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ABSOLUTE CONTINUITY OF THE INTEGRATED DENSITY OF

STATES IN THE LOCALIZED REGIME

JING WANG, XU XU, JIANGONG YOU, AND QI ZHOU

Abstract. We establish the absolute continuity of the integrated density of states (IDS)

for quasi-periodic Schrödinger operators with a large trigonometric potential and Dio-

phantine frequency. This partially solves Eliasson’s open problem in 2002. Furthermore,

this result can be extended to a class of quasi-periodic long-range operators on ℓ2(Zd).

Our proof is based on stratified quantitative almost reducibility results of dual cocycles.

Specifically, we prove that a generic analytic one-parameter family of cocycles, suffi-

ciently close to constant coefficients, is reducible except for a zero Hausdorff dimension

set of parameters. This result affirms Eliasson’s conjecture in 2017.

1. Introduction

1.1. Quasi-periodic Schrödinger operator on ℓ2(Z). Consider the one-dimensional
quasi-periodic Schrödinger operator

(Hε−1V,α,xu)n = un+1 + un−1 + ε−1V (x+ nα)un, n ∈ Z, (1.1)

on ℓ2(Z), where the phase x ∈ T, the frequency α ∈ R\Q is irrational and the potential
V ∈ Cω(T,R). The Almost Mathieu operator (AMO), given by:

(H2ε−1 cos,α,xu)n = un+1 + un−1 + 2ε−1 cos 2π(x+ nα)un, n ∈ Z,

is the most well-known example of the class of operators described above, where V (x) =
2 cos(2πx). Peierls [56] originally introduced it as a model for an electron on a 2D lattice,
subject to a homogeneous magnetic field [43, 59]. These operators have drawn significant
attention, not just because of their importance in physics [1, 13, 54], but also as fascinating
mathematical objects [4, 8, 11, 12, 45, 47].

Our focus is on investigating the regularity of the integrated density of states (IDS). The
IDS can be regarded as the average spectral measures of an ergodic family of self-adjoint
operators {Lx}x∈X over x:

N (E) =

∫

x∈X
µx(−∞, E]dx,

where µx is the associated spectral measure of Lx. Understanding the regularity of IDS,
including absolute continuity [5, 7, 36, 41] and Hölder continuity [2, 9, 10, 40, 41], is a
significant area of research in the spectral theory of quasi-periodic Schrödinger operators.
It is closely linked to other important topics, such as homogeneous spectrum [25, 26, 51],
Parreau–Widom condition [10], and Deift’s conjecture [14, 51].

This paper will specifically address the absolute continuity of the IDS. As it is common
knowledge, the pure absolutely continuous spectrum [4, 5, 9, 27, 28] leads directly to the
absolute continuity of the IDS. In the regime where the Lyapunov exponent is zero, Kotani
[48] proved a more deeper result: the absolute continuity of the IDS is equivalent to the
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absolute continuity of the spectral measures for almost every phase. Nevertheless, in the
regime where the Lyapunov exponent is positive, the spectral measure is typically singular
[17, 18, 29, 41, 45]. For instance, Eliasson [29] established that Hε−1V,α,x has pure point

spectrum for almost all x when ε is small, and α is Diophantine. Recall that α ∈ Td is
Diophantine (denoted as DCd := ∪γ,τDCd(γ, τ)), if there exists γ > 0, τ > d− 1, and

inf
j∈Z

|〈k, α〉 − j| ≥ γ

|k|τ , ∀k ∈ Zd\{0}.

In such cases, determining whether IDS is absolutely continuous presents a highly chal-
lenging obstacle, as Eliasson identified in his famous open problem:

Problem 1.1 ([52], Problem 4.2.1, Eliasson). What are the properties of the map E 7→
N (E) when |ε| is small? Is it singular continuous? Absolutely continuous?

In this paper, we answer his question for trigonometric polynomial potentials:

Theorem 1.1. Suppose that α ∈ DC1 and V (x) is a trigonometric polynomial on T. Then
there exists ε0 = ε0(α, V ) > 0 such that N (E) of (1.1) is absolutely continuous if |ε| < ε0.

Let us take a moment to briefly revisit the previous research concerning the absolute
continuity of IDS in the localized regime. There are two categories of results. The first cat-
egory is for a fixed analytic potential. In the positive Lyapunov exponent region, Bourgain
and Goldstein [18] proved that Hε−1V,α,x has Anderson localization for almost all Diophan-
tine α at any x. Suppose that V (x) is a small perturbation of a trigonometric polynomial;
Goldstein and Schlag [41] further proved that N (E) of (1.1) is absolutely continuous for
almost every α.

A separate category pertains to a fixed α ∈ R\Q. For AMO, Jitomirskaya [45] proved
that if |ε| < 1, then H2ε−1 cos,α,x displays Anderson localization for almost all x when
α ∈ R\Q. Moreover, Avila and Damanik [7] demonstrated that N (E) exhibits absolute
continuity iff ε 6= ±1. Ge, Jitomirskaya, and Zhao [36] established that when a strong
Diophantine α is fixed, the IDS of analytically perturbed non-critical AMO is absolutely
continuous provided the perturbation is sufficiently small in a non-perturbative sense.

In summary, for a fixed Diophantine frequency, previous studies are all restricted to
cosine or cosine-like potentials within the region of positive Lyapunov exponents. However,
for general analytic potentials, the results are measure-theoretic in α, which depend on the
potentials in a very implicit way. By contrast, our study works for any fixed Diophantine
frequency, and fixed trigonometric polynomial.

1.2. Quasiperiodic long-range operator on ℓ2(Zd). It is worth noting that our re-
sult is applicable to quasi-periodic operators located on ℓ2(Zd), not just one-dimensional
Schrödinger operators on ℓ2(Z). More specifically, we study the following quasi-periodic
operator:

(LW
ε−1V,α,xu)n =

∑

k∈Zd

Ŵkun−k + ε−1V (x+ 〈n, α〉)un, n ∈ Zd, (1.2)

where V ∈ Cω(T,R), and W (θ) =
∑

k∈Zd Ŵke
2πi〈k,θ〉 is real analytic on Td = Rd/Zd,

and (1, α) ∈ R1+d is rationally independent. There has been extensive analysis of the
localization problem of (1.2) inspired by the pioneer works of Fröhlich, Spencer, Wittwer
[35] and Sinai [60]. Several studies have focused on C2-cos type potentials [22, 24] or just
V (x) = 2 cos(2πx) [19, 21, 37, 39, 46].
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Though Bourgain [17] provided evidence, little advancement was observed if V is a
general analytic potential. For a fixed phase x ∈ T, Bourgain [17] proved that the operator
(1.2) has Anderson localization for a positive measure set of α if |ε| is sufficiently small.
While the conceptual belief is that the answer is affirmative, it is still unresolved whether
the operator (1.2) undergoes Anderson localization for almost all x ∈ T, when α ∈ DCd is
fixed.

At this point, it is reasonable to inquire whether N (E) exhibits absolute continuity in
the localization regime for (1.2), similar to Problem 1.1. In this paper, we address this
inquiry in circumstances where V is a trigonometric polynomial.

Theorem 1.2. Fix α ∈ DCd. Suppose that W (θ) is analytic on Td, and V (x) is a
trigonometric polynomial on T1. Then there exists ε0 = ε0(α, d, V,W ) > 0 such that N (E)
of (1.2) is absolutely continuous, provided |ε| < ε0.

Remark 1.1. To the best knowledge of the authors, this gives the first result of the absolute
continuity of IDS for quasi-periodic long-range operator on ℓ2(Zd) with d > 1.

We will now briefly outline the main ideas of the proof. Two methods have previ-
ously been established for examining the IDS’s absolute continuity in the localized regime.
The first one, developed by Goldstein-Schlag [41], utilizes the large deviation theorem
and avalanche principle for the operator’s truncated determinants. However, due to the
problem with "double resonances", an unknown zero measure set of frequencies has to be
removed [17, 18, 41]. Ge-Jitomirskaya-Zhao [36] presented another method, which is sup-
ported by the fundamental observation made by Sodin-Yuditskii [61, 62] that the spectral
measure is absolutely continuous if the normal boundary’s real part of the Borel transform
of the measure is integrable, and its topological support is homogeneous. Nevertheless,
the aforementioned method is only applicable to Schrödinger cocycles with an accelera-
tion of 1. This paper introduces a novel method, which is based on reducibility theory
and Aubry duality. As demonstrated, proving the absolutely continuous nature of IDS
requires proving the reducibility of its dual quasi-periodic cocycles beyond a set of ener-
gies with zero Hausdorff dimension. We also note that all previous research [7, 36, 41]
pertains to one-frequency and is non-perturbative in nature (the smallness of ε does not
depend on α), whereas our research includes the multiple-frequency setting. Nonetheless,
non-perturbative results should not be anticipated in this case [16].

1.3. Stratified quantitative almost reducibility. Let’s explain the concept of reducibil-
ity and our precise results. We denote GL(m,C) as the set of all m × m invertible ma-
trices. For any rationally independent α ∈ Rd and A ∈ Cω(Td,GL(m,C)), the analytic
quasi-periodic GL(m,C)-cocycle (α,A) : Td×Cm → Td×Cm is defined as the skew product

(x, u) 7→ (x+ α,A(x)u).

A GL(m,C)-cocycle (α,A) is said to be Cω reducible, if there exists B ∈ Cω(Td,GL(m,C)),

Ã ∈ GL(m,C), such that

B−1(x+ α)A(x)B(x) = Ã.

From now on, we will always assume α to be Diophantine.
The earliest result of local reducibility was due to Dinaburg and Sinai [27]. They demon-

strated that if the potential satisfies the assumptions of being analytic and small, then for
a positive measure set of energies E, the Schrödinger cocycle is reducible. Eliasson [28],
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under the same assumptions as Dinaburg and Sinai, showed that the Schrödinger cocycle
is reducible for a full measure set of energies E. The proof is based on what is known
"resonance-cancellation” technique, which originated from Moser and Pöschel’s [53] re-
search. Following this, Eliasson made a well-known conjecture [30, 32]: that a generic
one-parameter family of analytic cocycles, which are close enough to constant coefficients,
is reducible for a.e. of the parameters. Krikorian proved this conjecture in linear systems
with coefficients in so(3) and Lie algebra of compact semi-simple Lie group in general
[49, 50], and it was further verified in linear systems, taking values in gl(m,C) [44].

Eliasson [33] recently presented a new conjecture during the conference in memory of
Jean-Christophe Yoccoz:

Conjecture 1.1 ([33]). The Hausdorff dimension of the complementary set of parameters
for reducible cocycles is zero.

Our paper aims to prove this conjecture. We will firstly provide necessary notations to
clarify our approach. Let Λ ⊆ R be a bounded interval and A : Λ → GL(m,C) is analytic
in λ ∈ Λ. Denote Wδ(Λ) := {z ∈ C : dist(z,Λ) < δ}. For any analytic ∗-valued function
f : Λ → ∗, where ∗ can be R,C,GL(m,R),GL(m,C), we set

|f |δ := sup
z∈Wδ(Λ)

‖f(z)‖,

where ‖ · ‖ denotes the absolute value or matrix norm correspondingly, and we say f ∈
Cω
δ (Λ, ∗) if |f |δ <∞. For an integrable ∗-valued function f : Td × Λ → ∗, let

|f |h,δ := sup
z∈Wδ(Λ)

|f(z)|h,

where h, δ > 0, and for any integrable function g : Td → ∗ we set

|g|h :=
∑

k∈Zd

‖ĝ(k)‖e2π|k|h,

with ĝ(k) =
∫

Td f(φ)e
−2πi〈k,φ〉dφ, and ‖ · ‖ denoting the absolute value or matrix norm

correspondingly. We say f ∈ Cω
h,δ(T

d × Λ, ∗) if |f |h,δ <∞.

Denote Σ(A(λ)) =: Σ(λ) as the set of eigenvalues of A(λ) ∈ GL(m,C), and for any
u ∈ T, let

g(λ, u) =
∏

σi,σj∈Σ(λ),

i6=j

(σi − e2πiuσj). (1.3)

Definition 1.1. We say that A(λ) satisfies the non-degeneracy condition on an interval
Λ, if there exists r ∈ N+, c > 0 such that for ∀u ∈ T, the following inequality holds for all
λ ∈ Λ,

max
0≤l≤r

|∂
lg(λ, u)

∂λl
| ≥ c, (1.4)

where g is defined as in (1.3).

We can now declare our reducibility result.

Theorem 1.3. Let h > 0, α ∈ DCd, and Λ ⊂ R be an interval. Suppose that A ∈
Cω(Λ,GL(m,C)) is non-degenerate on Λ in the sense of (1.4) with some r ∈ N+, c > 0.
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Then there exists δ > 0, ε0 = ε0(α, d,m, δ, h, r, c, |A|δ , |A−1|δ) > 0, and S ⊆ Λ with Haus-
dorff dimension zero, such that if F ∈ Cω

h,δ(T
d×Λ, gl(m,C)) satisfying |F |h,δ ≤ ε0 and λ ∈

Λ\S, the cocycle (α,A(λ) + F (·, λ)) is reducible, i.e., there exists Bλ ∈ Cω
h
4

(Td,GL(m,C))

such that

B−1
λ (·+ α)(A(λ) + F (·, λ))Bλ(·) = Ã(λ) ∈ GL(m,C).

In addition, the Ã(λ) has simple eigenvalues.

Remark 1.2. The non-degenerate condition (1.4) is generic in Cω(Λ,GL(m,C)) [44], and
thus Theorem 1.3 solves Eliasson’s conjecture (Conjecture 1.1).

We would like to provide some insight on both our result and its proof. Specifically, we
in fact prove a bit more, i.e., non-reducible cocycles and reducible cocycles with multiple
eigenvalues form a zero Hausdorff dimensional set, and this is essential for our spectral
applications. Additionally, a crucial aspect of our proof involves demonstrating strong
almost reducibility in the strip |ℑz| < h

2 for any λ ∈ Λ to establish the analytic reducibility

of the cocycle (α,A(λ) + F (λ, ·)) in the strip |ℑz| < h
4 for any λ ∈ Λ\S.

Recall that (α,A) ∈ Cω(Td,GL(m,C)) is almost reducible if there exist Bj ∈ Cω
hj
(Td,

GL(m,C)), Aj ∈ GL(m,C) and Fj ∈ Cω
hj
(Td, gl(m,C)) such that

B−1
j (x+ α)A(x)Bj(x) = Aj + Fj(x),

with |Fj |hj
→ 0 and Aj → A∞ ∈ GL(m,C). If hj → 0, then (α,A) is said to be

(weak)-almost reducible or C∞ almost reducible; if hj → h∗ > 0, then (α,A) is said to be
(strong)-almost reducible. We in fact have the following:

Theorem 1.4. Suppose all assumptions of Theorem 1.3. If F ∈ Cω
h,δ(T

d × Λ, gl(m,C))

satisfies |F |h,δ ≤ ε0, where ε0 depends on α, d, h, δ,m, c, r,A, then for every ς > 0, ǫ > 0,
there exists a partition of Λ, denoted by Π, and η = η(ǫ, ς, α, h, δ,m, c, r,A) > 0, such that

for every Λ̃ ∈ Π, there is B ∈ Cω
h/2,η(T

d × Λ̃,GL(m,C)) such that

B−1(·+ α, λ)(A(λ) + F (·, λ))B(·, λ) = Ã(λ) + F̃ (·, λ),
where |F̃ |h/2,η < ǫ, |B|h/2,η|F̃ |ςh/2,η < 1 and |B−1|h/2,η|F̃ |ςh/2,η < 1.

Remark 1.3. We will prove a stratified and quantitative almost reducibility result, and the
precise version can be seen in Proposition 5.1.

Remark 1.4. With minor modifications, the conjugation can be defined in any strip with
width h∗ < h, not necessarily h

2 .

We shall provide an overview of previous results about almost reducibility. Eliasson
[28] demonstrated that if an SL(2,R) cocycle is close to constant, then it is (weak)-almost
reducible. Leguil, You, Zhao, and Zhou [51] later proved the (strong)-almost-reducible
version (see also [20]). While these results are perturbative (dependent on α), the non-
perturbative version such as the one-frequency case was proved by Avila and Jitomirskaya
[9]. We must also note that Avila’s Almost Reducibility Conjecture(ARC) is the global
version of almost reducibility. It states that for any subcritical cocycle, (strong)-almost
reducibility holds. The proof of ARC was announced in [3] and set to appear in [5,
6]. To understand its various spectral applications, one may refer to the survey [63].
Furthermore, Eliasson demonstrated (weak)-almost reducibility for quasi-periodic cocycles
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that take values in higher dimensional groups GL(m,R) close to constants. Recently, the
(strong)-almost reducibility in this context has also been established [23, 38].

In conclusion, we would like to address the proof. Despite the lack of explicit mention,
it has been shown that Conjecture 1.1 holds for the SL(2,R) group case by Avila in [4].
His proof strongly depends on the existence of fibred rotation number. However, in higher
dimensions, the concept of a fibred rotation number is non-existent. While the Maslov
index can be defined in the context of symplectic groups [34, 55], it is not sufficient for
reducibility as it involves all eigenvalues {σi(λ)}i of the constant part. In higher dimen-
sions, a more detailed comprehension of the non-reducible set, or the exceptional set S, is
required. This kind of stratified almost reducibility was initiated by Krikorian [50]. Dif-
ferent from [50], we are able to give quantitative (strong)-almost reducibility for GL(m,C)
cocyles, while the almost reducibility result in [50] is the weak version and restricted to
the semi-simple case. As highlighted in [63], quantitative estimates are crucial for spectral
applications. With the scheme we have developed in this paper, it is our expectation that
further applications can be explored.

2. Preliminaries

2.1. Linear cocycles. We consider the linear cocycle (α,A) : Td×Cm → Td×Cm defined
as

(θ, u) 7→ (θ + α,A(θ)u).

The cocycle iterations are given by (α,A)n = (nα,A(·;n)), where






A(θ;n) = A(θ + (n− 1)α) · · ·A(θ) n > 0,
A(θ;n) = Id n = 0,
A(θ;n) = A−1(θ + nα) · · ·A−1(θ − α) n < 0.

Let γ1(α,A) ≥ · · · ≥ γm(α,A) be the Lyapunov exponents of (α,A), repeated according
to their multiplicity, i.e.,

γk(α,A) = lim
n→∞

1

n

∫

Td

ln(σk(A(θ;n)))dθ,

where σ1(B) ≥ · · · ≥ σm(B) are singular values of a matrix B ∈ GL(m,C). For a

matrix B ∈ GL(m,C),
∏k

j=1 σj(B) = ‖ΛkB‖, where ΛkB is the k-th exterior product of
B. Therefore, we have

Σk
j=1γj = lim

n→∞
1

n

∫

Td

ln ‖ΛkA(θ;n)‖dθ.

2.2. Aubry duality. Let V (x) =
∑ℓ

k=−ℓ V̂ke
2πikx. Suppose that the quasi-periodic long-

range operator

(LW
ε−1V,α,xu)n =

∑

k∈Zd

Ŵkun−k + ε−1V (x+ 〈n, α〉)un, n ∈ Zd, (2.1)

has a Ck quasi-periodic Bloch wave un = e2πi〈n,θ〉ψ(x+ 〈n, α〉) for some ψ ∈ Ck(T,C) and
θ ∈ Td. It is easy to see that the Fourier coefficients of ψ satisfy the following long-range
operator:

(LV
εW,α,θu)n = Σℓ

k=−ℓV̂kun−k + εW (θ + nα)un, n ∈ Z. (2.2)
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We call LV
εW,α,θ the dual operator of LW

ε−1V,α,x. Denoting by N̂ (E) the IDS of LV
εW,α,θ, it

is well-known [58]:

N (E) = N̂ (E). (2.3)

The eigenvalue equations of (2.2) are

Σℓ
k=−ℓV̂kun−k + εW (θ + nα)un = Eun, n ∈ Z.

Without loss of generality, we assume V̂ℓ 6= 0. Then the eigenvalue equations can be viewed
as a GL(2ℓ,C)-cocycle (α,Aε) : T

d × C2ℓ → Td × C2ℓ, where

Aε(E, θ) =


















− V̂ℓ−1

V̂ℓ

· · · − V̂1

V̂ℓ

E−V̂0−εW (θ)

V̂ℓ

− V̂−1

Vℓ
· · · − V̂ℓ+1

V̂ℓ

− V̂−ℓ

V̂ℓ

1
. . .

1
1

1
. . .

1 0


















.

Let γ̂ be the fibred entropy (i.e. sum of the positive Lyapunov exponents) of the corre-
sponding cocycle (α,Aε). Then it relates the IDS by Thouless formula [42]:

γ̂(E) =

∫

R

ln |E − E′|dN̂ (E′)− ln |V̂ℓ|. (2.4)

2.3. Hausdorff measure and Hausdorff dimension. Let (X , ρ) be a metric space. We
denote by diam(Ω) the diameter of Ω for any subset Ω ⊆ X .

Definition 2.1. For any Ω ⊆ X , any η ∈ (0,∞] and any ̺ ∈ [0,∞), let

H̺
η (Ω) := inf{

∞∑

i=1

(diamΩi)
̺ : Ω ⊆ ∪iΩi, and diam(Ωi) < η}.

Then H̺(Ω) := limη↓0H
̺
η (Ω) is called the Hausdorff ̺-dimensional measure of Ω, and

dimH(Ω) := inf{̺ : H̺(Ω) = 0} is called the Hausdorff dimension.

3. Preparation lemmas

In this section, we first introduce some useful concepts and preparation lemmas:

3.1. Roots of an algebraic equation. In the following we consider polynomials in
CN [X] of the form

χ(X) = a0X
n + a1X

n−1 + · · ·+ an, n ≤ N.

