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EXPONENTIAL MIXING VIA ADDITIVE COMBINATORICS

OSAMA KHALIL

Abstract. We prove that the geodesic flow on a geometrically finite locally symmetric space of
negative curvature is exponentially mixing with respect to the Bowen-Margulis-Sullivan measure.
The approach is based on constructing a suitable anisotropic Banach space on which the infinitesimal
generator of the flow admits an essential spectral gap. A key step in the proof involves estimating
certain oscillatory integrals against the Patterson-Sullivan measure. For this purpose, we prove a
general result of independent interest asserting that measures on Rd that do not concentrate near
proper affine subspaces enjoy polynomial Fourier decay outside of a sparse set of frequencies. As
an intermediate step, we show that the Lq-dimension (1 < q ≤ ∞) of iterated self-convolutions of
such measures tend towards that of the ambient space. Our analysis also yields that the Laplace
transform of the correlation function of smooth observables extends meromorphically to the entire
complex plane in the convex cocompact case and to a strip of explicit size beyond the imaginary
axis in the case the manifold admits cusps.

1. Introduction

1.1. Exponential mixing and Pollicott-Ruelle resonances. Let X be the unit tangent bundle
of a quotient of a real, complex, quaternionic, or a Cayley hyperbolic space by a discrete, geomet-
rically finite, non-elementary group of isometries Γ. Denote by gt the geodesic flow on X and by
mBMS the Bowen-Margulis-Sullivan probability measure of maximal entropy for gt. Let δΓ be the
critical exponent of Γ. We refer the reader to Section 2 for definitions. The following is the main
result of this article in its simplest form.

Theorem 1.1. The geodesic flow on X is exponentially mixing with respect to mBMS. More pre-
cisely, there exists σ0 = σ0(X) > 0 such that for all f ∈ C3

c (X), g ∈ C2
c (X) and t ≥ 0,

∫

X
f ◦ gt · g dmBMS =

∫

X
f dmBMS

∫

X
g dmBMS + ‖f‖C3 Og

(
e−σ0t

)
.

The dependence on g in the implicit constant is through its C2-norm and the injectivity radius of
its support.

The results also hold for functions with unbounded support and controlled growth in the cusp;
cf. Section 9. Theorem 1.1 follows immediately from the following more precise result showing that
the correlation function admits a finite resonance expansion.

Theorem 1.2. There exists σ > 0 such that the following holds. There exist complex numbers
{λi}Ni=1 in the strip {−σ < Re(z) < 0}, a finite rank projector Π, and a matrix Q with eigenvalues
λi acting on the range of Π such that for all f ∈ C3

c (X), g ∈ C2
c (X) and t ≥ 0, we have

∫

X
f ◦ gt · g dmBMS =

∫

X
f dmBMS

∫
g dmBMS +

∫

X
g · etQΠ(f) dmBMS + ‖f‖C3 Og

(
e−σt

)
.

The dependence on g in the implicit constant is through its C2-norm and the injectivity radius of
its support.

The eigenvalues λi above are known as Pollicott-Ruelle resonances. Theorem 1.1 follows from
the above result by taking σ0 to be the absolute value of the largest real part of the λi’s. Indeed,
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2 OSAMA KHALIL

the norm of the matrix etQ is bounded by e−tσ0 . The reader is referred to Section 9.1 for a more
precise discussion of the Banach spaces on which these operators live.

Given two bounded functions f and g on X, the associated correlation function is defined by

ρf,g(t) :=

∫

X
f ◦ gt · g dmBMS, t ∈ R.

Its (one-sided) Laplace transform is defined for any z ∈ C with positive real part Re(z) as follows:

ρ̂f,g(z) :=

∫ ∞

0
e−ztρf,g(t) dt.

Theorem 1.2 implies that for suitably smooth f and g, ρ̂f,g admits a meromorphic continuation to
the half plane Re(z) > −σ with the only possible poles at {λi}.
Remark 1.3. The constant σ in Theorem 1.2 depends only on non-concentration parameters
of Patterson-Sullivan measures near proper generalized sub-spheres of the boundary at infinity;
cf. Corollary 12.2 for details. In particular, Theorem 1.2 implies that σ does not change if we replace
Γ with a finite index subgroup. For example, in the case of geometrically finite hyperbolic surfaces,
σ can be taken a non-decreasing function of the critical exponent δΓ if Γ is convex cocompact and
of the quantity 2δΓ − 1 for cusped surfaces. The interested reader is referred to [MN20,MN21] for
recent developments on a closely related problem yielding uniform resonance free regions for the
Laplacian operator on random covers of convex cocompact hyperbolic surfaces.

Our analysis also yields the following result. Let δΓ denote the critical exponent of Γ and define

σ(Γ) :=

{
∞, if Γ is convex cocompact,

min {δΓ, 2δΓ − kmax, kmin} , otherwise,
(1.1)

where kmax and kmin denote the maximal and minimal ranks of parabolic fixed points of Γ respec-
tively; cf. Section 3.1 for the definition of the rank of a cusp.

Theorem 1.4. Let k ∈ N. For all f, g ∈ Ck+2
c (X), ρ̂f,g is analytic in the half plane Re(z) > 0 and

admits a meromorphic continuation to the half plane:

Re(z) > −min {k, σ(Γ)/2} ,
with 0 being the only pole on the imaginary axis. In particular, when Γ is convex cocompact and
f, g ∈ C∞

c (X), ρ̂f,g admits a meromorphic extension to the entire complex plane.

Theorem 1.4 is deduced from an analogous result on the meromorphic continuation of the family
of resolvent operators z 7→ R(z),

R(z) :=

∫ ∞

0
e−ztLt dt : C∞

c (X) → C∞(X), (1.2)

defined initially for Re(z) > 0, where Lt is the transfer operator given by f 7→ f ◦gt; cf. Theorem 6.4
for a precise statement. Analogous results regarding resolvents were obtained for Anosov flows
in [GLP13] and Axiom A flows in [DG16,DG18] leading to a resolution of a conjecture of Smale
on the meromorphic continuation of the Ruelle zeta function; cf. [Sma67]. We refer the reader
to [GLP13] for a discussion the history of the latter problem.

1.2. Lq-flattening of measures on Rd under convolution. The key new ingredient in our
proof of Theorem 1.1 is the statement that the conditional measures of the BMS measure along the
strong unstable foliation enjoy polynomial Fourier decay outside of a very sparse set of frequencies;
cf. Corollary 1.8.

The key step in the proof is an Lq-flattening result for convolutions of measures on Rd of in-
dependent interest. Roughly speaking, it states that the Lq-dimension (Def. 1.5) of a measure µ
improves under iterated self-convolutions unless µ is concentrated near proper affine hyperplanes in
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Rd at almost every scale. The proof of this result provided in Section 11 can be read independently
of the rest of the article.

We formulate here a special case our results under the following non-concentration condition and
refer the reader to Definition 11.1 for a much weaker condition under which these results hold.

We need some notation before stating the result. Let Dk denote the dyadic partition of Rd by
translates of the cube 2−k[0, 1)d by 2−kZd. We recall the notion of Lq-dimension of measures.

Definition 1.5. For q > 1, the Lq-dimension of a Borel probability measure µ on Rd, denoted
dimq µ, is defined to be

dimq µ := lim inf
k→∞

− log2
∑

P∈Dk
µ(P )q

(q − 1)k
.

The Frostman exponent of µ, denoted dim∞ µ, is defined to be

dim∞ µ := lim inf
k→∞

log2 maxP∈Dk
µ(P )

−k .

We say that Borel measure µ on Rd is (C,α)-uniformly affinely non-concentrated if there exist
C ≥ 1 and α > 0 such that for every ε > 0, x ∈ Rd, 0 < r ≤ 1, and every affine hyperplane
W < Rd, we have

µ(W (εr) ∩B(x, r)) ≤ Cεαµ(B(x, r)), (1.3)

where W (r) and B(x, r) denote the r-neighborhood of V and the r-ball around x respectively.
The following is our main result on flattening under convolution with non-concentrated measures.

Theorem 1.6. Let 1 < q <∞, C ≥ 1 and α, η > 0 be given. Then, there exists ε = ε(C,α, η, q) > 0
such that if µ is any compactly supported Borel probability measure on Rd which is (C,α)-uniformly
affinely non-concentrated, then

dimq(µ ∗ ν) > dimq ν + ε,

for every compactly supported probability measure ν on Rd with dimq ν ≤ d− η.
In particular, dim∞ µ∗n converges to d at a rate depending only on the non-concentration pa-

rameters C and α, and, hence, the same holds for dimq µ
∗n for all q > 1.

Remark 1.7. We refer the reader to Section 11 where a more quantitative form of Theorem 1.6 is
obtained under a much weaker non-uniform non-concentration condition; cf. Definition 11.1. This
quantitative form is necessary for our applications and the weaker hypothesis is essential in the
presence of cusps.

The L2-dimension case of Theorem 1.6 has the following immediate corollary asserting that the
Fourier transform of affinely non-concentrated measures enjoys polynomial decay outside of a very
sparse set of frequencies.

Corollary 1.8. Let µ be as in Theorem 1.6 and denote by µ̂ its Fourier transform. Then, for every
ε > 0, there is δ > 0 such that for all T > 0,

∣∣∣
{
‖ξ‖ ≤ T : |µ̂(ξ)| > T−δ

}∣∣∣ = Oε(T
ε),

where | · | denotes the Lebesgue measure on Rd.

Corollary 1.8 generalizes the work of Kaufman [Kau84] and Tsujii [Tsu15] for self-similar mea-
sures on R by different methods.
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Remark 1.9. A large class of dynamically defined measures, which includes self-conformal mea-
sures, is known to be affinely non-concentrated; cf. [RS20, Proposition 4.7 and Corollary 4.9] for
measures on the real line and the results surveyed in [DFSU21, Section 1.3] for measures in higher
dimensions under suitable irreducibility hypotheses1. In particular, Theorem 1.6 applies to these
measures generalizing prior known special cases for certain self-similar measures on R by different
methods; cf. [FL09,MS18].

Theorem 1.6 was obtained for measures on the real line by Rossi and Shmerkin in [RS20] under the
uniform non-concentration hypothesis above. Their work builds crucially on a 1-dimensional inverse
theorem due to Shmerkin in [Shm19] which was the key ingredient in his groundbreaking solution
of Furstenberg’s intersection conjecture. Proposition 11.10 can be regarded as a higher dimensional
substitute for Shmerkin’s inverse theorem. A similar higher dimensional inverse theorem for Lq-
dimension was announced by Shmerkin in his ICM survey [Shm21, Section 3.8.3].

In Section 12, we show that Corollary 1.8 applies to Patterson-Sullivan measures when X is
real hyperbolic (and to certain projections of these measures in the other cases, see discussion in
Section 1.5 below).

For convex cocompact hyperbolic surfaces, Bourgain and Dyatlov showed that PS measures
in fact have polynomially decaying Fourier transform [BD17]. Their methods are different to
ours and are based on Bourgain’s sum-product estimates. Their result was extended to convex
cocompact Schottky real hyperbolic 3-manifolds in [LNP21] by similar methods. These results
imply Corollary 1.8 in these special cases, however Corollary 1.8 also applies to measures whose
Fourier transform does not tend to 0 at infinity (e.g. the coin tossing measure on the middle 1/3
Cantor set). In forthcoming work, we apply our methods to generalize these results to hyperbolic
manifolds of any dimension which are not necessarily of Schottky type.

1.3. Exponential recurrence from the cusp. An important ingredient in our arguments is the
following exponential decay result on the measure of the set of orbits with long cusp excursions,
which is of independent interest. Denote by N+ the expanding horospherical group associated to
gt for and t > 0 the orbits of which give rise to the strong unstable foliation. Let N+

r be the r-ball
around identity in N+ (cf. Section 2.5 for the definition of the metric on N+). We denote by Ω ⊆ X
the non-wandering set for the geodesic flow; i.e. the closure of the set of its periodic orbits.

Theorem 1.10. Let σ(Γ) be as in (1.1) and let 0 < β < σ(Γ)/2 be given. For every ε > 0, there
exists a compact set K ⊆ Ω and T0 > 0 such that the following holds for all T > T0, 0 < θ < 1 and
x ∈ Ω. Let χK be the indicator function of K. Then,

µux

(
n ∈ N+

1 :

∫ T

0
χK(gtnx) dt ≤ (1− θ)T

)
≪β,x,ε e

−(βθ−ε)Tµux(N
+
1 ).

The implicit constant is uniform as x varies in any fixed compact set.

The reader is referred to Theorem 7.9 for a stronger and more precise statement. Theorem 1.10
implies that the Hausdorff dimension of the set of points in N+

1 x whose forward orbit asymptotically
spends all of its time in the cusp is at most σ(Γ)/2. This bound is not sharp and can likely be
improved using a refinement of our methods. We hope to return to this problem in future work.

1.4. Prior results. In the case Γ is convex cocompact, Theorem 1.1 is a special case of the
results of [Sto11] which extend the arguments of Dolgopyat [Dol98] to Axiom A flows under certain
assumptions on the regularity of the foliations and the holonomy maps. The special case of convex
cocompact hyperbolic surfaces was treated in earlier work of Naud [Nau05]. The extension to frame
flows on convex cocompact manifolds was treated in [SW20,CS22].

1The results referenced in [DFSU21] require the open set condition, while [RS20] does not.
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In the case of real hyperbolic manifolds with δΓ strictly greater than half the dimension of the
boundary at infinity, Theorem 1.1 was obtained in [EO21], with much more precise and explicit
estimates on the size of the essential spectral gap. The methods of [EO21] are unitary representation
theoretic, building on the work of Lax and Phillips in [LP82], for which the restriction on the critical
exponent is necessary. Earlier instances of the results of [EO21] under more stringent assumptions
on the size of δΓ were obtained by Mohammadi and Oh in [MO15], albeit the latter results are
stronger in that they in fact hold for the frame flow rather than the geodesic flow.

The case of real hyperbolic geometrically finite manifolds with cusps and arbitrary critical expo-
nent was only recently resolved independently in [LP23] where a symbolic coding of the geodesic
flow was constructed. This approach builds on extensions of Dolgopyat’s method to suspension
flows over shifts with infinitely many symbols; cf. [AM16,AGY06]. The extension of their result to
frame flows was carried out in [LPS23].

Finally, we refer the reader to [DG16] and the references therein for a discussion of the history
of the microlocal approach to the problem of spectral gaps via anisotropic Sobolev spaces.

1.5. Outline of the argument. The article has several parts that can be read independently of
one another. For the convenience of the reader, we give a brief outline of those parts.

The first part consists of Sections 2-5. After recalling some basic facts in Section 2, we prove a
key doubling result, Proposition 3.1, in Section 3 for the conditional measures of mBMS along the
strong unstable foliation.

In Section 4, we construct a Margulis function which shows, roughly speaking, that generic orbits
with respect to mBMS are biased to return to the thick part of the manifold. In Section 5, we prove
a statement on average expansion of vectors in linear representations which is essential for our
construction of the Margulis function. The main difficulty in the latter result in comparison with
the classical setting lies in controlling the shape of sublevel sets of certain polynomials in order to
estimate their measure with respect to conditional measures of mBMS along the unstable foliation.

The second part consists of Sections 6 and 7. In Section 6, we define anisotropic Banach spaces
arising as completions of spaces of smooth functions with respect to a dynamically relevant norm
and study the norm of the transfer operator as well as the resolvent in their actions on these spaces
in Section 7. The proof of Theorem 1.4 is completed in Section 7. The approach of these two
sections follows closely the ideas of [GL06,GL08,AG13], originating in [BKL02]. Theorem 1.10 is
deduced from this analysis in Section 7.6.

The third part concerns a Dolgopyat-type estimate which is a key technical estimate in the
proof of Theorems 1.1 and 1.2. Its proof occupies Section 9 with auxiliary technical results in
Sections 8, 10, and 12. Readers familiar with the theory of anisotropic spaces may skip directly to
Section 9, taking the results on recurrence from the cusps from previous sections as a black box.

The Dolgopyat-type estimate, obtained in Theorem 9.2, provides a contraction on the norm
of resolvents with large imaginary parts. Theorems 1.1 and 1.2 are deduced from this result in
Section 9.1. The principle behind Theorem 9.2, due to Dolgopyat, is to exploit the non-joint
integrability of the stable and unstable foliations via certain oscillatory integral estimates; cf. [Dol98,
Liv04,GLP13,GPL22,BDL18].

A major difficulty in implementing this philosophy lies in estimating these oscillatory integrals
against Patterson-Sullivan measures, which are fractal in nature in general. In particular, we
cannot argue using the standard integration by parts method in previous works on exponential
mixing of SRB measures using the method of anisotropic spaces, see for instance [Liv04,GLP13,
GPL22,BDL18], where the unstable conditionals are of Lebesgue class.

We deal with this difficulty using Corollary 11.5 by taking advantage of the fact that the estimate
in question is an average over oscillatory integrals. This idea is among the main contributions of
this article. We hope this method can be fruitful in establishing rates of mixing of hyperbolic flows
in greater generality.
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In the case of variable curvature (i.e. when X is not real hyperbolic), the action of the derivative
of the geodesic flow on the strong unstable distribution is non-conformal which causes additional
difficulties in the analysis, particularly in the presence of cusps. We deal with this difficulty by
working with the projection of the unstable conditionals to the directions of slowest expansion and
verify non-concentration for those projections instead. See Remark 9.15 for further discussion.

In Section 10, we obtain a linearization of the so-called temporal distance function. In Section 12,
we verify the non-concentration hypotheses of Corollary 1.8 (more precisely, we verify the weaker
hypothesis of Corollary 11.5) for the projection of the unstable conditionals of mBMS onto the
directions with weakest expansion. This allows us to apply Corollary 11.5 towards estimating the
oscillatory integrals arising in Section 9. The proof of Theorem 9.2 is completed in that section.

Finally, Section 11 is dedicated to the proof of Theorem 1.6 and Corollary 1.8. Among the
key ingredients in the proof are the asymmetric Balog-Szemerédi-Gowers Lemma due to Tao and
Vu (Theorem 11.6) as well as Hochman’s inverse theorem for the entropy of convolutions (Theo-
rem 11.8). This section can be read independently from the rest of the article.

Acknowledgements. The author thanks the Hausdorff Research Institute for Mathematics at
the Universität Bonn for its hospitality during the trimester program “Dynamics: Topology and
Numbers” in Spring 2020 where part of this research was conducted. This research is supported
in part by the NSF under grant number DMS-2247713. The author thanks Hee Oh, Peter Sarnak,
and Pablo Shmerkin for helpful discussions regarding this project.

2. Preliminaries

We recall here some background and definitions on geometrically finite manifolds.

2.1. Geometrically Finite Manifolds. The standard reference for the material in this section
is [Bow93]. Suppose G is a connected simple Lie group of real rank one. Then, G can be identified
with the group of orientation preserving isometries of a real, complex, quaternionic or Cayley
hyperbolic space, denoted Hd

K, of dimension d ≥ 2, where K ∈ {R,C,H,O}. In the case K = O,
then d = 2.

Fix a basepoint o ∈ Hd
K. Then, G acts transitively on Hd

K and the stabilizer K of o is a maximal

compact subgroup of G. We shall identify Hd
K with K\G. Denote by A = {gt : t ∈ R} a one

parameter subgroup of G inducing the geodesic flow on the unit tangent bundle of Hd
K. LetM < K

denote the centralizer of A inside K so that the unit tangent bundle T1Hd
K may be identified with

M\G. In Hopf coordinates, we can identify T1Hd
K with R× (∂Hd

K× ∂Hd
K−∆), where ∂Hd

K denotes
the boundary at infinity and ∆ denotes the diagonal.

Let Γ < G be an infinite discrete subgroup of G. The limit set of Γ, denoted ΛΓ, is the set of
limit points of the orbit Γ · o on ∂Hd

K. Note that the discreteness of Γ implies that all such limit
points belong to the boundary. Moreover, this definition is independent of the choice of o in view
of the negative curvature of Hd

K. We often use Λ to denote ΛΓ when Γ is understood from context.
We say Γ is non-elementary if ΛΓ is infinite.

The hull of ΛΓ, denoted Hull(ΛΓ), is the smallest convex subset of Hd
K containing all the geodesics

joining points in ΛΓ. The convex core of the manifold Hd
K/Γ is the smallest convex subset containing

the image of Hull(ΛΓ). We say Hd
K/Γ is geometrically finite (resp. convex cocompact) if the closed

1-neighborhood of the convex core has finite volume (resp. is compact), cf. [Bow93]. The non-
wandering set for the geodesic flow is the closure of the set of vectors in the unit tangent bundle
whose orbit accumulates on itself. In Hopf coordinates, this set, denoted Ω, coincides with the
projection of R× (ΛΓ × ΛΓ −∆) mod Γ.

