP
’Z~ ’hm+1,5' < 2‘H~ ‘hmﬂ < 26tm2m+2 o < 6m+2m+27
Za i g Pl < 3BV O ET T o 2

and the same estimates hold for Zan )
Moreover, B(" D ()) € D(Ry41) for A € Wy, (A), 200+ = 2™ g g™ s
((2Rm+1)m2,5m+1, Cin+1, Tin+1)-transverse on A and (Vim+1, Gmr1)-separated in W

where Rii1,Tma1, Vintl, <m+1,~5m+1 and ¢;541 are defined as in (P4.2)5,41.
Furthermore, for A € W A), 1 <i<lmy,

m—+1 (

A),

m+1(

m—+41 (

N - _ 1 L
dr (50, ST () < 40m2MLer < %.

By the fact that 3; = 2™ k0%, and dy (2;(N), Egm)()\)) < 8m2]\2f%e%m in Wgﬁl([X), we
get that for A € Wy_ . (M)

m+1(

g (S0 (3), 2R B () < Vel

Caseb:sy <m<sg1—land3;U---U 21- is not V', (')-separated in W;_ (11)

",
By (5.8), (5.11), (5.12), and the fact that dH( i(A), X ()\)) < 8m2]\~4%ei~r{m and 3; =
kLY, with 4 = 1,--- | 1z, we have for any A € W ( )

dH(EZ()\),ZZ()\O)) = dH(Ei()\), EZ()\())) < 2Vm1, (5.14)

for some \g € A. Then we can regathering the subsets 21()\), e ,2%()\) so that the
following holds:

)

Lemma 5.2. The set {1,2,--- 1} can be divided into disjoint union
{1727"' 7l1’h} = SIU"'Uglm+17
such that the decomposition 3(\) = X1 (A)U---U Z’:l,ﬁﬂ()\) is (', C)-separated in W (A),
and (M', 65, ¢, m?ry)-transverse on A, where Ly 1 < li, ¢ =m(C' +V 4 4vy,), and
E _ U 2“ = i )2m4r,ﬁcl)m

4 402 (9 RIYM?
s, mirs (2R)

2m2 T2

Proof. We divide the set {1,--- 7} into subsets S, --- , S} such that
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(1) If £ # ¢ belong to the same S;, then there exist £y, 0y, - -+ , ¢ with ¢; = £, £, = ¢, such
that dist(ﬁg (Aj), 2gj+1()\ )) < v/ for some \; € W (A) 3

(2) If ¢ and ¢ belong to different subsets S“ , Sw, then there exists no such path, implying
that dist(3¢(\), e (N)) > v/ for all X € W, (A).

Since $1U- - -UY is not (1, ')-separated in W, (A) and YA € Ws_ (A), diam(2;(\)) < ¢,

then k < I, and we denote lm+1 = k.

Let 3, = =Uies, i Then & = $1U---UY; .. By (5.14) and diam(2;(\o)) < ¢ for A €
W, (A) (Lemma 5.1), we can get that ¥ = Ué”:ll 3 is a (¢, ¢)-separated decomposition
in W (A) where ¢ = m(¢' + v/ + 4vy,,).

Moreover, by Lemma 5.1 and Lemma 3.8, we can get that S =% U---U z’:l,ﬁﬂ is

1SN 2. . g "o Oy 2mirg, I m2m2rm+2
(M, 0, ", m?r; )-transverse on A with ¢’ = ((W) mcl) . O
m

m—+1"

Besides, there exists L;; € GL(m,R) which is the product of elementary matrices that
exchange the rows, with ||Lg| = ||L;']| = 1, such that the conjugated block diagonal
matrix

L-TAL oLlm = : Ay = diag{ Az 411, - ,Am,al,lmﬂl,ﬁﬂ},

has the property that Am74,jj = diag{Am i 11 € Sj}. Let

Ama =Lz AgoLlm, Faa= Lz 'FroLla.
Then we have ’Am74 A als, < 3(m 1)Mmem, and

S(Ama(N) =2V, D(Amai(N) = i)

Since
|Amals, < |Afols, <M, |Ana— Amals, < 3(m—1)Mpéen,
and
EmAM'Y )™ (3 (m — 1) Men)? < 1, 2Tm2MPR (3(m — 1) Mpeq)w < 1,
then by Lemma 4.4, there exists Z;2 € C§ (A, GL(m, C)) such that
Z;L}QAmAZmQ = Am1 = diag{Ami 1,11, A L1l

1
3
ez . Thus, we have

, - o1
with !Am+1,u' — Am,47ii‘6m < 9mM’2em, ’ng — Id‘(;m < 4mM?2e
| Asiiils,y, < Mg, + QOWLM%Em = Mps1.

Moreover, the decomposition L7 +D(\) = Egmﬂ)()\) U ---Zl(:bjll)()\) is (Um+1, Git1)-
separated in W;_ (]X), (2Rm+1)m2,5m,cm+1,rm+1)—transverse on A and for \ € W, ([X),
E(m+l)()\) C D(Rj41), where vg i1, Car1s Rt Catl, Tt are defined as in (P4.1)5,41.

Claim 4. There exists a partition Iz 1(A) of A such that for any A € Tz, 1(A), there
exists \g € A that

A (S, ST (0) < v, YA € Wy
(2m—1)

1 (A)’
where dmy1 = b_lR;l R

3Here, for any Q1,2 C C, we denote dist(Q1,Q2) = infren,,yea.|z — Y.
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Proof. Divide A into 1 + [%] intervals with equal length less than 0441, which is the
partition of A, denoted by Il341(A). For any A € TL;41(A), ﬁ)fing some \g € A, we have
for any \ € W(smﬂ(]\), IA — Xo| < 20741. Since dmt1 < Amwmi;z%"jjém’ then similar as
(3.8), we can obtain the result. O
Now we let Fi41 = Z%}QFmAZm,g, and Zj, = erHmLmng. Then the result follows.