Let |χ| := supi |ai|. We say χ(λ)(X) ∈ Cω
δ (Λ, CN [X]) if its coefficients ai ∈ Cω

δ (Λ). Given
χ(λ)(X) ∈ Cω

δ (Λ, CN [X]), we set

|χ|δ = sup
i
(|ai|δ).

Denote by Σχ be the multiset of zeroes of χ (counting the multiplicity). Conversely, for a
given finite multiset Σ whose elements z ∈ C may repeat, we call χΣ(X) =

∏

z∈Σ(X − z)
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the characteristic polynomial of Σ. Supposing χ1, χ2 ∈ CN [X] with degrees m1,m2 ≤ N ,
we define their resultant as

Res(χ1, χ2) := Res(Σχ1 ,Σχ2) =
∏

σi∈Σχ1 ,τj∈Σχ2

(σi − τj).

More generally, we denote

Res(χ1, χ2;u) := Res(Σχ1 , e
2πiuΣχ2) = Res(χ1, e

2πim2uχ2(e
−2πiu·)).

Suppose that there is a decomposition of Σ, i.e. Σ = Σ1 ∪ · · · ∪ Σl. Let χ := χΣ and
χi := χΣi

. For u ∈ T, we have

Res(χ, χ;u) =
∏

1≤i,j≤l

Res(χi, χj ;u).

By direct computations, we can obtain the following estimates.

Lemma 3.1 ([50]). Let χ, χ1, χ2 ∈ CN [X] of degrees n,m1,m2 ≤ N . Their corresponding
multisets of zeroes are Σ,Σ1,Σ2. For u ∈ T, we have the following:

|χe2πiuΣ| = |χ|,
|Res(χ1, χ2)| ≤ (m1 +m2)!(1 + |χ1|)m2(1 + |χ2|)m1 ,

|Res(χ1, χ2;u)| ≤ (m1 +m2)!(1 + |χ1|)m2(1 + |χ2|)m1 .

If the degrees of χ′
1, χ

′
2 are also m1,m2, then we have:

|Res(χ′
1, χ

′
2;u)− Res(χ1, χ2;u)|

≤(m1 +m2 + 1)!(1 + |χ1|)m2(1 + |χ2|)m1 max{|η1|, |η2|},
where η1 = χ′

1 − χ1, η2 = χ′
2 − χ2, provided |η1|, |η1| ≤ 1.

In this paper we always consider the case A ∈ Cω
δ (Λ,GL(m,C)). Denote its spectrum

Σ(λ) := Σ(A(λ)) which surely does not contain zero. Thus there is R > 0, such that
Σ(λ) ⊆ D(R) for λ ∈Wδ(Λ), where

D(R) := {z ∈ C :
1

R
≤ |z| ≤ R}.

Then we have the following basic estimates:

Lemma 3.2. Suppose that Σ(λ) ⊆ D(R) for A ∈ Cω
δ (Λ,GL(m,C)), where λ ∈Wδ(Λ) and

Σ(λ) := Σ(A(λ)). Then

|χΣ|δ ≤ m!Rm,

∣
∣
∣
∣

∂χΣ

∂X

∣
∣
∣
∣
δ

≤ m|χΣ|δ. (3.1)

Furthermore, we have

|χΣ − χΣ′ |δ ≤ m!Mm−1|A−A′|δ, (3.2)

where Σ′(λ) := Σ(A′(λ)) and M = max{1, |A|δ , |A′|δ}.
Proof. Suppose the characteristic polynomials of A(λ) and A′(λ) are

χΣ(λ)(X) = Xm + a1(λ)X
m−1 + · · ·+ am(λ),

χΣ′(λ)(X) = Xm + b1(λ)X
m−1 + · · ·+ bm(λ).
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Then we have
∂χΣ(λ)

∂X
= mXm−1 + (m− 1)a1(λ)X

m−2 + · · ·+ am−1(λ).

Since Σ(λ) ⊆ D(R) for λ ∈ Wδ(Λ), by Vieta’s Formula, we can obtain that for any
1 ≤ j ≤ m,

|aj(λ)| ≤ Cj
mR

j ≤ m!Rj ,

then (3.1) follows. To prove (3.2), we recall the following result:

Lemma 3.3 ([15], Proposition 20.3). Denote by ak and bk (k = 1, · · · ,m) the k-th coeffi-
cients of their characteristic polynomials of A and B in GL(m,C) respectively. Then we
have

|ak − bk| ≤ kCk
mM

k−1‖B −A‖,
where M = max{‖A‖, ‖B‖}.

As a consequence, for any λ ∈Wδ(Λ) and 1 ≤ j ≤ m,

|aj(λ)− bj(λ)| ≤ jCj
mM

j−1‖A(λ) −A′(λ)‖ ≤ m!M j−1‖A(λ)−A′(λ)‖.
Then (3.2) follows directly. �

Now we analyze the function g(λ, u) defined in (1.3). In the case u ∈ Z, we have

g(λ, u) =
∏

σi,σj∈Σ(λ),

i6=j

(σi − σj) =
∏

σi∈Σ(λ)

(
∏

σj∈Σ(λ),

i6=j

(σi − σj))

=
∏

σi∈Σ(λ)

∂χΣ(λ)

∂X
(σi) = Res(χΣ(λ),

∂χΣ(λ)

∂X
), (3.3)

where the coefficients of χΣ(λ),
∂χΣ(λ)

∂X are all analytic in λ, and hence g(λ, u).
In the case u ∈ T\Z, it is obvious that the function g(λ, u) can be expressed as

g(λ, u) =
Res(χΣ(λ), χΣ(λ);u)

(
∏

z∈Σ(λ) z)(1 − e2πiu)m
=

Res(χΣ(λ), χΣ(λ);u)

detA(λ)(1 − e2πiu)m
, (3.4)

where #Σ = m. Moreover, by the analyticity of Res(χΣ(λ), χΣ(λ);u) and detA(λ) in λ,
together with detA(λ) 6= 0, we have g(λ, u) is also analytic in λ. In this case, we have the
following observation:

Lemma 3.4. Suppose χ(X) = Xm + a1(λ)X
m−1 + · · ·+ am(λ). For u ∈ T\Z, we have

Res(χ, χ;u) = (e2πiu − 1)mRes(χ, χ̃u).

where

χ̃u(X) = a1(λ)X
m−1 +

e4πiu − 1

e2πiu − 1
a2(λ)X

m−2 + · · ·+ e2mπiu − 1

e2πiu − 1
am(λ).

Proof. Since

e2πimuχ(e−2πiuX) = Xm + a1(λ)e
2πiuXm−1 + · · ·+ am−1(λ)e

2πi(m−1)uX + e2πimuam(λ)

=: χ́u(X),

then by the definition of Res(χ, χ;u), we have

Res(χ, χ;u) = Res(χ, χ́u).
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Now by the fact that for any two polynomials f(X) = a0X
n + a1X

n−1 + · · ·+ an, g(X) =
b0X

m + b1X
m−1 + · · ·+ bm, their resultant

Res(f, g) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a0 a1 a2 · · · 0 0 0
0 a0 a1 · · · 0 0 0
...

...
...

...
...

...
0 0 0 · · · an−1 an 0
0 0 0 · · · an−2 an−1 an
b0 b1 b2 · · · 0 0 0
0 b0 b1 · · · 0 0 0
...

...
...

...
...

...
0 0 0 · · · bm−1 bm 0
0 0 0 · · · bm−2 bm−1 bm

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

we can obtain that

Res(χ, χ́u)

= (e2πiu − 1)m

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 a1 a2 · · · 0 0 0
0 1 a1 · · · 0 0 0
...

...
...

...
...

...
0 0 0 · · · am−1 am 0
0 0 0 · · · am−2 am−1 am
0 a1

e4πiu−1
e2πiu−1

a2 · · · 0 0 0

0 0 a1 · · · 0 0 0
...

...
...

...
...

...

0 0 0 · · · e2(m−1)πiu−1
e2πiu−1

am−1
e2mπiu−1
e2πiu−1

am 0

0 0 0 · · · e2(m−2)πiu−1
e2πiu−1

am−2
e2(m−1)πiu−1

e2πiu−1
am−1

e2mπiu−1
e2πiu−1

am

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= (e2πiu − 1)mRes(χ, χ̃u),

where χ̃u(X) = a1(λ)X
m−1 + e4πiu−1

e2πiu−1
a2(λ)X

m−2 + · · ·+ e2mπiu−1
e2πiu−1

am(λ). �

3.2. Transversality. As we will see in the proof, the transversality of the function g(λ, u)
is crucial for us. Here we first generalize the notion of transversality introduced in [29, 31,
49, 50] following Pyartii [57].

Definition 3.1. A function f : (a, b) → C is said to be (C, c, r)-Pyartli, if f ∈ Cr+1 and
for any x ∈ (a, b), we have

sup
0≤j≤r+1

|∂jf(x)| ≤ C,

sup
0≤j≤r

|∂jf(x)| ≥ c > 0.

Pyartli function will imply some good estimates of preimages:
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Lemma 3.5. Let f be (C, c, r)-Pyartli on (a, b). Then for 0 < ς ≤ c
2 , there is a disjoint

union of intervals ∪i∈JIi such that

#J ≤ 2r(
2C(b− a)

c
+ 1),

max
i∈J

|Ii| ≤ 2(
2ς

c
)
1
r ,

|f(x)| ≥ ς, ∀x ∈ (a, b)\ ∪i∈J Ii.

Proof. Similar estimates appeared in [31, 50], we include the proof just for completeness.
If r = 0, then the result is obvious. For r ≥ 1, we assume that there exists x0 ∈ (a, b) with
|x0 − a| ≤ c

2C , and 1 ≤ r0 ≤ r such that

|∂r0f(x0)| ≥ c.

Otherwise, for all x ∈ (a, b)∩ (a, a+ c
2C ], we have |f(x)| ≥ c, and we only need to consider

the interval (a + c
2C , b) instead of (a, b). Here, without loss of generality, we assume that

b− a > c
2C .

Now, let

f̃(x) := ℜ(e−iarg∂r0f(x0)f(x)).

Then we have ∂r0 f̃(x) ≥ c
2 for x ∈ I = (a, x0 +

c
2C ] ∩ (a, b). Now we consider ∂r0−1f̃ in I.

Due to the fact that ∂r0−1f̃ is monotonic in I, there is at most one interval I1,1 ⊆ I with
minimal length, such that

|∂r0−1f̃(x)| ≥ c

2
(
2ς

c
)

1
r0 , ∀x ∈ I\I1,1.

Then by the fact that ∂r0 f̃(x) ≥ c
2 for x ∈ I, we can get that

|I1,1| ≤ 2(
2ς

c
)

1
r0 .

We continue to consider ∂r0−2f̃ . It is monotonic on each component of I\I1,1. So there
are at most two intervals I2,1, I2,2 ⊆ I\I1,1 such that

|∂r0−2f̃(x)| ≥ c

2
(
2ς

c
)

2
r0 , ∀x ∈ I\I1,1 ∪ I2,1 ∪ I2,2,

|I2,1|, |I2,1| ≤ 2(
2ς

c
)

1
r0 .

Iterating the process for r0 times, we get at most 2r0 − 1 intervals Ii,j such that

|f̃(x)| ≥ ς, ∀x ∈ I\ ∪1≤i≤r0,1≤j≤2i−1 Ii,j,

|Ii,j | ≤ 2(
2ς

c
)

1
r0 .

It is obvious that

|f(x)| = |e−iarg∂r0f(x0)f(x)| ≥ |ℜ(e−iarg∂r0f(x0)f(x))| = |f̃(x)|.
Now we consider f(x) on the interval (a+ c

2C , b), and repeat the above process as for I. In
the end, the length of the considered interval is no more than c

2C and the we do the above
operation the last time. Then the result follows. �

Following [49, 50], we also introduce a slightly stronger definition of transversality for a
better control of the derivatives of functions (also its products).
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Definition 3.2. Let f : (a, b) → C be an analytic function. We say f is (M, δ, c, r)-
transverse if:

(1) f is (M, δ)-bounded, i.e., f ∈ Cω
δ ((a, b),C) and |f |δ ≤M ;

(2) for any x ∈ (a− δ
2 , b+

δ
2), sup0≤j≤r |∂jf(x)| ≥ c > 0.

Remark 3.1. By Cauchy’s estimate, if f is (M, δ, c, r)-transverse, then automatically f

is ( (r+1)!M
min{1,δr+1} , c, r)-Pyartli.

The following lemmas are quite important for us: Lemma 3.6 says that a product of
transverse functions is also transverse; Lemma 3.7 shows that if a product of "not too
large" functions is transverse, then so is each of them.

Lemma 3.6 ([49, 50]). Suppose f1, · · · , fl are (Mi, δi, ci, ri)-transverse. Let M = supMi,
δ = inf δi, c = inf ci and r = r1 + · · · + rl. Then f = f1 · · · fl is (M ′, δ, c′, r)-transverse
where

M ′ =M l, c′ = ((
δ

4r2M
)rlc)l

r+1
.

Lemma 3.7 ([49, 50]). Suppose f1, · · · , fl are functions belong to Cω
δ (Λ) with |fi|δ ≤ M .

If f = f1 · · · fl is (M, δ, c, r)-transverse, then each fi is (M, δ, c′, r)-transverse with c′ =
(2lMδ )−rlc.

If we restrict the function to g(λ, u), then we extend the notation of transversality to
the multiset Σ(λ).

Definition 3.3. We say a finite multiset Σ(λ) is (M, δ, c, r)-transverse on Λ if for any
u ∈ T, λ 7→ g(λ, u) is (M, δ, c, r)-transverse on Λ.

Suppose that Σ(λ) can be decomposed into Σ(λ) = Σ1(λ)∪· · · ∪Σl(λ). Let gi(λ, u) (i =
1, · · · , l) be functions defined as in (1.3) with respect to Σi(λ). Then one has

g(λ, u) =

(
l∏

i=1

gi(λ, u)

)



l∏

i,j=1,i 6=j

Res(χΣi(λ), χΣj(λ);u)



 . (3.5)

This motivated the following definition:

Definition 3.4. We say a decomposition Σ(λ) = Σ1(λ) ∪ · · · ∪ Σl(λ) on Λ is (M, δ, c, r)-
transverse if

(1) For all 1 ≤ i ≤ l, the multiset Σi(λ) is (M, δ, c, r)-transverse on Λ;
(2) For all i 6= j and all u ∈ T, λ 7→ Res(χΣi(λ), χΣj(λ);u) is (M, δ, c, r)-transverse on Λ.

Now, thanks to Lemma 3.6 and Lemma 3.7, transversality of decomposition will imply
transversality of the multiset Σ(λ), and it is also true conversely.

Lemma 3.8. Suppose A ∈ Cω
δ (Λ,GL(m,C)) with A = diag{A11, · · · , All} and Σ(A(λ)) =:

Σ(λ) ⊆ D(R) for λ ∈ Wδ(Λ), where Aii(1 ≤ i ≤ l) are block matrices, and Σi(λ) :=
Σ(Aii(λ)) for 1 ≤ i ≤ l.

(1) If the decomposition Σ = Σ1 ∪ · · · ∪ Σl is (M, δ, c, r)-transverse on Λ, then Σ is

((2R)m
2
, δ, c′, l2r)-transverse on Λ with c′ = ( (4l

4r2(2R)m
2

δ )−rl4c )l
2l2r+2

.
(2) If the finite multiset Σ is (M, δ, c, r)-transverse on Λ, then the decomposition Σ =

Σ1 ∪ · · · ∪ Σl is ((2R)m
2
, δ, c′′, r)-transverse on Λ with c′′ = (2l

2(2R)m
2

δ )−rl2c.
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Proof. Notice that Σ(λ) ⊆ D(R) implies

|g(·, u)|δ , |gi(·, u)|δ , |Res(χΣ, χΣ;u)|δ , |Res(χΣi
, χΣj

;u)|δ ≤ (2R)m
2
. (3.6)

If Σ = Σ1 ∪ · · · ∪ Σl is (M, δ, c, r)-transverse on Λ, by (3.6), it is also ((2R)m
2
, δ, c, r)-

transverse on Λ. Then by (3.5) and Lemma 3.6, we obtain that g(λ, u) is ((2R)m
2 l2 , δ, c′, l2r)-

transverse on Λ, which is also ((2R)m
2
, δ, c′, l2r)-transverse by (3.6). By similar reasoning,

(2) follows from Lemma 3.7.
�

3.3. Separation of spectrum and normal form.

Definition 3.5. Given ν > 0, we say a partition Σ = Σ1 ∪ · · · ∪ Σl is ν-separated if
|σ − τ | > ν for ∀(σ, τ) ∈ Σi × Σj with i 6= j. In addition, if there exists ζ > 0 such that
diam(Σi) ≤ ζ for 1 ≤ i ≤ l,1 then we say the decomposition of Σ is (ν, ζ)-separated.

For any multiset Σ with #Σ ≤ m and µ > 0, there is always a (µ, ζ)-separated decom-
position with ζ ≤ mµ. We call it the maximal (µ, ζ)-separated decomposition.

It is well-known that if the eigenvalues of A(λ) is separated, then it can be block diag-
onalized:

Lemma 3.9 ([31, 44]). Suppose A ∈ Cω
δ (Λ,GL(m,C)) and the decomposition Σ(A(λ)) =:

Σ(λ) = Σ1(λ) ∪ · · · ∪Σl(λ), is ν-separated for λ ∈Wδ(Λ). If ν < const · |A|δ, where const
is a constant only depending on m, then there exists S ∈ Cω

δ (Λ,GL(m,C)), such that for
any λ ∈Wδ(Λ),

S−1(λ)A(λ)S(λ) = diag{A11(λ), · · · , All(λ)},
with Σi(λ) = Σ(Aii(λ)). Moreover, we have estimates

|Aii|δ , |S|δ , |S−1|δ ≤ b́(
|A|δ
ν

)m
2(m+2),

where the constant b́ > (120m)m
2+4m only depends on m.

In the sequel of the article we will fix b́ > (120m)m
2+4m to be a constant depending only

on m. As a consequence, we have the following:

Proposition 3.1. Let A ∈ Cω
δ (Λ,GL(m,C)) with |A|δ ≤ M̃ , where M̃ ≥ 1. Suppose that

Σ(λ) := Σ(A(λ)) is (M, δ, c, r)-transverse on Λ and Σ(λ) ⊆ D(R) for λ ∈Wδ(Λ). For any
0 < ν ′ ≤ 1, we let

M ′ = (2R)m
2
,

c′ = (b́Rν ′−1δ−1M̃)−rm3(m+6)c,
ζ ′ = 10mν ′,

δ′ = b́−1((R2M̃)−1ν ′)3mδ,
r′ = r,

M̃ ′ = b́(ν ′−1M̃)m
2(m+2),

where b́ > (120m)m
2+4m is the constant in Lemma 3.9 depending only on m. If ν ′ <

const · M̃ , where const is a constant only depending on m, then there exists a partition
Π = {Λ̃} of Λ with

#Π ≤ |Λ|
δ′

+ 1,

such that for any λ ∈Wδ′(Λ̃), Σ(λ) has a decomposition

Σ(λ) = Σ1(λ) ∪ · · · ∪Σl(λ),

1Recall that for a set Σ ⊆ C, we denote diam(Σ) as the diameter of Σ.
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where l only depends on Λ̃, satisfying the following properties:

(1) The decomposition Σ(λ) = Σ1(λ) ∪ · · · ∪ Σl(λ) is (ν ′, ζ ′)-separated for all λ ∈ Wδ′(Λ̃)

and (M ′, δ′, c′, r′)-transverse in Λ̃.

(2) There exists λ0 ∈ Λ̃ such that the decomposition Σ(λ0) = Σ1(λ0) ∪ · · · ∪ Σl(λ0) is

(8ν ′, ζ ′)-separated. Moreover, for any λ ∈Wδ′(Λ̃), #Σi(λ) = #Σi(λ0) and

dH(Σi(λ),Σi(λ0)) < ν ′.2

(3) There exists S ∈ Cω
δ′(Λ̃,GL(m,C)) such that

S−1(λ)A(λ)S(λ) = diag{A11(λ), · · · , All(λ)},
with Σi(λ) = Σ(Aii(λ)) and |Aii|δ′ , |S|δ′ , |S−1|δ′ ≤ M̃ ′.

Proof. Due to Σ(λ) ⊆ D(R), for any u ∈ T, we have

|g(λ, u)|δ ≤ (2R)m
2
,

and by Lemma 3.2, we also have |χΣ(λ)|δ ≤ m!Rm. We divide the interval Λ into 1 + [ |Λ|δ′ ]
intervals with equal length no more than δ′. Then we have

#Π ≤ 1 +
|Λ|
δ′

= 1 + b́(R2M̃ν ′−1)3m
|Λ|
δ
.

On each subinterval Λ̃, we now give the decomposition of the multiset Σ(λ) on Wδ′(Λ̃).

Fix some λ0 ∈ Λ̃, take the maximal (8ν ′, 8mν ′)-separated decomposition Σ(λ0) = Σ1(λ0)∪
· · · ∪ Σl(λ0), and define

Σi(λ) :=Wν′(Σi(λ0)) ∩Σ(λ) ⊆ Σ(λ). (3.7)

Now for any λ ∈Wδ′(Λ̃) and ζ ∈ Σ(λ), by Cauchy’s estimate and (3.1), we have
∏

σ∈Σ(λ0)

|σ − ζ| = |χΣ(λ0)(ζ)− χΣ(λ)(ζ)| (3.8)

≤ mmax{1, |ζ|m−1} · |χΣ(λ) − χΣ(λ0)|δ′

≤ mRm−1| d
dλ
χΣ(λ)|δ′ |λ− λ0|

≤ 2mRm−1

δ
|χΣ(λ)|δ|λ− λ0|

≤ 4m ·m!R2m−1δ′

δ
< ν ′m.