A useful equivalent definition of geometric finiteness is that the limit set of Γ consists entirely of
radial and bounded parabolic limit points; cf. [Bow93]. This characterization of geometric finiteness
will be of importance to us and so we recall here the definitions of these objects.
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A point ξ ∈ Λ is said to be a radial point if any geodesic ray terminating at ξ returns infinitely
often to a bounded subset of Hd

K/Γ. The set of radial limit points is denoted by Λr.
Denote by N+ the expanding horospherical subgroup of G associated to gt, t ≥ 0. A point p ∈ Λ

is said to be a parabolic point if the stabilizer of p in Γ, denoted by Γp, is conjugate in G to an
unbounded subgroup of MN+. A parabolic limit point p is said to be bounded if (Λ− {p} /Γp) is
compact. An equivalent charachterization is that p ∈ Λ is parabolic if and only if any geodesic ray
terminating at p eventually leaves every compact subset of Hd

K/Γ. The set of parabolic limit points
will be denoted by Λp.

Given g ∈ G, we denote by g+ the coset of P−g in the quotient P−\G, where P− = N−AM is
the stable parabolic group associated to {gt : t ≥ 0}. Similarly, g− denotes the coset P+g in P+\G.
Since M is contained in P±, such a definition makes sense for vectors in the unit tangent bundle
M\G. Geometrically, for v ∈M\G, v+ (resp. v−) is the forward (resp. backward) endpoint of the
geodesic determined by v on the boundary of Hd

K. Given x ∈ G/Γ, we say x± belongs to Λ if the
same holds for any representative of x in G; this notion being well-defined since Λ is Γ invariant.

Notation. Throughout the remainder of the article, we fix a discrete non-elementary geometrically
finite group Γ of isometries of some (irreducible) rank one symmetric space Hd

K and denote by X

the quotient G/Γ, where G is the isometry group of Hd
K.

2.2. Standard horoballs. Since parabolic points are fixed points of elements of Γ, Λ contains
only countably many such points. Moreover, Γ contains at most finitely many conjugacy classes of
parabolic subgroups. This translates to the fact that Λp consists of finitely many Γ orbits.

Let {p1, . . . , ps} ⊂ ∂Hd
K be a maximal set of nonequivalent parabolic fixed points under the action

of Γ. As a consequence of geometric finiteness of Γ, one can find a finite disjoint collection of open
horoballs H1, . . . ,Hs ⊂ Hd

K with the following properties (cf. [Bow93]):

(a) Hi is centered on pi, for i = 1, . . . , s.
(b) HiΓ ∩HjΓ = ∅ for all i 6= j.
(c) For all i ∈ {1, . . . , s} and γ1, γ2 ∈ Γ

Hiγ1 ∩Hiγ2 6= ∅ =⇒ Hiγ1 = Hiγ2, γ
−1
1 γ2 ∈ Γpi.

(d) Hull(ΛΓ) \ (
⋃s
i=1HiΓ) is compact mod Γ.

2.3. Conformal Densities and the BMS Measure. The critical exponent, denoted δΓ, is de-
fined to be the infimum over all real number s ≥ 0 such that the Poincaré series

PΓ(s, o) :=
∑

γ∈Γ
e−sd(o,γ·o) (2.1)

converges. We shall simply write δ for δΓ when Γ is understood from context. The Busemann
function is defined as follows: given x, y ∈ Hd

K and ξ ∈ ∂Hd
K, let γ : [0,∞) → Hd

K denote a geodesic
ray terminating at ξ and define

βξ(x, y) = lim
t→∞

dist(x, γ(t)) − dist(y, γ(t)).

A Γ-invariant conformal density of dimension s is a collection of Radon measures
{
νx : x ∈ Hd

K

}
on

the boundary satisfying
dνγx
dνx

(ξ) = e−sβξ(x,γx), ∀ξ ∈ ∂Hd
K.

Given a pair of conformal densities {µx} and {νx} of dimensions s1 and s2 respectively, we can
form a Γ invariant measure on T1Hd

K, denoted by mµ,ν as follows: for x = (ξ1, ξ2, t) ∈ T1Hd
K

dmµ,ν(ξ1, ξ2, t) = es1βξ1 (o,x)+s2βξ2 (o,x) dµo(ξ1) dνo(ξ2) dt.

Moreover, the measure mµ,ν is invariant by the geodesic flow.
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When Γ is geometrically finite and K = R, Patterson [Pat76] and Sullivan [Sul79] showed
the existence of a unique (up to scaling) Γ-invariant conformal density of dimension δΓ, denoted{
µPSx : x ∈ Hd

R

}
. Geometric finiteness also implies that the measure mµPS,µPS

descends to a finite
measure of full support on Ω and is the unique measure of maximal entropy for the geodesic flow.
This measure is called the Bowen-Margulis-Sullivan (BMS for short) measure and is denoted mBMS.

Since the fibers of the projection from G/Γ to T1Hd
K/Γ are compact and parametrized by the

group M , we can lift such a measure to one G/Γ, also denoted mBMS, by taking locally the product
with the Haar probability measure on M . Since M commutes with the geodesic flow, this lift is
invariant under the group A. We refer the reader to [Rob03] and [PPS15] and references therein
for details of the construction in much greater generality than that of Hd

K.

2.4. Stable and unstable foliations and leafwise measures. The fibers of the projection
G → T1Hd

K are given by the compact group M , which is the centralizer of A inside the maximal

compact group K. In particular, we may lift mBMS to a measure on G/Γ, also denoted mBMS,
and given locally by the product of mBMS with the Haar probability measure on M . The leafwise
measures of mBMS on N+ orbits are given as follows:

dµux(n) = eδΓβ(nx)+ (o,nx)dµPSo ((nx)+). (2.2)

They satisfy the following equivariance property under the geodesic flow:

µugtx = eδtAd(gt)∗µ
u
x. (2.3)

Moreover, it follows readily from the definitions that for all n ∈ N+,

(n)∗µunx = µux, (2.4)

where (n)∗µunz is the pushforward of µunz under the map u 7→ un from N+ to itself. Finally, sinceM
normalizes N+ and leaves mBMS invariant, this implies that these conditionals are Ad(M)-invariant:
for all m ∈M ,

µumx = Ad(m)∗µux. (2.5)

2.5. Cygan metrics. We recall the definition of the Cygan metric on N+, denoted dN+ . These
metrics are right invariant under translation by N+, and satisfy the following convenient scaling
property under conjugation by gt. For all r > 0, if N+

r denotes the ball of radius r around identity
in that metric and t ∈ R, then

Ad(gt)(N
+
r ) = N+

etr. (2.6)

To define the metric, we need some notation which we use throughout the article. For x ∈ K,
denote by x̄ its K-conjugate and by |x| :=

√
x̄x its modulus. This modulus extends to a norm on

Kn by setting

‖u‖2 :=
∑

i

|ui|2,

for u = (u1, . . . , un) ∈ Kn.
We let ImK denote those x ∈ K such that x̄ = −x. For example, ImK is the pure imaginary

numbers and the subspace spanned by the quaternions i, j and k in the cases K = C and K = H

respectively. For u ∈ K, we write Re(u) = (u+ ū)/2 and Im(u) = (u− ū)/2.
The Lie algebra n+ of N+ splits under Ad(gt) into eigenspaces as n+α ⊕ n+2α, where n+2α = 0 if

and only if K = R. Moreover, we have the identification n+α
∼= Kd−1 and n+2α

∼= Im(K) as real
vector spaces; cf. [Mos73, Section 19]. We denote by ‖·‖′ the following quasi-norm on n+: given
(u, s) ∈ n+α ⊕ n+2α,

‖(u, s)‖′ :=
(
‖u‖4 + |s|2

)1/4
. (2.7)
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With this notation, we can define the metric as follows: the distance of n := exp(u, s) to identity
is given by:

dN+(n, Id) := ‖(u, s)‖′ . (2.8)

Given n1, n2 ∈ N+, we set dN+(n1, n2) = dN+(n1n
−1
2 , Id).

2.6. Local stable holonomy. In this Section, we recall the definition of (stable) holonomy maps
which are essential for our arguments. We give a simplified discussion of this topic which is sufficient
in our homogeneous setting homogeneous. Let x = u−y for some y ∈ Ω and u− ∈ N−

2 . Since the
product map N− × A×M ×N+ → G is a diffeomorphism near identity, we can choose the norm
on the Lie algebra so that the following holds. We can find maps p− : N+

1 → P− = N−AM and
u+ : N+

2 → N+ so that

nu− = p−(n)u+(n), ∀n ∈ N+
2 . (2.9)

Then, it follows by (2.2) that for all n ∈ N+
2 , we have

dµuy(u
+(n)) = eδβ(nx)+ (u+(n)y,nx)dµux(n).

Moreover, by further scaling the metrics if necessary, we can ensure that these maps are diffeomor-
phisms onto their images. In particular, writing Φ(nx) = u+(n)y, we obtain the following change
of variables formula: for all f ∈ C(N+

2 ),
∫
f(n) dµux(n) =

∫
f((u+)−1(n))e

−δβΦ−1(ny)(ny,Φ
−1(ny))

dµuy(n). (2.10)

Remark 2.1. To avoid cluttering the notation with auxiliary constants, we shall assume that the
N− component of p−(n) belongs to N−

2 for all n ∈ N+
2 whenever u− belongs to N−

1 .

2.7. Notational convention. Throughout the article, given two quantities A and B, we use the
Vingogradov notation A ≪ B to mean that there exists a constant C ≥ 1, possibly depending on
Γ and the dimension of G, such that |A| ≤ CB. In particular, this dependence on Γ is suppressed
in all of our implicit constants, except when we wish to emphasize it. The dependence on Γ may
include for instance the diameter of the complement of our choice of cusp neighborhoods inside Ω
and the volume of the unit neighborhood of Ω. We write A ≪x,y B to indicate that the implicit
constant depends parameters x and y. We also write A = Ox(B) to mean A≪x B.

3. Doubling Properties of Leafwise Measures

The goal of this section is to prove the following useful consequence of the global measure formula
on the doubling properties of the leafwise measures. The result is an immediate consequence of
Sullivan’s shadow lemma in the case Γ is convex cocompact. In particular, the content of the
following result is the uniformity, even in the case Ω is not compact. The argument is based on the
topological transitivity of the geodesic flow when restricted to Ω.

Define the following exponents:

∆ := min {δ, 2δ − kmax, kmin} ,
∆+ := max {δ, 2δ − kmin, kmax} . (3.1)

where kmax and kmin denote the maximal and minimal ranks of parabolic fixed points of Γ respec-
tively. If Γ has no parabolic points, we set kmax = kmin = δ, so that ∆ = ∆+ = δ.

Proposition 3.1 (Global Doubling and Decay). For every 0 < σ ≤ 5, x ∈ N−
2 Ω and 0 < r ≤ 1,

we have

µux(N
+
σr) ≪

{
σ∆ · µux(N+

r ) ∀0 < σ ≤ 1, 0 < r ≤ 1,

σ∆+ · µux(N+
r ) ∀σ > 1, 0 < r ≤ 5/σ.
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Remark 3.2. The above proposition has very different flavor when applied with σ < 1, compared
with σ > 1. In the former case, we obtain a global rate of decay of the measure of balls on the
boundary, centered in the limit set. In the latter case, we obtain the so-called Federer property for
our leafwise measures.

Remark 3.3. The restriction that r ≤ 5/σ in the case σ > 1 allows for a uniform implied constant.
The proof shows that in fact, when σ > 1, the statement holds for any 0 < r ≤ 1, but with an
implied constant depending on σ.

3.1. Global Measure Formula. Our basic tool in proving Proposition 3.1 is the extension of
Sullivan’s shadow lemma known as the global measure formula, which we recall in this section.

Given a parabolic fixed point p ∈ Λ, with stabilizer Γp ⊂ Γ, we define the rank of p to be twice
the critical exponent of the Poincaré series PΓp(s, o) associated with Γp; cf. (2.1).

Given ξ ∈ ∂Hd
K, we let [oξ) denote the geodesic ray. For t ∈ R+, denote by ξ(t) the point at

distance t from o on [oξ). For x ∈ Hd
K, define the O(x) to be the shadow of unit ball B(x, 1) in Hd

K

on the boundary as viewed from o. More precisely,

O(x) :=
{
ξ ∈ ∂Hd

K : [oξ) ∩B(x, 1) 6= ∅
}
.

Shadows form a convenient, dynamically defined, collection of neighborhoods of points on the
boundary.

The following generalization of Sullivan’s shadow lemma gives precise estimates on the measures
of shadows with respect to Patterson-Sullivan measures.

Theorem 3.4 (Theorem 3.2, [Sch04]). There exists C = C(Γ, o) ≥ 1 such that for every ξ ∈ Λ and
all t > 0,

C−1 ≤ µPSo (O(ξ(t)))

e−δted(t)(k(ξ(t))−δ)
≤ C,

where

d(t) = dist(ξ(t),Γ · o),
and k(ξ(t)) denotes the rank of a parabolic fixed point p if ξ(t) is contained in a standard horoball
centered at p and otherwise k(ξ(t)) = δ.

A version of Theorem 3.4 was obtained earlier for real hyperbolic spaces in [SV95] and for complex
and quaternionic hyperbolic spaces in [New03].

3.2. Proof of Proposition 3.1. Assume that σ ≤ 1, the proof in the case σ > 1 being identical.
Fix a non-negative C∞ bump function ψ supported inside N+

1 and having value identically 1 on
N+

1/2
. Given ε > 0, let ψε(n) = ψ(Ad(g− log ε)(n)). Note that the condition that ψε(Id) = ψ(Id) = 1

implies that for x ∈ X with x+ ∈ Λ,

µux(ψε) > 0, ∀ε > 0. (3.2)

Note further that for any r > 0, we have that χN+
r
≤ ψr ≤ χN+

2r
.

First, we establish a uniform bound over x ∈ Ω. Consider the following function fσ : Ω → (0,∞):

fσ(x) = sup
0<r≤1

µux(ψσr)

µux(ψr)
.

We claim that it suffices to prove that

fσ(x) ≪ σ∆, (3.3)
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uniformly over all x ∈ Ω and 0 < σ ≤ 1. Indeed, fix some 0 < r ≤ 1 and 0 < σ ≤ 1. By enlarging
our implicit constant if necessary, we may assume that σ ≤ 1/4. From the above properties of ψ,
we see that

µux(N
+
σr) ≤ µux(ψ(4σ)(r/2)) ≪ σ∆µux(ψr/2) ≤ σ∆µux(N

+
r ).

Hence, it remains to prove (3.3). By [Rob03, Lemme 1.16], for each given r > 0, the map
x 7→ µux(ψσr)/µ

u
x(ψr) is a continuous function on Ω. Indeed, the weak-∗ continuity of the map

x 7→ µux is the reason we work with bump functions instead of indicator functions directly. Moreover,
continuity of these functions implies that fσ is lower semi-continuous.

The crucial observation regarding fσ is as follows. In view of (2.3), we have for t ≥ 0,

fσ(gtx) = sup
0<r≤e−t

µux(ψσr)

µux(ψr)
≤ fσ(x).

Hence, for all B ∈ R, the sub-level sets Ω<B := {fσ < B} are invariant by gt for all t ≥ 0. On
the other hand, the restriction of the (forward) geodesic flow to Ω is topologically transitive. In
particular, any invariant subset of Ω with non-empty interior must be dense in Ω. Hence, in view
of the lower semi-continuity of fσ, to prove (3.3), it suffices to show that fσ satisfies (3.3) for all x
in some open subset of Ω.

Recall we fixed a basepoint o ∈ Hd
K belonging to the hull of the limit set. Let xo ∈ G denote

a lift of o whose projection to G/Γ belongs to Ω. Let E denote the unit neighborhood of xo. We
show that E ∩ Ω ⊂

{
fσ ≪ σ∆

}
. Without loss of generality, we may further assume that σ < 1/2,

by enlarging the implicit constant if necessary.
First, note that the definition of the conditional measures µux immediately gives

µux|N+
4
≍ µPSo |

(N+
4 ·x)+, ∀x ∈ E.

It follows that
µPSo ((N+

r · x)+) ≪ µux(ψr) ≪ µPSo ((N+
2r · x)+),

for all 0 ≤ r ≤ 2 and x ∈ E. Hence, it will suffice to show

µPSo ((N+
σr · x)+)

µPSo ((N+
r · x)+) ≪ σ∆,

for all 0 < σ < 1.
To this end, there is a constant C1 ≥ 1 such that the following holds; cf. [Cor90, Theorem 2.2]2.

For all x ∈ E, if ξ = x+, then, the shadow Sr = {(nx)+ : n ∈ N+
r } satisfies

O(ξ(| log r|+ C1)) ⊆ Sr ⊆ O(ξ(| log r| − C1)), ∀0 < r ≤ 2. (3.4)

Here, and throughout the rest of the proof, if s ≤ 0, we use the convention

O(ξ(s)) = O(ξ(0)) = ∂Hd
K.

Fix some arbitrary x ∈ E and let ξ = x+. To simplify notation, set for any t, r > 0,

tσ := max {| log σr| − C1, 0} , tr := | log r|+ C1,

d(t) := dist(ξ(t),Γ · o), k(t) := k(ξ(t)),

where k(ξ(t)) is as in the notation of Theorem 3.4.
By further enlarging the implicit constant, we may assume for the rest of the argument that

− log σ > 2C1.

This insures that tσ ≥ tr and avoids some trivialities.

2The quoted result in [Cor90] is stated in terms of the so-called Carnot-Caratheodory metric on N+, which enjoys the
same scaling property in (2.6). In particular, this metric is equivalent to the Cygan metric in (2.8) by compactness
of the unit sphere in the latter.
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Let 0 < r ≤ 1 be arbitrary. We define constants σ0 := σ ≤ σ1 ≤ σ2 ≤ σ3 := 1 as follows. If
k(tσ) = δ (i.e. ξ(tσ) is in the complement of the cusp neighborhoods), we set σ1 = σ. Otherwise,
we define σ1 by the property that ξ(| log σ1r|) is the first point along the geodesic segment joining
ξ(tσ) and ξ(tr) (traveling from the former point to the latter) meets the boundary of the horoball
containing ξ(tσ). Similarly, if k(tr) = δ, we set σ2 = 1. Otherwise, we define σ2 by the property
that ξ(| log σ2r|) is the first point along the same segment, now travelling from ξ(tr) towards ξ(tσ),
which intersects the boudary of the horoball containing ξ(tr). Define

tσ0 := tσ, tσ3 := tr, tσi := | log σir| for i = 1, 2.

In this notation, we first observe that k(tσ1) = k(tσ2) = δ. In particular, Theorem 3.4 yields

µPSo (Sσ1r)

µPSo (Sσ2r)
≪
(
σ1
σ2

)δ
.

Note further that the projection map Hd
K → Hd

K/Γ restricts to an (isometric) embedding on cusp

horoballs. Combined with convexity of horoballs and the fact that geodesics in Hd
K are unique

distance minimizers, this implies that, for i = 0, 2, the distance between the projections of ξ(tσi)
and ξ(tσi+1) to Hd

K/Γ is equal to |tσi − tσi+1 |. In particular, there is a constant C2 ≥ 1, depending

only on the diameter of the complement of the cusp neighborhoods in the quotient Hd
K and on the

constant C1, such that, for i = 0, 2, we have

−C2 − log(σi/σi+1) ≤ d(tσi) ≤ − log(σi/σi+1) + C2.

Hence, it follows using Theorem 3.4 and the above discussion that

µPSo (Sσ0r)

µPSo (Sσ1r)
≪
(
σ0
σ1

)δ
ed(tσ0 )(k(tσ0 )−δ) ≪

(
σ0
σ1

)2δ−k(tσ0 )
.