2

Case c¢:m =sk1 — 1. By Lemma 5.1 and Lemma 3.8, f)()\) is (M',07,7 ,m*rgz)-

transverse on A with

Or 4, 2m2 42

~ m m=rg J\m m
c = ((4m47"?h(2R/)m2) c )
~ 1

Denote ¥'(\) := 2(Am2(N)), Rat1 = R + bRZ MAer and

- 2m2ry

&= _ 28771-%—2,rn10m2-l—lR;%hm2 M:hn—l—l( T?(”;j‘m )WQT’m €
m

Then due to the fact that
64m2 MR (3(m — 1) Mes)w < 1, |Ams — AL s < 3(m — 1) M€,

by Lemma 3.10 with [ = 1, we can obtain that ¥'(X\) C D(Ry,41) for all A € Ws_. (A) and
the multiset 3'(X) is ((2Rm11)?, 0, &', m>ry)-transverse on A.
Let 5m+1,7’m+1, VUm+1, Cm+1, Mm+1 and Cim+1 be deﬁNned as~ in (,P3)77l+1. Then by
Proposition 3.1 with v11, there exists a partition I1,541(A) for A with
. A
#Hﬁb-‘rl(A) <1+ uv
Om+1
such that for each A € 5,41 (A) there is a similarity transformation Zy, 3 € s (A, GL(m,C))
such that
Z,%,lgAmzZm,?, = Amy1 = diag{Ami1,11, 5 At Ll 1o o
with [Z5 3055415 |Z;n713|5m+1, | Am1iilsm, < an—i—b Then one can check that A1 €
gjﬁﬂ([&, GL(m,C)) satisfies (P1)p+1 and (P2)m41.
Moreover, there exists \g € A such that the decomposition X"+ ()\g) = ngﬂ)()\o) U
U Z@jll)()\o) is (84441, Gmg1)-separated and VA € W, . (A), we have

ln

an(E D00, 2 () < v
Let 41 = U]\eHmHﬁH-l(A)' Then

Al
01

i = > #lan(d) < Y 0+
AEH'ﬁL AEH’ﬁL
bRO™ M| A 1

< H#I5 + Rm?)—mmH max ———,

Vet A€l 0 (A)

)

since 05 may vary with A € IL;, .
Let
Fa1 = Zr%,lgszZm,?,, Zg =" Hy Z 3.
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By (5.4), (5.5), (5.6), (5.8), and the definition of us, , , in (5.2), we can check that IMpi1 <
€, and the following estimates hold:

Am8™ —2m

’Fm+1‘hm+1,5m+1 < Mm+1‘Fm 2’hm+1, <€ < €m+1,
-2
14+m(4-8™al, —2M T 1m2al, — - —2)
‘Z ‘hm+1 6m+1‘Fm+1‘hm+1757n+1 < €5 < €,
m2m+2 P _m(277L+2am+1) 1
Zlnnssdnan < 2Mtieq, " <€y < Eqpomie

and the same estimates hold for Zm )

To that end, for s < m < sgy1 — 1, in both cases (Case a and b), we can obtain that

~ R2m—1 A R2m 1 A 1
#llir = D #lan(d) < D0 (1+ 7") < #1l + mi“ max
A A m+1(S~ V41 A€ll,;, 5

The proof is finished. O

5.4. Proof of Proposition 5.2: By (5.9) and (5.10), inductively we can check that for
any j > 1,

1 _ e
M| <2Mj, R;<2Ri, §;>¢&7, (@|mgl)t<e ™ (5.15)
Then by (5.10), we can obtain that
7741
(7 +1)! P I
W(Sm R]M]) 6] < E €]+1 ! Ej S ;,

~ ~ 1 ~ 1 =/
which implies that C; < C +2¢7 < 201, and &; > & — 2¢} > 3 by (5.9). Moreover, also
by (5.9), we can check that

1 1
2 107
1007“1 ~ 1071

clKl > € €, >4,
and thus for any j > 1, & > 2K L
5.4.1. Selection of the subset AUTD C AU),

Lemma 5.3. There ezists AU € AU such that for any AUTD € C(AUTD), X €
WSJ-H(AU—’_D); 0 < |k| < Nj, we have

1
|.gj()\’ <k,0[>)| > 2—I{j,
where :
A(]+1) _ A(])\R](A)a ’R,](A) = UZEJ (]\)[(])7
2
with {I }z C AY being disjoint intervals, |I'(j)| < €;5T12’ and

#,8) < 23 AD 1 pea0),

1
#C(AUHD) < 24C(RY(A)).
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Proof. By the assumptions in Proposition 5.2, for any AU) € C(A(j)) and u € T, the
function g;(\, u) is (C'], ;T 7 )-pyartli on AU Since E;- > 2Kj_1, then by Lemma 3.5, for
any 0 < |k| < Nj there is a disjoint union of intervals Uierk(A(j))Ik,i(]X(j)) C AU such
that ’

2K
max |[]“(A(] )| < 2 ), (5.16)
i€J; r(AW) CJ
. 20 + 8C1AV)
] 1

g5\ (k)| > K7t YA € A\ Uy iy Tra(AY)).
Let
Ri(A) = Uaf:o Uit ec(at) Uieryk(]\(j))Ik,i(A(j)) = Uy, (A)I(J)7 AUHD = AU\R;(R).
Without loss of generality, we assume that #.J; k(A j)) > 1; otherwise, we can take an
arbitrary interval Ty 1 (AW)) C AU with |, 1 (AD)| < 2(2K7 )7