This implies that for any ζ ∈ Σ(λ), there exists σ ∈ Σ(λ0) = Σ1(λ0) ∪ · · · ∪ Σl(λ0)
such that |ζ − σ| < ν ′, which means that ζ ∈ Wν′(Σi(λ0)) for some i = 1, · · · , l, that is,
Σ(λ) ⊆ Σ1(λ)∪· · ·Σl(λ). On the other hand, Σ(λ0) = Σ1(λ0)∪· · ·∪Σl(λ0) is 8ν ′-separated,
which implies that Σi(λ) ∩Σj(λ) = ∅ for i 6= j. Consequently, we get that

Σ(λ) = Σ1(λ) ∪ · · · ∪Σl(λ),

is a decomposition for any λ ∈Wδ′(Λ̃).

2We denote dH(Ω1,Ω2) as the Hausdorff distance between Ω1 and Ω2.
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By similar arguments, for any 1 ≤ i ≤ l, σ̃ ∈ Σi(λ0) ⊆ Σ(λ0), there exists at least
one σ ∈ Σ(λ) such that |σ − σ̃| < ν ′. This just means σ ∈ Σi(λ) by definition, and thus
Σi(λ0) ⊆Wν′(Σi(λ)). Together with the fact that Σi(λ) ⊆Wν′(Σi(λ0)), we have

dH(Σi(λ),Σi(λ0)) < ν ′.

Next we show this decomposition is indeed (6ν ′, (8m+2)ν ′)-separated. For any λ1, λ2 ∈
Wδ′(Λ̃), ζ ∈ Σi(λ1) and ζ ′ ∈ Σj(λ2), there exist σ ∈ Σi(λ0) and σ′ ∈ Σj(λ0), such that
|ζ − σ| < ν ′, |ζ ′ − σ′(λ0)| < ν ′. Then for i 6= j, we have

|ζ − ζ ′| ≥ |σ − σ′| − |ζ − σ| − |σ′ − ζ ′| > 6ν ′, (3.9)

and for i = j, we have

|ζ − ζ ′| ≤ |σ − σ′|+ |ζ − σ|+ |σ′ − ζ ′| < (8m+ 2)ν ′,

and they also hold if λ1 = λ2. Furthermore, by (3.9) and the continuity of Σ(λ), we have

#Σi(λ) = #Σi(λ0) for any λ ∈Wδ′(Λ̃) and i = 1, · · · , l.
Once we have these, (3) directly follows from Lemma 3.9, and the transversality of

decomposition follows from Lemma 3.8. We finish the whole proof. �

In the following, we will prove that separability and transversality of the decomposition
is stable with good estimates:

Lemma 3.10. Suppose that

A = diag{A11, · · · , All} ∈ Cω
δ (Λ,GL(m,C)),

A′ = diag{A′
11, · · · , A′

ll} ∈ Cω
δ (Λ,GL(m,C)),

where Aii, A
′
ii are block matrices with the same order for 1 ≤ i ≤ l. Let R, M̃ > 1. If

|A|δ ≤ M̃ , |Aii −A′
ii|δ ≤ ǫ < 1, Σ(A(λ)) =: Σ(λ) ⊆ D(R) for λ ∈Wδ(Λ), and

64m2M̃2Rǫ
1
m < 1, (3.10)

then the following hold:

(1) For any λ ∈Wδ(Λ),

dH(Σi(λ),Σ
′
i(λ)) ≤ 4m2M̃2ǫ

1
m , (∀1 ≤ i ≤ l), (3.11)

where Σi(λ) := Σ(Aii(λ)), and Σ′
i(λ) := Σ(A′

ii(λ)). Consequently,

Σ′(λ) := Σ(A′(λ)) ⊆ D(R′) (3.12)

with R′ = R+ 8m2M̃2R2ǫ
1
m .

(2) If Σ = Σ1 ∪ · · · ∪ Σl is (ν, ζ)-separated in Wδ(Λ), then Σ′ = Σ′
1 ∪ · · · ∪ Σ′

l is
(ν ′, ζ ′)-separated in Wδ(Λ), with

ν ′ = ν − 8m2M̃2ǫ
1
m , ζ ′ = ζ + 8m2M̃2ǫ

1
m .

(3) If the decomposition Σ = Σ1 ∪ · · · ∪ Σl is (M, δ, c, r)-transverse on Λ, then Σ′ =
Σ′
1 ∪ · · · ∪ Σ′

l is (M ′, δ, c′, r)-transverse on Λ, with

M ′ = (2R′)m
2
, c′ = c− 28mm10m2

R3m2
M̃m(

2r

δ
)rǫ.
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(4) For any 1 ≤ i ≤ l, u ∈ T, we have

|gi(·, u)− g′i(·, u)|δ ≤ 28mm10m2
R3m2

M̃mǫ,

where we denote

gi(λ, u) =
∏

σℓ1
,σℓ2

∈Σi(λ)

ℓ1 6=ℓ2

(σℓ1 − e2πiuσℓ2), g′i(λ, u) =
∏

σℓ1
,σℓ2

∈Σ′
i
(λ)

ℓ1 6=ℓ2

(σℓ1 − e2πiuσℓ2).

Proof. Due to |Aii −A′
ii|δ ≤ ǫ and |Aii|δ ≤ M̃ , by (3.2), we have

|χΣ′
i
− χΣi

|δ ≤ m!(M̃ + ǫ)m−1ǫ. (3.13)

To prove (3.11), by symmetry, we only need to prove for any σ′ ∈ Σ′
i(λ), there exists

σ ∈ Σi(λ) such that

|σ − σ′| ≤ 4m2M̃2ǫ
1
m . (3.14)

Indeed, this follows directly from the following estimate

|
∏

σ∈Σi(λ)

(σ′ − σ)| = |χΣi(λ)(σ
′)− χΣ′

i(λ)
(σ′)|

≤ m ·m!(M̃ + ǫ)m−1ǫmax{1, |σ′|m−1}
≤ (4m2M̃2ǫ

1
m )m,

where the first inequality holds by (3.13), and the second inequality holds because |σ′| ≤
|A′|δ ≤ M̃ + ǫ. As a consequence, by (3.10) and (3.14), for any σ′ ∈ Σ′(λ), we have

|σ′| ≤ R+ 4m2M̃2ǫ
1
m < R′

|σ′| ≥ 1

R
− 4m2M̃2ǫ

1
m >

1

R(1 + 8m2M̃2Rǫ
1
m )

=
1

R′ ,

which just means Σ′(λ) ⊆ D(R′). These finish the proof of (1), and (2) follows directly
from (3.11).

Now, we will prove (3) and (4). For convenience we denote χi = χΣi
and χ′

i = χΣ′
i
.

Since for λ ∈Wδ(Λ) and any 1 ≤ i ≤ l, Σi(λ) ⊆ D(R), by Lemma 3.2, we have

|χi|δ ≤ m!Rm. (3.15)

For any i, j ∈ {1, 2, . . . , l} and for any u ∈ T, by (3.12) we have

|Res(χ′
i, χ

′
j;u)|δ = sup

λ∈Wδ(Λ)

∏

σk1
∈Σ′

i(λ),σk2
∈Σ′

j(λ)

|σk1 − e2πiuσk2 | ≤ (2R′)m
2
. (3.16)

Moreover, by Lemma 3.1 and (3.13), (3.15), we have

|Res(χ′
i, χ

′
j ;u)− Res(χi, χj;u)|δ

≤ (2m+ 1)!(1 + |χi|δ)m(1 + |χj |δ)mmax{|χi − χ′
i|δ, |χj − χ′

j|δ}
≤ (2m+ 1)!(1 +m!Rm)2mm!(M̃ + ǫ)m−1ǫ

≤ 28mm6m2
R2m2

M̃mǫ. (3.17)
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Then for any λ ∈W δ
2
(Λ) and any ℓ ∈ {0, 1, . . . , r}, this implies that

|∂ℓλRes(χ′
i, χ

′
j ;u)| ≥ |∂ℓλRes(χi, χj ;u)| − |∂ℓλ(Res(χ′

i, χ
′
j ;u)− Res(χi, χj ;u))|

≥ |∂ℓλRes(χi, χj ;u)| − r!(
2

δ
)r · 28mm6m2

R2m2
M̃mǫ.

By the assumption, for i 6= j, Res(χi, χj ;u) is (M, δ, c, r)-transverse on Λ, and thus for
λ ∈W δ

2
(Λ) ∩ R,

sup
0≤ℓ≤r

|∂ℓλRes(χ′
i, χ

′
j ;u)| ≥ c− r!(

2

δ
)r · 28mm6m2

R2m2
M̃mǫ ≥ c′.

Combining with (3.16), we obtain Res(χ′
i, χ

′
j ;u) is (M ′, δ, c′, r)-transverse on Λ for i 6= j.

We are left to prove the transversality of Σi(λ) and (4). First, by (3.12), we have

|g′i(λ, u)|δ ≤ (2R′)m
2
. Now we denote mi := #Σi = #Σ′

i.
Case a: u ∈ Z. By (3.3), Lemma 3.1 and Lemma 3.2, we have for any λ ∈Wδ(Λ),

|gi(λ, u)− g′i(λ, u)| = |Res(χi,
∂χi

∂X
)− Res(χ′

i,
∂χ′

i

∂X
)|

≤ (2mi)!(1 + |χi|δ)mi−1(1 + |∂χi

∂X
|δ)mimi|χi − χ′

i|δ
≤ (2m)!(1 +m ·m!Rm)2m−1m ·m!(M̃ + ǫ)m−1ǫ

< 28mm10m2
R2m2

M̃mǫ.

Case b: u ∈ T\Z. We denote

fi(λ, u) :=
Res(χi(λ), χi(λ);u)

(1− e2πiu)mi
, f ′i(λ, u) :=

Res(χ′
i(λ), χ

′
i(λ);u)

(1− e2πiu)mi
.

Then by Lemma 3.4, Lemma 3.1, and Lemma 3.2, we have for any λ ∈Wδ(Λ),

|fi(λ, u)− f ′i(λ, u)| = |Res(χi(λ), χ̃i,u(λ)) −Res(χ′
i(λ), χ̃

′
i,u(λ))|

≤ (2m)!(1 + |χi|δ)m(1 + |χ̃i,u|δ)mmax{|χi − χ′
i|δ, |χ̃i − χ̃′

i,u|δ}
≤ (2m)!(1 + (m+ 1)!Rm)2m(m+ 1)!(M̃ + ǫ)m−1ǫ

< 27mm2m2+6mR2m2
M̃m−1ǫ.

By (3.4), we can obtain that for any λ ∈Wδ(Λ)

|gi(λ, u)− g′i(λ, u)| ≤ 1

|detAii|
|fi(λ, z) − f ′i(λ, z)| +

∣
∣
∣
∣

detA′
ii − detAii

detAii

∣
∣
∣
∣
|g′i(λ, u)|

≤ Rm|fi(λ, z) − f ′i(λ, z)| +Rm|χi − χ′
i|δ(2R′)m

2

≤ 28mm8m2
R3m2

M̃mǫ.

Then (4) follows in both cases. Furthermore, in both case, for any λ ∈ W δ
2
(Λ) ∩ R and

any ℓ ∈ {0, 1, . . . , r}, we can get

|∂ℓλg′i(λ, u)| ≥ |∂ℓλgi(λ, u)| − |∂ℓλ(g′i(λ, u) − gi(λ, u))|

≥ |∂ℓλgi(λ, u)| − r!(
2

δ
)r · 28mm10m2

R3m2
M̃mǫ,

implying sup0≤ℓ≤r |∂ℓλg′i(λ, u)| ≥ c′. Therefore, Σ′ = Σ′
1 ∪ · · · ∪Σ′

l is (M ′, δ, c′, r)-transverse
on Λ, which finishes the proof.
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�

4. Key iteration steps

In this section, we prove the key KAM iteration steps for stratified quantitative almost
reducibility.

4.1. Structure of resonance. In this subsection, we always assume that l ≤ m, where
l is the number of the multisets {Σi}. We now give the definitions of resonance and
non-resonance between two sets.

Definition 4.1. Fix N, ς > 0. We say two different multisets Σ1 and Σ2 are (N, ς)-
resonant if there are σ1 ∈ Σ1 and σ2 ∈ Σ2 such that for some |k| ≤ N ,

|σ1 − e2πi〈k,α〉σ2| < ς. (4.1)

If such k is unique, we say Σ1 and Σ2 are (N, ς)-resonant with unique k, and we call k
as the resonant integer between Σ1 and Σ2. If it does not exist such k, we say Σ1 and Σ2

are (N, ς)-nonresonant. In addition, we say a multiset Σ is (N, ς)-nonresonant, if for any
σ1, σ2 ∈ Σ and 0 < |k| ≤ N , (4.1) does not hold.

It is obvious that −k is the resonant integer between Σ2 and Σ1, if k is a resonant integer
between Σ1 and Σ2.

Before giving the structure of resonance, we introduce the following notation for conve-
nience.

Definition 4.2. Let 0 < N ≤ N ′, K > 0. We say the decomposition

Σ(λ) = Σ1(λ) ∪ · · · ∪ Σl(λ)

satisfies H(N,N ′,K) on Wδ(Λ), if {1, · · · , l} can be divided into disjoint union:

{1, · · · , l} = S1 ∪ S2 ∪ · · · ∪ Sl̃,
and the following hold:

(a) Σi(λ) is (N ′, (2K)−1)-nonresonant for any i ∈ {1, 2, · · · , l}.
(b) Σi(λ), Σj(λ) are (mN ′, 2mK−1)-resonant with the same unique kij for all λ, where

|kij | ≤ mN , if i, j ∈ Sl1 with i 6= j.
(c) kij + kjs = kis, if i, j, s ∈ Sl1 are different.
(d) Σi(λ), Σj(λ) are (N ′, (2K)−1)-nonresonant, if i ∈ Sl1, j ∈ Sl2 with l1 6= l2.

For N ∈ N, j ∈ N0 and a > 1, let Nj = ajN . The basic observation is that if the de-
composition is separated, then the decomposition will essentially satisfy some H(N,N ′,K)
condition. The precise result is the following:

Lemma 4.1. Let α ∈ DCd(γ, τ). Suppose that the decomposition Σ(λ) = Σ1(λ)∪· · ·∪Σl(λ)
is (ν, ζ)-separated and Σ(λ) ⊆ D(R) for λ ∈Wδ(Λ), and one can find λ0 ∈ Λ such that

dH(Σi(λ),Σi(λ0)) < ν ′, (4.2)

#Σi(λ) = #Σi(λ0) for λ ∈ Wδ(Λ). Then the decomposition satisfies H(Np, Np+1,K) in
Wδ(Λ) for some integer p ∈ [0,m], if

8mν ′ < 8mζ < mK−1 <
γ

10R(3mNm+1)τ
. (4.3)
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Proof. We first check (a). For any λ ∈ Wδ(Λ), i ∈ {1, · · · , l}, σ1, σ2 ∈ Σi(λ), since
α ∈ DCd(γ, τ), Σ(λ) ⊆ D(R) and the decomposition is (ν, ζ)-separated, then for 0 < |k| ≤
mNm+1, we have

|σ1 − e2πi〈k,α〉σ2| ≥ |σ2||1− e2πi〈k,α〉| − |σ1 − σ2|
≥ γ

2R(mNm+1)τ
− ζ > K−1.

This just means Σi(λ) is (mNm+1,K
−1)-nonresonant with itself for any λ ∈Wδ(Λ).

To verify (b)-(d), we fist need the following observation:

Claim 1. For any λ ∈Wδ(Λ), if i 6= j and Σi(λ), Σj(λ) are (mNm+1, 2mK
−1)-resonant,

then they are resonant with the unique |k| ≤ mNm+1.

Proof. If there exist σ1, σ
′
1 ∈ Σi(λ), σ2, σ

′
2 ∈ Σj(λ) and distinct |k1|, |k2| ≤ mNm+1, such

that

|σ1 − e2πi〈k1,α〉σ2|, |σ′1 − e2πi〈k2,α〉σ′2| < 2mK−1,

then we obtain that
γ

2R|k1 − k2|τ
< |σ2e2πi〈k1−k2,α〉 − σ2| ≤ |σ1 − e2πi〈k1,α〉σ2|

+|σ1 − σ′1|+ |σ′1 − e2πi〈k2,α〉σ′2|+ |σ′2 − σ2| < 4mK−1 + 2ζ.

This contradicts to (4.3). �

Now we denote Σi(λ0) by Σi for convenience, and give the division of the set {1, · · · , l}
according to λ0. First of all, we need to introduce two concepts: (L, η)-connected and
maximal (L, η)-connected component. For L, η > 0, we say that Σi, Σj are (L, η)-connected
if there exists a (L, η)-resonant path of length t:

Σi0 ,Σi1 , · · · ,Σit , with i0 = i, it = j,

such that (Σi0 ,Σi1), (Σi1 ,Σi2), · · · , (Σit−1 ,Σit) are all (L, η)-resonant. Notice that if Σi,
Σj are (L, η)-connected of length t then they are (tL, tη + (t − 1)ζ)-resonant. Moreover,
if Σi,Σj and Σj,Σs are both (L, η)-connected, then Σi,Σs are also (L, η)-connected. Let
S := {1, · · · , l}. We say a set S′ ⊂ S is a maximal (L, η)-connected component of S if the
following hold:

1) For all i, j ∈ S′ with i 6= j, we have Σi,Σj are (L, η)-connected.
2) For all i ∈ S′ and j /∈ S′, Σi,Σj are not (L, η)-connected.

Let’s finish our proof. We divide S into ℓi maximal (Ni,K
−1)-connected components

where 0 ≤ i ≤ l. Notice that if S′ is a maximal (Ni,K
−1)-connected component, then there

exists some maximal (Ni+1,K
−1)-connected component S̃ such that S′ ⊂ S̃. So we have

ℓi+1 ≤ ℓi. Combining 1 ≤ ℓi ≤ l, there exists p with 0 ≤ p ≤ l such that ℓp = ℓp+1. We let

{Si}l̃i=1 be the maximal (Np,K
−1)-connected components. Then we have the following:

(1) If i, j with i 6= j belong to the same subset Sl1 , then Σi,Σj are (Np,K
−1)-connected,

and hence (mNp,mK
−1 + (m − 1)ζ)-resonant with a unique kij , where the uniqueness

follows from Claim 1. Then there exist σ1 ∈ Σi, σ2 ∈ Σj such that

|σ1 − e2πi〈kij ,α〉σ2| < mK−1 + (m− 1)ζ.
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It is obvious that kji = −kij. For any λ ∈ Wδ(Λ), by (4.2), there exist σ̃1 ∈ Σi(λ), σ̃2 ∈
Σj(λ), so that |σ1 − σ̃1|, |σ2 − σ̃2| < ν ′, and thus

|σ̃1 − e2πi〈kij ,α〉σ̃2| < mK−1 + (m+ 1)ζ < 2mK−1.

Therefore, again by Claim 1, we have Σi(λ) and Σj(λ) are (mNm+1, 2mK
−1)-resonant

with the same unique kij for all λ ∈ Wδ(Λ), where |kij | ≤ mNp. We have verified (b) in
H(Np, Np+1,K).

(2) If distinct i, j, s belong to the same subset Sl1 , then Σi, Σj and Σs are (mNp,mK
−1+

(m− 1)ζ)-resonant with each other, with the resonant terms kij, kjs, ksi respectively. This
means that there exist σi, σ

′
i ∈ Σi, σj, σ

′
j ∈ Σj and σs, σ

′
s ∈ Σs such that

|σi − e2πi〈kij ,α〉σ′j | < mK−1 + (m− 1)ζ,

|σj − e2πi〈kjs,α〉σ′s| < mK−1 + (m− 1)ζ,

|σs − e2πi〈ksi,α〉σ′i| < mK−1 + (m− 1)ζ,

with |kij |, |kjs|, |ksi| ≤ mNp. So if kij + kjs + ksi 6= 0, we have

γ

2R|kij + kjs + ksi|τ
≤ |σi(1− e2πi〈kij+kjs+ksi,α〉)| ≤ 3m(K−1 + ζ).

This contradicts our assumption (4.3), and we verify (c) in H(Np, Np+1,K).

(3) If i ∈ Sl1 , j ∈ Sl2 , i.e. i, j belong to different subsets, then Σi,Σj are not
(Np+1,K

−1)-connected. In particular, they are (Np+1,K
−1)-nonresonant. For any λ ∈

Wδ(Λ), σ̃i ∈ Σi(λ), σ̃j ∈ Σj(λ), by (4.2), there exist σi ∈ Σi, σj ∈ Σj, such that
|σi − σ̃i|, |σj − σ̃j| < ν ′. Then for |k| ≤ Np+1, we have

|σ̃i − e2πi〈k,α〉σ̃j | ≥ K−1 − 2ν ′ > (2K)−1.