Similarly, we obtain

µPSo (Sσ2r)

µPSo (Sσ3r)
≪
(
σ2
σ3

)δ
e−d(tσ3 )(k(tσ3 )−δ) ≪

(
σ2
σ3

)k(tσ3 )
.

Therefore, using the following trivial identity

µPSo (Sσr)

µPSo (Sr)
=
µPSo (Sσ0r)

µPSo (Sσ1r)

µPSo (Sσ1r)

µPSo (Sσ2r)

µPSo (Sσ2r)

µPSo (Sr)
,

we see that f(x) ≪ σ∆, where ∆ is as in the statement of the proposition. As x ∈ E was arbitrary,
we find that E ⊂

{
fσ ≪ σ∆

}
, thus concluding the proof in the case σ ≤ 1. Note that in the case

σ > 1, the constants σi satisfy σi/σi+1 ≥ 1, so that combining the 3 estimates requires taking the
maximum over the exponents, yielding the bound with ∆+ in place of ∆ in this case.

Now, let r ∈ (0, 1] and suppose x = u−y for some y ∈ Ω and u− ∈ N−
2 . By [Cor90, Theorem 2.2],

the analog of (3.4) holds, but with shadows from the viewpoint of x and y, in place of the fixed
basepoint o. Recalling the map n 7→ u+(n) in (2.9), one checks that this implies that this map is
Lipschitz on N+

1 with respect to the Cygan metric, with Lipschitz constant ≍ C1. Moreover, the
Jacobian of the change of variables associated to this map with respect to the measures µux and µuy
is bounded on N+

1 , independently of y and u−; cf. (2.10) for a formula for this Jacobian. Hence,
the estimates for x ∈ N−

2 Ω follow from their counterparts for points in Ω.

4. Margulis Functions In Infinite Volume

We construct Margulis functions on Ω which allow us to obtain quantitative recurrence estimates
to compact sets. Our construction is similar to the one in [BQ11] in the case of lattices in rank 1
groups. We use geometric finiteness of Γ to establish the analogous properties more generally. The
idea of Margulis functions originated in [EMM98].
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Throughout this section, we assume Γ is a non-elementary, geometrically finite group containing
parabolic elements. The following is the main result of this section. A similar result in the special
case of quotients of SL2(R) follows from combining Lemma 9.9 and Proposition 7.6 in [MO23].

Theorem 4.1. Let ∆ > 0 denote the constant in (3.1). For every 0 < β < ∆/2, there exists a
proper function Vβ : N−

1 Ω → R+ such that the following holds. There is a constant c ≥ 1 such that

for all x ∈ N−
1 Ω and t ≥ 0,

1

µux(N
+
1 )

∫

N+
1

Vβ(gtnx) dµ
u
x(n) ≤ ce−βtVβ(x) + c.

Our key tool in establishing Theorem 4.1 is Proposition 4.2, which is a statement regarding
average expansion of vectors in linear represearntations of G. The fractal nature of the conditional
measures µux poses serious difficulties in establishing this latter result.

4.1. Construction of Margulis functions. Let p1, . . . , pd ∈ Λ be a maximal set of inequivalent
parabolic fixed points and for each i, let Γi denote the stabilizer of pi in Γ. Let Pi < G denote the
parabolic subgroup of G fixing pi. Denote by Ui the unipotent radical of Pi and by Ai a maximal
R-split torus inside Pi. Then, each Ui is a maximal connected unipotent subgroup of G admitting
a closed (but not necessarily compact) orbit from identity in G/Γ. As all maximal unipotent
subgroups of G are conjugate, we fix elements hi ∈ G so that hiUih

−1
i = N+. Note further that G

admits an Iwasawa decomposition of the form G = KAiUi for each i, where K is our fixed maximal
compact subgroup.

Denote by W the adjoint representation of G on its Lie algebra. The specific choice of repre-
sentation is not essential for the construction, but is convenient for making some parameters more
explicit. We endow W with a norm that is invariant by K.

Let 0 6= v0 ∈W denote a vector that is fixed by N+. In particular, v0 is a highest weight vector
for the diagonal group A (with respect to the ordering determined by declaring the roots in N+ to
be positive). Let vi = hiv0/ ‖hiv0‖. Note that each of the vectors vi is fixed by Ui and is a weight
vector for Ai. In particular, there is an additive character χi : Ai → R such that

a · vi = eχi(a)vi, ∀a ∈ Ai. (4.1)

We denote by A+
i the subsemigroup of Ai which expands Ui (i.e. the positive Weyl chamber deter-

mined by Ui). We let αi : Ai → R denote the simple root of Ai in Lie(Ui). Then,

χi = χKαi, χK =

{
1, if K = R,

2 if K = C,H,O.
(4.2)

Given β > 0, we define a function Vβ : G/Γ → R+ as follows:

Vβ(gΓ) := max
w∈⋃d

i=1 gΓ·vi
‖w‖−β/χK . (4.3)

The fact that Vβ(gΓ) is indeed a maximum will follow from Lemma 4.6.

4.2. Linear expansion. The following result is our key tool in establishing the contraction esti-
mate on Vβ in Theorem 4.1.

Proposition 4.2. For every 0 ≤ β < ∆/2, there exists C = C(β) ≥ 1 so that for all t > 0,
x ∈ N−

1 Ω, and all non-zero vectors v in the orbit G · v0 ⊂W , we have

1

µux(N
+
1 )

∫

N+
1

‖gtn · v‖−β/χK dµux(n) ≤ Ce−βt ‖v‖−β/χK .
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We postpone the proof of Proposition 4.2 to Section 5. Let π+ : W →W+ denote the projection
onto the highest weight space of gt. The difficulty in the proof of Proposition 4.2 beyond the case
G = SL2(R) lies in controlling the shape of the subset of N+ on which ‖π+(n · v)‖ is small, so that
we may apply the decay results from Proposition 3.1, that are valid only for balls of the form N+

ε .
We deal with this problem by using a convexity trick. A suitable analog of the above result holds
for any non-trivial linear representation of G.

The following proposition establishes several geometric properties of the functions Vβ which are
useful in proving, and applying, Theorem 4.1. summarizes the main geometric properties of the
functions Vβ. This result is proved in Section 4.4.

Proposition 4.3. Suppose Vβ is as in (4.3). Then,

(1) For every x in the unit neighborhood of Ω, we have that

inj(x)−1 ≪Γ V
χK/β
β (x),

where inj(x) denotes the injectivity radius at x. In particular, Vβ is proper on Ω.
(2) For all g ∈ G and all x ∈ X,

‖g‖−β Vβ(x) ≤ Vβ(gx) ≤
∥∥g−1

∥∥β Vβ(x).

(3) There exists a constant ε0 > 0 such that for all x = gΓ ∈ X, there exists at most one vector
v ∈ ⋃i gΓ · vi satisfying ‖v‖ ≤ ε0.

4.3. Proof of Theorem 4.1. In this section, we use Proposition 4.3 to translate the linear ex-
pansion estimates in Proposition 4.2 into a contraction estimate for the functions Vβ.

Let t0 > 0 be be given and define

ω0 := sup
n∈N+

1

max
{
‖gt0n‖1/χK ,

∥∥(gt0n)−1
∥∥1/χK

}
,

where ‖·‖ denotes the operator norm of the action of G on W . Then, for all n ∈ N+
1 and all x ∈ X,

we have

ω−1
0 V1(x) ≤ V1(gt0nx) ≤ ω0V1(x), (4.4)

where V1 = Vβ for β = 1.
Let ε0 be as in Proposition 4.3(3). Suppose x ∈ X is such that V1(x) ≤ ω0/ε0. Then, by (4.4),

for any β > 0, we have that

1

µux(N
+
1 )

∫

N+
1

Vβ(gt0nx) dµ
u
x(n) ≤ B0 := (ω2

0ε
−1
0 )β. (4.5)

Now, suppose x ∈ N−
1 Ω is such that V1(x) ≥ ω0/ε0 and write x = gΓ for some g ∈ G. Then,

by Proposition 4.3(3), there exists a unique vector v⋆ ∈ ⋃i gΓ · vi satisfying V1(x) = ‖v⋆‖−1/χK .

Moreover, by (4.4), we have that V1(gt0nx) ≥ 1/ε0 for all n ∈ N+
1 . And, by definition of ω0, for

all n ∈ N+
1 , ‖gt0nv⋆‖1/χK ≤ ε0. Thus, applying Proposition 4.3(3) once more, we see that gt0nv⋆ is

the unique vector in
⋃
i gt0ngΓ · vi satisfying

Vβ(gt0nx) = ‖gt0nv⋆‖−1/χK , ∀n ∈ N+
1 .

Moreover, since the vectors vi all belong to the G-orbit of v0, it follows that v⋆ also belongs to
G · v0. Thus, we may apply Proposition 4.2 as follows. Fix some β > 0 and let C = C(β) ≥ 1 be
the constant in the conclusion of the proposition. Then,

1

µux(N
+
1 )

∫

N+
1

Vβ(gt0nx)dµ
u
x =

1

µux(N
+
1 )

∫

N+
1

‖gt0nv⋆‖−β/χK dµux ≤ Ce−βt0 ‖v⋆‖−β/χK = Ce−βt0Vβ(x).
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Combining this estimate with (4.5), we obtain for any fixed t0,

1

µux(N
+
1 )

∫

N+
1

Vβ(gt0nx) dµ
u
x(n) ≤ Ce−βt0Vβ(x) +B0, (4.6)

for all x ∈ Ω. We claim that there is a constant c1 = c1(β) > 0 such that, if t0 is large enough,
depending on β, then

1

µux(N
+
1 )

∫

N+
1

Vβ(gkt0nx) dµ
u
x(n) ≤ ck1e

−βkt0Vβ(x) + 2B0, (4.7)

for all k ∈ N. By Proposition 4.3, this claim completes the proof since Vβ(gty) ≪ Vβ(g⌊t/t0⌋t0y), for
all t ≥ 0 and y ∈ X, with an implied constant depending only on t0 and β.

The proof of (4.7) is by now a standard argument, with the key ingredient in carrying it out
being the doubling estimate Proposition 3.1. We proceed by induction. Let k ∈ N be arbitrary and
assume that (4.7) holds for such k. Let

{
ni ∈ Ad(gkt0)(N

+
1 ) : i ∈ I

}
denote a finite collection of

points in the support of µugkt0x
such that N+

1 ni covers the part of the support inside Ad(gkt0(N
+
1 )).

We can find such a cover with uniformly bounded multiplicity, depending only on N+. That is
∑

i∈I
χN+

1 ni
(n) ≪ χ∪iN

+
1 ni

(n), ∀n ∈ N+.

Let xi = nigkt0x. By (4.6), and a change of variable, cf. (2.3) and (2.4), we obtain

eδkt0
∫

N+
1

Vβ(g(k+1)t0nx) dµ
u
x ≤

∑

i∈I

∫

N+
1

Vβ(gt0nxi) dµ
u
xi ≤

∑

i∈I
µuxi(N

+
1 )
(
Ce−βt0Vβ(xi) +B0

)
.

It follows using Proposition 4.3 that µuy(N
+
1 )Vβ(y) ≪

∫
N+

1
Vβ(ny) dµ

u
y(n) for all y ∈ X. Hence,

∫

N+
1

Vβ(g(k+1)t0nx) dµ
u
x(n) ≪ e−δkt0

∑

i∈I

∫

N+
1

(
Ce−βt0Vβ(nxi) +B0

)
dµuxi(n).

Note that since gt expands N
+ by at least et, we have

Ak := Ad(g−kt0)

(
⋃

i

N+
1 ni

)
⊆ N+

2 .

Using the bounded multiplicity property of the cover, we see that, for any non-negative function
ϕ, we have

∑

i∈I

∫

N+
1

ϕ(nxi) dµ
u
xi =

∫

N+

ϕ(ngkt0x)
∑

i∈I
χN+

1 ni
(n) dµugkt0x

≪
∫
⋃

iN
+
1 ni

ϕ(ngkt0x) dµ
u
gkt0x

.

Changing variables back so the integrals take place against µux, we obtain

e−δkt0
∑

i∈I

∫

N+
1

(
Ce−βt0Vβ(nxi) +B0

)
dµuxi ≪

∫

Ak

(
Ce−βt0Vβ(gkt0nx) +B0

)
dµux

≤ Ce−βt0
∫

N+
2

Vβ(gkt0nx) dµ
u
x +B0µ

u
x(N

+
2 ).

To apply the induction hypothesis, we again pick a cover of N+
2 by balls of the form N+

1 n, for a
collection of points n ∈ N+

2 in the support of µux. We can arrange for such a collection to have a
uniformly bounded cardinality and multiplicity. By essentially repeating the above argument, and
using our induction hypothesis for k, in addition to the doubling property in Proposition 3.1, we
obtain

Ce−βt0
∫

N+
2

Vβ(gkt0nx) dµ
u
x +B0µ

u
x(N

+
2 ) ≪ (Cck1e

−β(k+1)t0Vβ(x) + 2B0Ce
−βt0 +B0)µ

u
x(N

+
1 ),
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where we also used Proposition 4.3 to ensure that Vβ(nx) ≪ Vβ(x), for all n ∈ N+
3 . Taking c1 to

be larger than the product of C with all the uniform implied constants accumulated thus far in the
argument, we obtain

1

µux(N
+
1 )

∫

N+
1

Vβ(g(k+1)t0nx) dµ
u
x(n) ≤ ck+1

1 e−β(k+1)t0Vβ(x) + 2c1e
−βt0B0 +B0.

Taking t0 large enough so that 2c1e
−βt0 ≤ 1 completes the proof.

4.4. Geometric properties of Margulis functions and proof of Proposition 4.3. In this
section, we give a geometric interpretation of the functions Vβ which allows us to prove Proposi-
tion 4.3. Item (2) follows directly from the definitions, so we focus on the remaining properties.

The data in the definition of Vβ allows us to give a linear description of cusp neighborhoods as
follows. Given g ∈ G and i, write g = kau for some k ∈ K, a ∈ Ai and u ∈ Ui. Geometrically, the
size of the A component in the Iwasawa decomposition G = KAiUi corresponds to the value of the
Busemann cocycle |βpi(Kg, o)|, where Kg is the image of g in K\G; cf. [BQ16, Remark 6.5] and
the references therein for the precise statement. This has the following consequence. We can find
0 < εi < 1 such that ∥∥Ad(a)|Lie(Ui)

∥∥ < εi ⇐⇒ Kg ∈ Hpi , (4.8)

where Hpi is the standard horoball based at pi in Hd
K
∼= K\G.

The functions Vβ(x) roughly measure how far into the cusp x is. More precisely, we have the
following lemma.

Lemma 4.4. The restriction of Vβ to any bounded neighborhood of Ω is a proper map.

Proof. In view of Property (2) of Proposition 4.3, it suffices to prove that Vβ is proper on Ω.
Now, suppose that for some sequence gn ∈ G, we have gnΓ tends to infinity in Ω. Then, since
Γ is geometrically finite, this implies that the injectivity radius at gnΓ tends to 0. Hence, after
passing to a subsequence, we can find γn ∈ Γ such that gnγn belongs to a single horoball among
the horoballs constituting our fixed standard cusp neighborhood; cf. Section 2.2. By modifying γn
on the right by a fixed element in Γ if necessary, we can assume that Kgnγn converges to one of
the parabolic points pi (say p1) on the boundary of Hd

K
∼= K\G.

Moreover, geometric finiteness implies that (ΛΓ \ {p1})/Γ1 is compact. Thus, by multiplying
gnγn by an element of Γ1 on the right if necessary, we may assume that (gnγn)

− belongs to a fixed
compact subset of the boundary, which is disjoint from {p1}.

Thus, for all large n, we can write gnγn = knanun, for kn ∈ K, an ∈ Ai and un ∈ Ui, such
that the eigenvalues of Ad(an) are bounded above; cf. (4.8). Moreover, as (gnγn)

− belongs to a
compact set that is disjoint from {p1} and (gnγn)

+ → p1, the set {un} is bounded. To show that
Vβ(gnΓ) → ∞, since Ui fixes vi and K is a compact group, it remains to show that an contracts vi
to 0. Since gnγn is unbounded in G while kn and un remain bounded, this shows that the sequence
an is unbounded. Upper boundedness of the eigenvalues of Ad(an) thus implies the claim. �

Remark 4.5. The above lemma is false without restricting to Ω in the case Γ has infinite covolume
since the injectivity radius is not bounded above on G/Γ. Note also that this lemma is false in the
case Γ is not geometrically finite, since the complement of cusp neighborhoods inside Ω is compact
if and only if Γ is geometrically finite.

The next crucial property of the functions Vβ is the following linear manifestation of the existence
of cusp neighborhoods consisting of disjoint horoballs. This lemma implies Proposition 4.3(3).

Lemma 4.6. There exists a constant ε0 > 0 such that for all x = gΓ ∈ X, there exists at most one
vector v ∈ ⋃i gΓ · vi satisfying ‖v‖ ≤ ε0.

Remark 4.7. The constant ε0 roughly depends on the distance from a fixed basepoint to the cusp
neighborhoods.
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Proof of Lemma 4.6. Let g ∈ G and i be given. Write g = kau, for some k ∈ K, a ∈ Ai and u ∈ Ui.
Since Ui fixes vi and the norm on W is K-invariant, we have ‖g · vi‖ = ‖a · vi‖ = eχi(a); cf. (4.1).
Moreover, since W is the adjoint representation, we have

∥∥Ad(a)|Lie(Ui)

∥∥ ≍ eχi(a),

and the implied constant, denoted C, depends only on the norm on the Lie algebra.
Let 0 < εi < 1 be the constants in (4.8) and define ε0 := mini εi/C. Let x = gΓ ∈ G/Γ. Suppose

that there are vectors γ1, γ2 ∈ Γ and vectors vi1 , vi2 in our finite fixed collection of vectors vi such
that

∥∥gγj · vij
∥∥ < ε0 for j = 1, 2. Then, the above discussion, combined with the choice of εi

in (4.8), imply that Kgγj belongs to the standard horoball Hj in Hd
K based at pij . However, this

implies that the two standard horoballs H1γ
−1
1 and H2γ

−1
2 intersect non-trivially. By choice of

these standard horoballs, this implies that the two horoballs Hjγ
−1
j are the same and that the two

parabolic points pij are equivalent under Γ. In particular, the two vectors vi1 , vi2 are in fact the

same vector, call it vi0 . It also follows that γ−1
1 γ2 sends H to itself and fixes the parabolic point it

is based at. Thus, γ−1
1 γ2 fixes vi0 by definition. But, then, we get that

gγ2 · vi0 = gγ1(γ
−1
1 γ2) · vi0 = gγ1 · vi0 .

This proves uniqueness of the vector in
⋃
i gΓ ·vi with length less than ε0, if it exists, and concludes

the proof.
�

Finally, we verify Proposition 4.3 (1) relating the injectivity radius to Vβ.

Lemma 4.8. For all x in the unit neighborhood of Ω, we have

inj(x)−1 ≪Γ V
χK/β
β (x),

where χK is given in (4.2).

Proof. Let x ∈ Ω and set x̃0 = Kx. Let x0 ∈ K\G ∼= Hd
K denote a lift of x̃0. Then, x0 belongs to

the hull of the limit set of Γ; cf. Section 2.
Since inj(·)−1 and Vβ are uniformly bounded above and below on the complement of the cusp

neighborhoods inside Ω, it suffices to prove the lemma under the assumption that x0 belongs to
some standard horoball H based at a parabolic fixed point p. We may also assume that the lift x0
is chosen so that p is one of our fixed finite set of inequivalent parabolic points {pi}.

Geometric finiteness of Γ implies that there is a compact subset Kp of ∂Hd
K\ {p}, depending

only on the stabilizer Γp in Γ, with the following property. Every point in the hull of the limit
set is equivalent, under Γp, to a point on the set of geodesics joining p to points in Kp. Thus,
after adjusting x0 by an element of Γp if necessary, we may assume that x0 belongs to this set.
In particular, we can find g ∈ G so that x0 = Kg and g can be written as kau in the Iwasawa
decomposition associated to p, for some k ∈ K,a ∈ Ap, and u ∈ Up

3 with the property that Ad(a)
is contracting on Up and u is of uniformly bounded size.