Then for any AU ¢ C(AUTD), X € W(;Hl(A(JH)), there exists A € AUFD such that
A — V| < &j41. Since |gj(), u)|3 < (ZRj)mQ, then by Cauchy estimate, we obtain that

ﬂ
H\\H

0 2R; 1
) = 5,00 < [0l - ¥ < B =
which implies that for any 0 < |k| < Nj,
1
’g]()‘a <]€,Oé>)’ > ‘g]()‘,7 <k7a>)‘ - ’g]()‘a <]€,Oé>) - g]()‘,7 <k7a>)‘ > ﬁ
J

Moreover, by (5.17),

IN

) ] L sGHIA
wrd) < @iyt Y oAl
]\(j)ec(A(j))

27 (801 AD)] & #C(A ))

IN

Furthermore, by the definition of AU+Y and #Jj,k(]&(j)) > 1, we can obtain that
#C(AED) <y (L+ #R;(A9) < 2#C(RV (D)),
AW ec(AW)
N _
where #R;(AV)) = \kl o Yies; L(R0) Ik,i(A‘(J)).
To that end, by (5.16), for any interval Ii(]) € C(Rj(A)), we have
1

2K+ 1 — _2‘2_/
(4) J 77 ~1070% 1 257
;7] < 2( = )1 < 8¢; ! A & 1
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5.4.2. Eliminate the non-resonant terms.

Claim 5. For any AU+Y € C(AUTD), X € AUHD | the multiset 3;(\) is

(Nj, (2971 (2R;)™ NT) ™)

-nonresonant with itself.

Proof. First, for any 0 < |k| < Nj, A€ ngﬂ(]\(ﬂ‘l))’ 001,00, € ij()\), if £1 # l5, then

‘g]()V <k7 a>)‘ = ’051 - 627ri<k,a>0,£2’ H ‘0'7;1 — 627ri<k,a>0,i2’
%ip ,o',L-QEij(/\),
i1 #i2,(i1,42)#(€1,42)

< (2Rj)m2—m—1’0,£1 - e27ri<k,o¢)0,£2’7
which, by Lemma 5.3, implies that

. 1
‘0'51 - e27r1(k,a)0,£2‘ > _ :7

m2—m—1 = m2 NT
21 (2R;) 2K, (2R, N

Moreover, for any 0 < [k| < N;, A€ W5 (AU+D) o € 53;(N),

dj41
. 1
|O__e27r1<k,a>0_|2~_‘ /77—2 N/VN > :7 a—
Rj 2kl" T 2R;NT © 2K;(2R;)™* NT
The result follows. O

Then by Definition 4.2 with [ = 1, for any AU+ € C(AUTD), the multiset ¥;()\) satisfies
H(Nj,Nj,?y_lKj(ﬂ%j)mQN;) on ngﬂ(j_X(jH)). Moreover, by (5.10) and (5.15), one can
check that

& < (12m° My~ K (2R;)™ NT) =2,

Applying Proposition 4.1 to flj +Fj, we get Y, ﬁ’j(re), Fjg e Cffj,SHl (T¢x AUTD, gl(m,C)),
such that

e O + F; ()0 = Ay + FO() + Fra (),

1
with ’YJ"BJ-,SJ-H <é, A — AJ”SJ-H < 3MJE;, F; =0, and

<3 ij_e—27rNj(Bj—ﬁj+1)€, <E2 =¢.

’Fj"‘l‘ﬁjﬂ,gjﬂ =~ J J Jj+1

where YJJF() =Y;(-+ a).

5.4.3. Vfrify the propettz‘es of Aji1. By Len}ma 3.10 with [ = 1, since 64m2]\2f]'-2éj(3]\2/]’-€j)% <
1, then ¥, 11(A) € D(Rj41) for A € W5j+1(A(j+1))7 and for any v € T

~ 2 ~ -
‘gj-i-l('? u) - g](7 u)‘8j+1 < 28m+2(m10R§?)m M],-m+16j,
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where iJ-‘rl()‘) = E(Aj-i-l()‘))? and gj+1()‘7u) = H051,0g2€§j+1(>\) (O-Zl o 627riu0.£2). Then for
G105
any u € T, we can obtain that ]gj+1\5j+l < (2Rj+1)m27 and for any A € Wy, | (AUTD) AR,
2

al
sup | 2741 (A w)]
o<i<i ON ! ’
> sup |8—lg()\ u)| — L28m+2(mloé3')m2]\~4l_m+lgl > 6/-
O 0<I<H, ONTT (6j+1/2)f’1 J j J j+1

Thus, ;1 is ((2ﬁj+1)m2,5j+1, &1, T1)-transvers on AU+ € ¢(AU+D). Furthermore, for
any A € AUTD  we also have
o o

(PL+ D! smr2, 10 53ym2 ypme1 -
sup |om g u)l < sup [ (A u)] + g2 TR M e
0<I<# +1 0<I<# +1 o
< éj+1.
We finish the proof. O

6. PROOF OF MAIN RESULTS

In this section, we give the proof of main results. Before giving the detailed proof, we
first state an auxiliary lemma, which will be used to give the useful estimates in KAM
step. Recall that b > (120m)8m3, K> m2m*+10 are constants only depending on m.