This means Σi(λ),Σj(λ) are (Np+1, (2K)−1)-nonresonant for any λ ∈ Wδ(Λ), and verifies
(d) in H(Np, Np+1,K). We finish the proof. �

4.2. Eliminate the non-resonant terms. For given h, δ, η > 0, α ∈ Rd, and A ∈
Cω
δ (Λ,GL(m,C)), we decompose Cω

h,δ(T
d × Λ, gl(m,C)) =: Bh,δ = B(nre)

h,δ (η) ⊕ B(re)
h,δ (η)

(depending on A,α, η) in such a way that for any Y ∈ B(nre)
h,δ (η), we have

AY, Y +A ∈ B(nre)
h,δ , |AY − Y +A|h,δ ≥ η|Y |h,δ, (4.4)

where we use Y + to represent the function Y (· + α) here and in the sequel. Moreover,

we denote Pnre and Pre as the standard projective operators from Bh,δ onto B(nre)
h,δ (η)

and B(re)
h,δ (η) respectively. For any N > 0, we define the truncating operators TN on

Cω
h,δ(T

d × Λ, gl(m,C)) as

(TNf)(θ, λ) =
∑

k∈Zd,|k|≤N

F̂ (k, λ)e2πi〈k,θ〉,

and RN on Cω
h,δ(T

d × Λ, gl(m,C)) as

(RNf)(θ, λ) =
∑

k∈Zd,|k|>N

F̂ (k, λ)e2πi〈k,θ〉.
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Furthermore, we assume a ≥ m in the sequel.
Using the above notations, we can apply the quantitative implicit function theorem in

[20] to get the following result:

Lemma 4.2 ([20]). Assume that ǫ < (4max{1, |A|δ})−4 and η ≥ 48max{1, |A|δ}ǫ1/2.
Then for any F ∈ Bh,δ with |F |h,δ ≤ ǫ, there exist Y ∈ Bh,δ and F (re) ∈ B(re)

h,δ (η) such that

e−Y +
(A+ F )eY = A+ F (re),

where |Y |h,δ ≤ ǫ1/2 and |F (re)|h,δ ≤ 3ǫmax{1, |A|δ}.

Then one can prove the following:

Proposition 4.1. Given N,K, M̃ > 1, a ≥ 1, h > h′ > 0, assume that α ∈ DCd(γ, τ), A ∈
Cω
δ (Λ,GL(m,C)), A(λ) = diag{A11(λ), · · · , All(λ)} and |A|δ < M̃ . Let Σ(λ) := Σ(A(λ)),

Σi(λ) := Σ(Aii(λ)). Suppose that the decomposition

Σ(λ) = Σ1(λ) ∪ · · · ∪ Σl(λ)

satisfies H(N, aN,K) on Wδ(Λ). Then for any F ∈ Cω
h,δ(T

d × Λ, gl(m,C)) with

|F |h,δ ≤ ǫ < (12m5M̃2K)−2m2
,

there exist Y, f (re), F ′ ∈ Cω
h,δ(T

d × Λ, gl(m,C)), such that

e−Y (·+α)(A+ F (·))eY (·) = A′ + f (re)(·) + F ′(·) (4.5)

= diag{A′
11, · · · , A′

ll}+ f (re)(·) + F ′(·)

with estimates:

|Aii −A′
ii|δ ≤ 3M̃ǫ,

|Y |h,δ ≤ ǫ1/2,

|F ′|h′,δ ≤ 3M̃e−2π(h−h′)aN ǫ,

|f (re)|h,δ ≤ 3M̃ǫ.

Moreover, viewing f (re) as a block matrix with the same partition as A, we have f
(re)
ij (θ) =

f̂
(re)
ij (kij)e

2πi〈kij ,θ〉, where kij is the resonant integer between Σi(λ) and Σj(λ) defined in

H(N, aN,K) with |kij | ≤ mN , and f
(re)
ij (θ) ≡ 0, if Σi and Σj are non-resonant or i = j.

Proof. In the sequel, we take the matrices as block matrices with the same partition as
A. Since Σ(λ) = Σ1(λ) ∪ · · · ∪ Σl(λ) satisfies H(N, aN,K) for λ ∈ Wδ(Λ), then the set
{1, · · · , l} can be divided into disjoint union:

{1, · · · , l} = S1 ∪ S2 ∪ · · · ∪ Sl̃,

where properties (a)− (d) hold. Let

B1
h,δ =
{

G ∈ Cω
h,δ(T

d × Λ, gl(m,C)) :
G = (Gij)1≤i,j≤l, RaNG = 0; Ĝii(0) = 0; Ĝij(kij) = 0

if i 6= j belong to the same Sl1for some 1 ≤ l1 ≤ l̃

}

.

Claim 2. We have B1
h,δ ⊆ B(nre)

h,δ (η), with η = 48M̃ǫ1/2.



22 JING WANG, XU XU, JIANGONG YOU, AND QI ZHOU

Proof. For any G ∈ B1
h,δ, one can check that AG = (AiiGij)1≤i,j≤l ∈ B1

h,δ, G
+A =

(G+
ijAjj)1≤i,j≤l ∈ B1

h,δ. Suppose

AG−G+A = H ∈ B1
h,δ.

With the Fourier expansion of the (i, j)-th matrix block, we have for any λ ∈ Wδ(Λ),
1 ≤ i, j ≤ l, |k| ≤ aN ,

Aii(λ)Ĝij(k, λ) − Ĝij(k, λ) · e2πi〈k,α〉Ajj(λ) = Ĥij(k, λ).

Let

Lij(k;λ) = Id⊗Aii(λ)− e2πi〈k,α〉(Ajj(λ))
T ⊗ Id,

where ⊗ represents Kronecker product between matrices. If we view Ĝij(k, λ) and Ĥij(k, λ)
as vectors, then

Ĝij(k, λ) = L−1
ij (k;λ)Ĥij(k, λ).

If i 6= j belong to the same subset Sl1 for some 1 ≤ l1 ≤ l̃, then for k 6= kij , |k| ≤ aN ,
we have

‖L−1
ij (k;λ)‖ ≤ (m2‖Lij(k;λ)‖)m

2

infλ∈Wδ(Λ) |detLij(k;λ)|
(4.6)

=
(m2‖Lij(k;λ)‖)m

2

infλ∈Wδ(Λ) |Res(χΣi
(λ), χΣj

(λ); 〈k, α〉)|

≤ (2m4M̃)m
2

K−m2 = (2m4M̃K)m
2
.

where the inequality follows from property (b) of H(N, aN,K), that is Σi(λ) and Σj(λ)
are (maN, 2mK−1)-resonant with the same resonant term kij .

If i 6= j belong to different subsets Sl1 , Sl2 , similarly, by property (d) of H(N, aN,K),
for any |k| ≤ aN , we obtain that

‖L−1
ij (k;λ)‖ ≤ (4m4M̃K)m

2
.

If i = j, by property (a) of H(N, aN,K), then for 0 < |k| ≤ aN , we can also get

‖L−1
ij (k;λ)‖ ≤ (4m4M̃K)m

2
.

Since G,H ∈ B1
h,δ, then for any λ ∈Wδ(Λ) we have

|Gij(λ)|h =
∑

|k|≤aN

‖Ĝij(k, λ)‖e2π|k|h ≤ (4m4M̃K)m
2 |Hij(λ)|h,

and thus

|G|h,δ ≤ m(4m4M̃K)m
2 |H|h,δ <

1

48M̃ǫ1/2
|H|h,δ,

which implies that

|AG−G+A|h,δ ≥ 48M̃ǫ1/2|G|h,δ.

Therefore, we have B1
h,δ ⊆ B(nre)

h,δ (η) with η = 48M̃ǫ1/2. �
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Applying Lemma 4.2, there exist Y ∈ Cω
h,δ(T

d × Λ, gl(m,C)) and F (re) ∈ B(re)
h,δ (η) such

that

e−Y +
(A+ F )eY = A+ F (re),

with |Y |h,δ ≤ ǫ1/2, |F (re)|h,δ ≤ 3M̃ǫ. Then by Claim 2, for 1 ≤ i ≤ l,

TaNF (re)
ii (θ) = F̂

(re)
ii (0),

and if i 6= j belong to the same Sl1 , then

TaNF (re)
ij (θ) = F̂

(re)
ij (kij)e

2πi〈kij ,θ〉;

otherwise, TaNF (re)
ij (θ) ≡ 0.

Finally we let F ′ := RaNF
(re), and

A′ := A+ diag{F̂ (re)
11 (0), · · · , F̂ (re)

ll (0)},
f (re) := TaNF (re) − diag{F̂ (re)

11 (0), · · · , F̂ (re)
ll (0)}.

Then one can compute

|F ′|h′,δ = sup
λ∈Wδ(Λ)

∑

|k|>aN

‖F̂ (re)(k, λ)‖e2π|k|h′

≤ sup
λ∈Wδ(Λ)

e−2πaN(h−h′)
∑

|k|>aN

‖F̂ (re)(k, λ)‖e2π|k|h

≤ 3M̃e−2πaN(h−h′)ǫ.

We finish the whole proof. �

4.3. Remove the resonances.

Lemma 4.3. Let A′ ∈ Cω
δ (Λ,GL(m,C)), f (re) ∈ Cω

h,δ(T
d × Λ, gl(m,C)), where

A′(λ) = diag{A′
11(λ), · · · , A′

ll(λ)}
for λ ∈ Wδ(Λ), and view f (re) as block matrices with the same block partition as A′.
Suppose that there exists a disjoint partition of {1, · · · , l}

{1, · · · , l} = S1 ∪ S2 ∪ · · · ∪ Sl̃,
such that the following hold:

a) If i, j ∈ Sl1 with i 6= j, then there exists a unique kij such that f̂
(re)
ij (k) = 0 for k 6= kij ,

and we have kij + kji = 0.
b) If i, j and t are different and belong to the same subset Sl1 , we have kij + kjt = kit.

c) If i = j, then f̂
(re)
ij (k) = 0 for any k, and we denote kii = 0.

d) If i ∈ Sl1 , j ∈ Sl2 with l1 6= l2, then f̂
(re)
ij (k) = 0 for any k, and we denote kij = 0.

Then there exists H ∈ Cω
h (T

d,GL(m,C)), independent of λ, such that

H−1(·+ α)(A′ + f (re))H(·) = A′′.

where |H|h, |H−1|h ≤ max1≤i,j≤l{e2π|kij |h}, A′′ ∈ Cω
δ (Λ,GL(m,C)), |A′′

ij |δ = |f̂ (re)ij (kij)|δ
for i 6= j, and for 1 ≤ i ≤ l, A′′

ii = e−2πi〈kij ,α〉A′
ii for some j that belongs to the same subset

Sl1 as i.
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Proof. For each 1 ≤ i ≤ l we can find Sm(i) such that i ∈ Sm(i). Let

n(i) = min
j∈Sm(i)

{j}.

We viewH as a block matrix with the same block partition as A′, and letHii = e2πi〈kin(i),θ〉Id,
Hij := 0 for i 6= j. Then H ∈ Cω

h (T
d,GL(m,C)) does not depend on λ. Moreover, we

have
H−1(θ + α)A′H(θ) = diag{e−2πi〈k1n(1) ,α〉A′

11, · · · , e−2πi〈kln(l) ,α〉A′
ll}.

Furthermore, the (i, j)-th block of H−1(θ + α)f (re)(θ)H(θ) is 0 if i = j or i, j belong to
different subsets Sl1 , Sl2 ; otherwise, we have i 6= j belong to the same subset Sl1 for some

1 ≤ l1 ≤ l̃, implying n(i) = n(j), and then the (i, j)-th block is

e−2πi〈kin(i),α〉f̂ (re)ij (kij)e
2πi〈kij+kjn(j)−kin(i),θ〉,

where

kij + kjn(j) − kin(i) =







kij + kji = 0, if n(j) = n(i) = i,
kij − kij = 0, if n(j) = n(i) = j,
kij + kjn(j) − kin(j) = 0, otherwise,

and thus equals e−2πi〈kin(i),α〉f̂ (re)ij (kij). Let

A′′ := H−1(θ + α)(A′ + f (re)(θ))H(θ).

and we finish the proof.
�

4.4. Block diagonalization. The following lemma assures that if the spectrum of the
diagonal block elements of the new constant matrix is separated again, then the new
constant matrix can be diagonalized by a matrix close to identity.

Lemma 4.4. Let R, M̃ ′ > 1. Given A,G where A ∈ Cω
δ (Λ,GL(m,C)), G ∈ Cω

δ (Λ, gl(m,C))
with A(λ) = diag{A11(λ), · · · , All(λ)} for λ ∈ Wδ(Λ), and Aii(1 ≤ i ≤ l) being block ma-

trices, suppose |A|δ ≤ M̃ ′, |G|δ ≤ ǫ, the decomposition Σ(λ) = Σ1(λ) ∪ · · · ∪ Σl(λ) is
(ν, ζ)-separated in Wδ(Λ) with 0 < ν ≤ 1, (M, δ, c, r)-transverse on Λ, and Σ(λ) ⊆ D(R)
for λ ∈Wδ(Λ), where Σ(λ) := Σ(A(λ)) and Σi(λ) := Σ(Aii(λ)) for 1 ≤ i ≤ l. If

(6m4M̃ ′ν−1)m
2+1ǫ

1
2 ≤ 1, (4.7)

and 27m2M̃ ′3Rǫ1/m < 1, then there exists S ∈ Cω
δ (Λ,GL(m,C)) such that

S−1(A+G)S = Ã, (4.8)

where Ã ∈ Cω
δ (Λ,GL(m,C)), Ã = diag{Ã11, · · · , Ãll} in Wδ(Λ),

|Aii − Ãii|δ ≤ 3M̃ ′ǫ,

|S − Id|δ ≤ 2ǫ
1
2 ,

and the decomposition Σ̃(λ) = Σ̃1(λ) ∪ · · · ∪ Σ̃l(λ) is (ν ′, ζ ′)-separated in Wδ(Λ), with

Σ̃(λ) := Σ(Ã(λ)) and Σ̃i(λ) := Σ(Ãii(λ)) for 1 ≤ i ≤ l. In addition, we have Σ̃(λ) =

Σ̃1(λ) ∪ · · · ∪ Σ̃l(λ) is (M ′, δ, c′, r)-transverse on Λ, Σ̃(λ) ⊆ D(R′) for λ ∈Wδ(Λ), and for
any 1 ≤ i ≤ l, λ ∈Wδ(Λ),

dH(Σi(λ), Σ̃i(λ)) < 8m2M̃ ′3ǫ
1
m ,
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where

R′ = R+ 16m2R2M̃ ′3ǫ
1
m ,

M ′ = (2R′)m
2
,

c′ = c− 28m+2m10m2
R3m2

M̃ ′m+1(2rδ )
rǫ.

ν ′ = ν − 16m2M̃ ′3ǫ
1
m

ζ ′ = ζ + 16m2M̃ ′3ǫ
1
m ,

Proof. Let Bδ := Cω
δ (Λ, gl(m,C)), and it can be viewed as a special case of Bh,δ in Section

4.2, where the functions are constant for the variable in Td and we omit h here. Let

B1
δ := {Y ∈ Cω

δ (Λ, gl(m,C)) : Yii = 0, ∀1 ≤ i ≤ l},

B2
δ := {Y ∈ Cω

δ (Λ, gl(m,C)) : Yij = 0, ∀1 ≤ i 6= j ≤ l}.
Then Bδ = B1

δ ⊕ B2
δ , and for any Y ∈ B1

δ , we have the (i, j)-th block matrices of AY and
Y A are AiiYij and YijAjj respectively. It is obvious that AY, Y A ∈ B1

δ . Moreover, if we
let

AY − Y A = H ∈ B1
δ ,

then for i 6= j, the (i, j)-th block matrix equation is

AiiYij − YijAjj = Hij.

Let

Lij(λ) = Id ⊗Aii(λ)− (Ajj(λ))
T ⊗ Id.

Then for any λ ∈Wδ(Λ) and i 6= j, if we view Yij and Hij as vectors, we have

Yij(λ) = L−1
ij (λ)Hij(λ).

By the fact that dist(Σi(λ),Σj(λ)) > ν for i 6= j and λ ∈Wδ(Λ), we have

|detLij(λ)| = |Res(χΣi(λ), χΣj(λ))| ≥ νm
2
,

which implies that

|L−1
ij |δ ≤ (2m4ν−1M̃ ′)m

2
.

Therefore, we have

|Y |δ ≤ m(2m4ν−1M̃ ′)m
2 |H|δ ≤

|H|δ
48M̃ ′ǫ1/2

.

which means |AY − Y A|δ ≥ 48M̃ ′ǫ1/2|Y |δ, and thus B1
δ ⊆ B(nre)

δ (η) with η = 48M̃ ′ǫ1/2.

Then by Lemma 4.2, there exist Y ∈ Cω
δ (Λ, gl(m,C)) and G(re) ∈ B(re)

δ (η) ⊆ B2
δ with

|Y |δ ≤ ǫ1/2 and |G(re)|δ ≤ 3M̃ ′ǫ, such that

e−Y (A+G)eY = A+G(re).

Denote Ã = A+G(re) and S = eY . Then Ã = diag{Ã11, · · · , Ãll}, and

|Aii − Ãii|δ = |G(re)
ii |δ ≤ 3M̃ ′ǫ,

|S − Id|δ = |eY − Id|δ < 2ǫ1/2.

Since |Aii− Ãii|δ ≤ 3M̃ ′ǫ, then by Lemma 3.10, the rest of the lemma holds, and we finish
the proof. �
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5. Stratified quantitative almost reducibility and reducibility

We will use the KAM steps developed in Section 4 to prove the stratified quantitative al-
most reducibility for all parameters, as well as the quantitative reducibility for full measure
set of parameters.

Let Λ ⊆ R be an interval, α ∈ DCd(γ, τ) with γ > 0, τ > d, δ1, c1 > 0, r1 ∈ N+,

M1, R1 > 1, R = 2R1, and Π1 be a partition of Λ. For each Λ̃ ∈ Π1 and A1 ∈
Cω
δ1
(Λ̃,GL(m,C)), we suppose Σ(A1(λ)) ⊆ D(R1) for λ ∈ Λ̃, and Σ(A1(λ)) is (M1, δ1, c1, r1)-

transverse on Λ̃.

5.1. Stratified quantitative almost reducibility. In this subsection, we state the iter-
ative lemma (Proposition 5.1) for the stratified quantitative almost reducibility. We first
give the iteration parameters. Let 0 < ε < 1, ǫ1 = ε1/2, and for n ≥ 1,

ǫn+1 = ǫ4
n

n = ǫ2
n2+n

1 , hn = (
1

2
+

1

2n
)h1. (5.1)

We now define

Nn = [2n+1 | log ǫn|
2πh1

] + 1, an = 8n+1m,

Nn,p = apnNn, Kn = 144mRγ−1(3mNn,m+1)
τ .

Let b1(m,R, τ, γ) = 160m(m+2)(τ+1)12τ+2Rγ−1, b2(m, τ) = (6m+ 7)τ and

un = b−1
1 (

4πh1
| log ε| )

τ e−b2e4
√

n

. (5.2)

Set s1 = 1, and we define sn iteratively:

si+1 = min{n : K−1
n < d1usi}, (5.3)

where d1 = 160mm+1. We denote

ξn = #{i : si ≤ n}.
By (5.3) we have

u−1
si < d1Ksi+1 ≤ b1(

| log ǫ1|
2πh1

)τ2b2s
2
i+1 = b1(

| log ε|
4πh1

)τ2b2s
2
i+1 .

Then we can get √
si+1 > e

√
si .

Similarly, by the fact d1Ksi+1−1 ≤ u−1
si , we obtain that

√
si+1 ≤ d2e

√
si ,

where d2 = d2(m) is a constant. Thus for any k ∈ N we have

ξn < 2 ln(k)(n) + k + 1,

where ln(k)(n) means ln · · · ln
︸ ︷︷ ︸

k

(n), and if ξn ≤ k we denote ln(k)(n) = 1.

Suppose ǫ1 is small enough such that

(
1

2πh1
ln

1

ǫ1
)6m(m+2)τ <

1

ǫ1
, 36(m + 7)3τ < ln

1

ǫ1
. (5.4)
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Moreover, it is obvious that for ǫ1 sufficiently small, we have for all k ∈ N

6m(m+ 2)b2e
4
√
sk < 2s

2
k−3sk+2| ln ǫ1|, (5.5)

In the sequel, we assume ǫ1 is small enough such that (5.4) and (5.5) hold.

Suppose Πn(n ≥ 1) is a partition of Λ. We denote by b, κ the constants only depending on

m with b ≥ max{(120m)8m
3
, b́} and κ ≥ m2m2+10, where b́ is the constant only depending

on m in Lemma 3.9. For all n ≥ 2, we introduce the following notation for convenience.

Property P(n,Πn,Πn−1): For matrices-valued functions An, An−1 on Λ, on each Λ̃ ∈ Πn,

where Πn is a sub-partition of Πn−1, for sequences of numbers Rn, rn, νn, ζn, δn, M̃n, cn
defined according to Λ̃, the following hold:

(P1)n We have An ∈ Cω
δn
(Λ̃,GL(m,C)), |An|δn < M̃n, and for any λ ∈Wδn(Λ̃),

An(λ) = diag{An,11(λ), · · · , An,lnln(λ)},

where Σ(n)(λ) := Σ(An(λ)) ⊆ D(Rn), and Σ
(n)
i (λ) := Σ(An,ii(λ)).

(P2)n The decomposition Σ(n)(λ) = Σ
(n)
1 (λ)∪· · ·∪Σ

(n)
ln

(λ) is (νn, ζn)-separated in Wδn(Λ̃)

and ((2Rn)
m2
, δn, cn, rn)-transverse on Λ̃.