Note that it suffices to prove the statement assuming the injectivity radius of x is smaller than
1/3, while the distance of x0 to the boundary of the cusp horoball Hp is at least 1. Now, let γ ∈ Γ
be a non-trivial element such that x0γ is at distance at most 1/2 from x0. Then, this implies
that both x0 and x0γ belong to Hp. In particular, the standard horoballs Hp and Hpγ intersect
non-trivially, and hence must be the same. It follows that γ belongs to Γp.

Let Mp denote the centralizer of Ap inside K. Since Γp is a subgroup of MpUp, we can find v in
the Lie algebra of MpUp so that γ = exp(v). In view of the discreteness of Γ, we have that ‖v‖ ≫ 1.

3The groups Ap and Up were defined at the beginning of the section.
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Since the exponential map is close to an isometry near the origin, we see that

dist(gγg−1, Id) ≍ ‖Ad(au)(v)‖ ≥ eχKα(a) ‖Ad(u)(v)‖ ,
where χK is given in (4.2) and we used K-invariance of the norm. Here, α is the simple root of Ap
in the Lie algebra of Up and eχKα(a) is the smallest eigenvalue of Ad(a) on the Lie algebra of the
parabolic group stabilizing p. Note that since x0 belongs to Hp, α(a) is strictly negative.

Recalling that u belongs to a uniformly bounded neighborhood of identity in G and that ‖v‖ ≫ 1,
it follows that dist(gγg−1, Id) ≫ eχKα(a). Since γ was arbitrary, this shows that the injectivity radius
at x satisfies the same lower bound.

Finally, let vp ∈ {vi} denote the vector fixed by Up. Using the above Iwasawa decomposition,

we see that V
1/β
β (x) ≥ ‖avp‖−1/χK = e−χp(a)/χK , where χp is the character on Ap determined by vp,

cf. (4.1). This concludes the proof in view of (4.2) and the fact that χp = χKα. �

5. Shadow Lemmas, Convexity, and Linear Expansion

The goal of this section is to prove Proposition 4.2 estimating the average rate of expansion of
vectors with respect to leafwise measures. This completes the proof of Theorem 4.1.

5.1. Proof of Proposition 4.2. We may assume without loss of generality that ‖v‖ = 1. LetW+

denote the highest weight subspace of W for A+ = {gt : t > 0}. Denote by π+ the projection from
W onto W+. In our choice of representation W , the eigenvalue of A+ in W+ is eχKt, , where χK is
given in (4.2). It follows that

1

µux(N
+
1 )

∫

N+
1

‖gtn · v‖−β/χK dµux(n) ≤ e−βt
1

µux(N
+
1 )

∫

N+
1

‖π+(n · v)‖−β/χK dµux(n).

Hence, it suffices to show that, for a suitable choice of β, the integral on the right side is uniformly
bounded, independently of v and x (but possibly depending on β).

For simplicity, set βK = β/χK. A simple application of Fubini’s Theorem yields
∫

N+
1

‖π+(n · v)‖−βK dµux(n) =

∫ ∞

0
µux

(
n ∈ N+

1 : ‖π+(n · v)‖βK ≤ t−1

)
dt.

For v ∈W , we define a polynomial map on N+ by n 7→ pv(n) := ‖π+(n · v)‖2 and set

S(v, ε) :=
{
n ∈ N+ : pv(n) ≤ ε

}
.

To apply Proposition 3.1, we wish to efficiently estimate the radius of a ball in N+ containing the
sublevel sets S

(
v, t−2/βK

)
∩N+

1 . We have the following claim.

Claim 5.1. There exists a constant C0 > 0, such that, for all ε > 0, the diameter of S(v, ε) ∩N+
1

is at most C0ε
1/4χK .

Let us show how to conclude the proof assuming this claim. By estimating the integral over [0, 1]
trivially, we obtain
∫ ∞

0
µux

(
n ∈ N+

1 : ‖π+(n · v)‖βK ≤ t−1

)
dt ≤ µux(N

+
1 ) +

∫ ∞

1
µux

(
S
(
v, t−2/βK

)
∩N+

1

)
dt. (5.1)

Claim 5.1 implies that if µux
(
S(v, ε) ∩N+

1

)
> 0 for some ε > 0, then S(v, ε) ∩ N+

1 is contained

in a ball of radius 2C0ε
1/4χK , centered at a point in the support of the measure µux|N+

1
. Recalling

that βK = β/χK, we thus obtain
∫ ∞

1
µux

(
S
(
v, t−2/βK

)
∩N+

1

)
dt ≤

∫ ∞

1
sup

n∈supp(µux)∩N+
1

µux

(
BN+

(
n, 2C0t

−1/2β
))

dt, (5.2)

where for n ∈ N+ and r > 0, BN+(n, r) denotes the ball of radius r centered at n.
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To estimate the integral on the right side of (5.2), we use the doubling results in Proposition 3.1.
Note that if n ∈ supp(µux), then nx belongs to the limit set ΛΓ. Since x ∈ N−

1 Ω by assumption,
this implies that nx belongs to N−

2 Ω for all n ∈ N+
1 in the support of µux; cf. Remark 2.1. Hence,

changing variables using (2.4) and applying Proposition 3.1, we obtain for all n ∈ supp(µux) ∩N+
1 ,

µux

(
BN+

(
n, 2C0t

−1/2β
))

= µunx

(
BN+

(
Id, 2C0t

−1/2β
))

≪ t−∆/2βµunx(N
+
1 ).

Moreover, for n ∈ N+
1 , we have, again by Proposition 3.1, that

µunx(N
+
1 ) ≤ µux(N

+
2 ) ≪ µux(N

+
1 ).

Put together, this gives
∫ ∞

1
sup

n∈supp(µux)∩N+
1

µux

(
BN+

(
n, 2C0t

−1/2β
))

dt≪ µux(N
+
1 )

∫ ∞

1
t−∆/2β dt.

The integral on the right side above converges whenever β < ∆/2, which concludes the proof.

5.2. Prelimiary facts. We begin by recalling the Bruhat decomposition of G. Denote by P− the
subgroup MAN− of G.

Proposition 5.2 (Theorem 5.15, [BT65]). Let w ∈ G denote a non-trivial Weyl “element” satis-
fying wgtw

−1 = g−t. Then,

G = P−N+
⊔
P−w. (5.3)

We shall need the following result, which is yet another reflection in linear representations of G
of the fact that G has real rank 1.

Proposition 5.3. Let V be a normed finite dimensional representation of G, and v0 ∈ V be any
highest weight vector for gt (t > 0) with weight eλt for some λ ≥ 0. Let v be any vector in the orbit
G · v0 and define

G(v, V <λ(gt)) =

{
g ∈ G : lim

t→∞
log ‖gtgv‖

t
< λ

}
.

Then, there exists gv ∈ G such that

G(v, V <λ(gt)) ⊆ P−gv .

Proof. Let h ∈ G be such that v = hv0 and let g ∈ G(v, V <λ(gt)). By the Bruhat decomposition,
either gh = pn for some p ∈ P− and n ∈ N+, or gh = pw for some p ∈ P− and w being the
long Weyl “element”. Suppose we are in the first case, and note that N+ fixes v0 since it is a
highest weight vector for gt. Moreover, Ad(gt)(p) converges to some element in G as t tends to
∞. Since gtgv = eλtAd(gt)(p)v0, we see that log ‖gtgv‖ /t→ λ as t tends to ∞, thus contradicting
the assumption that g belongs to G(v, V <λ(gt)). Hence, gh must belong to P−w. This implies the
conclusion by taking gv := wh−1.

�

The following immediate corollary is the form we use this result in our arguments.

Corollary 5.4. Let the notation be as in Proposition 5.3. Then, N+ ∩G(v,W 0−(gt)) contains at
most one point.

Proof. Recall the Bruhat decomposition of G in Proposition 5.2. Let gv ∈ G be as in Proposition 5.3
and suppose that n0 ∈ P−gv ∩N+. Let p0 ∈ P− be such that n0 = p0gv .

First, assume gv = pvnv for some pv ∈ P− and nv ∈ N+. Then, n0 = p0pvnv. Then, n0n
−1
v ∈

P− ∩N+ = {Id}. In particular, n0 = nv, and the claim follows in this case.
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Now assume that gv = pvw for some pv ∈ P−, so that n0 = p0pvw ∈ P−w ∩ N+. This is a
contradiction, since the latter intersection is empty as follows from the Bruhat decomposition.

�

5.3. Convexity and Proof of Claim 5.1. Let B1 ⊂ Lie(N+) denote a compact convex set whose
image under the exponential map contains N+

1 and denote by B2 a compact set containing B1 in
its interior.

Define n+1 to be the unit sphere in the Lie algebra n+ of N+ in the following sense:

n+1 :=
{
u ∈ n+ : dN+(exp(u), Id) = 1

}
,

where dN+ is the Cygan metric on N+; cf. Section 2.5. Given u, b ∈ n+, define a line ℓu,b : R → n+

as follows:

ℓu,b(t) := tu+ b,

and denote by L the space of all such lines ℓu,b such that u ∈ n+1 . We endow L with the topology

inherited from its natural identification with its n+1 × n+. Then, the subset L(B1) of all such lines
such that b belongs to the compact set B1 is compact in L.

Recall that a vector v ∈ W is said to be unstable if the closure of the orbit G · v contains 0.
Highest weight vectors are examples of unstable vectors. Let N denote the null cone of G in W ,
i.e., the closed cone consisting of all unstable vectors. Let N1 ⊂ N denote the compact set of unit
norm unstable vectors. Note that, for any v ∈ N , the restriction of pv to any ℓ ∈ L is a polynomial
in t of degree at most that of pv. We note further that the function

ρ(v, ℓ) := sup {pv(ℓ(t)) : ℓ(t) ∈ B2}
is continuous and non-negative on the compact space N1 × L(B1). We claim that

ρ⋆ := inf {ρ(v, ℓ) : (v, ℓ) ∈ N1 × L(B1)}
is strictly positive. Indeed, by continuity and compactness, it suffices to show that ρ is non-
vanishing. Suppose not and let (v, ℓ) be such that ρ(v, ℓ) = 0. Since B1 is contained in the interior
of B2, the intersection

I(ℓ) := {t ∈ R : ℓ(t) ∈ B2}
is an interval (by convexity of B2) with non-empty interior. Since pv(ℓ(·)) is a polynomial vanishing
on a set of non-empty interior, this implies it vanishes identically. On the other hand, Corollary 5.4
shows that pv has at most 1 zero in all of n+, a contradiction.

Positivity of ρ⋆ has the following consequence. Our choice of the representation W implies that
the degree of the polynomial pv is at most 4χK, where χK is given in (4.2). This can be shown by
direct calculation in this case.4 By the so-called (C,α)-good property (cf. [Kle10, Proposition 3.2]),
we have for all ε > 0

| {t ∈ I(ℓ) : pv(ℓ(t)) ≤ ε} | ≤ Cd (ε/ρ⋆)
1/4χK |I(ℓ)|,

where Cd > 0 is a constant depending only on the degree of pv, and | · | denotes the Lebesgue
measure on R.

To use this estimate, we first note that the length of the intervals I(ℓ) is uniformly bounded over
L(B1). Indeed, suppose for some u = (uα, u2α), b ∈ n+ and ℓ = ℓu,b ∈ L(B1), I(ℓ) has endpoints
t1 < t2 so that the points ℓ(ti) belong to the boundary of B2. Recall that the Lie algebra n+ of N+

decomposes into gt eigenspaces as n+α ⊕ n+2α, where n+2α = 0 if and only if K = R. Set x1 = ℓ(t1)

4In general, such a degree can be calculated from the largest eigenvalue of gt in W ; for instance by restricting the
representation to suitable subalgebras of the Lie algebra of G that are isomoprhic to sl2(R) and using the explicit
description of sl2(R) representations.
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and x2 = ℓ(t2). Since N+ is a nilpotent group of step at most 2, the Campbell-Baker-Hausdorff
formula implies that exp(x2) exp(−x1) = exp(Z), where Z ∈ n+ is given by

Z = x2 − x1 +
1

2
[x2,−x1] = (t2 − t1)u+

1

2
(t2 − t1)[b, u].

Note that since n+2α is the center of n+, [b, u] = [b, uα] belongs to n+2α. Hence, we have by (2.8) that

dN+(exp(x1), exp(x2)) =

(
(t2 − t1)

4 ‖uα‖4 + (t22 − t21)
2

∥∥∥∥u2α +
1

2
[b, u]

∥∥∥∥
2
)1/4

.

Since exp(u) is at distance 1 from identity, at least one of ‖uα‖ and ‖u2α‖ is bounded below by
10−1. Moreover, we can find a constant θ ∈ (0, 10−2) so that for all b ∈ B1 and all yα ∈ n+α with
‖yα‖ ≤ θ such that ‖[b, yα]‖ ≤ 10−2. Together this implies that

min
{
t2 − t1, (t

2
2 − t21)

1/2
}
≪ diam (B1) ,

where diam (B1) denotes the diameter of B1. This proves that |I(ℓ)| = t2 − t1 ≪ 1, where the
implicit constant depends only on the choice of B1. We have thus shown that

| {t ∈ I(ℓ) : pv(ℓ(t)) ≤ ε} | ≪ ε1/4χK . (5.4)

We now use our assumption that v belongs to the G orbit of a highest weight vector v0. Since
v0 is a highest weight vector, it is fixed by N+. Hence, the Bruhat decomposition, cf. (5.3) with
the roles of P− and P+ reversed, implies that the orbit G · v0 can be written as

G · v0 = P+ · v0
⊔
P+w · v0,

where w is the long Weyl “element”. Recall that P+ = N+MA, where M is the centralizer of
A = {gt} in the maximal compact group K. In particular, M preserves eigenspaces of A and
normalizes N+. Recall further that the norm on W is chosen to be K-invariant.

First, we consider the case v ∈ P+w · v0 and has unit norm. For v′ ∈ W , we write [v′] for its
image in the projective space P(W ). Then, since w · v0 is a joint weight vector of A, we see that
the image of P+w · v0 in P(W ) has the form N+M · [w · v0]. Setting v1 := w · v0, we see that

S(nm · v1, ε) = S(mv1, ε) · n−1 = Ad(m−1)(S(v1, ε)) · n−1, (5.5)

where we implicitly used the fact that M commutes with the projection π+ and preserves the norm
on W . Since the metric on N+ is right invariant under translations by N+ and is invariant under
Ad(M), the above identity implies that it suffices to estimate the diameter of S(v1, ε) ∩ N+

1 in
the case v ∈ P+w · v0. Similarly, in the case v ∈ P+ · v0, it suffices to estimate the diameter of
S(v0, ε) ∩N+

1 .

Let S̃(v, ε) = logS(v, ε) denote the pre-image of S(v, ε) in the Lie algebra n+ of N+ under the
exponential map. By Corollary 5.4, for any non-zero v ∈ N , either S(v, ε) is empty for all small
enough ε, or there is a unique global minimizer of pv(·) on N+, at which pv vanishes. In either

case, for any given v ∈ N \{0} in the null cone, the set S̃(v, ε) is convex for all small enough ε > 0,

depending on v. Let s0 > 0 be such that S̃(v, ε) is convex for v ∈ {v0, v1} and for all 0 ≤ ε ≤ s0.

Fix some v ∈ {v0, v1} and ε ∈ [0, s0]. Suppose that x1 6= x2 ∈ S̃(v, ε) ∩ B1. Let r denote the
distance dN+(x1, x2). Let u

′ = x2−x1, u = u′/r and b = x1. Set ℓ = ℓu,b and note that ℓu,b(0) = x1
and ℓu,b(r) = x2. Since B1 is convex, the set S̃(v, ε) ∩B1 is also convex. Hence, the entire interval

(0, r) belongs to the set on the left side of (5.4) and, hence, that r ≪ ε1/4χK . Since x1 and x2 were

arbitrary, this shows that the diameter of S̃(v, ε) ∩B1 is O(ε1/4χK) as desired.
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6. Anisotropic Banach Spaces and Transfer Operators

In this section, we define the Banach spaces on which the transfer operator and resolvent asso-
ciated to the geodesic flow have good spectral properties.

The transfer operator, denoted Lt, acts on continuous functions as follows: for a continuous
function f , let

Ltf := f ◦ gt. (6.1)

For z ∈ C, the resolvent R(z) : Cc(X) → C(X) is defined formally as follows:

R(z)f :=

∫ ∞

0
e−ztLtf dt.

If Γ is not convex cocompact, we fix a choice of β > 0 so that Theorem 4.1 holds and set V = Vβ.
If Γ is convex cocompact, we take V = Vβ ≡ 1 and we may take β as large as we like in this case.
Note that the conclusion of Theorem 4.1 holds trivially with this choice of V . In particular, we
shall use its conclusion throughout the argument regardless of whether Γ admits cusps.

Denote by Ck+1
c (X)M the subspace of Ck+1

c (X) consisting of M -invariant functions, where M is
the centralizer of the geodesic flow inside the maximal compact group K. In particular, Ck+1

c (X)M

is naturally identified with the space of Ck+1
c functions on the unit tangent bundle of Hd

K/Γ;
cf. Section 2. The following is the main result of this section.

Theorem 6.1 (Essential Spectral Gap). Let k ∈ N be given. Then, there exists a seminorm ‖·‖k
on Ck+1

c (X)M , non-vanishing on functions whose support meets Ω, and such that for every z ∈ C,
with Re(z) > 0, the resolvent R(z) extends to a bounded operator on the completion of Ck+1

c (X)M

with respect to ‖·‖k and having spectral radius at most 1/Re(z). Moreover, the essential spectral
radius of R(z) is bounded above by 1/(Re(z) + σ0), where

σ0 := min {k, β} .
In particular, if Γ is convex cocompact, we can take σ0 = k.

By the completion of a topological vector space V with respect to a seminorm ‖·‖, we mean the
Banach space obtained by completing the quotient topological vector space V/W with respect to
the induced norm, where W is the kernel of ‖·‖.

The proof of Theorem 6.1 occupies Sections 6 and 7.

6.1. Anisotropic Banach Spaces. We construct a Banach space of functions on X containing
C∞ functions satisfying Theorem 6.1.

Given r ∈ N, let V−
r denote the space of all Cr vector fields on N+ pointing in the direction of

the Lie algebra n− of N− and having norm at most 1. More precisely, V−
r consists of all Cr maps

v : N+ → n−, with Cr norm at most 1. Similarly, we denote by V0
r the set of Cr vector fields

v : N+ → a := Lie(A), with Cr norm at most 1. Note that if ω ∈ a is the vector generating the
flow gt, i.e. gt = exp(tω), then each v ∈ V0

r is of the form v(n) = φ(n)ω, for some φ ∈ Cr(N+) such
that ‖φ‖Cr(N+) ≤ 1. Define

Vr = V−
r ∪ V0

r .

For v ∈ V, denote by Lv the differential operator on C1(X) given by differentiation with respect
to the vector field generated by v. Hence, for ϕ ∈ C1(G/Γ),

Lvϕ(x) = lim
s→0

ϕ(exp(sv)x)− ϕ(x)

s
.

For each k ∈ N, we define a norm on Ck(N+) functions as follows. Letting V+ be the unit ball
in the Lie algebra of N+, 0 ≤ ℓ ≤ k, and φ ∈ Ck(N+), we define cℓ(φ) to be the supremum of
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|Lv1 · · ·Lvℓ(φ)| over N+ and all tuples (v1, . . . , vℓ) ∈ (V+)ℓ. We define ‖φ‖Ck to be
∑k

ℓ=0 2
−ℓcℓ(φ).

One then checks that for all φ1, φ2 ∈ Ck(N+), we have

‖φ1φ2‖Ck ≤ ‖φ1‖Ck ‖φ2‖Ck . (6.2)

Following [GL06, GL08], we define a norm on Ck+1
c (X) as follows. Given f ∈ Ck+1

c (X), k, ℓ
non-negative integers, γ = (γ1, . . . , γℓ) ∈ Vℓk+ℓ (i.e. ℓ tuple of Ck+ℓ vector fields) and x ∈ X, define

ek,ℓ,γ(f ;x) :=
1

V (x)
sup

1

µux
(
N+

1

)
∣∣∣∣∣

∫

N+
1

φ(n)Lγ1 · · ·Lγℓ(f)(gsnx) dµux(n)
∣∣∣∣∣ , (6.3)

where the supremum is taken over all s ∈ [0, 1] and all functions φ ∈ Ck+ℓ(N+
1 ) which are compactly

supported in the interior of N+
1 and having ‖φ‖Ck+ℓ(N+

1 ) ≤ 1.