Lemma 6.1. Suppose M, > 5 0 <e <1, and © C N satisfies #(O N [sk, Skr1)) < m.
Then for n > 2 we define Ry, M,, d, and ¢, inductively:

Rpy1 =R, + bR,%MjEn% ;
a) Forn = sy — 1, we let
Tn41l = m27”m Un41 = Usy,
Onp1 = b7 R, O™ (1 My )6,
Mn+1 = b(V;ian)Ha
o1 = (U R 0 v M hen S — e,
b) For s <n < sky1— 1 and n ¢ O, we have:
1
Tn+l = Tny, Vntl = Vn — bMée;?,
Ont+1 = On, Mn+1 = Mn + ZOmMsen,
Cntl = Cp — be’Lmz M,T”(%;lrn)r"en.
c) For sp <n < sgy1— 1 and n € O, we have:
2 4
Tntl = M Ty, VUpy1 = Vp — M €7,
Opp1 = b TR Cm=Dyms M, = M, + 20mM?2e,,

Cpil = (b_lR,er;léncn)“r" - (bRnMnéglrn)m”en,
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where b,k are constants only depending on m. Then there exists €, > 0, depending on
m, Ry, My,01,71,¢1,7, T, such that if €1 < €4, then the following estimations hold:

R, < 2R =: R, (6.1)
~ 1

M, < (M %)bslnn bge4\/_ (62)

1 w
8y > 61(M %) bilnng—byetVT (6.3)
2Th1 b5 _peesvE
> Cemvee T 6.4
Cn (Cl ’ log 61‘) € ( )

where b = bg(R,sz,’)/), by = by(R,m,7,7), bs = bs(m,R,~,7,01,71, M) and bg =
bG(m7R7’Y7T7617T17M1)‘

Proof. First, we observe that
< m2(m+1)§n,r.1 < m36m68m(1n m) ln(g)(n),r,1 < d3(m)’f'1 1n(6) (’I’L) (65)

Moreover, by the definition of u,, and ¢, in the beginning of Section 5, there exists €, 9 =
€x,0(m, R1,h1,7,7,) such that if ; < e, 0, we have for any n > 1
1
E;]im < Up41- (66)
Furthermore, there exists n, = n.«(m) € N such that for any n > n,, we have 4" > k + 2.
Therefore, there exists 6*1 = €, 1(m M, R1,hi,, 7) such that if €; < €, 1, then for any

n < n,, we have bM‘lefLm < 1and ™ < vpy1. Then if €; < min{e, o, €1}, we can check
that for any n > 1,

bMAeZ™ < 1. (6.7)
The reason is as the following: By the selection of €, ;, we only need to prove (6.7) holds
for n > n, + 1. Suppose that (6.7) holds for n = j > n, . Then for n = j + 1, if
Sk < J < Sp+1 — 1 for some sg, then we can get that

1 B 47 B -1

b +1e]211 =b(M; + ZOmMJZEj)A‘e]Tm < bM;‘e]?m 24 e < 1.

Otherwise, if j = sx41 — 1, then by (6.6) and the selection of n., we can get

1 47 B 1 47—k

2m _ 1D 4k 4/i 2m “m 4 2m\K, 2m
b € = b 5k+1M <€, (ij e ) et < 1.

Now, for any n > 1, there exists kK € N such that s < n < sgy1. Then by direct calculation
we can get:

In M, < klnM,, 1+ rlnug, L4 In(20)

1
< dim, 7 R7) <'22,?'>+d (m, )N 4 RIn i,
- k1 1
< KFln M, + ~ dy ln(’ nq]) + ds (kP eVEL g R 2eVE g V),

k—1 27Th1
By the fact that /5,51 > eV®F, we obtain that

RFletVon o gh=2e0s g WV < AV ok + 264\/§k,
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where k, is a constant only depending on m. Moreover, by the fact that ké» < x?+2Indr In(®) (n),
where d7 = d7(m) is a constant only depending on m, we can get

i, < by(Rom. ) (O () (i D) v (6
mhy
< oy (m) (5 )

implying that

~ I €e1]py 1n® v
M. < M 3 In (n) bse
"= ( 2mhy )

Then by (6.6) and (6.7), we can get that for any n > 1, when s < n < sg41,

U, > Vp > Vg, — 2627” = U, — 2627” 28’“ (6.9)

Moreover, let €1 < €,3 = R=*m_ Then inductively, we can obtain that for any n € N,
n—1 1
Ry <Ry JJ(1+€F) <R
7=1

Now we denote b = b(2R)%", and by the definition of ,, M, and (6.8), (6.9), we obtain
that for sy <n < sp41,

O > b M, %55, 1 > b2, 2M8k2155k 1> (6.10)
> b (N, M, -+ May) " 2ul” 8

> bl_m2 5—§nm(M ‘2111;1‘ ) 2b3&n ln(6)(n)e—2b3(e4m+e4v Sk*1+~-~+e4\/ﬁ)51
mhy

]111 €1 by In® oAy
> M 4 In'%) (n) ,—bae 5
- ( 2mhy ) € !

~ |Iner|, _p, m® by
> (M 4 In'?) (n) 1€ 51
_( 127Th1) € !

By the above calculation we can find €, = €, (R, m, 7,7, M, 61,71, h1) such that if ¢ < €,
then for any n > 1, we have 4¢*V" < |Ine,| and
1
(bM,, I/n+15 ) ey < €7 (6.11)

Now we will prove the estimation of ¢,. We prove a rough estimation first. Let ¢, =

(b~ vt M e )™ if no= s — 1 or s, < n < spp1 — 1, n € O; otherwise, we let
1

Cn = Cp. Suppose ¢, > 4¢;. Then we have

Cni1 > En — (DMp0, 1) ey > 6, — €2 > ?n

Furthermore, we have

én+1 2 (i) 1 n+15n+1 1I/n+20n+1)nrn+l ( 1b n+15n+1un+2M lén),JnJrl‘ (612)
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Then by the definition of u,, (6.5), (6.8), and (6.10), for s, < n+1 < s+ — 1, we can get

|In Gpyq| < KA (ln(4b) + 7+, +In My + lnu "+ |In cn\) (6.13)

- |
< ds(R,~,7,71,01, M1) In® (n) <1H —|21;21| + Vo |1H5n|> ;
1

and for n = sp11 — 2, we have

. Ine 0 _
| In 41| < dsIn® (n) <ln % +eV" 4 |In cn\> .