(P3)n For n = sk there exists λ0 ∈ Λ̃ such that Σ
(n)
1 (λ0) ∪ · · · ∪ Σ

(n)
ln

(λ0) is (8νn, ζn)-
separated and

dH(Σ
(n)
i (λ),Σ

(n)
i (λ0)) < νn, ∀λ ∈Wδn(Λ̃),

#Πn ≤ #Πn−1 +
bR6m

n−1M̃
3m
n−1|Λ|

ν3mn δn−1
maxΛ̃−∈Πn−1

1
δn−1(Λ̃−)

,

where δn−1 may be different for different Λ̃− ∈ Πn−1, and

Rn = Rn−1 + bR2
n−1M̃

4
n−1ǫ

1
m

n−1,

νn = usk , ζn = 10musk , rn = m2rn−1,

δn = b−1R−6m
n−1 (νnM̃

−1
n−1)

3mδn−1, M̃n = b(ν−1
n M̃n−1)

m2(m+2),

cn = (b−1R−1
n−1r

−1
n−1δn−1νnM̃

−1
n−1cn−1)

κrn−1 − r
κrn−1

n−1 ǫn−1.

(P4)n For sk < n < sk+1, we have for any Λ̃− ∈ Πn−1, λ ∈Wδn−1(Λ̃
−)

An−1(λ) = diag{An−1,11(λ), · · · , An−1,ln−1ln−1(λ)},

and the following:
(P4.1)n If ln < ln−1, then there exists a partition Πn(Λ̃

−) of Λ̃− with

#Πn(Λ̃
−) ≤ 1 +

bR2m−1
n−1 |Λ̃−|

νmn δn−1(Λ̃−)
,

where δn−1 may change with Λ̃− ∈ Πn−1, and for any Λ̃ ∈ Πn(Λ̃
−) there exists

λ0 ∈ Λ̃ such that for any λ ∈Wδn(Λ̃)

dH(Σ
(n)
i (λ),Σ

(n)
i (λ0)) < νn,



28 JING WANG, XU XU, JIANGONG YOU, AND QI ZHOU

with

Rn = Rn−1 + bR2
n−1M̃

4
n−1ǫ

1
m
n−1,

νn = νn−1 − bM̃4
n−1ǫ

1
m

n−1, ζn = m(ζn−1 + 7νn−1),

rn = m2rn−1, δn = b−1R
−(2m−1)
n−1 νmn δn−1, M̃n = M̃n−1 + 20mM̃2

n−1ǫn−1,

cn = (b−1R−1
n−1r

−1
n−1δn−1cn−1)

κrn−1 − (bRn−1M̃n−1δ
−1
n−1rn−1)

κrn−1ǫn−1.

(P4.2)n If ln = ln−1, then #Πn(Λ̃
−) = 1 and there exists k

(n)
i ∈ Zd(i = 1, 2, · · · , ln) such

that for any λ ∈Wδn(Λ̃
−) we have

dH(Σ
(n)
i (λ), e2πi〈k

(n)
i ,α〉Σ(n−1)

i (λ)) <
νn−1 − νn

2
,

with

Rn = Rn−1 + bR2
n−1M̃

4
n−1ǫ

1
m

n−1,

νn = νn−1 − bM̃4
n−1ǫ

1
m
n−1, ζn = ζn−1 + bM̃4

n−1ǫ
1
m
n−1,

rn = rn−1, δn = δn−1, M̃n = M̃n−1 + 20mM̃2
n−1ǫn−1,

cn = cn−1 − bR3m2

n−1M̃
m+2
n−1 (2rn−1δ

−1
n−1)

rn−1ǫn−1.

(P4.3)n We have

#Πn ≤ #Πn−1 +
bR2m−1

n−1 |Λ|
νmn

max
Λ̃∈Πn−1

1

δn−1(Λ̃)
,

where Πn = ∪Λ̃−∈Πn−1
Πn(Λ̃

−).

We say P(1) holds if there exists some partition Π1 of Λ, that the properties (P1)1-
(P3)1 hold for A1. For m̃ ≥ 2, we say P(m̃) holds if P(1) holds and for any 2 ≤ n ≤ m̃,
there exists a partition Πn of Λ such that P(n,Πn,Πn−1) holds for An, An−1.

Now we are in the position to state the iterative lemma for the stratified quantitative
almost reducibility.

Proposition 5.1 (Iterative Lemma). Assuming P(m̃) holds for any m̃ ≥ 1, |Fm̃|hm̃,δm̃ <
ǫm̃,

K−1
m̃ < γ

144mRm̃(3mNm̃,m+1)τ
, (5.6)

ǫ
1

2m
m̃ < γ

48Rm̃(2Nm̃,m+1)τ
, (5.7)

and

C(d)(bRnM̃nKnν
−1
n )m

2+1(
3 · 2nNn,m+2

h1
)d(

2m2rn
δn

)m
2rn/3c−1/3

n ≤ ǫ
− 1

6
n , (5.8)

for all n ≤ m̃, then there exists a sub-partition Πm̃+1 of Πm̃, such that on each Λ̃ ∈ Πm̃+1,
there exists Zm̃ ∈ Cω

hm̃+1,δm̃+1
(Td × Λ̃,GL(m,C)) such that

Z−1
m̃ (·+ α)(Am̃ + Fm̃(·))Zm̃(·) = Am̃+1 + Fm̃+1(·),

satisfying P(m̃+ 1). Moreover, we have estimates:

• |Fm̃+1|hm̃+1,δm̃+1
< ǫm̃+1, |Fm̃+1|hm̃+1,δm̃+1

≤ |Fm̃|hm̃,δm̃,
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• |Zm̃|hm̃+1,δm̃+1
, |Z−1

m̃ |hm̃+1,δm̃+1
< ǫ−1

m̃+2m+2,

• |Zm̃|m̃
2/2

hm̃+1,δm̃+1
|Fm̃+1|hm̃+1,δm̃+1

, |Z−1
m̃ |m̃

2/2
hm̃+1,δm̃+1

|Fm̃+1|hm̃+1,δm̃+1
< 1.

We leave the proof to Section 5.3.

5.2. Stratified quantitative reducibility. Now we state the key proposition (Proposi-
tion 5.2) to prove stratified full measure reducibility (Theorem 1.3), indeed reducibility out
of a zero Hausdorff dimensional set. We first give the iteration parameters.

Let 0 < ǫ̃1, h̃1, δ̃1, c̃
′
1 < 1, M̃ ′

1, R̃1, C̃1 > 1, r̃1 ∈ N+, r̃′1 = m2r̃1, and define sequences
inductively for j ≥ 1:

ǫ̃j+1 = ǫ̃
( 3
2
)j

1 , h̃j+1 = h̃j −
h̃1
2j+1

, Ñj = 2j
| ln ǫ̃j|
πh̃1

, Kj = ǫ̃
− 1

10r̃′1
j ,

M̃ ′
j+1 = M̃ ′

j + 3M̃ ′
j ǫ̃j, R̃j+1 = R̃j + 16m2M̃ ′3

j R̃
2
j ǫ̃

1
m

j , δ̃j+1 =
δ̃j

4(2R̃j)m
2Kj

,

C̃j+1 = C̃j +
(r̃′1 + 1)!

δ̃
r̃′1+1
j+1

(8m4R̃jM̃
′
j)

3m2
ǫ̃j , c̃′j+1 = c̃′j −

r̃′1!

(δ̃j+1/2)r̃
′
1

(8m4R̃jM̃
′
j)

3m2
ǫ̃j.

Proposition 5.2. Let 0 < ̺, γ, ǫ̃1, h̃1, δ̃1, c̃
′
1 < 1, τ > d, M̃ ′

1, R̃1, C̃1 > 1, r̃1 ∈ N+,

r̃′1 = m2r̃1, Λ̃ ⊆ R is an interval, and ǫ̃j , h̃j , Ñj ,Kj , M̃
′
j , R̃j , δ̃j , C̃j , c̃

′
j are defined as above.

If ǫ̃1, M̃
′
1, R̃1, δ̃1, r̃1, h̃1, δ̃1 satisfy

ǫ̃

̺

100r̃′2
1

1 < min{ (9R̃1)
−(τ+d), c̃′1, (2| ln ǫ̃1|)−(τ+d)}, (5.9)

ǫ̃1 < (γh̃τ1)
4m2

(16m2R̃1M̃
′
1r̃

′
1δ̃

−1
1 )−28m2r̃′1 , (5.10)

then the following holds for j ≥ 1:
Suppose there exists a disjoint union of intervals Λ(j) ⊆ Λ̃, such that for any Λ̄(j) ∈

C(Λ(j)), where C(Λ(j)) denotes the set of all the connected components of Λ(j), we have

gotten Ãj ∈ Cω
δ̃j
(Λ̄(j),GL(m,C)), F̃j ∈ Cω

h̃j ,δ̃j
(Td × Λ̄(j), gl(m,C)), with |Ãj |δ̃j ≤ M̃ ′

j ,

|F̃j |h̃j ,δ̃j
≤ ǫ̃j, Σ̃j(λ) := Σ(Ãj(λ)) being ((2R̃j)

m2
, δ̃j , c̃

′
j , r̃

′
1)-transverse on Λ̄(j), and Σ̃j(λ) ⊆

D(R̃j) for λ ∈Wδ̃j
(Λ̄(j)).

Furthermore, we assume that for any λ ∈ Λ̄(j), u ∈ T, we have

sup
0≤l≤r̃′1+1

|∂
lgj(λ, u)

∂λl
| ≤ C̃j ,

where gj(λ, u) =
∏

σℓ1
,σℓ2

∈Σ̃j (λ)

ℓ1 6=ℓ2

(σℓ1 − e2πiuσℓ2). Then there exists Λ(j+1) ⊆ Λ(j), such

that for any Λ̄(j+1) ∈ C(Λ(j+1)), there are Ãj+1 ∈ Cω
δ̃j+1

(Λ̄(j+1),GL(m,C)), Yj, F̃j+1 ∈

Cω
h̃j ,δ̃j+1

(Td × Λ̄(j+1), gl(m,C)), with |Yj |h̃j ,δ̃j+1
≤ ǫ̃

1
2
j , such that

e−Yj(·+α)(Ãj + F̃j(·))eYj (·) = Ãj+1 + F̃j+1(·),
|Aj+1 − Aj|δ̃j+1

≤ 3M̃ ′
j ǫ̃j, and Ãj+1, F̃j+1 satisfy the same assumptions of Ãj, F̃j with j

being replaced by j + 1, where

Λ(j+1) = Λ(j)\Rj(Λ̃), Rj(Λ̃) = ∪i∈Jj(Λ̃)I
(j)
i ,
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with {I(j)i }i ⊆ Λ(j) being disjoint intervals, |I(j)i | < ǫ̃

2

25r̃′2
1

j , and

#Jj(Λ̃) ≤ 2r̃
′
1+dÑd

j (
8C̃1

c̃′1
|Λ(j)|+#C(Λ(j))),

#C(Λ(j+1)) ≤ 2#C(R(j)(Λ̃)).

5.3. Proof of Proposition 5.1. By the assumption, we have obtained Πm̃ and Am̃, Fm̃,
where for any Λ̃ ∈ Πm̃, we have Am̃ = diag{Am̃,11, · · · , Am̃,lm̃lm̃} in Wδm̃(Λ̃). In the sequel,

we fix Λ̃ ∈ Πm̃. Without loss of generality, we assume |Fm̃|hm̃,δm̃ ≥ ǫm̃+1; otherwise, we

let Am̃+1 = Am̃, Fm̃+1 = Fm̃, and if necessary, we divide Λ̃ into 1 +
[

Λ̃
δm̃+1

]

intervals with

equal length less than δm̃+1 as the partition Πm̃+1(Λ̃) of Λ̃. Then the result follows.
Without loss of generality, we assume that sk ≤ m̃ < sk+1.

5.3.1. Step 1: Eliminate the non-resonant terms.

Claim 3. There exists p ∈ {0, 1, · · · ,m} such that the decomposition Σ
(m̃)
1 ∪ · · · ∪ Σ

(m̃)
lm̃

satisfies H(Nm̃,p, Nm̃,p+1,Km̃) in Wδm̃(Λ̃).

Proof. Let
m1 = max{n ∈ N ∩ [sk, m̃) : ln > lm̃},

and if no such n exists, let m1 = sk. Then by properties (P3)sk and (P4)n with m1 +1 ≤
n ≤ m̃, we have

dH(Σ
(m̃)
i (λ),Σ

(m̃)
i (λ0)) < 2νm1 − νm̃, (5.11)

for some λ0 ∈ Λ̃. By the definition of νn and ζn for sk ≤ n ≤ m̃ and (5.8), we obtain that
usk
2

< νn ≤ usk , 10musk ≤ ζn < 20mm+1usk , (5.12)

where usk is defined as in (5.2). Then by (5.3) and (5.6), we have

16mνm1 < 8mζm̃ < mK−1
m̃ <

γ

10Rm̃(3mNm̃,m+1)τ
.

Together with (P1)m̃-(P2)m̃, we can apply Lemma 4.1, and then the result follows. �

Then by (5.8), we can apply Proposition 4.1 to Am̃ + Fm̃(·), and get Ym̃, f
(re)
m̃ , Fm̃,1 ∈

Cω
hm̃,δm̃

(Td × Λ̃, gl(m,C)) such that

e−Ym̃(·+α)(Am̃ + Fm̃(·))eYm̃(·) = Am̃,1 + f
(re)
m̃ (·) + Fm̃,1(·),

where Am̃,1 = diag{Am̃,1,11, · · · , Am̃,1,lm̃lm̃}, |Ym̃|hm̃,δm̃ ≤ ǫ
1/2
m̃ , |f (re)m̃ |hm̃,δm̃ ≤ 3M̃m̃ǫm̃,

|Am̃,1,ii −Am̃,ii|δm̃ ≤ 3M̃m̃ǫm̃,

|Fm̃,1|hm̃+1,δm̃ ≤ 3M̃m̃ǫm̃e
−2πh1am̃Nm̃,p/2

m̃+1
,

and f
(re)
m̃ satisfies the properties of f (re) in Proposition 4.1 with N = Nm̃,p, a = am̃,K =

Km̃. Moreover, if we denote Σ̃(λ) := Σ(Am̃,1(λ)), and Σ̃i(λ) := Σ(Am̃,1,ii(λ)) for 1 ≤ i ≤
lm̃, then by (5.8), we can apply Lemma 3.10, and obtain that

1) |Am̃,1|δm̃ ≤ M̃ ′,

2) dH(Σ̃i(λ),Σ
(m̃)
i (λ)) < 8m2M̃3

m̃ǫ
1/m
m̃ , Σ̃(λ) ⊆ D(R′) for λ ∈Wδm̃(Λ̃),

3) Σ̃ = Σ̃1 ∪ · · · ∪ Σ̃lm̃ is (ν ′, ζ ′)-separated in Wδm̃(Λ̃),
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4) Σ̃ = Σ̃1 ∪ · · · ∪ Σ̃lm̃ is (M ′, δm̃, c′, rm̃)-transverse on Λ̃,

where

R′ = Rm̃ + 16m2R2
m̃M̃

3
m̃ǫ

1
m

m̃ ,

ν ′ = νm̃ − 16m2M̃3
m̃ǫ

1
m

m̃ ,

c′ = cm̃ − 28m+2m10m2
R3m2

m̃ M̃m+1
m̃ (2rm̃δm̃

)rm̃ǫm̃,

M̃ ′ = M̃m̃ + 3M̃m̃ǫm̃,

ζ ′ = ζm̃ + 16m2M̃3
m̃ǫ

1
m

m̃ ,

M ′ = (2R′)m
2
.

5.3.2. Step 2: Remove the resonances. Now applying Lemma 4.3 to Am̃,1 and f
(re)
m̃ , there

exists Hm̃ ∈ Cω
hm̃

(Td,GL(m,C)), independent of λ, such that

H−1
m̃ (·+ α)(Am̃,1 + f

(re)
m̃ (·))Hm̃(·) = Am̃,2,

with Am̃,2,ii = e2πi〈k
′
i,α〉Am̃,1,ii for some k′i ∈ Zd, where k′i is independent of λ for all

i = 1, · · · , lm̃, and

|Hm̃|hm̃+1
≤ e2πmNm̃,phm̃+1 ,

|Am̃,2 − diag{Am̃,2,11, · · · , Am̃,2,lm̃lm̃}|δm̃ ≤ 3(m− 1)M̃m̃ǫm̃.

Let Fm̃,2(·) = H−1
m̃ (·+ α)Fm̃,1(·)Hm̃(·). Then we have

|Fm̃,2|hm̃+1,δm̃ ≤ |Hm̃|2hm̃+1
|Fm̃,1|hm̃+1,δm̃ ≤ 3M̃m̃ǫ

1+(
am̃

2m̃+1 −2m)2m̃+1apm̃
m̃ ≤ 3M̃m̃ǫ

1+4mapm̃·8m̃
m̃ .

Furthermore, if we denote A′
m̃,2 := diag{Am̃,2,11, · · · , Am̃,2,lm̃lm̃}, Σ̂(λ) := Σ(A′

m̃,2(λ)), and

Σ̂i(λ) := Σ(Am̃,2,ii(λ)) for 1 ≤ i ≤ lm̃, then the following hold:

Lemma 5.1. The decomposition Σ̂(λ) = Σ̂1(λ)∪· · ·∪ Σ̂lm̃(λ) is (M ′, δm̃, c′, rm̃)-transverse

on Λ̃, for λ ∈Wδm̃(Λ̃), Σ̂(λ) ⊆ D(R′), diam(Σ̂i(λ)) ≤ ζ ′, and

|A′
m̃,2|δm̃ ≤ M̃ ′, Σ̂i(λ) = e2πi〈k

′
i,α〉Σ̃i(λ). (5.13)

Proof. Since Am̃,2,ii = e2πi〈k
′
i,α〉Am̃,1,ii, we can get (5.13) and then by the properties of

Σ̃i(λ), we have for λ ∈ Wδm̃(Λ̃), Σ̂(λ) ⊆ D(R′), diam(Σ̂i(λ)) ≤ ζ ′. Moreover, one can

check that for any u ∈ T and λ ∈Wδm̃(Λ̃),

ĝi(λ, u) = e2πimi(mi−1)〈k′i,α〉g̃i(λ, u),

Res(χΣ̂i(λ)
, χΣ̂j(λ)

;u) = e2πimimj〈k′i,α〉Res(χΣ̃i(λ)
, χΣ̃j(λ)

;u+ 〈k′j − k′i, α〉),

where mi = #Σ̂i is independent of λ and θ, g̃i(λ, u) =
∏

σℓ1
,σℓ2

∈Σ̃i(λ)

ℓ1 6=ℓ2

(σℓ1 − e2πiuσℓ2), and

ĝi(λ, u) =
∏

σℓ1
,σℓ2

∈Σ̂i(λ)

ℓ1 6=ℓ2

(σℓ1 − e2πiuσℓ2). Then the decomposition Σ̂(λ) = Σ̂1(λ) ∪ · · · ∪

Σ̂lm̃(λ) is (M ′, δm̃, c′, rm̃)-transverse on Λ̃. �

5.3.3. Step 3: Block diagonalization. We will divide this step into three cases according to
the spectrum of A′

m̃,2, and one of the following situations will happen:

Case a : sk ≤ m̃ < sk+1 − 1 and Σ̂1 ∪ · · · ∪ Σ̂lm̃
is (ν ′, ζ ′)-separated in Wδm̃(Λ̃). In

this case, since by (5.8)

(6m4M̃ ′ν ′−1)m
2+1(3(m− 1)M̃m̃ǫm̃)

1
2 < 1, 27m2M̃ ′3R′(3(m− 1)M̃m̃ǫm̃)

1
m < 1,
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then Lemma 4.4 applies and there exists Zm̃,1 ∈ Cω
δm̃

(Λ̃,GL(m,C)) such that

Z−1
m̃,1Am̃,2Zm̃,1 = diag{Am̃,3,11, · · · , Am̃,3,lm̃lm̃},

with |Zm̃,1 − Id|δm̃ ≤ 4mM̃
1
2
m̃ǫ

1
2
m̃ and |Am̃,3,ii −Am̃,2,ii|δm̃ < 18mM̃2

m̃ǫm̃. Let lm̃+1 = lm̃,

#Πm̃+1(Λ̃) = 1, Am̃+1 = diag{Am̃,3,11, · · · , Am̃,3,lm̃lm̃},
Fm̃+1 = Z−1

m̃,1Fm̃,2Zm̃,1, Zm̃ = eYm̃Hm̃Zm̃,1.

Then

|Am̃+1|δm̃ ≤ M̃m̃ + 20mM̃2
m̃ǫm̃ = M̃m̃+1,

|Fm̃+1|hm̃+1,δm̃ ≤ 6M̃m̃ǫ
1+4m8m̃apm̃
m̃ < ǫ4

m̃

m̃ = ǫm̃+1,

|Zm̃|hm̃+1,δm̃ ≤ 2|Hm̃|hm̃+1
≤ 2ǫ

−m2m̃+2apm̃
m̃ < ǫ−1

m̃+2m+2,

|Zm̃|m̃
2/2

hm̃+1,δm̃
|Fm̃+1|hm̃+1,δm̃ ≤ 3M̃m̃ǫ

1+4mapm̃(8m̃−m̃22m̃)
m̃ < ǫ

4mapm̃2m̃

m̃ < 1,

and the same estimates hold for Z−1
m̃ .

Moreover, Σ(m̃+1)(λ) ⊆ D(Rm̃+1) for λ ∈Wδm̃+1
(Λ̃), Σ(m̃+1) = Σ

(m̃+1)
1 ∪ · · · ∪Σ

(m̃+1)
lm̃+1

is

((2Rm̃+1)
m2
, δm̃+1, cm̃+1, rm̃+1)-transverse on Λ̃ and (νm̃+1, ζm̃+1)-separated in Wδm̃+1

(Λ̃),
where Rm̃+1, rm̃+1, νm̃+1, ζm̃+1, δm̃+1 and cm̃+1 are defined as in (P4.2)m̃+1.