For γ ∈ Vℓk+ℓ+1, we define e′k,ℓ,γ(f ;x) analogously to ek,ℓ,γ(f ;x), but where we take s = 0 and

take the supremum over φ ∈ Ck+ℓ+1(N+
1/10) instead

5 of Ck+ℓ(N+
1 ). Given r > 0, set

Ω−
r := N−

r Ω. (6.4)

We define

ek,ℓ,γ(f) := sup
x∈Ω−

1

ek,ℓ,γ(f ;x), ek,ℓ(f) = sup
γ∈Vℓ

k+ℓ

ek,ℓ,γ(f). (6.5)

Finally, we define ‖f‖k and ‖f‖′k by

‖f‖k := max
0≤ℓ≤k

ek,ℓ(f), ‖f‖′k := max
0≤ℓ≤k−1

sup
γ∈Vℓ

k+ℓ+1,x∈Ω
−

1/2

e′k,ℓ,γ(f ;x). (6.6)

Note that the (semi-)norm ‖f‖′k is weaker than ‖f‖k since we are using more regular test functions
and vector fields, and we are testing fewer derivatives of f .

Remark 6.2. Since the suprema in the definition of ‖·‖k are restricted to points on Ω−
1 , ‖·‖k

defines a seminorm on Ck+1
c (X)M . Moreover, since Ω−

1 is invariant by gt for all t ≥ 0, the kernel of
this seminorm, denoted Wk, is invariant by Lt. The seminorm ‖·‖k induces a norm on the quotient

Ck+1
c (X)M/Wk, which we continue to denote ‖·‖k.

Definition 6.3. We denote by Bk the Banach space given by the completion of the quotient
Ck+1
c (X)M/Wk with respect to the norm ‖·‖k, where Ck+1

c (X)M denotes the subspace consisting
of M -invariant functions.

Note that since ‖·‖′k is dominated by ‖·‖k, ‖·‖′k descends to a (semi-)norm on Ck+1
c (X)M/Wk

and extends to a (semi-)norm on Bk, again denoted ‖·‖′k.
The following is a reformulation of Theorem 6.1 in the above setup.

Theorem 6.4. For all z ∈ C, with Re(z) > 0, and for all k ∈ N, the operator R(z) extends to
a bounded operator on Bk with spectral radius at most 1/Re(z). Moreover, the essential spectral
radius of R(z) acting on Bk is bounded above by 1/(Re(z) + σ0), where

σ0 := min {k, β} .

In particular, if Γ is convex cocompact, we can take σ0 = k.

5The restriction on the supports allows us to handle non-smooth conditional measures; cf. proof of Prop. 6.6.
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6.2. Hennion’s Theorem and Compact Embedding. Our key tool in estimating the essential
spectral radius is the following refinement of Hennion’s Theorem, based on Nussbaum’s formula.

Theorem 6.5 (cf. [Hen93] and Lemma 2.2 in [BGK07]). Suppose that B is a Banach space with
norm ‖·‖ and that ‖·‖′ is a seminorm on B so that the unit ball in (B, ‖·‖) is relatively compact in
‖·‖′. Suppose R is a bounded operator on B such that for some n ∈ N, there exist constants r > 0
and C > 0 satisfying

‖Rnv‖ ≤ rn ‖v‖B + C ‖v‖′ , (6.7)

for all v ∈ B. Then, the essential spectral radius of R is at most r.

In this Section, we show, roughly speaking, that the inclusion of Bk into B′
k is a compact operator;

Proposition 6.6.

Proposition 6.6. Let K ⊆ X be such that

sup {V (x) : x ∈ K} <∞.

Then, every sequence fn ∈ Ck+1
c (X)M , such that fn is supported in K and has ‖fn‖k ≤ 1 for all

n, admits a Cauchy subsequence in ‖·‖′k.

6.3. Proof of Proposition 6.6. We adapt the arguments in [GL06,GL08] with the main difference
being that we bypass the step involving integration by parts over N+ since our conditionals µux
need not be smooth in general. The idea is to show that since all directions in the tangent space
of X are accounted for in the definition of ‖·‖k (differentiation along the weak stable directions

and integration in the unstable directions), one can estimate ‖·‖′k using finitely many coefficients
ek(f ;xi). More precisely, we first show that there exists C ≥ 1 so that for all sufficiently small
ε > 0, there exists a finite set Ξ ⊂ Ω so that for all f ∈ Ck+1

c (X)M , which is supported in K,

‖f‖′k ≤ Cε ‖f‖k +C sup

∫

N+
1

φLv1 · · ·Lvℓf dµuxi , (6.8)

where the supremum is over all 0 ≤ ℓ ≤ k−1, all (v1, . . . , vℓ) ∈ Vℓk+ℓ+1, all functions φ ∈ Ck+ℓ+1(N+
2 )

with ‖φ‖Ck+ℓ+1 ≤ 1 and all xi ∈ Ξ.

First, we show how (6.8) completes the proof. Let fn ∈ Ck+1
c (K) be as in the statement.

Let ε > 0 be small enough so that (6.8) holds. Since Ck+ℓ+1(N+
2 ) is compactly included inside

Ck+ℓ(N+
2 ), we can find a finite collection {φj : j} ⊂ Ck+ℓ(N+

2 ) which is ε dense in the unit ball of
Ck+ℓ+1(N+

2 ). Similarly, we can find a finite collection of vector fields {(vm1 , . . . , vmℓ ) : m} ⊂ Vℓk+ℓ
which is ε dense in Vℓk+ℓ+1 in the Ck+ℓ+1 topology. Then, we can find a subsequence, also denoted
fn, so that the finitely many quantities

{∫

N+
1

φjLvm1 · · ·Lvmℓ fn dµ
u
xi : i, j,m

}

converge. Together with (6.8), this implies that

‖fn1 − fn2‖′k ≪ ε,

for all large enough n1, n2, where we used the fact that ‖fn‖k ≤ 1 for all n. As ε was arbitrary, one
can extract a Cauchy subequence by a standard diagonal argument. Thus, it remains to prove (6.8).

Fix some f ∈ Ck+1
c (X)M which is supported inside K. Let an arbitrary tuple γ = (v1, . . . , vℓ) ∈

Vℓk+ℓ+1 be given and set

ψ = Lv1 · · ·Lvℓf.
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Let φ ∈ Ck+ℓ+1(N+
1/10) and write Q = N+

1/10. To estimate e′k,ℓ,γ(f ; z) using the right side of (6.8),

we need to estimate integrals of the form

1

V (z)

1

µuz
(
N+

1

)
∫

N+
1

φ(n)ψ(nz) dµuz (n), (6.9)

for all z ∈ Ω−
1/2.

Denote by ρ : X → [0, 1] a smooth function which is identically one on the 1-neighborhood Ω1

of Ω and vanishes outside its 2-neighborhood. Note that if f is supported outside of Ω1, then the
integral in (6.9) vanishes for all z and the estimate follows. The same reasoning implies that

‖ρf‖k = ‖f‖k , ‖ρf‖′k = ‖f‖′k .
Hence, we may assume that f is supported inside the intersection of K with Ω1. In particular, for
the remainder of the argument, we may replace K with (the closure of) its intersection with Ω1.

This discussion has the important consequence that we may assume that K is a compact set in
light of Proposition 4.3. Let K1 denote the 1-neighborhood of K and fix some z ∈ K1 ∩ Ω−

1/2. By

shrinking ε, we may assume it is smaller than the injectivity radius of K1. Hence, we can find a
finite cover B1, . . . , BM of K1∩Ω−

1/2 with flow boxes of radius ε and with centers Ξ := {xi} ⊂ Ω−
1/2.

Step 1: We first handle the case where z belongs to the same unstable manifold as one of the
xi’s. Note that we may assume that Q intersects the support of µuz non-trivially, since otherwise
the integral in question is 0. Let u ∈ Q be one point in this intersection and let x = uz. Thus,
by (2.4), we get

∫

N+
1

φ(n)ψ(nz) dµuz (n) =

∫

Q
φ(n)ψ(nz) dµuz (n) =

∫

Qu−1

φ(nu)ψ(nx) dµux(n).

Let φu(n) := φ(nu). Then, φu is supported inside Qu−1. Moreover, since u ∈ Q, Qu := Qu−1 is a
ball of radius 1/10 containing the identity element. Hence, Qu−1 ⊂ N+

1 and, thus,
∫

Qu

φ(nu)ψ(nx) dµux(n) =

∫

N+
1

φu(n)ψ(nx) dµ
u
x(n).

Fix some ε > 0. We may assume that ε < 1/10. Note that x belongs to the 1-neighborhood of
K. Then, x = u−1

2 xi for some i and some u2 ∈ N+
ε , by our assumption in this step that z belongs

to the unstable manifold of one of the xi’s. By repeating the above argument with z, u, x, Q and
φ replaced with x, u2, xi, Qu and φu respectively, we obtain

∫

N+
1

φu(n)ψ(nx) dµ
u
x(n) =

∫

Quu
−1
2

φu(nu2)ψ(nxi) dµ
u
xi(n).

Note that Qu is contained in the ball of radius 1/5 centered around identity. Since u2 ∈ N+
ε and

ε < 1/10, we see that Quu
−1
2 ⊂ N+

1 . It follows that
∫

N+
1

φu(n)ψ(nxi) dµ
u
xi(n) =

∫

N+
1

φu2u(n)ψ(nxi) dµ
u
xi(n),

where φu2u(n) = φu(nu2) = φ(nu2u). The function φu2u satisfies ‖φu2u‖Ck+ℓ+1 = ‖φ‖Ck+ℓ+1 ≤ 1.

Finally, let ϕ1, ϕ2 : N+ → [0, 1] be non-negative bump C0 functions where ϕ1 ≡ 1 on N+
1 and while

ϕ2 is equal to 1 at identity and its support is contained inside N+
1 . Since y 7→ µuy(ϕi) is continuous

for i = 1, 2, by [Rob03, Lemme 1.16], and is non-zero on Ω−
1 , we can find, by compactness of K1, a

constant C ≥ 1, depending only on K (and the choice of ϕ1, ϕ2), such that

1/C ≤ µuy
(
N+

1

)
≤ C, ∀y ∈ K1 ∩Ω−

1 . (6.10)

Hence, recalling that ψ = Lv1 · · ·Lvℓf and that V (z) ≫ 1, we conclude that the integral in (6.9) is
bounded by the second term in (6.8).
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Step 2: We reduce to the case where z is contained in the unstable manifolds of the xi’s. Let
i be such that z ∈ Bi. Set z1 = z and let z0 ∈ (N+

ε · xi) be the unique point in the intersection of
N+
ε · xi with the local weak stable leaf of z1 inside Bi. Let p−1 ∈ P− := MAN− be an element of

the ε neighborhood of identity P−
ε in P− such that z1 = p−1 z0.

We will estimate the integral in (6.9) using integrals at z0. The idea is to perform weak stable
holonomy between the local strong unstable leaves of z0 and z1. To this end, we need some notation.
Let Y ∈ p− be such that p−1 = exp(Y ) and set

p−t = exp(tY ), zt = p−t z0,

for t ∈ [0, 1]. Let us also consider the following maps u+t : N+
1 → N+ and p̃−t : N+

1 → P− defined
by the following commutation relations

np−t = p̃−t (n)u
+
t (n), ∀n ∈ N+

1 .

Recall we are given a test function φ ∈ Ck+ℓ+1(N+
1/10). We can rewrite the integral we wish to

estimate as follows:
∫

N+
1

φ(n)ψ(nz1) dµ
u
z1(n) =

∫

N+
1

φ(n)ψ(np−1 z0) dµ
u
z1(n) =

∫
φ(n)ψ(p̃−1 (n)u

+
1 (n)z0) dµ

u
z1(n).

Let U+
t ⊂ N+ denote the image of u+t . Note that if ε is small enough, U+

t ⊆ N+
2 for all t ∈ [0, 1].

We may further assume that ε is small enough so that the map u+t is invertible on U+
t for all

t ∈ [0, 1] and write φt := φ ◦ (u+t )−1. For simplicity, set

p−t (n) := p̃−t ((u
+
t )

−1(n)).

Write mt(n) ∈M and b−t (n) ∈ AN− for the components of p−t (n) along M and AN− respectively
so that

p−t (n) = mt(n)b
−
t (n).

We denote by Jt the Radon-Nikodym derivative of the pushforward of µuz1 by u+t with respect to

µuzt ; cf. (2.10) for an explicit formula. Thus, changing variables using n 7→ u+1 (n), and using the
M -invariance of f , we obtain

∫

N+
1

φ(n)ψ(nz1) dµ
u
z1 =

∫
φ1(n)ψ(p

−
1 (n)nz0)J1(n) dµ

u
z0 =

∫
φ1(n)ψ̃1(b

−
1 (n)nz0)J1(n) dµ

u
z0 ,

where ψ̃ is given by

ψ̃t := Lṽt1 · · ·Lṽtℓf, ṽi(n) := Ad(mt((u
+
t )

−1(n)))(vi((u
+
t )

−1(n))).

Here, we recall that Ad(M) commutes with A and normalizes N− so that ṽti is a vector field with
the same target as vi.

Let b− denote the Lie algebra of AN− and denote by w̃′
t : U

+
t × [0, 1] → b− the vector field

tangent to the paths defined by b−t . More explicitly, w̃′
t is given by the projection of tY to b−.

Denote w̃t(n) := Ad(mt(n))(w̃
′
t(n)). Then, using the M -invariance of f as above once more, we

can write

ψ(b−1 (n)nz0)− ψ(nz0)) =

∫ 1

0

∂

∂t
ψ̃t(b

−
t (n)nz0) dt =

∫ 1

0
Lw̃t(ψ̃t)(p

−
t (n)nz0) dt.

To simplify notation, let us set wt = w̃t ◦ u+t , and
Ft := Lṽt1◦u+t

· · ·Lṽtℓ◦u+t f.
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Using a reverse change of variables, we obtain for every t ∈ [0, 1] that
∫
φ1(n)Lw̃t(ψ̃t)(p

−
t (n)nz0)J1(n) dµ

u
z0 =

∫
(φ1J1) ◦ u+t (n)Lwt(Ft)(p̃

−
t (n)u

+
t (n)z0)J

−1
t (n) dµuzt

=

∫
(φ1J1) ◦ u+t (n) · Lwt(Ft)(nzt) · J−1

t (n) dµuzt(n),

where we used the identities p̃−t (n)u
+
t (n) = np−t and zt = p−t z0. Let us write

Φt(n) := (φ1J1) ◦ u+t (n) · J−1
t (n),

which we view as a test function6. Hence, the last integral above amounts to integrating ℓ + 1
weak stable derivatives of f against a Ck+ℓ function. Moreover, since φ is supported in N+

1/10, we

may assume that ε is small enough so that Φt is supported in N+
1 for all t ∈ [0, 1], and meets

the requirements on the test functions in the definition of ‖f‖k. Since z = z1 belongs to Ω−
1/2 by

assumption, we may further shrink ε if necessary so that the points zt all
7 belong to Ω−

1 . Thus,
decomposing wt into its A and N− components, and noting that ‖wt‖ ≪ ε, we obtain the estimate

∫
Φt(n) · Lwt(Ft)(nzt) dµ

u
zt(n) ≪ ε ‖f‖k V (zt)µ

u
zt(N

+
1 ). (6.11)

To complete the argument, note that the integral we wish to estimate satisfies
∫

N+
1

φ(n)ψ(nz1) dµ
u
z1 =

∫
(φ1J1)(n)ψ(nz0) dµ

u
z0 +

∫ 1

0

∫
Φt(n) · Lwt(Ft)(nzt) dµ

u
zt(n) dt. (6.12)

Moreover, recall that z0 belongs to the same unstable manifold as some xi ∈ Ξ. Additionally, since
φ is supported in N+

1/10, by taking ε small enough, we may assume that φ1 is supported inside N+
1/5.

Hence, arguing similarly to Step 1, viewing φ1J1 as a test function, we can estimate the first term
on the right side above using the right side of (6.8).

The second term in (6.12) is also bounded by the right side of (6.8), in view of (6.11). Here we
are using that y 7→ µuy(N

+
1 ) and y 7→ V (y) are uniformly bounded as y varies in the compact set

K1; cf. (6.10). This completes the proof of (6.8) in all cases, since φ and z were arbitrary.

7. The Essential Spectral Radius of Resolvents

In this section, we study the operator norm of the transfer operators Lt and the resolvents R(z)
on the Banach spaces constructed in the previous section. These estimates constitute the proof of
Theorem 6.1. With these results in hand, we deduce Theorem 1.4 at the end of the section.

7.1. Strong continuity of transfer operators. Recall that a collection of measurable subsets
{Bi} of a space Y are said to have intersection multiplicity bounded by a constant C ≥ 1 if for all
i, the number of sets Bj in the collection that intersect Bi non-trivially is at most C. In this case,
one has ∑

i

χBi(y) ≤ Cχ∪iBi(y), ∀y ∈ Y.

The following lemma implies that the operators Lt are uniformly bounded on Bk for t ≥ 0.

Lemma 7.1. For every k, ℓ ∈ N ∪ {0}, γ ∈ Vℓk+ℓ, t ≥ 0, and x ∈ Ω−
1 ,

ek,ℓ,γ(Ltf ;x) ≪β e
−ε(γ)tek,ℓ,γ(f)(e

−βt + 1/V (x)),

where ε(γ) ≥ 0 is the number of stable derivatives determined by γ. In partitcular, ε(γ) = 0 if only
if ℓ = 0 or all components of γ point in the flow direction.

6The Jacobians are smooth maps as they are given in terms of Busemann functions; cf. (2.10).
7This type of estimate is the reason we use stable thickenings Ω−

r of Ω in the definition of the norm instead of Ω.
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Proof. Fix some x ∈ Ω and γ = (v1, . . . , vℓ) ∈ Vℓk+ℓ. Since the Lie algebra of N− has the orthogonal
decomposition g−α⊕ g−2α, where α is the simple positive root in g with respect to gt, we have that
gt contracts the norm of each stable vector v ∈ V−

k+ℓ by at least e−t. It follows that for all v ∈ V−
k+ℓ

and w ∈ V0
k+ℓ,

Lv(Ltf)(x) = ‖vt‖Lv̄t(f)(gtx), Lw(Ltf)(x) = Lw(f)(gtx), (7.1)

for all f ∈ Ck+1(X)M , where vt = Ad(gt)(v) and v̄t = vt/ ‖vt‖. Moreover, we have

‖vt‖ ≤ e−t ‖v‖ = e−t ‖v‖ .

Let φ be a test function and ψ ∈ C(X)M . Using (2.3) to change variables, we get
∫

N+
1

φ(n)ψ(gtnx) dµ
u
x(n) = e−δt

∫

Ad(gt)(N
+
1 )
φ(g−tngt)ψ(ngtx) dµ

u
gtx(n).

Let {ρi : i ∈ I} be a partition of unity of Ad(gt)(N
+
1 ) so that each ρi is non-negative, C

∞, and
supported inside some ball of radius 1 centered inside Ad(gt)(N

+
1 ). Such a partition of unity can

be chosen so that the supports of ρi have a uniformly bounded multiplicity8, depending only on
N+. Denote by I(Λ) the subset of indices i ∈ I such that there is ni ∈ N+ in the support of the
measure µugtx with the property that the support of ρi is contained in N+

1 · ni. In particular, for
i ∈ I \ I(Λ), ρiµugtx is the 0 measure. Then, we obtain

∫

Ad(gt)(N
+
1 )
φ(g−tngt)ψ(ngtx) dµugtx(n) =

∑

i∈I(Λ)

∫

N+
1 ·ni

ρi(n)φ(g−tngt)ψ(ngtx) dµugtx(n).

Setting xi = nigtx and changing variables using (2.4), we obtain
∫

N+
1

φ(n)ψ(gtnx) dµ
u
x(n) = e−δt

∑

i∈I(Λ)

∫

N+
1

ρi(nni)φ(g−tnnigt)ψ(nxi) dµ
u
xi(n). (7.2)

The bounded multiplicity of the partition of unity implies that the balls N+
1 ·ni have intersection

multiplicity bounded by a constant C0, depending only on N+. Enlarging C0 if necessary, we may
also choose ρi so that ‖ρi‖Ck+ℓ ≤ C0. In particular, C0 is independent of t and x.