Then there exists N, = N,(R,~,7,71,01, M1), such that for n > N, we have dg In® (n) <
48 , which implies
~ 1
Cp+1 > 4534.17

1

for n > N,, provided ¢, > 4e;. For n < N,, by the deﬁnitionlof Cn, there exists €/ =

e;’(R,%T,rl,&,Ml,cl) such that if ¢; < ¢’/ we have &, > 4e) for n < N,. Thus if
1

€1 < min{e, 1, €49, €4 3, €4, €4}, we have &, > 4e,; for any n € N.
Next we will estimate ¢,, more precisely. Suppose that sp —1=:mg <my < --- <my <
Sg+1 — 1 =:myyq, where | < m, and © N [s, Sgr1 — 1) = {m1,ma,--- ,my}. Then for any
1

m; < n < m;y1, by (6.11) and the fact that ¢, > 4e;, we have

L 1 1 1
= - = cm
Cn = Cn 2 Cn— 1_6n 12 "Zcmi+1_2€fni+lzcmi_€3ﬂi_2m+1> 2Z

Then by (6.13), we obtain that

|1H€1|

27Th1

|Iné, 2| <2|Inéy,| < 2dg In® (my)(In + etV5E 4 In 1))

1
< 2dg n® (s, ) (n B2 | s oz, <
27Th1
mt2., | el 4./5% ~
< (2dgInspr)"  (In —— 4+ €V + [Iné, —of) <
2mhy
< ((2dgIn s41)™ 2 + (2dg In sy - 2dg In s3,)™ 2 + .
|
+(2dg In sp1q - - 2dg In 82)m+2) (In e + Vo)
2mhy
+(2dgInsg4q - --2dg In 32)m+2] In ¢, |
In €|
< B(2d)™ 2 (4% ] 2(m+2) (1 Ine| 4/
< k(2dg)™ (4% Inspy ) ( mhic: + Vo)
1
< k(8d8)2(m+2 (2dy /—) (m+2) ( M + etVER),

27Th1 C1
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Then for any s < n < sx11, we obtain that

|Inc,| < 2/Iné, 1] <2|Iné,, o

Ine
< fn(8d8)2(m+2)§n (2d2 @)2(m+2) (ln 2|7Thllc|l + e4\/§)

6 m+2 |Ine| 4./5%
< dgln( )(n)8k+ (lnm+€ k)
by |0 €] 57
5ln ——— + b, .
< n>?ln rhict + bge
We finish the proof. O

6.1. Proof of Theorem 1.4. Since A is analytic in A € A, there exists § > 0 such that
A € C¥(A,GL(m,C)). By (3.3) and (3.4), for any u € T, the function g(A, u) is analytic
in Ws(A). Then by the non-degeneracy of A on A, there exists 0 < ¢ < 6 such that A(\)
is non-degenerate on W; (A) NR with § and r € NT. Let
2
ro=r, 6026/2, 50:(5, h():h,
Ry = max{|Al5,|A7Y 5}, My = (2Ro)™, My = Ro,
and € := |F|ps. By the definition of Ry, we obtain that for any A € Ws(A), u € T,
S(A(N)) € D(Ryg), and |g(A,u)| < (2Ro)™ . Together with the fact A(A) is non-degenerate
on Ws(A) NR, we obtain that X(A(\)) is (Mo, do, co, 7o)-transverse on A.
2
Let
hy=ho, ™ =70, Ri=Ro, M;=(2R)",
vi =uy, (o =10mwy, 6 = b~ ((R§Mo) " w1)*"d,
1\7[1 _ b(Vl—lMO)mz(m-iﬂ), ¢ = (bRoyl—léo—lMO)—r0m3(m+6)CO'
By the definition of u; in (5.2), there exists é,; = €. 1(m, Ro,7,7,h1) > 0 such that if
€ < €1, we have v1 = u; < const - Mg.
Recall that b > 6, where b is the constant in Lemma 3.9. Then by Proposition 3.1

with 2/ = vy, there exists a partition II; of A such that for any A € II;, there exists
Sp € Cg (A, GL(m, C)) such that VA € W, (A)

So tNAMNSo(A) = diag{ AL (V). -+, Ay (W)} =2 Ar(N),
with [Ayils,, [Sols,, S Hs, < Mi, the decomposition X (\) = Egl)()\) U---u El(ll)()\) is
(My,61,¢1,71)-transvers on A and (v1, ¢1)-separated for A € W, (A), where
S == S(A41(N) € D(R1), M) = S(A1a(N).

)

Moreover, we have

#IT, < b(RgMOV;l)?’m% +1,
0

and there exists \g € A such that Egl)()\o) U---u El(ll)()\o) is (8v1, (1)-separated, and for
any A € W, (A), #3:(A) = #%i(\), and

dr (2 0, 50 () <1, VI<i <
Thus, we have (1) holds for A;.
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Let Zy = Sy and Fy = So_lFSO. Then there exists €, 9 = €, 2(m, Ry, 7,7, h1) > 0 such
that if € < €0,

|Inel

4 2
)b  Ro)2m (M2 < o3 = ¢,
4mhy

|F1|h1751 < M12€ = b2((b1
Moreover, we have

-~ 1 _ 1 4,1
|Z0|517 |Z0 1|(51 <g 2= €1 17 |Z0|§1|F1|h1,617 |ZO 1|§1|F1|h1,51 <1

In addition, there exists €. 3 = €. 3(d, Ro,m, T,7,ho,d0,r0,c0) > 0, such that if ¢ < €3,
then (5.6)-(5.8) hold for m =n = 1.