Furthermore, for λ ∈Wδm̃+1
(Λ̃), 1 ≤ i ≤ lm̃+1,

dH(Σ̂i(λ),Σ
(m̃+1)
i (λ)) < 40m2M̃4

m̃ǫ
1
m

m̃ <
νm̃ − νm̃+1

4
.

By the fact that Σ̂i = e2πi〈k
′
i,α〉Σ̃i and dH(Σ̃i(λ),Σ

(m̃)
i (λ)) < 8m2M̃3

m̃ǫ
1/m
m̃ in Wδ̃m̃

(Λ̃), we

get that for λ ∈Wδm̃+1
(Λ̃)

dH(Σ
(m̃+1)
i (λ), e2πi〈k

′
i,α〉Σ(m̃)

i (λ)) <
νm̃ − νm̃+1

2
.

Case b : sk ≤ m̃ < sk+1 − 1 and Σ̂1 ∪ · · · ∪ Σ̂lm̃
is not (ν ′, ζ ′)-separated in Wδm̃(Λ̃).

By (5.8), (5.11), (5.12), and the fact that dH(Σ̃i(λ),Σ
(m̃)
i (λ)) < 8m2M̃3

m̃ǫ
1/m
m̃ and Σ̂i =

e2πi〈k
′
i,α〉Σ̃i with i = 1, · · · , lm̃, we have for any λ ∈Wδm̃(Λ̃),

dH(Σ̂i(λ), Σ̂i(λ0)) = dH(Σ̃i(λ), Σ̃i(λ0)) < 2νm1 , (5.14)

for some λ0 ∈ Λ̃. Then we can regathering the subsets Σ̂1(λ), · · · , Σ̂lm̃(λ) so that the
following holds:

Lemma 5.2. The set {1, 2, · · · , lm̃} can be divided into disjoint union

{1, 2, · · · , lm̃} = S̃1 ∪ · · · ∪ S̃lm̃+1
,

such that the decomposition Σ̂(λ) = Σ́1(λ) ∪ · · · ∪ Σ́lm̃+1
(λ) is (ν ′, ζ̄)-separated in Wδm̃(Λ̃),

and (M ′, δm̃, c′′,m2rm̃)-transverse on Λ̃, where lm̃+1 < lm̃, ζ̄ = m(ζ ′ + ν ′ + 4νm1), and

Σ́j =
⋃

i∈S̃j

Σ̂i, c′′ = ((
δm̃

4m4r2m̃(2R′)m2 )
2m4rm̃c′)m

2m2rm̃+2

Proof. We divide the set {1, · · · , lm̃} into subsets S̃1, · · · , S̃k such that
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(1) If ℓ 6= ℓ′ belong to the same S̃i, then there exist ℓ1, ℓ2, · · · , ℓt with ℓ1 = ℓ, ℓt = ℓ′, such

that dist(Σ̂ℓj (λj), Σ̂ℓj+1
(λj)) ≤ ν ′ for some λj ∈Wδm̃(Λ̃).

3

(2) If ℓ and ℓ′ belong to different subsets S̃i1 , S̃i2 , then there exists no such path, implying

that dist(Σ̂ℓ(λ), Σ̂ℓ′(λ)) > ν ′ for all λ ∈Wδm̃(Λ̃).

Since Σ̂1∪· · ·∪Σ̂lm̃ is not (ν ′, ζ ′)-separated inWδm̃(Λ̃) and ∀λ ∈Wδm̃(Λ̃), diam(Σ̂i(λ)) ≤ ζ ′,
then k < lm̃, and we denote lm̃+1 = k.

Let Σ́j =
⋃

i∈S̃j
Σ̂i. Then Σ̂ = Σ́1∪· · ·∪ Σ́lm̃+1

. By (5.14) and diam(Σ̂i(λ0)) ≤ ζ ′ for λ ∈
Wδm̃(Λ̃) (Lemma 5.1), we can get that Σ̂ =

⋃lm̃+1

j=1 Σ́j is a (ν ′, ζ̄)-separated decomposition

in Wδm̃(Λ̃) where ζ̄ = m(ζ ′ + ν ′ + 4νm1).

Moreover, by Lemma 5.1 and Lemma 3.8, we can get that Σ̂ = Σ́1 ∪ · · · ∪ Σ́lm̃+1
is

(M ′, δm̃, c′′,m2rm̃)-transverse on Λ̃ with c′′ = (( δm̃
4m4r2m̃(2R′)m2 )

2m4rm̃c′)m
2m2rm̃+2

. �

Besides, there exists Lm̃ ∈ GL(m,R) which is the product of elementary matrices that
exchange the rows, with ‖Lm̃‖ = ‖L−1

m̃ ‖ = 1, such that the conjugated block diagonal
matrix

L−1
m̃ A′

m̃,2Lm̃ =: Ám̃,4 = diag{Ám̃,4,11, · · · , Ám̃,4,lm̃+1lm̃+1
},

has the property that Ám̃,4,jj = diag{Am̃,2,ii : i ∈ S̃j}. Let

Am̃,4 = L−1
m̃ Am̃,2Lm̃, Fm̃,4 = L−1

m̃ Fm̃,2Lm̃.

Then we have |Ám̃,4 −Am̃,4|δm̃ ≤ 3(m− 1)M̃m̃ǫm̃, and

Σ(Ám̃,4(λ)) = Σ̂(λ), Σ(Ám̃,4,ii(λ)) = Σ́i(λ).

Since

|Ám̃,4|δm̃ ≤ |A′
m̃,2|δm̃ ≤ M̃ ′, |Ám̃,4 −Am̃,4|δm̃ ≤ 3(m− 1)M̃m̃ǫm̃,

and

(6m4M̃ ′ν ′−1)m
2+1(3(m− 1)M̃m̃ǫm̃)

1
2 < 1, 27m2M̃ ′3R′(3(m− 1)M̃m̃ǫm̃)

1
m < 1,

then by Lemma 4.4, there exists Zm̃,2 ∈ Cω
δm̃

(Λ̃,GL(m,C)) such that

Z−1
m̃,2Am̃,4Zm̃,2 = Am̃+1 = diag{Am̃+1,11, · · · , Am̃+1,lm̃+1lm̃+1

},

with |Am̃+1,ii − Ám̃,4,ii|δm̃ < 9mM̃ ′2ǫm̃, |Zm̃,2 − Id|δm̃ < 4mM̃
1
2
m̃ǫ

1
2
m̃. Thus, we have

|Am̃+1|δm̃ ≤ M̃m̃ + 20mM̃2
m̃ǫm̃ = M̃m̃+1.

Moreover, the decomposition Σ(m̃+1)(λ) = Σ
(m̃+1)
1 (λ) ∪ · · ·Σ(m̃+1)

lm̃+1
(λ) is (νm̃+1, ζm̃+1)-

separated in Wδm̃(Λ̃), (2Rm̃+1)
m2
, δm̃, cm̃+1, rm̃+1)-transverse on Λ̃ and for λ ∈ Wδm̃(Λ̃),

Σ(m+1)(λ) ⊆ D(Rm̃+1), where νm̃+1, ζm̃+1, Rm̃+1, cm̃+1, rm̃+1 are defined as in (P4.1)m̃+1.

Claim 4. There exists a partition Πm̃+1(Λ̃) of Λ̃ such that for any Λ̄ ∈ Πm̃+1(Λ̃), there
exists λ0 ∈ Λ̄ that

dH(Σ
(m̃+1)
i (λ),Σ

(m̃+1)
i (λ0)) < νm̃+1, ∀λ ∈Wδm̃+1

(Λ̄),

where δm̃+1 = b−1R
−(2m−1)
m̃ νmm̃+1δm̃.

3Here, for any Ω1,Ω2 ⊆ C, we denote dist(Ω1,Ω2) = infx∈Ω1,y∈Ω2
|x− y|.
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Proof. Divide Λ̃ into 1 + [ Λ̃
δm̃+1

] intervals with equal length less than δm̃+1, which is the

partition of Λ̃, denoted by Πm̃+1(Λ̃). For any Λ̄ ∈ Πm̃+1(Λ̃), fixing some λ0 ∈ Λ̄, we have

for any λ ∈ Wδm̃+1
(Λ̄), |λ − λ0| < 2δm̃+1. Since δm̃+1 <

νmm̃+1

4mm+1R2m−1
m̃+1

δm̃, then similar as

(3.8), we can obtain the result. �

Now we let Fm̃+1 = Z−1
m̃,2Fm̃,4Zm̃,2, and Zm̃ = eYm̃Hm̃Lm̃Zm̃,2. Then the result follows.

Case c : m̃ = sk+1 − 1. By Lemma 5.1 and Lemma 3.8, Σ̂(λ) is (M ′, δm̃, c̃′,m2rm̃)-

transverse on Λ̃ with

c̃′ = ((
δm̃

4m4r2m̃(2R′)m2 )
m4rm̃c′)m

2m2rm̃+2
.

Denote Σ′(λ) := Σ(Am̃,2(λ)), Rm̃+1 = Rm̃ + bR2
m̃M̃

4
m̃ǫ

1
m

m̃ , and

c̃′′ = c̃′ − 28m+2m10m2+1R3m2

m̃ M̃m+1
m̃ (

2m2rm̃
δm̃

)m
2rm̃ǫm̃.

Then due to the fact that

64m2M̃ ′2R′(3(m− 1)M̃m̃ǫm̃)
1
m < 1, |Am̃,2 −A′

m̃,2|δm̃ ≤ 3(m− 1)M̃m̃ǫm̃,

by Lemma 3.10 with l = 1, we can obtain that Σ′(λ) ⊆ D(Rm̃+1) for all λ ∈Wδm̃(Λ̃) and

the multiset Σ′(λ) is ((2Rm̃+1)
2, δm̃, c̃

′′,m2rm̃)-transverse on Λ̃.

Let δm̃+1, rm̃+1, νm̃+1, ζm̃+1, M̃m̃+1 and cm̃+1 be defined as in (P3)m̃+1. Then by

Proposition 3.1 with νm̃+1, there exists a partition Πm̃+1(Λ̃) for Λ̃ with

#Πm̃+1(Λ̃) ≤ 1 +
|Λ̃|
δm̃+1

,

such that for each Λ̄ ∈ Πm̃+1(Λ̃) there is a similarity transformation Zm̃,3 ∈ Cω
δm̃+1

(Λ̄,GL(m,C))

such that

Z−1
m̃,3Am̃,2Zm̃,3 = Am̃+1 = diag{Am̃+1,11, · · · , Am̃+1,lm̃+1lm̃+1

},
with |Zm̃,3|δm̃+1

, |Z−1
m̃,3|δm̃+1

, |Am̃+1,ii|δm̃+1
≤ M̃m̃+1. Then one can check that Am̃+1 ∈

Cω
δm̃+1

(Λ̄,GL(m,C)) satisfies (P1)m̃+1 and (P2)m̃+1.

Moreover, there exists λ0 ∈ Λ̄ such that the decomposition Σ(m̃+1)(λ0) = Σ
(m̃+1)
1 (λ0) ∪

· · · ∪ Σ
(m̃+1)
lm̃+1

(λ0) is (8νm̃+1, ζm̃+1)-separated and ∀λ ∈ Wδm̃+1
(Λ̄), we have

dH(Σ
(m̃+1)
i (λ),Σ

(m̃+1)
i (λ0)) < νm̃+1.

Let Πm̃+1 = ∪Λ̃∈Πm̃
Πm̃+1(Λ̃). Then

#Πm̃+1 =
∑

Λ̃∈Πm̃

#Πm̃+1(Λ̃) ≤
∑

Λ̃∈Πm̃

(1 +
|Λ̃|
δm̃+1

)

≤ #Πm̃ +
bR6m

m̃ M̃3m
m̃ |Λ|

ν3mm̃+1

max
Λ̃∈Πm̃

1

δm̃(Λ̃)
,

since δm̃ may vary with Λ̃ ∈ Πm̃, .
Let

Fm̃+1 = Z−1
m̃,3Fm̃,2Zm̃,3, Zm̃ = eYm̃Hm̃Zm̃,3.
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By (5.4), (5.5), (5.6), (5.8), and the definition of usk+1
in (5.2), we can check that 2M̃m̃+1 <

ǫ−m
m̃ , and the following estimates hold:

|Fm̃+1|hm̃+1,δm̃+1
≤ M̃2

m̃+1|Fm̃,2|hm̃+1,δm̃ < ǫ4m8m̃−2m
m̃ < ǫm̃+1,

|Zm̃|
m̃2

2
hm̃+1,δm̃+1

|Fm̃+1|hm̃+1,δm̃+1
< ǫ

1+m(4·8m̃apm−2m̃+1m̃2apm̃− m̃2

2
−2)

m̃ < ǫm̃,

|Zm̃|hm̃+1,δm̃+1
< 2M̃m̃+1ǫ

−m2m̃+2apm̃
m̃ < ǫ

−m(2m̃+2amm̃+1)
m̃ < ǫ−1

m̃+2m+2,

and the same estimates hold for Z−1
m̃ .

To that end, for sk ≤ m̃ < sk+1 − 1, in both cases (Case a and b), we can obtain that

#Πm̃+1 =
∑

Λ̃∈Πm̃

#Πm̃+1(Λ̃) ≤
∑

Λ̃∈Πm̃

(1 +
bR2m−1

m̃ |Λ̃|
νmm̃+1δm̃

) ≤ #Πm̃ +
bR2m−1

m̃ |Λ|
νmm̃+1

max
Λ̃∈Πm̃

1

δm̃
.

The proof is finished. �

5.4. Proof of Proposition 5.2: By (5.9) and (5.10), inductively we can check that for
any j ≥ 1,

M̃ ′
j < 2M̃ ′

1, R̃j < 2R̃1, δ̃j > ǫ̃

1
4r̃′1
j , (2j | ln ǫ̃j|)τ+d < ǫ̃

− ̺

100r̃′21
j . (5.15)

Then by (5.10), we can obtain that

(r̃′1 + 1)!

(δ̃j+1/2)r̃
′
1+1

(8m4R̃jM̃
′
j)

3m2
ǫ̃j < ǫ̃

− 1
32

j ǫ̃
− r̃′1+1

4r̃′
1

j+1 ǫ̃j ≤ ǫ̃
1
5
j ,

which implies that C̃j < C̃1 + 2ǫ̃
1
5
1 < 2C̃1, and c̃′j > c̃′1 − 2ǫ̃

1
5
1 >

c̃′1
2 by (5.9). Moreover, also

by (5.9), we can check that

c̃′1K1 > ǫ̃

1

100r̃′21
1 ǫ̃

− 1
10r̃′1

1 > 4,

and thus for any j ≥ 1, c̃′j > 2K−1
j .

5.4.1. Selection of the subset Λ(j+1) ⊆ Λ(j).

Lemma 5.3. There exists Λ(j+1) ⊆ Λ(j) such that for any Λ̄(j+1) ∈ C(Λ(j+1)), λ ∈
Wδ̃j+1

(Λ̄(j+1)), 0 ≤ |k| ≤ Ñj , we have

|gj(λ, 〈k, α〉)| >
1

2Kj
,

where

Λ(j+1) = Λ(j)\Rj(Λ̃), Rj(Λ̃) = ∪i∈Jj(Λ̃)I
(j)
i ,

with {I(j)i }i ⊆ Λ(j) being disjoint intervals, |I(j)i | < ǫ̃

2

25r̃′2
1

j , and

#Jj(Λ̃) ≤ 2r̃
′
1+dÑd

j (
8C̃1

c̃′1
|Λ(j)|+#C(Λ(j))),

#C(Λ(j+1)) ≤ 2#C(R(j)(Λ̃)).
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Proof. By the assumptions in Proposition 5.2, for any Λ̄(j) ∈ C(Λ(j)) and u ∈ T, the

function gj(λ, u) is (C̃j , c̃
′
j , r̃

′
1)-pyartli on Λ̄(j). Since c̃′j > 2K−1

j , then by Lemma 3.5, for

any 0 ≤ |k| ≤ Ñj there is a disjoint union of intervals ∪i∈Jj,k(Λ̄(j))Ik,i(Λ̄
(j)) ⊆ Λ̄(j) such

that

max
i∈Jj,k(Λ̄(j))

|Ik,i(Λ̄(j))| ≤ 2(
2K−1

j

c̃′j
)

1
r̃′
1 , (5.16)

#Jj,k(Λ̄
(j)) ≤ 2r̃

′
1(
2C̃j |Λ̄(j)|

c̃′j
+ 1) < 2r̃

′
1(
8C̃1|Λ̄(j)|

c̃′1
+ 1), (5.17)

|gj(λ, 〈k, α〉)| ≥ K−1
j , ∀λ ∈ Λ̄(j)\ ∪i∈Jj,k(Λ̄(j)) Ik,i(Λ̄

(j)).

Let

Rj(Λ̃) = ∪Ñj

|k|=0 ∪Λ̄(j)∈C(Λ(j)) ∪i∈Jj,k(Λ̄(j))Ik,i(Λ̄
(j)) =: ∪i∈Jj(Λ̃)I

(j)
i , Λ(j+1) = Λ(j)\Rj(Λ̃).

Without loss of generality, we assume that #Jj,k(Λ̄
(j)) ≥ 1; otherwise, we can take an

arbitrary interval Ik,1(Λ̄
(j)) ⊆ Λ̄(j) with |Ik,1(Λ̄(j))| ≤ 2(

2K−1
j

c̃′j
)

1
r̃′1 .

Then for any Λ̄(j+1) ∈ C(Λ(j+1)), λ ∈ Wδ̃j+1
(Λ̄(j+1)), there exists λ′ ∈ Λ̄(j+1) such that

|λ− λ′| < δ̃j+1. Since |gj(λ, u)|δ̃j ≤ (2R̃j)
m2

, then by Cauchy estimate, we obtain that

|gj(λ, u) − gj(λ
′, u)| ≤ | ∂

∂λ
gj(λ, u)|δ̃j+1

|λ− λ′| < (2R̃j)
m2

δ̃j/2
δ̃j+1 =

1

2Kj
,

which implies that for any 0 ≤ |k| ≤ Ñj ,

|gj(λ, 〈k, α〉)| ≥ |gj(λ′, 〈k, α〉)| − |gj(λ, 〈k, α〉) − gj(λ
′, 〈k, α〉)| > 1

2Kj
.

Moreover, by (5.17),

#Ji(Λ̃) ≤ (2Ñj)
d

∑

Λ̄(j)∈C(Λ(j))

2r̃
′
1(
8C̃1|Λ̄(j)|

c̃′1
+ 1)

≤ 2r̃
′
1+dÑd

j

(

8C̃1

c̃′1
|Λ(j)|+#C(Λ(j))

)

.

Furthermore, by the definition of Λ(j+1), and #Jj,k(Λ̄
(j)) ≥ 1, we can obtain that

#C(Λ(j+1)) ≤
∑

Λ̄(j)∈C(Λ(j))

(1 + #Rj(Λ̄
(j))) ≤ 2#C(R(j)(Λ̃)),

where #Rj(Λ̄
(j)) = ∪Ñj

|k|=0 ∪i∈Jj,k(Λ̄(j)) Ik,i(Λ̄
(j)).

To that end, by (5.16), for any interval I
(j)
i ∈ C(Rj(Λ̃)), we have

|I(j)i | ≤ 2(
2K−1

j

c̃′j
)

1
r̃′
1 ≤ 8ǫ̃

1

10r̃′2
1

j c̃′−1
1 < ǫ̃

2

25r̃′2
1

j .

�
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5.4.2. Eliminate the non-resonant terms.

Claim 5. For any Λ̄(j+1) ∈ C(Λ(j+1)), λ ∈ Λ̄(j+1), the multiset Σ̃j(λ) is

(Ñj , (2γ
−1Kj(2R̃j)

m2
Ñ τ

j )
−1)

-nonresonant with itself.

Proof. First, for any 0 < |k| ≤ Ñj , λ ∈Wδ̃j+1
(Λ̄(j+1)), σℓ1 , σℓ2 ∈ Σ̃j(λ), if ℓ1 6= ℓ2, then

|gj(λ, 〈k, α〉)| = |σℓ1 − e2πi〈k,α〉σℓ2 |
∏

σi1
,σi2

∈Σ̃j(λ),

i1 6=i2,(i1,i2) 6=(ℓ1,ℓ2)

|σi1 − e2πi〈k,α〉σi2 |

≤ (2R̃j)
m2−m−1|σℓ1 − e2πi〈k,α〉σℓ2 |,

which, by Lemma 5.3, implies that

|σℓ1 − e2πi〈k,α〉σℓ2 | ≥
1

2Kj(2R̃j)m
2−m−1

>
γ

2Kj(2R̃j)m
2Ñ τ

j

.

Moreover, for any 0 < |k| ≤ Ñj, λ ∈Wδ̃j+1
(Λ̄(j+1)), σ ∈ Σ̃j(λ),

|σ − e2πi〈k,α〉σ| ≥ 1

R̃j

· γ

2|k|τ ≥ γ

2R̃jÑ τ
j

>
γ

2Kj(2R̃j)m
2Ñ τ

j

.

The result follows. �

Then by Definition 4.2 with l = 1, for any Λ̄(j+1) ∈ C(Λ(j+1)), the multiset Σ̃j(λ) satisfies

H(Ñj, Ñj , 2γ
−1Kj(2R̃j)

m2
Ñ τ

j ) on Wδ̃j+1
(Λ̄(j+1)). Moreover, by (5.10) and (5.15), one can

check that

ǫ̃j < (12m5M̃ ′2
j γ

−1Kj(2R̃j)
m2
Ñ τ

j )
−2m2

.