For each i, let φ̄i(n) = ρi(nni)φ(g−tnnigt). Since ρi is chosen to be supported inside N+
1 ni, then

φ̄i is supported inside N+
1 . Moreover, since ρi is C

∞, φ̄i is of the same differentiability class as
φ. Since conjugation by g−t contracts N+, we see that ‖φ ◦ Ad(g−t)‖Ck+ℓ ≤ ‖φ‖Ck+ℓ ≤ 1 (note
that the supremum norm of φ ◦ Ad(g−t) does not decrease, and hence we do not gain from this
contraction). Hence, since ‖ρi‖Ck+ℓ ≤ C0, (6.2) implies that

∥∥φ̄i
∥∥
Ck+ℓ ≤ C0.

First, let us suppose that t ≥ 1. Then, using Remark 2.1, since x ∈ N−
1 Ω, one checks that xi

belongs to N−
1 Ω as well for all i. Applying (7.2) with ψ = Lv1 · · ·Lvℓf , we obtain

∫

N+
1

φ(n)ψ(gtnx) dµ
u
x = e−δt

∑

i∈I(Λ)

∫

N+
1

φ̄i(n)ψ(nxi) dµ
u
xi

≤ C0ek,ℓ,γ(f) ‖φ ◦Ad(g−t)‖Ck+ℓ e
−δt ∑

i∈I(Λ)
µuxi(N

+
1 )V (xi). (7.3)

8Note that the analog of the classical Besicovitch covering theorem fails to hold for N+ with the Cygan metric when
N+ is not abelian; cf. [KR95, pg. 17]. Instead, such a partition of unity can be constructed using the Vitali covering
lemma with the aid of the right invariance of the Haar measure. To obtain a uniform bound on the multiplicity here
and throughout, it is important that such an argument is applied to balls with uniformly comparable radii.
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By the log Lipschitz property of V provided by Proposition 4.3, and by enlarging C0 if necessary,
we have V (xi) ≤ C0V (nxi) for all n ∈ N+

1 . It follows that
∑

i∈I(Λ)
µuxi(N

+
1 )V (xi) ≤ C0

∑

i∈I(Λ)

∫

N+
1

V (nxi) dµ
u
xi(n).

Recall that the balls N+
1 ·ni have intersection multiplicity at most C0. Moreover, since the support

of ρi is contained inside Ad(gt)(N
+
1 ), the balls N+

1 ni are all contained in N+
2 Ad(gt)(N

+
1 ). Hence,

applying the equivariance properties (2.3) and (2.4) once more yields
∑

i∈I(Λ)

∫

N+
1

V (nxi) dµ
u
xi(n) ≤ C0

∫

N+
2 Ad(gt)(N

+
1 )
V (ngtx) dµ

u
gtx(n) ≤ C0e

δt

∫

N+
3

V (gtnx) dµ
u
x(n).

Here, we used the positivity of V and that Ad(g−t)(N
+
2 )N+

1 ⊆ N+
3 . Combined with (7.2) and the

contraction estimate on V , Theorem 4.1, it follows that∫

N+
1

φ(n)ψ(gtnx) dµ
u
x ≤ C3

0 (ce
−βtV (x) + c)µux(N

+
3 )ek,0(f),

for a constant c ≥ 1 depending on β. By Proposition 3.1, we have µux(N
+
3 ) ≤ C1µ

u
x(N

+
1 ), for a

uniform constant C1 ≥ 1, which is independent of x. This estimate concludes the proof in view
of (7.1).

Now, let s ∈ [0, 1] and t ≥ 0. If t+ s ≥ 1, then the above argument applied with t + s in place
of t implies that∣∣∣∣∣

∫

N+
1

φ(n)ψ(gt+snx) dµ
u
x

∣∣∣∣∣≪β e
−ε(γ)tek,ℓ,γ(f)(e

−βtV (x) + 1)µux(N
+
1 ),

as desired. Otherwise, if t+ s < 1, then by definition of ek,ℓ,γ, we have that
∣∣∣∣∣

∫

N+
1

φ(n)ψ(gt+snx) dµ
u
x

∣∣∣∣∣ ≤ ek,ℓ,γ(f)V (x)µux(N
+
1 ).

Since t is at most 1 in this case and V (x) ≫ 1 on Ω−
1 , the conclusion of the lemma follows in this

case as well.
�

As a corollary, we deduce the following strong continuity statement which implies that the
infinitesimal generator of the semigroup Lt is well-defined as a closed operator on Bk with dense
domain. When restricted to Ck+1

c (X)M , this generator is nothing but the differentiation operator
in the flow direction. This strong continuity is also important in applying the results of [But16a]
to deduce exponential mixing from our spectral bounds on the resolvent in Section 9.

Corollary 7.2. The semigroup {Lt : t ≥ 0} is strongly continuous; i.e. for all f ∈ Bk,
lim
t↓0

‖Ltf − f‖k = 0.

Proof. For all f ∈ Ck+1
c (X)M , one easily checks that since V (·) ≫ 1 on any bounded neighborhood

of Ω, then

‖Ltf − f‖k ≪ sup
0≤s≤1

‖Lt+sf −Lsf‖Ck(X) .

Moreover, since f belongs to Ck+1, the right side above tends to 0 as t → 0 by the mean value
theorem. Now, let f be a general element of Bk and let fn ∈ Ck+1

c be a sequence tending to f in
‖·‖k. Then, by the triangle inequality, we have

‖Ltf − f‖k ≤ ‖Ltf − Ltfn‖k + ‖Ltfn − fn‖k + ‖fn − f‖k .
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We note that the first term satisfies the bound

‖Ltf −Ltfn‖k ≪ ‖f − fn‖k ,
uniformly in t ≥ 0, by Lemma 7.1. The conclusion of the corollary thus follows by the previous
estimate for elements of Ck+1

c (X)M . �

7.2. Towards a Lasota-Yorke inequality for the resolvent. Recall that for all n ∈ N,

R(z)n =

∫ ∞

0

tn−1

(n− 1)!
e−ztLt dt, (7.4)

as follows by induction on n. The following corollary is immediate from Lemma 7.1 and the fact
that ∣∣∣∣

∫ ∞

0

tn−1

(n− 1)!
e−zt dt

∣∣∣∣ ≤
∫ ∞

0

tn−1

(n− 1)!
e−Re(z)t dt = 1/Re(z)n, (7.5)

for all z ∈ C with Re(z) > 0.

Corollary 7.3. For all n, k, ℓ ∈ N ∪ {0}, f ∈ Ck+1
c (X)M and z ∈ C with Re(z) > 0, we have

ek,ℓ(R(z)
nf ;x) ≪β ek,ℓ(f)

(
1

(Re(z) + β)n
+
V (x)−1

Re(z)n

)
≪β ek,ℓ(f)/Re(z)

n.

In particular, R(z) extends to a bounded operator on Bk with spectral radius at most 1/Re(z).

Note that Lemma 7.1 does not provide contraction in the part of the norm that accounts for the
flow direction. In particular, the estimate in this lemma is not sufficient to control the essential
spectral radius of the resolvent. The following lemma provides the first step towards a Lasota-Yorke
inequality for resolvents for the coefficients ek,ℓ when ℓ < k. The idea, based on regularization of
test functions, is due to [GL06]. The doubling estimates on conditional measures in Proposition 3.1
are crucial for carrying out the argument.

Lemma 7.4. For all t ≥ 2 and 0 ≤ ℓ < k, we have

ek,ℓ(Ltf) ≪k,β e
−ktek,ℓ(f) + e′k,ℓ(f).

Proof. Fix some 0 ≤ ℓ < k. Let x ∈ Ω−
1 and φ ∈ Ck+ℓ(N+

1 ). Let (vi)i ∈ Vℓk+ℓ and set F =
Lv1 · · ·Lvℓf . We wish to estimate the following:

sup
0≤s≤1

∫

N+
1

φ(n)F (gt+snx) dµ
u
x.

To simplify notation, we prove the desired estimate for s = 0, the general case being essentially
identical.

Let ε > 0 to be determined and choose ψε to be a C∞ bump function supported inside N+
ε and

satisfying ‖ψε‖C1 ≪ ε−1. Define the following regularization of φ

Mε(φ)(n) =

∫
N+ φ(un)ψε(u) du∫

N+ ψε(u) du
,

where du denotes the right-invariant Haar measure on N+. Recall the definition of the coefficients
cr above (6.2). Let 0 ≤ m < k + ℓ and (wj) ∈ (V+)m. Then,

|Lw1 · · ·Lwm(φ−Mε(φ))(n)| ≤
∫
|Lw1 · · ·Lwm(φ)(n)− Lw1 · · ·Lwm(φ)(un)|ψε(u) du∫

ψε(u) du

≪ cm+1(φ)

∫
dist(n, un)ψε(u) du∫

ψε(u) du
.

Now, note that if ψε(u) 6= 0, then dist(u, Id) ≤ ε. Hence, right invariance of the metric on N+

implies that cm(φ−Mε(φ)) ≪ εcm+1(φ).
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Moreover, we have that cm(Mε(φ)) ≤ cm(φ) for all 0 ≤ m ≤ k + ℓ. It follows that ck+ℓ(φ −
Mε(φ)) ≤ 2ck+ℓ(φ). Finally, given (wi) ∈ (V+)k+ℓ+1, integration by parts implies

Lw1 · · ·Lwk+ℓ+1
(Mε(φ))(n) =

∫
N+ Lw2 · · ·Lwk+ℓ+1

(φ)(un) · Lw1(ψε)(u) du∫
N+ ψε(u) du

.

In particular, since ‖ψε‖C1 ≪ ε−1, we get ck+ℓ+1(Mε(φ)) ≪ ε−1ck+ℓ(φ). Since gt expands N
+ by

at least et, this discussion shows that for any t ≥ 0, if ‖φ‖Ck+ℓ ≤ 1, then

‖(φ−Mε(φ)) ◦ Ad(g−t)‖Ck+ℓ ≪ ε
k+ℓ−1∑

m=0

e−mt

2m
+
e−(k+ℓ)t

2k+ℓ
,

‖Mε(φ) ◦ Ad(g−t)‖Ck+ℓ+1 ≪
k+ℓ∑

m=0

e−mt

2m
+
ε−1e−(k+ℓ+1)t

2k+ℓ+1
. (7.6)

Set At = Ad(gt)(N
+
1 ). Then, taking ε = e−kt, we obtain

∫

N+
1

φ(n)F (gtnx) dµ
u
x =

∫
φ(n)F (gtnx) dµ

u
x

=

∫
(φ−Mε(φ))(n)F (gtnx) dµ

u
x +

∫
Mε(φ)(n)F (gtnx) dµ

u
x. (7.7)

To estimate the second term, we recall that the test functions for the weak norm were required
to be supported inside N+

1/10. On the other hand, the support of Mε(φ) may be larger, but still

inside N+
1+ε. To remedy this issue, we pick a partition of unity {ρi : i ∈ I} of N+

2 , so that each
ρi is smooth, non-negative, and supported inside some ball of radius 1/20. We also require that
‖ρi‖Ck+ℓ+1 ≪k 1. We can find such a partition of unity with cardinality and multiplicity, depending
only on N+ (through its dimension and metric).

Similarly to Lemma 7.1, we denote by I(Λ) ⊆ I, the subset of those indices i such that there
is some ni ∈ N+ in the support of of µux so that the support of ρi is contained inside N+

1/10. In

particular, for i ∈ I \ I(Λ), ρiµux is the 0 measure.
Now, observe that the functions n 7→ ρi(nni)Mε(φ)(nni) are supported inside N+

1/10. Thus,

writing xi = nig1x, using a change of variable, and arguing as in the proof of Lemma 7.1, cf. (7.3),
we obtain

∫
Mε(φ)(n)F (gtnx) dµ

u
x = e−δ

∑

i∈I(Λ)

∫
(ρiMε(φ)) ◦ Ad(g−1)(n)F (gt−1ng1x) dµ

u
g1x

≪ e′k,ℓ(f) ·
∑

i∈I(Λ)
‖(ρiMε(φ)) ◦Ad(g−t)‖Ck+ℓ+1 · V (xi)µ

u
xi(N

+
1 ).

The point of replacing x with g1x is that since x belongs to N−
1 Ω, g1x belongs to N−

1/2Ω, which

satisfies the requirement on the basepoints in the definition of the weak norm.
Note that the bounded multiplicity property of the partition of unity, together with the doubing

property in Proposition 3.1, imply that
∑

i∈I
µuxi(N

+
1 ) ≪ µux(N

+
3 ) ≪ µux(N

+
1 ).

Moreover, combining the Leibniz estimate (6.2) with (7.6), we see that the Ck+ℓ+1 norm of
(ρiMε(φ)) ◦Ad(g−t) is Ok(1). Hence, by properties of the height function V in Proposition 4.3, it
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follows that ∫
Mε(φ)(n)F (gtnx) dµ

u
x ≪k e

′
k,ℓ(f)V (x)µux(N

+
1 ).

Using a completely analogous argument to handle the issues of the support of the test function,
we can estimate the first term in (7.7) as follows:

1

V (x)µux(N
+
1 )

∫

N+
1

(φ−Mε(φ))(n)F (gtnx) dµ
u
x ≪k e

−ktek,ℓ(f).

Since (vi) ∈ Vℓk+ℓ, x ∈ Ω−
1 and φ ∈ Ck+ℓ(N+

1 ) were all arbitrary, this completes the proof. �

It remains to estimate the coefficients ek,k. First, the following estimate in the case all the
derivatives point in the stable direction follows immediately from Lemma 7.1.

Lemma 7.5. For all γ = (vi) ∈ (V−
2k)

k, we have

ek,k,γ(R(z)
nf) ≪β

1

(Re(z) + k)n
ek,k(f).

Proof. Indeed, Lemma 7.1 shows that

ek,k,γ(Ltf) ≪ e−ktek,k(f).

Moreover, induction and integration by parts give |
∫∞
0 tn−1e−(z+k)t/(n − 1)!dt| ≤ 1/(Re(z) + k)n.

This completes the proof. �

To give improved estimates on the the coefficient ek,k,γ in the case some of the components
of γ point in the flow direction, the idea (cf. [AG13, Lem. 8.4] and [GLP13, Lem 4.5]) is to take
advantage of the fact that the resolvent is defined by integration in the flow direction, which provides
additional smoothing. This is leveraged through integration by parts to estimate the coefficient
ek,k by ek,k−1.

To see how such estimate can be turned into a gain on the norm of the resolvents, follow-
ing [AG13], we define the following equivalent norms to ‖·‖k. First, let us define the following
coefficients:

ek,ℓ,s :=

{
ek,ℓ 0 ≤ ℓ < k,

supγ∈(V−

2k)
k ek,k,γ ℓ = k,

, ek,k,ω := sup
γ∈Vk

2k\(V
−

2k)
k

ek,k,γ.

Given B ≥ 1, define

‖f‖k,B,s :=
k∑

ℓ=0

ek,ℓ,s(f)

Bℓ
, ‖f‖k,B,ω :=

ek,k,ω(f)

Bk
.

Finally, we set
‖f‖k,B := ‖f‖k,B,s + ‖f‖k,B,ω . (7.8)

Lemma 7.6. Let n, k ∈ N and z ∈ C with Re(z) > 0 be given. Then, if B is large enough,
depending on n, k, β and z, we obtain for all f ∈ Ck+1

c (X)M that

‖R(z)nf‖k,B,ω ≤ 1

(Re(z) + k + 1)n
‖f‖k,B .

Proof. Fix an integer n ≥ 0. We wish to estimate integrals of the form
∫

N+
1

φ(u)Lv1 · · ·Lvk
(∫ ∞

0

tne−zt

n!
Lt+sf dt

)
(ux) dµux(u)

=

∫

N+
1

φ(u)

∫ ∞

0

tne−zt

n!
Lv1 · · ·Lvk(Lt+sf)(ux) dt dµux(u),
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with 0 ≤ s ≤ 1 and at least one of the vi pointing in the flow direction.
First, let us consider the case vk points in the flow direction. Then, vk(u) = ψk(u)ω, where ω

is the vector field generating the geodesic flow, for some function ψk in the unit ball of C2k(N+).
Hence, for a fixed u ∈ N+

1 , integration by parts in t, along with the fact that f is bounded, yields
∫ ∞

0

tne−zt

n!
Lv1Lv2 · · ·Lvk(Lt+sf)(ux) dt

= ψk(u)z

∫ ∞

0

tne−zt

n!
Lv1 · · ·Lvk−1

(Lt+sf)(ux) dt− ψk(u)

∫ ∞

0

tn−1e−zt

(n − 1)!
Lv1 · · ·Lvk−1

(Lt+sf)(ux) dt

= ψk(u)zLv1 · · ·Lvk−1
(LsR(z)n+1f)(ux)− ψk(u)Lv1 · · ·Lvk−1

(LsRn(z)f)(ux).
Recall by Lemma 7.1 that ek,ℓ(R(z)

nf) ≪β ek,ℓ(f)/Re(z)
n for all n ∈ N; cf. Corollary 7.3. It follows

that

ek,k,γ(R(z)
n+1f) ≤ ek,k−1(R(z)

nf) + |z|ek,k−1(R(z)
n+1f) ≪β

(
Re(z) + |z|
Re(z)n+1

)
ek,k−1(f).

In the case vk points in the stable direction instead, we note that LvLw = LwLv +L[v,w] for any
two vector fields v and w, where [v,w] is their Lie bracket. In particular, we can write Lv1 · · ·Lvk as
a sum of at most k terms involving k−1 derivatives in addition to one term of the form Lw1 · · ·Lwk

,
where wk points in the flow direction. Each of the terms with one fewer derivative can be bounded
by ek,k−1(R(z)

n+1f) ≪β ek,k−1(f)/Re(z)
n+1, while the term with k derivatives is controlled as in

the previous case. Hence, taking the supremum over γ ∈ Vk2k \ (V−
2k)

k and choosing B to be large
enough, we obtain the conclusion. �

7.3. Decomposition of the transfer operator according to recurrence of orbits. In order
to make use of the compact embedding result in Proposition 6.6, we need to localize our functions
to a fixed compact set. This is done with the help of the Margulis function V . In this section, we
introduce some notation and prove certain preliminary estimates for that purpose.

Recall the notation in Theorem 4.1. Let T0 ≥ 1 be a constant large enough so that eβT0 > 1.
We will enlarge T0 over the course of the argument to absorb various auxiliary uniform constants.
Define V0 by

V0 = e3βT0 . (7.9)

Let ρV0 ∈ C∞
c (X) be a non-negative M -invariant function satisfying ρV0 ≡ 1 on the unit neighbor-

hood of {x ∈ X : V (x) ≤ V0} and ρV0 ≡ 0 on {V > 2V0}. Moreover, we require that ρV0 ≤ 1. Note
that since T0 is at least 1, we can choose ρV0 so that its C2k norm is independent of T0.

Let ψ1 = ρV0 and ψ2 = 1− ψ1. Then, we can write

LT0f = L̃1f + L̃2f,

where L̃if = LT0(ψif), for i ∈ {1, 2}. It follows that for all j ∈ N, we have

LjT0f =
∑

̟∈{1,2}j
L̟̃1 · · · L̟̃jf =

∑

̟∈{1,2}j
LjT0(ψ̟f), ψ̟ =

j∏

i=1

ψ̟i ◦ g−(j−i)T0 . (7.10)

Note that if ̟i = 1 for some 1 ≤ i ≤ j, then, by Proposition 4.3, we have

sup
x∈supp(ψ̟)

V (x) ≤ eβI̟T0V0, I̟ = j −max {1 ≤ i ≤ j : ̟i = 1} . (7.11)

For simplicity, let us write

f̟ := ψ̟f.

The following lemma estimates the effect of multiplying by a fixed smooth function such as ψ̟.
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Lemma 7.7. Let ψ ∈ C2k(X) be given. Then, if B ≥ 1 is large enough, depending on k and
‖ψ‖C2k , we have

‖ψf‖k,B,s ≤ ‖f‖k,B,s .
Proof. Given 0 ≤ ℓ ≤ k and 0 ≤ s ≤ 1, we wish to estimate integrals of the form

∫

N+
1

φ(n)Lv1 · · ·Lvℓ(ψf)(gsnx) dµux(n).