Furthermore, by Lemma 6.1 and the definition of K,,, N, ,, we can get that there exists
€. = é&(d,m,v,7,R,01,h1,71,c1), such that if £3 = €1 < €, then for any n > 1, the
inequalities (5.6)-(5.8) hold.

Let €, = min{e, 1, €4 2,€x3,é2}, and € < €,. Then we can apply Proposition 5.1 induc-
tively. Fix € > 0,¢ > 0. There exists N = N (e¢,d, Ry, m, 7,7, ho, 0, 0) and N5 = N5 (<)
such that if n > N7, then €, < ¢, and if n > NJ, then

= 2
2—2

Furthermore, for the above N3, there exists Ny = N4 (¢) > N such that if n > NJ, then

[\3|~/\

2m+N3+1

< H €j-

j=2m+2

S

€

Now let N = max{N;, N5}. Then there exists a partition IIy_; of A, such that for any
A € TIy_1, there is a sequence of transformations ZjeCy T? x A, GL(m, C)) with
0 <j <N —1, such that

;+15+1(

Z7 A aA) - Zo A (AN + F(A)Zo (5 A) - Zi (5 A) = Ajn(A) + Fia (5 A),
with estimates

‘F}+1’hj+17 Sip1 < €541, ‘Fj-i-llhﬁh S S ‘Fj‘h]ﬁjv

‘Z]‘h]+17 041 ‘Z ’h3+17 041 < 6]—i—2m—i—27
2 2
-1
‘Z ‘h]+17 j+1‘E7+1’hj+17 J+17’ ’h3+1, g+1’FJ+1‘hJ+1, Sit1 <L

Let

~ |1
B=2Zy---Zn-1, W=Ty_1, n=20(M !211;1_] )b N o —baetVV
h1

where by = by(R, m,~,7) is defined as in Lemma 6.1. Then by Lemma 6.1, we have > n.
Moreover,

BT+ a, ) (A\) + F(-,A\)B(-,A) = An(A) + Fy (-, A) = A\ + F(-, ),
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with |F|, /0, < en <€, and

|B|h/2,n|F|2/2,n < |ZO|h1,51 T |ZN—1|hN76N|FN|§LN,6N
2m+Nj+1 N—1

S
< H Ej ]2;[ H |Z |hg+17 g+1)|FN|hN SN
Jj=2m+2 Jj=Nj3
N—-1 2 N-1 2
-

< H (’Zj’hj+1,5j+1’FN‘}JLN75N) < H ’Z ‘h]+17 0j= 1‘F1]+1’hj+1 5J+1) <L

j=N3 J=N3

We can also get |B71|, /2777\13’ 15, Jo.y < 1 similarly, and finish the proof. O

6.2. Proof of Theorem 1.3: The main idea of the proof is the following: we will first
apply the stratified quantitative almost reducibility (Proposition 5.1) to make the per-
turbation small enough with the prescribed estimates, then we apply Proposition 5.2 to
obtain full measure reducibility set, and finally we estimate the Hausdorff dimension of the
parameter set for irreducible cocycles.

6.2.1. Reduce the perturbation with all parameters. Let |F|j 5 < €, where €, is defined as in
Theorem 1.4. By Proposition 5.1, there exists a sequence of partitions {Hn}n~€N of A such
that on each A € II,,, there exist B,, € C’;jn’(;n('ﬂ'd x A, GL(m,C)), A, € Cf (A, GL(m,C))
and F,, € C} 5 (T4 x A, gl(m, C)) such that
Bil(’ +a)(A+ F())By(-) = An + Fu(),

with |[Fyln, s, < €n, and |Ayls, < My, A, = diag{An11,-+ » Ansr, }, SO = =M (M) U

U El(n)()‘) (2R,)™ , 81, Cn, T )-transverse on A, and £ (X\) C D(R,,) for A € W, (A).
Moreover, for n = s, we have
bRO™, ]\43m 1A 1

_max

II,, < #I11,,_1 + -
# # ! Aell,_1 Op— 1(A)

3
vy
and for sp < n < sgi1, we have

411, < 1ty 4 2R A !
_ — maxX —m——.
e Vﬁ” Aell,—1 6p—1(A)

Then by Lemma 6.1 and the definition of v,,, we can obtain that for s <n < sp41,
bR6mM3m 1A 1 M3m 1Al 1
#1I, <1+4+n —-~max — < T max ———,
(usk/2) Aell,—1 6p—1(A) Us, A€M, —; 6p—1(A)

where b = b(2R)5™.

(6.14)

6.2.2. Remove the set of parameters that resonant may occur. Now for any 0 < o < 1, >
8
0, let nz = £3. Due to the fact that

o 0 om?—2m
100m4rZ 100mAr2d2
€~ m 173

m — *1 ’

by (6.5), there exists m, ; € N such that for any m > m, 1,

0 ~L
100m4 7“2

€0 m <min{%, (OR:) ") (2] Ineg )=+, (6.15)
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Moreover, by (6.14) and Lemma 6.1, there exists m, 2 € N such that for any m > m, 2,

AL 2 rat 3 (A 4+ 1) (m2rg + 1)1(2Rm)™ o,

: , (6.16)
T R
5 4, 2m2r; +2
where C;ﬁ = ((W)m T7’Lcm)m .