Applying Proposition 4.1 to Ãj+F̃j , we get Yj, F̃
(re)
j , F̃j+1 ∈ Cω

h̃j ,δ̃j+1
(Td×Λ̄(j+1), gl(m,C)),

such that

e−Y +
j (·)(Ãj + F̃j(·))eYj (·) = Ãj+1 + F̃

(re)
j (·) + F̃j+1(·),

with |Yj |h̃j ,δ̃j+1
≤ ǫ̃

1
2
j , |Ãj+1 − Ãj |δ̃j+1

≤ 3M̃ ′
j ǫ̃j , F̃

(re)
j ≡ 0, and

|F̃j+1|h̃j+1,δ̃j+1
≤ 3M̃ ′

je
−2πÑj(h̃j−h̃j+1)ǫ̃j < ǫ̃

3
2
j = ǫ̃j+1,

where Y +
j (·) = Yj(·+ α).

5.4.3. Verify the properties of Ãj+1. By Lemma 3.10 with l = 1, since 64m2M̃ ′2
j R̃j(3M̃

′
j ǫ̃j)

1
m <

1, then Σ̃j+1(λ) ⊆ D(R̃j+1) for λ ∈Wδ̃j+1
(Λ̄(j+1)), and for any u ∈ T

|gj+1(·, u) − gj(·, u)|δ̃j+1
< 28m+2(m10R̃3

j )
m2
M̃ ′m+1

j ǫ̃j ,
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where Σ̃j+1(λ) = Σ(Ãj+1(λ)), and gj+1(λ, u) =
∏

σℓ1
,σℓ2

∈Σ̃j+1(λ)

ℓ1 6=ℓ2

(σℓ1 − e2πiuσℓ2). Then for

any u ∈ T, we can obtain that |gj+1|δ̃j+1
≤ (2R̃j+1)

m2
, and for any λ ∈W δ̃j+1

2

(Λ̄(j+1))∩R,

sup
0≤l≤r̃′1

| ∂
l

∂λl
gj+1(λ, u)|

≥ sup
0≤l≤r̃′1

| ∂
l

∂λl
gj(λ, u)| −

r̃′1!

(δ̃j+1/2)r̃
′
1

28m+2(m10R̃3
j )

m2
M̃ ′m+1

j ǫ̃j > c̃′j+1.

Thus, Σ̃j+1 is ((2R̃j+1)
m2
, δ̃j+1, c̃

′
j+1, r̃

′
1)-transvers on Λ̄(j+1) ∈ C(Λ(j+1)). Furthermore, for

any λ ∈ Λ̄(j+1), we also have

sup
0≤l≤r̃′1+1

| ∂
l

∂λl
gj+1(λ, u)| ≤ sup

0≤l≤r̃′1+1
| ∂

l

∂λl
gj(λ, u)| +

(r̃′1 + 1)!

δ̃
r̃′1+1
j+1

28m+2(m10R̃3
j )

m2
M̃ ′m+1

j ǫ̃j

< C̃j+1.

We finish the proof. �

6. Proof of main results

In this section, we give the proof of main results. Before giving the detailed proof, we
first state an auxiliary lemma, which will be used to give the useful estimates in KAM

step. Recall that b ≥ (120m)8m
3
, κ ≥ m2m2+10 are constants only depending on m.

Lemma 6.1. Suppose M̃1 > 5, 0 < ǫ1 < 1, and Θ ⊆ N satisfies #(Θ ∩ [sk, sk+1)) ≤ m.

Then for n ≥ 2 we define Rn, M̃n, δn and cn inductively:

Rn+1 = Rn + bR2
nM̃

4
nǫ

1
m
n ;

a) For n = sk − 1, we let

rn+1 = m2rn, νn+1 = usk ,

δn+1 = b−1R−6m
n (νn+1M̃

−1
n )κδn,

M̃n+1 = b(ν−1
n+1M̃n)

κ,

cn+1 = (b−1R−1
n r−1

n δnνn+1M̃
−1
n cn)

κrn − rκrnn ǫn.

b) For sk ≤ n < sk+1 − 1 and n /∈ Θ, we have:

rn+1 = rn, νn+1 = νn − bM̃4
nǫ

1
m
n ,

δn+1 = δn, M̃n+1 = M̃n + 20mM̃2
nǫn,

cn+1 = cn − bR3m2

n M̃m+2
n (2δ−1

n rn)
rnǫn.

c) For sk ≤ n < sk+1 − 1 and n ∈ Θ, we have:

rn+1 = m2rn, νn+1 = νn − bM̃4
nǫ

1
m
n ,

δn+1 = b−1R−(2m−1)
n νmn δn, M̃n+1 = M̃n + 20mM̃2

nǫn,

cn+1 = (b−1R−1
n r−1

n δncn)
κrn − (bRnM̃nδ

−1
n rn)

κrnǫn,
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where b, κ are constants only depending on m. Then there exists ǫ∗ > 0, depending on
m,R1, M̃1, δ1, r1, c1, γ, τ , such that if ǫ1 ≤ ǫ∗, then the following estimations hold:

Rn < 2R1 =: R, (6.1)

M̃n ≤ (M̃1
| ln ǫ1|
2πh1

)b3 lnneb3e
4
√

n

, (6.2)

δn > δ1(M̃1
| ln ǫ1|
2πh1

)−b4 lnne−b4e4
√

n

, (6.3)

cn > (c1
2πh1
| log ǫ1|

)n
b5
e−b6e5

√
n

, (6.4)

where b3 = b3(R,m, τ, γ), b4 = b4(R,m, τ, γ), b5 = b5(m,R, γ, τ, δ1, r1, M̃1) and b6 =

b6(m,R, γ, τ, δ1, r1, M̃1).

Proof. First, we observe that

rn ≤ m2(m+1)ξnr1 ≤ m36me8m(lnm) ln(8)(n)r1 ≤ d3(m)r1 ln
(6)(n). (6.5)

Moreover, by the definition of un and ǫn in the beginning of Section 5, there exists ǫ∗,0 =
ǫ∗,0(m,R1, h1, γ, τ, ) such that if ǫ1 < ǫ∗,0, we have for any n ≥ 1

ǫ
1

4m
n < un+1. (6.6)

Furthermore, there exists n∗ = n∗(m) ∈ N such that for any n ≥ n∗, we have 4n > κ+ 2.

Therefore, there exists ǫ∗,1 = ǫ∗,1(m, M̃1, R1, h1, γ, τ) such that if ǫ1 < ǫ∗,1, then for any

n ≤ n∗, we have bM̃4
nǫ

1
2m
n < 1 and ǫ

1
4m
n < νn+1. Then if ǫ1 < min{ǫ∗,0, ǫ∗,1}, we can check

that for any n ≥ 1,

bM̃4
nǫ

1
2m
n < 1. (6.7)

The reason is as the following: By the selection of ǫ∗,1, we only need to prove (6.7) holds
for n ≥ n∗ + 1. Suppose that (6.7) holds for n = j ≥ n∗ . Then for n = j + 1, if
sk ≤ j < sk+1 − 1 for some sk, then we can get that

bM̃4
j+1ǫ

1
2m
j+1 = b(M̃j + 20mM̃2

j ǫj)
4ǫ

4j

2m
j < bM̃4

j ǫ
1

2m
j · 24ǫ

4j−1
2m

j < 1.

Otherwise, if j = sk+1 − 1, then by (6.6) and the selection of n∗, we can get

bM̃4
j+1ǫ

1
2m
j+1 = b5ν−4κ

sk+1
M̃4κ

j ǫ
4j

2m
j < ǫ

− κ
m

j (bM̃4
j ǫ

1
2m
j )κǫ

4j−κ
2m

j < 1.

Now, for any n ≥ 1, there exists k ∈ N such that sk ≤ n < sk+1. Then by direct calculation
we can get:

ln M̃n ≤ κ ln M̃sk−1 + κ ln u−1
sk

+ ln(2b)

≤ d4(m, τ,R, γ) ln(
| ln ǫ1|
2πh1

) + d5(m, τ)e
4
√
sk + κ ln M̃sk−1

≤ κk ln M̃1 +
κk − 1

κ− 1
d4 ln(

| ln ǫ1|
2πh1

) + d5(κ
k−1e4

√
s1 + κk−2e4

√
s2 + · · ·+ e4

√
sk).

By the fact that
√
sk+1 > e

√
sk , we obtain that

κk−1e4
√
s1 + κk−2e4

√
s2 + · · · + e4

√
sk ≤ k∗e

4
√
k∗κk + 2e4

√
sk ,
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where k∗ is a constant only depending onm. Moreover, by the fact that κξn ≤ κ9+2 ln d7 ln(6)(n),
where d7 = d7(m) is a constant only depending on m, we can get

ln M̃n ≤ b3(R,m, τ, γ)(ln
(6)(n) · ln(M̃1

| ln ǫ1|
2πh1

) + e4
√
sk) (6.8)

≤ b3(ln
(6)(n) · ln(M̃1

| ln ǫ1|
2πh1

) + e4
√
n)

implying that

M̃n ≤ (M̃1
| ln ǫ1|
2πh1

)b3 ln
(6)(n)eb3e

4
√

n

.

Then by (6.6) and (6.7), we can get that for any n ≥ 1, when sk ≤ n < sk+1,

usk ≥ νn ≥ νsk − 2ǫ
1

2m
sk = usk − 2ǫ

1
2m
sk >

usk
2
. (6.9)

Moreover, let ǫ1 < ǫ∗,3 = R−4m. Then inductively, we can obtain that for any n ∈ N,

Rn ≤ R1

n−1∏

j=1

(1 + ǫ
1

4m
j ) < R.

Now we denote b̃ = b(2R)6m, and by the definition of δn, M̃n and (6.8), (6.9), we obtain
that for sk ≤ n < sk+1,

δn > b̃−mM̃−2
sk
δsk−1 > b̃−2mM̃−2

sk
M̃−2

sk−1
δsk−1−1 > · · · (6.10)

> b̃−ξnm(M̃skM̃sk−1
· · · M̃s2)

−2um
2

1 δ1

≥ b−m2

1 b̃−ξnm(M̃1
| ln ǫ1|
2πh1

)−2b3ξn ln(6)(n)e−2b3(e
4
√

sk+e
4
√

sk−1+···+e4
√

s1 )δ1

≥ (M̃1
| ln ǫ1|
2πh1

)−b4 ln
(5)(n)e−b4e

4
√

sk δ1

≥ (M̃1
| ln ǫ1|
2πh1

)−b4 ln
(5)(n)e−b4e4

√
n

δ1.

By the above calculation we can find ǫ′∗ = ǫ′∗(R,m, τ, γ, M̃1, δ1, r1, h1) such that if ǫ1 < ǫ′∗,
then for any n ≥ 1, we have 4e4

√
n < | ln ǫn| and

(b̃M̃nν
−1
n+1δ

−1
n rn)

κrnǫn < ǫ
1
2
n . (6.11)

Now we will prove the estimation of cn. We prove a rough estimation first. Let c̃n =
(b̃−1r−1

n δnνn+1M̃
−1
n cn)

κrn
if n = sk − 1 or sk ≤ n < sk+1 − 1, n ∈ Θ; otherwise, we let

c̃n = cn. Suppose c̃n > 4ǫ
1
4
n . Then we have

cn+1 ≥ c̃n − (b̃M̃nδ
−1
n rn)

κrnǫn > c̃n − ǫ
1
2
n >

c̃n
2
.

Furthermore, we have

c̃n+1 ≥ (b̃−1r−1
n+1δn+1M̃

−1
n+1νn+2cn+1)

κrn+1
> (2−1b̃−1r−1

n+1δn+1un+2M̃
−1
n+1c̃n)

κrn+1
. (6.12)
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Then by the definition of un, (6.5), (6.8), and (6.10), for sk ≤ n+1 < sk+1− 1, we can get

| ln c̃n+1| ≤ κrn+1

(

ln(4b̃) + ln rn+1 + ln δ−1
n+1 + ln M̃n+1 + lnu−1

sk
+ | ln c̃n|

)

(6.13)

≤ d8(R, γ, τ, r1, δ1, M̃1) ln
(2)(n)

(

ln
| ln ǫ1|
2πh1

+ e4
√
sk + | ln c̃n|

)

,

and for n = sk+1 − 2, we have

| ln c̃n+1| ≤ d8 ln
(2)(n)

(

ln
| ln ǫ1|
2πh1

+ e4
√
n + | ln c̃n|

)

.

Then there exists N∗ = N∗(R, γ, τ, r1, δ1, M̃1), such that for n ≥ N∗ we have d8 ln
(2)(n) <

4n

8 , which implies

c̃n+1 > 4ǫ
1
4
n+1,

for n ≥ N∗, provided c̃n > 4ǫ
1
4
n . For n ≤ N∗, by the definition of c̃n, there exists ǫ′′∗ =

ǫ′′∗(R, γ, τ, r1, δ1, M̃1, c1) such that if ǫ1 < ǫ′′∗ we have c̃n > 4ǫ
1
4
n for n ≤ N∗. Thus if

ǫ1 < min{ǫ∗,1, ǫ∗,2, ǫ∗,3, ǫ′∗, ǫ′′∗}, we have c̃n > 4ǫ
1
4
n for any n ∈ N.

Next we will estimate cn more precisely. Suppose that sk − 1 =: m0 < m1 < · · · < ml <
sk+1 − 1 =: ml+1, where l ≤ m, and Θ ∩ [sk, sk+1 − 1) = {m1,m2, · · · ,ml}. Then for any

mi < n < mi+1, by (6.11) and the fact that c̃n > 4ǫ
1
4
n , we have

c̃n = cn ≥ cn−1 − ǫ
1
2
n−1 ≥ · · · ≥ cmi+1 − 2ǫ

1
2
mi+1 ≥ c̃mi

− ǫ
1
2
mi − 2ǫ

1
2
mi+1 >

c̃mi

2
.

Then by (6.13), we obtain that

| ln c̃sk+1−2| ≤ 2| ln c̃ml
| ≤ 2d8 ln

(2)(ml)(ln
| ln ǫ1|
2πh1

+ e4
√
sk + | ln c̃ml−1|)

≤ 2d8 ln
(2)(sk+1)(ln

| ln ǫ1|
2πh1

+ e4
√
sk + 2| ln c̃ml−1

|) ≤ · · ·

≤ (2d8 ln sk+1)
m+2(ln

| ln ǫ1|
2πh1

+ e4
√
sk + | ln c̃sk−2|) ≤ · · ·

≤
(

(2d8 ln sk+1)
m+2 + (2d8 ln sk+1 · 2d8 ln sk)m+2 + · · ·

+(2d8 ln sk+1 · · · 2d8 ln s2)m+2
)

(ln
| ln ǫ1|
2πh1

+ e4
√
sk)

+(2d8 ln sk+1 · · · 2d8 ln s2)m+2| ln c̃s1 |

≤ k(2d8)
m+2(4k ln sk+1)

2(m+2)(ln
| ln ǫ1|
2πh1c1

+ e4
√
sk)

≤ k(8d8)
2(m+2)k(2d2

√
sk)

2(m+2)(ln
| ln ǫ1|
2πh1c1

+ e4
√
sk).
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Then for any sk ≤ n < sk+1, we obtain that

| ln cn| ≤ 2| ln c̃n−1| ≤ 2| ln c̃sk+1−2|

≤ ξn(8d8)
2(m+2)ξn (2d2

√
sk)

2(m+2)(ln
| ln ǫ1|
2πh1c1

+ e4
√
sk)

≤ d9 ln
(6)(n)sm+2

k (ln
| ln ǫ1|
2πh1c1

+ e4
√
sk)

≤ nb5 ln
| ln ǫ1|
2πh1c1

+ b6e
5
√
n.

We finish the proof. �

6.1. Proof of Theorem 1.4. Since A is analytic in λ ∈ Λ, there exists δ̃ > 0 such that
A ∈ Cω

δ̃
(Λ, GL(m,C)). By (3.3) and (3.4), for any u ∈ T, the function g(λ, u) is analytic

in Wδ̃(Λ). Then by the non-degeneracy of A on Λ, there exists 0 < δ ≤ δ̃ such that A(λ)
is non-degenerate on W δ

2
(Λ) ∩ R with c

2 and r ∈ N+. Let

r0 = r, c0 = c/2, δ0 = δ, h0 = h,

R0 = max{|A|δ , |A−1|δ}, M0 = (2R0)
m2
, M̃0 = R0,

and ε := |F |h,δ. By the definition of R0, we obtain that for any λ ∈ Wδ(Λ), u ∈ T,

Σ(A(λ)) ⊆ D(R0), and |g(λ, u)| ≤ (2R0)
m2

. Together with the fact A(λ) is non-degenerate
on W δ

2
(Λ) ∩ R, we obtain that Σ(A(λ)) is (M0, δ0, c0, r0)-transverse on Λ.

Let

h1 = h0, r1 = r0, R1 = R0, M1 = (2R1)
m2
,

ν1 = u1, ζ1 = 10mν1, δ1 = b−1((R2
0M̃0)

−1ν1)
3mδ0,

M̃1 = b(ν−1
1 M̃0)

m2(m+2), c1 = (bR0ν
−1
1 δ−1

0 M̃0)
−r0m3(m+6)c0.

By the definition of u1 in (5.2), there exists ǫ̃∗,1 = ǫ̃∗,1(m,R0, τ, γ, h1) > 0 such that if

ε < ǫ̃∗,1, we have ν1 = u1 < const · M̃0.

Recall that b ≥ b́, where b́ is the constant in Lemma 3.9. Then by Proposition 3.1
with ν ′ = ν1, there exists a partition Π1 of Λ such that for any Λ̃ ∈ Π1, there exists
S0 ∈ Cω

δ1
(Λ̃,GL(m,C)) such that ∀λ ∈Wδ1(Λ̃)

S−1
0 (λ)A(λ)S0(λ) = diag{A1,11(λ), · · · , A1,l1l1(λ)} =: A1(λ),

with |A1,ii|δ1 , |S0|δ1 , |S−1
0 |δ1 ≤ M̃1, the decomposition Σ(1)(λ) = Σ

(1)
1 (λ) ∪ · · · ∪ Σ

(1)
l1

(λ) is

(M1, δ1, c1, r1)-transvers on Λ̃ and (ν1, ζ1)-separated for λ ∈Wδ1(Λ̃), where

Σ(1)(λ) := Σ(A1(λ)) ⊆ D(R1), Σ
(1)
i (λ) := Σ(A1,ii(λ)).

Moreover, we have

#Π1 ≤ b(R2
0M̃0ν

−1
1 )3m

|Λ|
δ0

+ 1,

and there exists λ0 ∈ Λ̃ such that Σ
(1)
1 (λ0) ∪ · · · ∪ Σ

(1)
l1

(λ0) is (8ν1, ζ1)-separated, and for

any λ ∈Wδ1(Λ̃), #Σi(λ) = #Σi(λ), and

dH(Σ
(1)
i (λ),Σ

(1)
i (λ0)) < ν1, ∀1 ≤ i ≤ l1.

Thus, we have P(1) holds for A1.
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Let Z0 = S0 and F1 = S−1
0 FS0. Then there exists ǫ̃∗,2 = ǫ̃∗,2(m,R0, τ, γ, h1) > 0 such

that if ε < ǫ̃∗,2,

|F1|h1,δ1 ≤ M̃2
1 ε = b2((b1

| ln ε|
4πh1

)τ eb2e
4
R0)

2m2(m+2)ε < ε
1
2 =: ǫ1.

Moreover, we have

|Z0|δ1 , |Z−1
0 |δ1 < ε−

1
2 = ǫ−1

1 , |Z0|
1
2
δ1
|F1|h1,δ1 , |Z−1

0 |
1
2
δ1
|F1|h1,δ1 < 1.

In addition, there exists ǫ̃∗,3 = ǫ̃∗,3(d,R0,m, τ, γ, h0, δ0, r0, c0) > 0, such that if ε < ǫ̃∗,3,
then (5.6)-(5.8) hold for m̃ = n = 1.

Furthermore, by Lemma 6.1 and the definition of Kn, Nn,p, we can get that there exists

ǫ̃∗ = ǫ̃∗(d,m, γ, τ,R, δ1, h1, r1, c1), such that if ε
1
2 = ǫ1 < ǫ̃∗, then for any n ≥ 1, the

inequalities (5.6)-(5.8) hold.
Let ǫ∗ = min{ǫ∗,1, ǫ∗,2, ǫ∗,3, ǫ̃2∗}, and ε < ǫ∗. Then we can apply Proposition 5.1 induc-

tively. Fix ǫ > 0, ς > 0. There exists N∗
1 = N∗

1 (ǫ, d,R0,m, τ, γ, h0, δ0, r0) and N∗
2 = N∗

2 (ς)
such that if n ≥ N∗

1 , then ǫn < ǫ, and if n ≥ N∗
2 , then

∞∑

j=N∗
2

2

j2
<
ς

2
.

Furthermore, for the above N∗
2 , there exists N∗

3 = N∗
3 (ς) > N∗

2 such that if n ≥ N∗
3 , then

ǫ
ς
2
n <

2m+N∗
2+1

∏

j=2m+2

ǫj .