The term Lv1 · · ·Lvℓ(ψf) can be written as a sum of ℓ terms, each consisting of a product of i
derivatives of ψ by ℓ− i derivatives of f , for 0 ≤ i ≤ ℓ. Viewing the product of φ by i derivatives
of ψ as a Ck+ℓ−i test function, and using (6.2) to bound the Ck+ℓ−i norm of such a product, we
obtain a bound of the form

ek,ℓ,s(ψf) ≤ ‖ψ‖C2k

ℓ∑

i=0

ek,i,s(f).

Hence, given B ≥ 1, we obtain

‖f‖k,B,s =
k∑

ℓ=0

1

Bℓ
ek,ℓ(ψf) ≤ ‖ψ‖C2k

k∑

ℓ=0

1

Bℓ

ℓ∑

i=0

ek,i,s(f) ≤ ‖ψ‖C2k

k∑

ℓ=0

k − ℓ

B

ek,ℓ,s(f)

Bℓ
.

Thus, the conclusion follows as soon as B is large enough, depending only on k and ‖ψ‖C2k . �

The above lemma allows us to estimate the norms of the operators L̃i, for i = 1, 2 as follows.

Lemma 7.8. If B ≥ 1 is large enough, depending on k and ‖ρV0‖C2k , we obtain
∥∥∥L̃1f

∥∥∥
k,B,s

≪β ‖f‖k,B,s ,
∥∥∥L̃2f

∥∥∥
k,B,s

≪β e
−βT0 ‖f‖k,B,s .

Proof. The first inequality follows by Lemmas 7.1 and 7.7, since ‖ψi‖Ck ≪ 1 for i = 1, 2. The
second inequality follows similarly since

ψ2(gT0nx) 6= 0 =⇒ V (gT0nx) ≥ V0.

By Proposition 4.3, this in turn implies that, whenever ψ2(gT0nx) 6= 0 for some n ∈ N+
1 , then

V (x) ≫ eβT0 , by choice of V0. �

7.4. Proof of Theorems 6.1 and 6.4. Theorem 6.1 follows at once from 6.4. Theorem 6.4
will follow upon verifying the hypotheses of Theorem 6.5. The boundedness assertion follows by
Corollary 7.3. It remains to estimate the essential spectral radius of the resolvent R(z).

Write z = a+ ib ∈ C. Fix some parameter 0 < θ < 1 and define

σ := min {k, βθ} .
Let 0 < ǫ < σ/5 be given. We show that for a suitable choice of r and B, the following Lasota-Yorke
inequality holds:

∥∥R(z)r+1f
∥∥
k,B

≤
‖f‖k,B

(a+ σ − 3ǫ)r+1
+ C ′

k,r,z,β ‖Ψrf‖′k , (7.12)

where C ′
k,r,z,β ≥ 1 is a constant depending on k, r and z, while Ψr is a compactly supported smooth

function on X, and whose support depends on r.
First, we show how (7.12) implies the result. Note that, since the norms ‖·‖k and ‖·‖k,B are

equivalent, the Lasota-Yorke inequality (7.12) holds with ‖·‖k in place of ‖·‖k,B (with a different

constant C ′
k,r,z,β). Hennion’s Theorem, Theorem 6.5, applied with the strong norm ‖·‖k and the

weak semi-norm ‖Ψr•‖′k, implies that the essential spectral radius ρess of R(z) is at most 1/(a +
σ−3ǫ). Note that the compact embedding requirement follows by Proposition 6.6. Since ǫ > 0 was
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arbitrary, this shows that ρess(R(z)) ≤ 1/(a + σ). Finally, as 0 < θ < 1 was arbitrary, we obtain
that

ρess(R(z)) ≤
1

Re(z) + σ0
,

completing the proof.
To show (7.12), let an integer r ≥ 0 be given and Jr ∈ N to be determined. Using (7.10) and a

change of variable, we obtain

R(z)r+1f =

∫ ∞

0

tre−zt

r!
Ltf dt

=

∫ T0

0

tre−zt

r!
Ltf dt+

∫ ∞

(Jr+1)T0

tre−zt

r!
Ltf dt+

Jr∑

j=1

∫ (j+1)T0

jT0

tre−zt

r!
Ltf dt.

First, by Lemma 7.6, if B is large enough, depending on r, k and z, we obtain

∥∥R(z)r+1(z)f
∥∥
k,B,ω

≤ 1

(a+ k + 1)r+1
‖f‖k,B .

It remains to estimate
∥∥R(z)r+1f

∥∥
k,B,s

. Note that
∫ T0
0

tre−at

r! dt ≤ T r+1
0 /r!. Hence, taking r large

enough, depending on k, a, β and T0, and using Lemma 7.1, we obtain for any B ≥ 1,
∥∥∥∥
∫ T0

0

tre−zt

r!
Ltf dt

∥∥∥∥
k,B,s

≪β ‖f‖k,B
∫ T0

0

tre−at

r!
dt ≤ 1

(a+ k + 1)r+1
‖f‖k,B .

Similarly, taking Jr to be large enough, depending on k, a, β, and r, we obtain for any B ≥ 1,
∥∥∥∥∥

∫ ∞

(Jr+1)T0

tre−zt

r!
Ltf dt

∥∥∥∥∥
k,B,s

≪β ‖f‖k,B
∫ ∞

(Jr+1)T0

tre−at

r!
dt ≤ 1

(a+ k + 1)r+1
‖f‖k,B .

To estimate the remaining term in R(z)r+1f , let 1 ≤ j ≤ Jr and ̟ = (̟i)i ∈ {1, 2}j be given.
Let θ̟ denote the number of indices i such that ̟i = 2. Then, taking B large enough, depending
on k and C2k(ψ̟), it follows from Lemma 7.1 and induction on Lemma 7.8 that

‖Lt+jT0(ψ̟f)‖k,B,s ≤ C0 ‖LjT0(ψ̟f)‖k,B,s ≤ Cj+1
0 e−βθ̟jT0 ‖f‖k,B,s , (7.13)

where we take C0 ≥ 1 to be larger than the implied uniform constant in Lemma 7.8 and the implied
constant in Lemma 7.1. Suppose θ̟ ≥ θ. Then, by taking T0 to be large enough, we obtain

‖Lt+jT0(ψ̟f)‖k,B,s ≤ e−(βθ−ǫ)jT0 ‖f‖k,B,s .
On the other hand, if θ̟ < θ, we apply Lemma 7.4 to obtain for all 0 ≤ ℓ < k,

ek,ℓ(Lt+jT0(ψ̟f)) ≪k,β e
−(t+jT0)kek,ℓ(ψ̟f) + e′k,ℓ(ψ̟f),

where we may assume that T0 is at least 2 so that the same holds for t + jT0, thus verifying the
hypothesis of the lemma. Moreover, we note that (7.11), implies that ψ̟ is supported inside a
sublevel set of V , depending only on θ and Jr. Let Ψr denote a smooth bump function on X which
is identically 1 on the union of the (finitely many) supports of ψ̟ as ̟ ranges over tuples in {1, 2}j
with θ̟ < θ and for 1 ≤ j ≤ Jr. Note that for any such ̟, arguing as in the proof of Lemma 7.7,
we obtain

e′k,ℓ(ψ̟f) = e′k,ℓ(ψ̟Ψrf) ≪k ‖Ψrf‖′k .
For the coefficient ek,k, Lemma 7.5 shows that for any γ ∈ (V−

2k)
k, we have

ek,k,γ(Lt+jT0(ψ̟f)) ≪β e
−(t+jT0)kek,k(ψ̟f).
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Combining these estimates, and using Lemma 7.7, we obtain

‖Lt+jT0(ψ̟f)‖k,B,s ≤ C0e
−(σ−ǫ)jT0 ‖ψ̟f‖k,B,s + Ck,r,z,β ‖Ψrf‖′k

≤ e−(σ−2ǫ)jT0 ‖ψ̟f‖k,B,s + Ck,r,z,β ‖Ψrf‖′k ,
where we enlarge the constant C0 as necessary to subsume the implied constants and the constant
Ck,r,z,β ≥ 1 is large enough, depending on B, so the above inequality holds. The inequality on the
second line follows by taking T0 large enough depending on C0 and ǫ.

Putting the above estimates together, we obtain
∥∥∥∥∥∥

Jr∑

j=1

∫ (j+1)T0

jT0

tre−zt

r!
Ltf dt

∥∥∥∥∥∥
k,B,s

≤
Jr∑

j=1

e−ajT0
∑

̟∈{1,2}j

∫ T0

0

(t+ jT0)
re−at

r!
‖Lt+jT0(ψ̟f)‖k,B,s dt

≤ ‖f‖k,B,s
Jr∑

j=1

e−(a+σ−2ǫ)jT0

∫ T0

0

(t+ jT0)
re−at

r!
dt

+ Ck,r,z,β ‖Ψrf‖′k
Jr∑

j=1

2je−ajT0
∫ T0

0

(t+ jT0)
re−at

r!
dt

≤ e(σ−2ǫ)T0 ‖f‖k,B,s
∫ Jr

1

tre−(a+σ−2ǫ)t

r!
dt+ C ′

k,r,z,β ‖Ψrf‖′k ,

where we take C ′
k,r,z,β ≥ 1 to be a constant large enough so that the last inequality holds.

Next, we note that
∫ Jr

1

tre−(a+σ−2ǫ)t

r!
dt ≤

∫ ∞

0

tre−(a+σ−2ǫ)t

r!
dt =

1

(a+ σ − 2ǫ)r+1
.

Thus, taking r to be large enough depending on a and T0, and combining the estimates on∥∥R(z)r+1f
∥∥
k,B,ω

and
∥∥R(z)r+1f

∥∥
k,B,s

, we obtain (7.12) as desired.

7.5. Proof of Theorem 1.4. Recall the notation in the statement of the theorem. We note that
switching the order of integration in the definition of the Laplace transform shows that

ρ̂f,g(z) =

∫
R(z)(f)g dmBMS, Re(z) > 0.

In particular, the poles of ρ̂f,g are contained in those of the resolvent R(z).
On the other hand, Corollary 7.2 implies that the infinitesimal generator X of the semigroup Lt

is well-defined as a closed operator on Bk with dense domain. Moreover, R(z) coincides with the
resolvent operator (X−zId)−1 associated to X, whenever z belongs to the resolvent set (complement
of the spectrum) of X.

We further note that the spectra of X and R(z) are related by the formula σ(X) = z−1/σ(R(z)).
In particular, by Theorem 6.4, in the half plane Re(z) > −σ0, the poles of R(z) coincide with the
eigenvalues of X. In view of this relationship between the spectra, the fact that the imaginary axis
does not contain any poles for the resolvent, apart from 0, follows from the mixing property of the
geodesic flow with respect to mBMS. We refer the reader to Lemma 9.7 for a proof of this assertion9.

Finally, we note that in the case Γ has cusps, β was an arbitrary constant in (0,∆/2), so that
we may take σ0 in the conclusion of Theorem 6.4 to be the minimum of k and ∆/2 in this case.
This completes the proof of Theorem 1.4.

9Lemma 9.7 is obtained for a slightly different norm but the proof is identical.
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7.6. Exponential recurrence from the cusp and Proof of Theorem 1.10. As a corollary
of our analysis, we obtain the following stronger form of Theorem 1.10 regarding the exponential
decay of the measure of orbits spending a large proportion of their time in the cusp. This result is
crucial to our arguments in later sections. The deduction of Theorem 1.10 in its continuous time
formulation from the following result follows using Proposition 4.3 and is left to the reader.

Theorem 7.9. For every ε > 0, there exists r0 ≍β 1/ε such that the following holds for all

m ∈ N, r ≥ r0, 0 < θ < 1 and x ∈ N−
1 Ω. Let H = e4βr0 , and let χH be the indicator function of the

set {x : V (x) > H}. Then,

µux


n ∈ N+

1 :
∑

1≤ℓ≤m
χH(grℓnx) > θm


 ≤ e−(βθ−ε)mV (x)µux(N

+
1 ).

Proof. The argument is very similar to the proof of the estimate (7.13), with small modifications
allowing for the height H to be independent of the step size r. This subtle difference from (7.13)
will be important later in the proof of Corollary 12.2.

Let r0 ≥ 1 to be chosen later in the argument depending on ε and β and set V0 = e2βr0 . As
before, let ρV0 : X → [0, 1] denote a smooth compactly supported function which is identically 1 on
{V ≤ V0} and vanishing outside {V > 2V0}. Let ψ = 1− ρV0 , and set

ψ̃ = ψ · ψ ◦ g−r0 .

Then, roughly speaking, ψ̃ is the indicator function of the set of points which land in the cusp in
two successive steps of size r0. Let r ≥ r0 and define the following operators:

L̃1(f) := Lrf, L̃2(f) = Lr(ψ̃f).

Then, given m ∈ N and ̟ ∈ {1, 2}m, let L̟ = L̟̃1 ◦ · · · ◦ L̟̃m . Then, note that

L̟(f) = Lmr(ψ̟̃f), where ψ̟̃ =
∏

ℓ:̟ℓ=2

ψ̃ ◦ g(ℓ−k)r.

Similarly to Lemma 7.8, Lemma 7.1 implies the bounds

e1,0(L̃1f) ≪β e1,0(f), e1,0(L̃2f) ≪β e
−βr0e1,0(f). (7.14)

Note that the argument in Lemma 7.8 only guarantees the second bound for the coefficient e1,0
since ψ̃ involves composition with g−r0 which scales its stable derivatives by powers of er0 .

Let Cβ ≥ 1 be a constant large enough so that V (gty) ≥ e−β|t|V (y)/Cβ for all y ∈ X and
t ∈ R. Such a constant exists by Proposition 4.3. By enlarging r0 if necessary, we may assume that
eβr0 ≥ 2Cβ . Let H = e3βr0 and define

E̟ =
{
n ∈ N+

1 : V (gℓrnx) > H ⇔ ̟ℓ = 2
}
.

Then, for all n ∈ N+
1 ,

ψ̟̃(gmrnx) ≥ 1E̟(n). (7.15)

Denote by θ̟ the proportion of indices ℓ for which ̟ℓ = 2. Then, we see that


n ∈ N+

1 :
∑

1≤ℓ≤m
χH(grℓnx) > θm



 ⊆

⋃

̟:θ̟>θ

E̟.

We wish to apply (7.14) with f the constant function on X. One checks that this f belongs
to the space B1 and e1,0(f) ≪ 1. Let C1 ≥ 1 denote a constant larger than e1,0(f) and the two
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implicit constants in (7.14). Then, applying (7.14) iteratively for m times, and using (7.15), we
obtain

µux(E̟) ≤ e1,0(L̟(f)) ≤ Cm1 e
−βθ̟mr0V (x)µux(N

+
1 )e1,0(f) ≤ Cm+1

1 e−βθ̟mr0V (x)µux(N
+
1 ).

Since there are at most 2m choices of ̟, the result follows by taking r0 large enough so that
(2C1)

1/r0 ≤ eε. �

8. Fractal Mollifiers

In this section, we introduce certain mollification operators on smooth functions on X. These
operators have the advantage that, roughly speaking, their Lipschitz norms are dominated by the
norms introduced in (6.6). This property is very convenient in the estimates carried out in Section 9.
The idea of using mollifiers to handle analogous steps is due to [BL12].

8.1. Definition and regularity of mollifiers. Fix a non-negative C∞ bump function ψ sup-
ported inside N+

1/2 and having value identically 1 on N+
1/4. We also choose ψ to be symmetric and

Ad(M)-invariant, i.e.

ψ(n) = ψ(n−1), ψ(mnm−1) = ψ(n), ∀n ∈ N+,m ∈M. (8.1)

Given ε > 0, define Mε : C(X) → C(X) be the operator defined by

Mε(f)(x) =

∫
ψε(n)∫
ψε dµunx

f(nx) dµux(n), ψε(n) = ψ(Ad(g− log ε)(n)). (8.2)

Note that ψε is supported inside N+
ε/2.

Remark 8.1. The condition that ψε(Id) = ψ(Id) = 1 implies that for x ∈ X with x+ ∈ ΛΓ,

µux(ψε) > 0, ∀ε > 0. (8.3)

In particular, since the conditional measures µux are supported on points nx with (nx)+ ∈ ΛΓ,
the mollifier Mε(f) is a well-defined function on all of X. That Mε(f) is continuous follows by
continuity of the map x 7→ µux in the weak-∗ topology; cf. [Rob03, Lemme 1.16].

Remark 8.2. We note that Ad(M)-invariance of ψε and the conditional measures µux (cf. (2.5))
implies that Mε(f) is M -invariant whenever f is.

To simplify arguments related to the regularity of the function n 7→ ψε(n)/µ
u
nx(ψε), we introduce

the following slightly stronger version of the norm ‖·‖1 which suffices for our purposes.

Let Ck,α(N+
1 ) denote the space of Ck−functions φ onN+

1 , all of whose derivatives of order k are α-
Hölder continuous functions on N+

1 . We endow this space with the standard norm denoted ‖φ‖Ck,α .
We define coefficients e⋆1,0(f) and e⋆1,1(f), similarly to the coefficients e1,0 and e1,1 respectively

in (6.3) and (6.5), but where, in both coefficients, the supremum is taken over all test functions
φ ∈ C0,1(N+

1 ) with ‖φ‖C0,1 ≤ 1, instead of C1(N+
1 ) and C2(N+

1 ). Using these definitions, we
introduce the following seminorm on C2

c (X):

‖f‖⋆1 = e⋆1,0(f) + e⋆1,1(f). (8.4)

We denote by B⋆ the Banach space completion of the quotient space C2
c (X)M of M -invariant

compactly supported C2-functions by the kernel of the seminorm ‖·‖⋆ with respect to the induced
norm on the quotient.

The first result asserts that Mε(f) is a good approximation of f .

Proposition 8.3. For all 0 < ε ≤ 1/10, and t ≥ 1, we have

e⋆1,0(Lt(f −Mε(f))) ≪ (ε+ 1)e−te⋆1,0(f).
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In light of this statement, we will in fact only use Mε with ε = 1/10. However, for clarity, we
state and prove the remaining results for a general value of ε.

The following results estimate the regularity of mollifiers. Recall the constant ∆+ ≥ 0 in (3.1).
The first result is an estimate of L∞ type.

Proposition 8.4. For all 0 < ε ≤ 1 and x ∈ N−
1 Ω, we have

|Mε(f)(x)| ≪ ε−∆+−1e⋆1,0(f)V (x).

Finally, we need the following Lipschitz estimate on mollifiers along the stable direction. Recall
the stable parabolic group P− = N−AM parametrizing the weak stable manifolds of gt.

Proposition 8.5. For all 0 < ε ≤ 1/10, p− ∈ P−, and x ∈ X so that x belongs to N−
3/4Ω and p−

is of the form u−gtm for u− ∈ N−
1/10, |t| ≤ 1/10 and m ∈M , we have that

|Mε(f)(p
−x)−Mε(f)(x)| ≪ dist(p−, Id)ε−∆+−2 · ‖f‖⋆1 V (x).

The above results are straightforward in the case of smooth mollifiers, however some care is
required in our case due to the fractal nature of the conditionals and (possible) non-compactness
of Ω. This is in part the reason for the non-standard shape of the chosen mollifier. The proofs of
the above results are rather technical and can be skipped on a first reading.

8.2. Preliminary estimates. We begin by providing some tameness estimates for our mollifiers.
The first lemma extends the applicability of Proposition 3.1 to points that are near, but not
necessarily in, Ω.

Lemma 8.6. For all x ∈ N−
1 Ω, and 0 < ε ≤ 1, we have

µunx(N
+
5ε)

µunx(ψε)
≪ 1,

uniformly over n ∈ N+
1 in the (ε/10)-neighborhood of the support of µux.

Proof. Since ψε ≡ 1, µunx(ψε) ≥ µunx(N
+
ε/4). Let u be in the support of µux, which is at distance

ε/10 from n. In particular, ux ∈ N−
2 Ω by Remark 2.1. Hence, using a change of variables and

Proposition 3.1, we obtain

µunx(N
+
5ε)

µunx(ψε)
≤ µunx(N

+
5ε)

µunx(N
+
ε/4)

≤ µuux(N
+
5ε · (nu−1))

µuux(N
+
ε/4 · (nu−1))

≤ µuux(N
+
6ε)

µuux(N
+
ε/8)

≪ 1.