Let m, = max{m* 1, My 2}. For any A e IT,,,, we consider the properties of A,,, €
s (A GL(m,C)), Fy, € Cy 75 (T? x A,gl(m,C)). By Lemma 3.8, the multiset
E(m*)()\) is (2R )™ 6., . ¢, rh, )-transverse on A, where 1/, = m?r,,,, and R(™)()) :=

Y (A, (N)). Moreover, let

gy = [ (i o),
oo en(me) (),
i#£]

Because |gm, (A, u)ls,,, < (2R, )™, then for any A € A, u € T', we have

dgr(Nu), _ (r,, +1)! 2
su < . 2R, = Ch,.
0§[<7np +1| aAl | — 6;;’2*_;’_1 ( )
Then by (6.15) nd (6 16), we can apply Proposition 5.2 to A,,,, Fi,, inductively and get
the sets AUTD) = AUN\R;(A) for j € N, where A1) = A, R;(A) = Uier(A)Ii(J)7 with
22 (% Jj—1
19| < el : (6.17)
g ed 8Cm ‘
#J5(A) < 2 HINF (= AD + e (AD))), (6.18)
#C(AUTD) < 2¢0(RV(A)). (6.19)
Let
Rj = Usen, Ri(d), R=UZR;.
Then for any A € A\R(A), there exists By € C’“ _(T4,GL(m, C)) with |B>\|hm*/2 < 2,

such that
By + a)(An, (A) + Fpn, (5 N)Ba() = AN,
where A()\) € GL(m, .C) and JAN) = A, V)| < 6Mip, €, -
Let By = B, (\)By. Then we have BA € Cpy(T 4 GL(m,C)), and for any A € A\R,
By (- +a)(AQN) + F(5 A)BA() = A(N).

6.2.3. Estimate the Hausdorff dimension of the removed set. Denote S C A as the set of A
such that for any A € S, the cocycle (o, A(A) + F(+,A))) is not reducible to some A()) €
GL(m,C) with A()A) having simple eigenvalues. Then we have the following observation:

Claim 6. S C R = Uj2 R,
Proof. Indeed, by Lemma 3.10 with [ = 1 for fixed A, we obtain

1

~ - 1
di (2 (N), 2(N) < 12m2 M2 e, < ear,
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where 2()\) := X(A())). Moreover, by Lemma 5.3, for any A € A\R, we have |g,, (A, 0)| >
1

67172:4”* /2. Then for any oy, , 0y, € Z(m*)()\) with {1 # {5, we have
1

rm* 2
em.” /2 < |gn. N0 = ] loi o5l < @Ru)™ " ow, — 0w,

oo €2 (),
i#]

which implies that

#
IOrm*
M 5m?2 Tk

> m*
‘ - 2(2R )m —m—1
Therefore, for any &,, 6, € X(A(N)) with £; # £y, we have

’051 — 04y

1
1
) 1
5o, — G, > emr ™ —2e27 > 0,

meaning that A(\) has simple eigenvalues, and thus A\R C A\S. O

Recall the Hausdorff dimension of a subset is defined as in Definition 2.1. Now we give
Hausdorff p-dimensional measure estimate of S for any 0 < o < 1, and finish the whole
proof. We first estimate the number of the removed sets.

Claim 7. #C(R;) < #11,,. - (2 +4H3C,, (|A] + 1)1V [T,

Proof. Recall that C(R;) denotes the connected component of the set R;. By (6.18) and
(6.19), we can check that

#C(R;) < D #C(R;(A))

]\Enm*

< Y 2RO A0 4 o))
AAW)eMy, cm,
< 2rmtdNd <8Cm* A| + 2#C(R; )>
Cm*
< 2 (A 4 1) Clp, ¢ NTHC(R; 1),

Consequently, we can estimate:

#C(Ry) < (2030, (IA] + 1) YN - N #C(Ry)

J
< #0200 (A + 1) H

Note by (6.15) and (6.17), for any interval I € C(R;) with j > 1, we have
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Then by Claim 6 and Claim 7, combining (6.15), (6.16) and (5.15), we can obtain that

29 3yj—1

Hp (S) < Z Z |[|Q<Z#C 25,% (3)

J=1IeC(Ry)
_ =, '(g)j’1

< (L PG, (A + 1)) H N{')em.

j=1 =1

0 WJ (2-3(3)7~ )ﬁ%— 25% (37~
< Zem* €m., €m,

j=1

- 100352 (3) 100% -
< €m, < 2€m, ™ <E.

j=1

Since & > 0 is arbitrary, then H2(S) = 0. Also by the arbitrariness of 0 < ¢ < 1, we obtain
that dimy(S) = 0. The proof is finished. O

6.3. Proof of Theorem 1.1 and 1.2: Our proof is based on Aubry duality. Note IDS
is invariant under Aubry-duality (c.f. (2.3)). Thus in order to prove Theorem 1.1 and
Theorem 1.2, we only need to prove the absolutely continuity of IDS for the corresponding
dual operator:

Theorem 6.1. Let o € DCy(7y,7) and W € C¥ (T4, R). There exists g = €o(d, 7, T, Vi, W),
such that if |e| < g, then the IDS for (2.2) is absolutely continuous for any E € R.