Now let N = max{N∗
1 , N

∗
3 }. Then there exists a partition ΠN−1 of Λ, such that for any

Λ̃ ∈ ΠN−1, there is a sequence of transformations Zj ∈ Cω
hj+1,δj+1

(Td × Λ̃,GL(m,C)) with

0 ≤ j ≤ N − 1, such that

Z−1
j (·+ α, λ) · · ·Z−1

0 (·+ α, λ)(A(λ) + F (·, λ))Z0(·, λ) · · ·Zj(·, λ) = Aj+1(λ) + Fj+1(·, λ),

with estimates

|Fj+1|hj+1,δj+1
< ǫj+1, |Fj+1|hj+1,δj+1

≤ |Fj |hj ,δj ,

|Zj |hj+1,δj+1
, |Z−1

j |hj+1,δj+1
< ǫ−1

j+2m+2,

|Zj |hj+1,δj+1
|Fj+1|

2
j2

hj+1,δj+1
, |Z−1

j |hj+1,δj+1
|Fj+1|

2
j2

hj+1,δj+1
< 1.

Let

B = Z0 · · ·ZN−1, Π = ΠN−1, η = δ1(M̃1
| ln ǫ1|
2πh1

)−b4 lnNe−b4e4
√

N

> 0,

where b4 = b4(R,m, γ, τ) is defined as in Lemma 6.1. Then by Lemma 6.1, we have δN ≥ η.
Moreover,

B−1(·+ α, λ)(A(λ) + F (·, λ))B(·, λ) = AN (λ) + FN (·, λ) =: Ã(λ) + F̃ (·, λ),
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with |F̃ |h/2,η ≤ ǫN < ǫ, and

|B|h/2,η|F̃ |ςh/2,η ≤ |Z0|h1,δ1 · · · |ZN−1|hN ,δN |FN |ςhN ,δN

≤ (

2m+N∗
2+1

∏

j=2m+2

ǫ−1
j )ǫ

ς
2
N (

N−1∏

j=N∗
2

|Zj |hj+1,δj+1
)|FN |

ς
2
hN ,δN

≤
N−1∏

j=N∗
2

(
|Zj |hj+1,δj+1

|FN |
2
j2

hN ,δN

)
≤

N−1∏

j=N∗
2

(
|Zj|hj+1,δj=1

|Fj+1|
2
j2

hj+1,δj+1

)
< 1.

We can also get |B−1|h/2,η|F̃ |ςh/2,η < 1 similarly, and finish the proof. �

6.2. Proof of Theorem 1.3: The main idea of the proof is the following: we will first
apply the stratified quantitative almost reducibility (Proposition 5.1) to make the per-
turbation small enough with the prescribed estimates, then we apply Proposition 5.2 to
obtain full measure reducibility set, and finally we estimate the Hausdorff dimension of the
parameter set for irreducible cocycles.

6.2.1. Reduce the perturbation with all parameters. Let |F |h,δ < ǫ∗, where ǫ∗ is defined as in
Theorem 1.4. By Proposition 5.1, there exists a sequence of partitions {Πn}n∈N of Λ such

that on each Λ̃ ∈ Πn, there exist Bn ∈ Cω
hn,δn

(Td × Λ̃,GL(m,C)), An ∈ Cω
δn
(Λ̃,GL(m,C))

and Fn ∈ Cω
hn,δn

(Td × Λ̃, gl(m,C)) such that

B−1
n (·+ α)(A + F (·))Bn(·) = An + Fn(·),

with |Fn|hn,δn ≤ ǫn, and |An|δn ≤ M̃n, An = diag{An,11, · · · , An,lnln}, Σ(n)(λ) = Σ
(n)
1 (λ)∪

· · · ∪Σ
(n)
ln

(λ) is (2Rn)
m2
, δn, cn, rn)-transverse on Λ̃, and Σ(n)(λ) ⊆ D(Rn) for λ ∈Wδn(Λ̃).

Moreover, for n = sk, we have

#Πn ≤ #Πn−1 +
bR6m

n−1M̃
3m
n−1|Λ|

ν3mn
max

Λ̃∈Πn−1

1

δn−1(Λ̃)
,

and for sk < n < sk+1, we have

#Πn ≤ #Πn−1 +
bR2m−1

n−1 |Λ|
νmn

max
Λ̃∈Πn−1

1

δn−1(Λ̃)
.

Then by Lemma 6.1 and the definition of νn, we can obtain that for sk ≤ n < sk+1,

#Πn ≤ 1 + n
bR6mM̃3m

sk−1|Λ|
(usk/2)

3m
· max
Λ̃∈Πn−1

1

δn−1(Λ̃)
<
b̃M̃3m

n−1|Λ|n
u3msk

max
Λ̃∈Πn−1

1

δn−1(Λ̃)
, (6.14)

where b̃ = b(2R)6m.

6.2.2. Remove the set of parameters that resonant may occur. Now for any 0 < ̺ < 1, ε̃ >

0, let ηε̃ = ε̃
8
3 . Due to the fact that

ǫ

̺

100m4r2
m̃

m̃ ≤ ǫ

̺

100m4r2
1
d2
3
2m̃

2−2m̃

1 ,

by (6.5), there exists m∗,1 ∈ N such that for any m̃ ≥ m∗,1,

ǫ

̺

100m4r2
m̃

m̃ < min{ ε̃
1
3

2
, (9Rm̃)−(τ+d), (2| ln ǫm̃|)−(τ+d)}. (6.15)
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Moreover, by (6.14) and Lemma 6.1, there exists m∗,2 ∈ N such that for any m̃ ≥ m∗,2,

#Πm̃2m
2rm̃+d+3(|Λ|+ 1)

γ(πhm̃)d+τ
· (m

2rm̃ + 1)!(2Rm̃)m
2

δm
2rm̃+1

m̃ c′m̃
< ǫ

− ̺

100m4r2
m̃

m̃ , (6.16)

where c′m̃ = (( δm̃
4m4r2m̃(2Rm̃)m2 )

m4rm̃cm̃)m
2m2rm̃+2

.

Let m∗ = max{m∗,1, m∗,2}. For any Λ̃ ∈ Πm∗ , we consider the properties of Am∗ ∈
Cω
δm∗

(Λ̃,GL(m,C)), Fm∗ ∈ Cω
hm∗ ,δm∗

(Td × Λ̃, gl(m,C)). By Lemma 3.8, the multiset

Σ(m∗)(λ) is ((2Rm∗)
m2
, δm∗ , c

′
m∗ , r

′
m∗)-transverse on Λ̃, where r′m∗ = m2rm∗ , and Σ(m∗)(λ) :=

Σ(Am∗(λ)). Moreover, let

gm∗(λ, u) =
∏

σi,σj∈Σ(m∗)(λ),
i6=j

(σi − e2πiuσj).

Because |gm∗(λ, u)|δm∗ ≤ (2Rm∗)
m2

, then for any λ ∈ Λ̃, u ∈ T1, we have

sup
0≤l≤r′m∗+1

|∂
lg1(λ, u)

∂λl
| ≤ (r′m∗ + 1)!

δ
r′m∗+1
m∗

(2Rm∗)
m2

=: Cm∗ .

Then by (6.15) and (6.16), we can apply Proposition 5.2 to Am∗ , Fm∗ inductively and get

the sets Λ(j+1) = Λ(j)\Rj(Λ̃) for j ∈ N, where Λ(1) = Λ̃, Rj(Λ̃) = ∪i∈Jj(Λ̃)I
(j)
i , with

|I(j)i | < ǫ

2

25r′2m∗
·( 3

2
)j−1

m∗ , (6.17)

#Jj(Λ̃) ≤ 2r
′
m∗+dÑd

j (
8Cm∗

c′m∗

|Λ(j)|+#C(Λ(j))), (6.18)

#C(Λ(j+1)) ≤ 2#C(R(j)(Λ̃)). (6.19)

Let

Rj = ∪Λ̃∈Πm∗
Rj(Λ̃), R = ∪∞

j=1Rj.

Then for any λ ∈ Λ̃\R(Λ̃), there exists B̃λ ∈ Cω
hm∗

2

(Td,GL(m,C)) with |B̃λ|hm∗/2 < 2,

such that

B̃−1
λ (·+ α)(Am∗(λ) + Fm∗(·, λ))B̃λ(·) = Ã(λ),

where Ã(λ) ∈ GL(m,C) and ‖Ã(λ)−Am∗(λ)‖ < 6M̃m∗ǫm∗ .

Let Bλ = Bm∗(λ)B̃λ. Then we have Bλ ∈ Cω
h/4(T

d,GL(m,C)), and for any λ ∈ Λ\R,

B−1
λ (·+ α)(A(λ) + F (·, λ))Bλ(·) = Ã(λ).

6.2.3. Estimate the Hausdorff dimension of the removed set. Denote S ⊆ Λ as the set of λ
such that for any λ ∈ S, the cocycle (α,A(λ) + F (·, λ))) is not reducible to some Ã(λ) ∈
GL(m,C) with Ã(λ) having simple eigenvalues. Then we have the following observation:

Claim 6. S ⊆ R = ∪∞
j=1Rj,

Proof. Indeed, by Lemma 3.10 with l = 1 for fixed λ, we obtain

dH(Σ(m∗)(λ), Σ̃(λ)) ≤ 12m2M̃2
m∗ǫ

1
m
m∗ < ǫ

1
2m
m∗ ,
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where Σ̃(λ) := Σ(Ã(λ)). Moreover, by Lemma 5.3, for any λ ∈ Λ\R, we have |gm∗(λ, 0)| ≥

ǫ

1
10r′m∗
m∗ /2. Then for any σℓ1 , σℓ2 ∈ Σ(m∗)(λ) with ℓ1 6= ℓ2, we have

ǫ

1
10r′m∗
m∗ /2 ≤ |gm∗(λ, 0)| =

∏

σi,σj∈Σ(m∗)(λ),
i6=j

|σi − σj| ≤ (2Rm∗)
m2−m−1|σℓ1 − σℓ2 |,

which implies that

|σℓ1 − σℓ2 | ≥
ǫ

1
10r′m∗
m∗

2(2Rm∗)
m2−m−1

> ǫ
1

5m2rm∗
m∗ .

Therefore, for any σ̃ℓ1 , σ̃ℓ2 ∈ Σ(Ã(λ)) with ℓ1 6= ℓ2, we have

|σ̃ℓ1 − σ̃ℓ2 | ≥ ǫ
1

5m2rm∗
m∗ − 2ǫ

1
2m
m∗ > 0,

meaning that Ã(λ) has simple eigenvalues, and thus Λ\R ⊆ Λ\S. �

Recall the Hausdorff dimension of a subset is defined as in Definition 2.1. Now we give
Hausdorff ̺-dimensional measure estimate of S for any 0 < ̺ < 1, and finish the whole
proof. We first estimate the number of the removed sets.

Claim 7. #C(Rj) ≤ #Πm∗ · (2r
′
m∗+d+3Cm∗(|Λ|+ 1)c′−1

m∗ )
j
∏j

l=1 Ñ
d
l .

Proof. Recall that C(Rj) denotes the connected component of the set Rj . By (6.18) and
(6.19), we can check that

#C(Rj) ≤
∑

Λ̃∈Πm∗

#C(Rj(Λ̃))

≤
∑

Λ̃(⊇Λ(j))∈Πm∗

2r
′
m∗+dÑd

j (
8Cm∗

c′m∗

|Λ(j)|+#C(Λ(j)))

≤ 2r
′
m∗+dÑd

j

(
8Cm∗

c′m∗

|Λ|+ 2#C(Rj−1)

)

≤ 2r
′
m∗+d+3(|Λ|+ 1)Cm∗c

′−1
m∗ Ñ

d
j #C(Rj−1).

Consequently, we can estimate:

#C(Rj) ≤ (2r
′
m∗+d+3Cm∗(|Λ|+ 1)c′−1

m∗ )
j−1Ñd

j · · · Ñd
2#C(R1)

≤ #Πm∗ · (2r
′
m∗+d+3Cm∗(|Λ|+ 1)c′−1

m∗ )
j

j
∏

l=1

Ñd
l .

�

Note by (6.15) and (6.17), for any interval I ∈ C(Rj) with j ≥ 1, we have

|I| ≤ ǫ

2

25r′2m∗
·( 3

2
)j−1

m∗ < ε̃
8
3 = ηε̃.
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Then by Claim 6 and Claim 7, combining (6.15), (6.16) and (5.15), we can obtain that

H̺
ηε̃
(S) ≤

∞∑

j=1

∑

I∈C(Rj)

|I|̺ ≤
∞∑

j=1

#C(Rj)ǫ

2̺

25r′2m∗
·( 3

2
)j−1

m∗

≤
∞∑

j=1

(#Πm∗2
r̃′1+d+2Cm∗(|Λ|+ 1)c′−1

m∗ )
j(

j
∏

l=1

Ñd
l )ǫ

2̺

25r′2m∗
·( 3

2
)j−1

m∗

<

∞∑

j=1

ǫ
− ̺

100r′2m∗
j

m∗ ǫ
(2−3( 3

2
)j−1) ̺

100r′2m∗
m∗ ǫ

2̺

25r′2m∗
·( 3

2
)j−1

m∗

≤
∞∑

j=1

ǫ

3̺

100r′2m∗
·( 3

2
)j−1

m∗ < 2ǫ

3̺

100r′2m∗
m∗ < ε̃.

Since ε̃ > 0 is arbitrary, then H̺(S) = 0. Also by the arbitrariness of 0 < ̺ < 1, we obtain
that dimH(S) = 0. The proof is finished. �

6.3. Proof of Theorem 1.1 and 1.2: Our proof is based on Aubry duality. Note IDS
is invariant under Aubry-duality (c.f. (2.3)). Thus in order to prove Theorem 1.1 and
Theorem 1.2, we only need to prove the absolutely continuity of IDS for the corresponding
dual operator:

Theorem 6.1. Let α ∈ DCd(γ, τ) and W ∈ Cω(Td,R).There exists ε0 = ε0(d, γ, τ, V̂ℓ,W ),
such that if |ε| < ε0, then the IDS for (2.2) is absolutely continuous for any E ∈ R.

The basic observation is that if ε is small, then the corresponding cocycle (α,Aε) of
(2.2) can be viewed as perturbation of constant cocycle (α,A(E)) where

A(E) =


















− V̂ℓ−1

V̂ℓ
· · · − V̂1

V̂ℓ

E−V̂0

V̂ℓ
− V̂−1

V̂ℓ
· · · − V̂−ℓ+1

V̂ℓ
− V̂−ℓ

V̂ℓ

1
. . .

1
1

1
. . .

1 0


















, (6.20)

and it is non-degenerate:

Lemma 6.2. Let Λ̃ = [a, b]. Then A(E) satisfies the non-degeneracy conditions (1.4) on

Λ̃ with some c > 0, r ∈ N+.

Proof. We first prove that for any u ∈ T, g(E, u) = 0 holds for at most finitely many

E ∈ Λ̃. Indeed, we have

Claim 8. For any u ∈ T, σℓ1 , σℓ2 ∈ Σ(A(E)) =: Σ(E) with ℓ1 6= ℓ2, there are only finitely

many E ∈ Λ̃, such that

σℓ1(E) = e2πiuσℓ2(E).
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Proof. Denote

fE(z) = det(zI −A(E)) =
∏

σi∈Σ(E)

(z − σi).

By direct calculation, we can get that

V̂ℓfE(z) =

ℓ∑

j=−ℓ

V̂jz
j+ℓ − Ezℓ. (6.21)

Case a: u ∈ T\Z. On one hand, if σℓ1(E) = e2πiuσℓ2(E), then we have
∏

σi∈Σ(E)
i6=ℓ2

(σi − e2πiuσℓ2) = 0, (6.22)

implying fE(e
2πiuσℓ2) = 0. Moreover, we have fE(σℓ2) = 0. Then σℓ2(E) is a solution of

the equation

fE(z) = fE(e
2πiuz) = 0. (6.23)

On the other hand, because detA(E) 6= 0, if z0 is a solution of (6.23), then z0 6= 0 , and
by (6.21), it satisfies the following equation

ℓ∑

j=−ℓ

(1− e2πiju)V̂jz
j+ℓ = 0.

Since the above equation is polynomial in z with degree 2ℓ, it only has finitely many
solutions, implying (6.23) only has finitely many solutions. Since by (6.21), for z 6= 0
and E 6= E′, we have fE(z) 6= fE′(z), then (6.23) has different solutions for different E.
Therefore, there are only finitely many E such that (6.23) has a solution.

Therefore, there are only finitely many E ∈ Λ̃, such that σℓ1(E) = e2πiuσℓ2(E).

Case b: u ∈ Z. If σℓ1(E) = e2πiuσℓ2(E), then σℓ2(E) is a zero of fE(z) with multiplicity
at least 2, meaning that it is a solution of the following equation

fE(z) = f ′E(z) = 0. (6.24)

On the other hand, if z0 is a solution of (6.24), then z0 6= 0 and it satisfies

ℓ∑

j=−ℓ

j

ℓ
V̂jz

j+ℓ = 0,

which also has finitely many solutions. This also implies that there are only finitely many
E ∈ Λ̃, such that σℓ1(E) = e2πiuσℓ2(E). We finish the proof. �

Therefore, by the definition of g(E, u), for any u ∈ T, g(E, u) = 0 holds for at most

finitely many E ∈ Λ̃. This implies the result. The reason is the following: Otherwise, for
∀n ∈ N+, there exist un ∈ T, En ∈ Λ̃ such that

max
0≤l≤n

|∂
lg(En, un)

∂El
| < 1

n
.

Because Λ̃× T is compact, then there exists a subsequence of {(En, un)}n that converges,

say to (E0, u0) ∈ T× Λ̃. By (3.3), (3.4), Lemma 3.4, and the fact that detA(E) =
V̂−ℓ

V̂ℓ

, we
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can obtain that g(E, u) is a polynomial in E and e2πiu. Thus, ∂lg(E,u)
∂El is continuous in E

and u, implying that for any l ≥ 0,

∂lg(E0, u0)

∂El
= 0.

Since g(E, u0) is a polynomial in E, then g(E, u0) ≡ 0 for E ∈ Λ̃, which is a contradiction.
�

Proof of Theorem 6.1: Let Σε,α ⊆ Λ be the spectrum of the operator (2.2), where

Λ ⊆ R1 is a bounded interval. Let F (θ) = (Fij(θ))1≤i,j≤2ℓ, where F1ℓ(θ) = − εW (θ)

V̂ℓ
, and

other elements Fij = 0. Then one can rewrite (α,Aε) := (α,A(E) +F (·)), and by Lemma
6.2, A(E) satisfies the non-degenerate condition on Λ with some r ∈ N+, c > 0.

By Theorem 1.3, there exists ε̃1 = ε̃1(α, d, V,W ) > 0 such that for |ε| ≤ ε̃1, there exists
S ⊆ Λ such that for any E ∈ Λ\S, there exists BE ∈ Cω(Td,GL(2ℓ,C)) such that

B−1
E (·+ α)(A(E) + F (·))BE(·) = DE,

whereDE = diag{λ1, · · · , λ2ℓ} with λi 6= λj for i 6= j. For 0 < ǫ < max{‖BE‖−4
0 , ‖B−1

E ‖−4
0 },

we have

B−1
E (·+ α)(A(E + iǫ) + F (·))BE(·) = DE + F́E(·),

where ‖F́E‖0 ≤ ‖BE‖0‖B−1
E ‖0

V̂ℓ

ǫ =: C(E)ǫ (< V̂ −1
ℓ ǫ1/2).

For any E ∈ C, the ℓ-th iteration of the cocycle (α,Aε(E, ·)) is a symplectic cocycle
[42]. Then the Lyapunov exponents of the cocycle (α,Aε(E, ·)) appear in pairs ±γj(j =

1, · · · , ℓ), implying γ̂ =
∑ℓ

j=1 γj , where γ̂ is the fibred entropy of the corresponding cocycle.
Therefore, we have

γ̂(E + iǫ) = lim
n→∞

1

n

∫

Td

ln ‖Λℓ(DE(I +D−1
E F́E))(θ;n)‖dθ

≤ lim
n→∞

1

n

∫

Td

ln ‖ΛℓDE‖ndθ + lim
n→∞

1

n

∫

Td

ln ‖Λℓ(I +D−1
E F́E)‖ndθ

≤ γ̂(E) + ℓ ln ‖I +D−1
E F́E‖0

≤ γ̂(E) + ℓC̃(E)ǫ.

Thus by Thouless formula (c.f. (2.4)), we have

γ̂(E + iǫ)− γ̂(E) =
1

2

∫

ln(1 +
ǫ2

(E − E′)2
)dN̂ (E′)

>
ln 2

2
(N̂ (E + ǫ)− N̂ (E − ǫ)).

Hence, for any E ∈ Σ\S, N̂ (E) is Lipschitz continuous. So if we decompose N̂ = N̂ac+N̂s,

we know S is a support of N̂s. To complete the proof, we recall the Hölder continuity of
N̂ (E):

Lemma 6.3 ([38]). For any 0 < η < 1
2ℓ , N̂ (E) is ( 1

2ℓ − η)-Hölder continuous for |ε| ≤ ε∗
in the sense that

|N̂ (E)− N̂ (E′)| ≤ C∗|E − E′| 1
2ℓ
−η,

for any E,E′ ∈ R, where ε∗ = ε∗(α, V,W, η) and C∗ = C∗(α, V,W ).
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Now due to S is a set with Hausdorff dimension zero, then for ∀ζ > 0 we can find a
cover of S, denoted by {Ui}∞i=1, such that

Σ∞
i=1diam(Ui)

1
4ℓ < C−1

∗ ζ.

We let |ε| ≤ ε0 = min{ε̃1, ε∗}, where ε∗ is defined as in Lemma 6.3. Then by Lemma 6.3
with η = 1

4ℓ , we have

N̂ (S) ≤ Σ∞
i=1N̂ (Ui) ≤ C∗Σ

∞
i=1diam(Ui)

1
4ℓ < ζ.

Then by the arbitrariness of ζ > 0, we get N̂s(S) = 0 and the result follows.
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