The basic observation is that if € is small, then the corresponding cocycle (o, A.) of
(2.2) can be viewed as perturbation of constant cocycle (o, A(E)) where

Ve o 0 B Ve Ve Ve
1
A(E) = 1 : (6.20)
1
1
1 0

and it is non-degenerate:

Lemma 6.2. Let A = [a,b]. Then A(E) satisfies the non-degeneracy conditions (1.4) on
A with some ¢ > 0,7 € NT,

Proof. We first prove that for any v € T, g(F,u) = 0 holds for at most finitely many
E € A. Indeed, we have

Claim 8. For anyu €T, o4,,0¢, € Y(A(E)) =: X(E) with £y # Lo, there are only finitely
many E € A, such that

oo, (E) = 62““‘0’@2 (E).
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Proof. Denote
fo(z) =det(zI — A(E) = [ (z—00).
UiGE(E)
By direct calculation, we can get that

)4
Vefe(z) = Y Vizdt — B2 (6.21)
j=—t

Case a: u € T\Z. On one hand, if oy, (E) = ¢*"“g, (E), then we have

I1 (oi =€ a0,) =0, (6.22)
0226#22(2E)

implying fg(e*™“ay,) = 0. Moreover, we have fg(oy,) = 0. Then oy, (E) is a solution of

the equation
fe(z) = fe(e¥™2) = 0. (6.23)
On the other hand, because detA(E) # 0, if zp is a solution of (6.23), then zy # 0 , and
by (6.21), it satisfies the following equation
l
Z (1 - e27riju)‘7jzj+€ = 0.
j=—2
Since the above equation is polynomial in z with degree 2¢, it only has finitely many
solutions, implying (6.23) only has finitely many solutions. Since by (6.21), for z # 0
and E # E', we have fg(z) # fr/(2), then (6.23) has different solutions for different FE.
Therefore, there are only finitely many FE such that (6.23) has a solution.
Therefore, there are only finitely many E € A, such that oy, (E) = ™y, (E).

Case b: u € Z. If 0y, (F) = €*™%g,(E), then 04, (F) is a zero of fg(z) with multiplicity
at least 2, meaning that it is a solution of the following equation
fe(z) = fp(z) =0. (6.24)
On the other hand, if zy is a solution of (6.24), then zy # 0 and it satisfies

l .
> Ji
j=—t
which also has finitely many solutions. This also implies that there are only finitely many
E € A, such that oy, (F) = €™y, (E). We finish the proof. O

Therefore, by the definition of g(F,u), for any v € T, g(F,u) = 0 holds for at most
finitely many ' € A. This implies the result. The reason is the following: Otherwise, for
Vn € N, there exist u, € T, E,, € A such that

oax | =g 1<

Because A x T is compact, then there exists a subsequence of {(Ey, upn)}n that converges,
say to (Eo,up) € T x A. By (3.3), (3.4), Lemma 3.4, and the fact that detA(E) = %, we
0
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d'g(E,u)

51 1s continuous in E

can obtain that g(F,u) is a polynomial in E and e?™*. Thus,
and u, implying that for any [ > 0,
0'g(Eo, uo)
OF!

Since g(E, ug) is a polynomial in E, then ¢(E,ug) = 0 for E € A, which is a contradiction.
O

=0.

Proof of Theorem 6.1: Let ¥., C A be the spectrum of the operator (2.2), where
A C R! is a bounded interval. Let F(0) = (F;;(0))1<i j<oe, where Fi,(0) = —%5(9), and
other elements Fj; = 0. Then one can rewrite (a, A;) := (a, A(E) + F(-)), and by Lemma

6.2, A(F) satisfies the non-degenerate condition on A with some r € N, ¢ > 0.
By Theorem 1.3, there exists £; = &1(a, d,V, W) > 0 such that for |¢| < &7, there exists
S C A such that for any E € A\S, there exists Bg € C¥(T? GL(2¢,C)) such that

Bg'(-+ a)(A(E) + F())Bg(-) = D,

where D = diag{\1, -+, Aog} with \; # \; fori # j. For 0 < e < max{||Bg|lg*, || Bz o'},
we have
By'(- + )(A(E +i€) + F(-))Bp(-) = Dp + Fp(),
, -1 .
where || Fpo < %e —: C(E)e (< V7 'el/2),
For any E € C, the ¢-th iteration of the cocycle (o, Ac(E,-)) is a symplectic cocycle
[42]. Then the Lyapunov exponents of the cocycle (a, A-(E,-)) appear in pairs +7;(j =

1,--+,¢), implying 4 = E§:1 7vj» where 4 is the fibred entropy of the corresponding cocycle.
Therefore, we have

5(E +i€) = lim 1/ I [[AYDp(I + Dy Fg))(6;n)||d6
Td

n—oo M,

1 1 ,
< lim —/ In A |"d0 + lim —/ I [[AC(I + Dy Ep) " do
Td n—00 N Jrd

n—oo N
<A(E) + |1+ Dy Fillo
< A(E) +LC(E)e.
Thus by Thouless formula (c.f. (2.4)), we have

s 1 €2 o
Y(E +ie) —F(F) = 5 /ln(l + m)dN(E )
> 1%2(/\7(15%) — N(E —¢)).

Hence, for any E € ¥\S, N(E) is Lipschitz continuous. So if we decompose N = Nyo+ N,
we know S is a support of Ny. To complete the proof, we recall the Holder continuity of

N(E):

Lemma 6.3 ([38]). For any 0 < n < 25, N(E) is (5 — n)-Holder continuous for |e| < e,
in the sense that
~ ~ 1
N(E) — K(E)| < CLE - B3,
for any E,E" € R, where e, = e,(a, V, W, 1) and C, = Cy(a, V,W).
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Now due to S is a set with Hausdorfl dimension zero, then for V¢ > 0 we can find a
cover of S, denoted by {U;}:2,, such that

22 diam(U;) 3 < C7 .

We let |e] < ep = min{€y,¢e.}, where ¢, is defined as in Lemma 6.3. Then by Lemma 6.3
with 7 = &, we have

40>
N(S) < £2,N(U;) < €522, diam(U;) 7 < C.
Then by the arbitrariness of { > 0, we get N. s(S) = 0 and the result follows.
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