�

The next statement is roughly a Lipschitz estimate on conditional measures.

Lemma 8.7. For all 0 < ε ≤ 1 and x ∈ N−
1 Ω, we have the following. For all n1, n2 ∈ N+

1 with
dN+(n1, n2) ≤ ε/2, we have

∣∣∣∣
1

µun1x(ψε)
− 1

µun2x(ψε)

∣∣∣∣≪
ε−1dN+(n1, n2)

µun2x(ψε)
,

provided n1 is at distance at most ε/10 from the support of µux.

Proof. Let σ = n1n
−1
2 . Since ψε is supported inside N+

ε/2. we have by the symmetry of ψ in (8.1)

and the right invariance of the metric dN+ on N+ that

|µun1x(ψε)− µun2x(ψε)| ≤
∫

|ψε(n)− ψε(nσ)| dµun1x(n) =

∫
|ψε(n−1)− ψε(σ

−1n−1)| dµun1x(n)

≪ ‖ψε‖C1 dN+(n1, n2)µ
u
n1x(N

+
ε ),
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where on the last line we used the fact that the integrands are non-zero only on the union N+
ε/2 ∪

N+
ε/2σ ⊆ N+

ε . Moreover, Lemma 8.6 implies that µun1x(N
+
ε )/µun1x(ψε) ≪ 1. The conclusion follows

since ‖ψε‖C1 ≪ ε−1. �

8.3. Regularity of mollifiers and proof of Proposition 8.3. Let ϕ ∈ C0,1(N+
1 ) be a test

function and let x ∈ N−
1 Ω. Set ϕt = ϕ ◦ Ad(g−t) and xt = gtx. Then, using (2.3) to change

variables, we obtain
∫
ϕ(n)Mε(f)(gtnx) dµ

u
x(n) = e−δt

∫
ϕt(n)Mε(f)(nxt) dµ

u
xt(n).

We can rewrite the integral on the right side in a convenient form using the following series of
formal manipulations. Let ψε,y(n) = ψε(n)/µ

u
y(ψε). First, using the definition of Mε and (2.4) to

change variables, we get
∫
ϕt(n)Mε(f)(nxt) dµ

u
xt(n) =

∫
ϕt(n)

∫
ψε,n′nxt(n

′)f(n′nxt) dµ
u
nxt(n

′) dµuxt(n)

=

∫
ϕt(n)

∫
ψε,n′xt(n

′n−1)f(n′xt) dµ
u
xt(n

′) dµuxt(n).

Next, using Fubini’s Theorem and the symmetry of ψε provided by (8.1), we get
∫
ϕt(n)Mε(f)(nxt) dµ

u
xt(n) =

∫ (∫
ϕt(n)ψε,n′xt(n

′n−1) dµuxt(n)

)
f(n′xt) dµuxt(n

′)

=

∫ (∫
ϕt(n)ψε,n′xt(n(n

′)−1) dµuxt(n)

)
f(n′xt) dµ

u
xt(n

′).

Finally, we obtain the desired convenient form of the integral upon changing variables using (2.4)
once more to get

∫
ϕt(n)Mε(f)(nxt) dµ

u
xt(n) =

∫ (∫
ϕt(nn

′)ψε,n′xt(n) dµ
u
n′xt(n)

)
f(n′xt) dµ

u
xt(n

′).

It is thus natural to define the following function:

Φε,x,t(n
′) :=

∫
ϕt(nn

′)ψε,n′xt(n) dµ
u
n′xt(n) =

∫
ϕt(nn

′)ψε(n) dµun′xt
(n)

µun′xt
(ψε)

.

Note that, since ϕt and ψε are supported in N+
et and N+

ε/2 respectively, Φε,x,t is supported inside

N+
et+ε/2 ⊂ N+

2et .

We wish to estimate integrals of the form
∫

(ϕt+s(n
′)− Φε,x,t+s(n

′)f(n′xt+s) dµ
u
xt+s

(n′),

for arbitrary t ≥ 1, s ∈ [0, 1], basepoints x and test functions ϕ. First, we note that it suffices to
estimate the integrals when s = 0 since t is at least 1 by assumption. We proceed by essentially
regarding ϕt −Φε,x,t itself as a test function. Note that Φε,x,t may not be well-defined for arbirary
n′ ∈ N+, since µun′xt

(ψε) could be 0 for those n′ with (n′xt)+ /∈ ΛΓ. However, Φε,x,t is well-defined
on the (ε/4)-neighborhood of the support of µuxt by definition of ψε.

For this reason, let θε : N+ → [0, 1] be a smooth bump function which is identically 1 on
the (ε/100)-neighborhood of the support of the measure µuxt and vanishes outside of its (ε/50)-
neighborhood. We can choose such a function to satisfy

‖θε‖C0 ≤ 1, ‖θε‖C1 ≪ ε−1,
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for instance by convolving (with respect to the Haar measure) the indicator function of the (ε/100)-
neighborhood of the support with ψε/200. Then, we observe that

∫
(ϕt − Φε,x,t)(n

′)f(n′xt) dµ
u
xt(n

′) =
∫

((ϕt − Φε,x,t)θε)(n
′)f(n′xt) dµ

u
xt(n

′).

The upshot is that ϑ := (ϕt − Φε,x,t)θε is a well-defined function on N+. Thus, arguing exactly as
in the proof of Lemma 7.1, the conclusion of the proposition will follow as soon as we estimate the
norm ‖ϑ‖C0,1 ; cf. (7.3).

We begin by estimating the C0 norm ‖ϑ‖C0 . Let n′ ∈ N+ be an arbitrary point in the support
of θε. Note that

ϕt(n
′) =

∫
ϕt(n

′)ψε(n) dµun′xt
(n)

µun′xt
(ψε)

, (8.5)

and, hence,

|ϕt(n′)−Φε,x,t(n
′)| ≤

∫
|ϕt(n′)− ϕt(nn

′)|ψε(n) dµun′xt
(n)

µun′xt
(ψε)

.

We further observe that if ψε(n) 6= 0 for some n ∈ N+, then n is at distance at most ε/2 from
identity. Moreover, since ‖ϕ‖C0,1 ≤ 1 and gt expands N

+ by at least et, the Lipschitz constant
of ϕt is at most e−t. Hence, using the right invariance of the metric on N+, for any such n,
|ϕt(n′)− ϕt(nn

′)| ≤ e−tε/2. As n′ was arbitrary and |θε(n′)| ≤ 1, it follows that ‖ϑ‖C0 ≤ e−tε/2.
It remains to estimate the Lipschitz constant of ϑ. Let n1, n2 ∈ N+

1 be arbitrary points in the
support of θε. Then, note that since ‖θη‖C0 ≤ 1 and ‖θε‖C1 ≪ ε−1, we have

|ϑ(n1)− ϑ(n2)|
≪ |(ϕt − Φε,x,t)(n1)− (ϕt −Φε,x,t)(n2)|+ |(ϕt −Φε,x,t)(n1)| ‖θε‖C1 dN+(n1, n2)

≪ |(ϕt − Φε,x,t)(n1)− (ϕt −Φε,x,t)(n2)|+ e−tdN+(n1, n2).

Let σ = n1n
−1
2 . Using (8.5) and a change of variable, we have

(ϕt − Φε,x,t)(n1)−(ϕt − Φε,x,t)(n2)

=

∫
(ϕt(n1)− ϕt(nn1))(ψε(n)− ψε(nσ)) dµ

u
n1xt(n)

µun1xt(ψε)

+

∫
(ϕt(n2)− ϕt(nn2))ψε(n) dµ

u
n2xt(n)×

(
1

µun1xt(ψε)
− 1

µun2xt(ψε)

)
.

In estimating the Lipschitz constant, without loss of generality, we may assume that the distance
between n1 and n2 is at most ε/2. Hence, arguing as before and using Lemma 8.7, we obtain the
following estimate on the second term:

∫
(ϕt(n2)− ϕt(nn2))ψε(n) dµ

u
n2xt(n)×

(
1

µun1xt(ψε)
− 1

µun2xt(ψε)

)

≪ εe−tµun2xt(ψε)
ε−1dN+(n1, n2)

µun2xt(ψε)
≤ e−tdN+(n1, n2).

To estimate the first term, note that symmetry of ψε (cf. (8.1)) implies that |ψε(n)− ψε(nσ)| is
O(ε−1dN+(n1, n2)). Moreover, since σ = n1n

−1
2 and the support of ψε are contained in N+

ε/2, the

function ψε(n)− ψε(nσ) is supported inside N+
ε . Hence,

∫
(ϕt(n1)− ϕt(nn1))(ψε(n)− ψε(nσ)) dµ

u
n1xt(n) ≪ εe−t × ε−1dN+(n1, n2)× µun1xt(N

+
ε ).
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Combined with Lemma 8.6 and the estimate on the second term, this shows that

|ϑ(n1)− ϑ(n2)| ≪ e−tdN+(n1, n2),

thus completing the proof.

8.4. Pointwise estimates and proof of Proposition 8.4. As in the proof of Proposition 8.3,
let θε : N

+ → [0, 1] denote a smooth function that is identicaly 1 on the (ε/100)-neighborhood of
the support of µux and vanishing outside its (ε/50)-neighborhood. We again note that we can find
such θε with ‖θε‖C1 ≪ ε−1. Set Ψ(n) = ψε(n)µ

u
x(N

+
1 )/µunx(ψε) and note that (2.4) implies that

the function Ψθε belongs to C
0(N+

1 ). Moreover, we have that

Mε(f)(x) =
1

µux(N
+
1 )

∫
Ψ(n)f(nx) dµux =

1

µux(N
+
1 )

∫
(Ψθε)(n)f(nx) dµ

u
x

≪ e⋆1,0(f)V (x) ‖Ψθε‖C0,1 .

Hence, the result follows once we estimate the norm ‖Ψθε‖C0,1 . We begin by proving that
‖Ψθε‖C0 is O(ε−∆+). As a first step, we show that

µux(N
+
1 )

µunx(ψε)
≪ ε−∆+ , ∀n ∈ N+, ψε(n)θε(n) 6= 0. (8.6)

Since ‖θεψε‖C0 ≤ 1, this will show that ‖Ψθε‖C0 ≪ ε−∆+ .
Fix some n with ψε(n)θε(n) 6= 0. Then, we can find u in the ε/2 ball around identity in N+ such

that ux belongs to N−
2 Ω (cf. Remark 2.1) and u is at distance at most 10−2ε from n. Since ψε ≡ 1

on N+
ε/4, we have by (2.4) that

µunx(ψε) ≥ µunx(N
+
ε/4) = µuux(N

+
ε/4 · (nu−1)) ≥ µuux(N

+
ε/10). (8.7)

Similarly, we have that
µux(N

+
1 ) ≤ µuux(N

+
2 ).

Let k ∈ N be the smallest integer such that 2−k ≤ ε/4. Applying Proposition 3.1 with σ = 2k+1

and r = 2−k, since ux ∈ Ω, we obtain

µuux(N
+
2 ) = µuux(N

+
2k+12−k) ≪ 2(k+1)∆+µuux(N

+
2−k) ≪ ε−∆+µuux(N

+
ε/4).

Together with (8.7), this concludes the proof of (8.6).
Next, we estimate the Lipschitz norm of Ψθε as a function on N+

1 . Let n1, n2 ∈ N+ be such that

n1n
−1
2 ∈ N+

ε/10, and (θεψε)(ni) 6= 0 for i = 1, 2. Then, Lemma 8.7 and (8.6) imply that

|Ψ(n1)−Ψ(n2)| ≤ µux(N
+
1 )

(∣∣∣∣
1

µun1x(ψε)
− 1

µun2x(ψε)

∣∣∣∣+
|ψε(n1)− ψε(n2)|

µun2x(ψε)

)

≪ ε−1dN+(n1, n2)
µux(N

+
1 )

µun2x(ψε)
≪ ε−∆+−1dN+(n1, n2).

Since ‖θε‖C0 ≤ 1 and ‖θε‖C1 ≪ ε−1, this shows that the Lipschitz norm of Ψθε is at most ε−∆+−1

and concludes the proof.

8.5. Weak stable derivatives and proof of Proposition 8.5. The idea of the proof is based
on performing local stable holonomy between the strong unstable disks N+

1 · x and N+
1 · p−x and

proceeding exactly as in the proof of Proposition 6.6. The main ingredient is an estimate on the
regularity of the test functions arising from composing ψε(n)/µ

u
nx(ψε) with holonomy maps from

x to intermediate points between x and p−x along the weak stable manifold. We omit the details
of the proof since it follows by elaborating the same ideas in the proof of Proposition 8.3. We
only remark that for p− = u−gtm as in the statement, letting w in the Lie algebra of N− be so
that u− = exp(w), then for all r ∈ R with |r| ≤ |t| and all s ∈ [0, 1], one checks that the points
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exp(sw)grmx all belong to N−
1 Ω. This is relevant in ensuring that the basepoints arising over the

course of carrying out the analogous estimate to (6.11) all satisfy the requirement on basepoints
for the norm ‖·‖⋆1.

9. Spectral gap for resolvents with large imaginary parts

In this Section, we establish the key estimate in the proof of Theorems 1.1 and 1.2. The estimates
in Sections 6 and 7 allow us to show that there is a half plane {Re(z) > −η}, for a suitable η > 0,
containing at most countably many isolated eigenvalues for the generator of the geodesic flow.
To show exponential mixing, it remains to rule out the accumulation of such eigenvalues on the
imaginary axis as their imaginary part tends to ∞.

Remark 9.1. Throughout the rest of this section, if X has cusps, we require the Margulis function
V = Vβ in the definition of all the norms we use to have

β = ∆/4 (9.1)

in the notation of Theorem 4.1. In particular, the contraction estimate in Theorem 4.1 holds with
V p in place of V for all 1 ≤ p ≤ 2. Recall that the constant ∆ is given in (3.1).

Similarly to (7.8), we define for B 6= 0 an equivalent norm to ‖·‖⋆1 defined in (8.4) as follows:

‖f‖⋆B := e⋆1,0(f) +
e⋆1,1(f)

B
. (9.2)

The following result is one of the main technical contributions of this article.

Theorem 9.2. There exist constants b⋆ ≥ 1, and κ, a⋆, σ⋆ > 0, such that the following holds. For
all z = a⋆ + ib ∈ C with |b| ≥ b⋆ and for m = ⌈log |b|⌉, we have that

e⋆1,0(R(z)
mf) ≤ CΓ

‖f‖⋆1,B
(a⋆ + σ⋆)m

,

where CΓ ≥ 1 is a constant depending only on the fundamental group Γ and B = |b|1+κ.

Remark 9.3. The constants b⋆,κ, a⋆, and σ⋆ depend only on non-concentration parameters of the
Patterson-Sullivan measure near proper subvarieties of the boundary at infinity. For geometrically
finite surfaces, these parameters are nothing but the critical exponent δ in the convex cocompact
case and the quantity 2δ − 1 in the cusped case; cf. Definition 11.1 for the precise definition
of non-concentration and Corollary 12.2 where this non-concentration is established. This non-
concentration property is used to apply the results of Section 11 in the proof of Theorem 9.2.

9.1. Proof of Theorems 1.1 and 1.2. We show here the deduction of the exponential mixing
assertion from Theorem 9.2 using the results in [But16a,But16b].

Recall the Banach space B⋆ defined below (8.4) and the weak norm ‖·‖′1 defined in (6.6). The
link between the norms we introduced and decay of correlations is furnished in the following lemma.

Lemma 9.4. For all f, ϕ ∈ C2
c (X)M , we have that

∫
f · ϕ dmBMS ≪ϕ ‖f‖′1 ,

where the implied constant depends on ‖ϕ‖C2 and the injectivity radius of its support.

Proof. Using a partition of unity, we may assume ϕ is supported inside a flow box. The implied
constant then depends on the number of elements of the partition of unity needed to cover the
support of ϕ. Inside each such flow box, the measure mBMS admits a disintegration in terms of
the conditional measures µux averaged against a suitable measure on the transversal to the strong
unstable foliation. Thus, the lemma follows by definition of the norm by viewing the restriction of
ϕ to each local unstable leaf as a test function. �
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In particular, this lemma implies that decay of correlations (for mean 0 functions) would follow
at once if we verify that ‖Ltf‖′1 decays in t with a suitable rate. It is shown in [But16a]10 that such
decay follows from suitable spectral bounds on the resolvent. We list here the results that verify
the hypotheses of [But16a].

We take ‖·‖′1 to be the weak norm ‖·‖A in the notation of [But16a], while we take ‖·‖⋆1 as the
strong norm ‖·‖B. The strong continuity of the semigroup Lt is provided by Corollary 7.2, while

Theorem 6.4 verifies [But16a, Assumption 2]11. The following lemma verifies the weak Lipschitz
property in [But16a, Assumption 1].

Lemma 9.5. For all t ≥ 0,

‖Ltf − f‖′1 ≪ t ‖f‖⋆1 .

Proof. Recall that the norm ‖·‖′1 only involves the coefficient e′1,0; cf. (6.6). Let x ∈ N−
1 Ω and

t ≥ 0. Then, given any test function φ for e′1,0, we have that
∫

N+
1

φ(n)(f(gtnx)− f(nx)) dµux =

∫ t

0

∫

N+
1

φ(n)Lωf(grnx) dµ
u
xdr,

where Lω denotes the derivative with respect to the vector field generating the geodesic flow. Hence,
Lemma 7.1 implies that

∣∣∣∣∣

∫

N+
1

φ(n)(f(gtnx)− f(nx)) dµux

∣∣∣∣∣ ≤ V (x)µux(N
+
1 )

∫ t

0
e⋆1,1(Lrf) dr ≪ tV (x)µux(N

+
1 )e⋆1,1(f),

where e⋆1,1 is the coefficient defined above (8.4). This completes the proof since x and φ are
arbitrary. �

Finally, the following corollary verifies [But16a, Assumption 3A], thus completing the proof of
Theorems 1.1 and 1.2.

Corollary 9.6. Let the notation be as in Theorem 9.2. Then, there exist constants c⋆, λ⋆ > 0,
such that the following holds. For all z = a⋆+ ib ∈ C and for q = ⌈c⋆ log |b|⌉, we have the following
bound on the operator norm of R(z):

‖R(z)q‖⋆1 ≤
1

(a⋆ + λ⋆)q
,

whenever |b| ≥ bΓ, where bΓ ≥ 1 is a constant depending on Γ.

Proof. First, we verify the corollary for the norm ‖·‖⋆B . Let e⋆1,1,b be the scaled seminorm e⋆1,1/|b|1+κ .

Note that the arguments of Lemmas 7.5 and 7.6 imply that for z = a⋆ + ib with |b| ≥ a⋆, we have

e⋆1,1,b(R(z)
mf) ≤ CΓ

‖f‖⋆B (a⋆ + |z|)
am⋆ b

1+κ
≤ 3CΓ ‖f‖⋆B

am⋆ |b|κ
,

for some constant CΓ ≥ 1 depending only on Γ, where we used the fact that a⋆ + |z| ≤ 3|b|.
Moreover, if m = ⌈log |b|⌉ ≥ 3/2, we have that |b|κ ≥ eκm/2 ≥ (1 + κ/2)m and hence am⋆ |b|κ is

at least (a⋆ + κ/2)m. It follows that, for all f ∈ B⋆, we have

e⋆1,1,b(R(z)
mf) ≤ 3CΓ ‖f‖⋆B

(a⋆ + κ/2)m
.

10See also the erratum [But16b].
11Corollary 7.2 and Theorem 6.4 are obtained for the norms ‖·‖k, k ≥ 1, however the proof extends readily to the

norm ‖·‖⋆1 taking ‖·‖′1 as its associated norm.
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This estimate, combined with the estimate in Theorem 9.2 implies that whenever |b| ≥ b⋆,

‖R(z)m‖⋆B ≪Γ (a⋆ + σ1)
−m,

where σ1 > 0 is the minimum of σ⋆ and κ/2. In particular, if |b| is large enough, depending on Γ,
we can absorb the implied constant in the estimate above to obtain

‖R(z)m‖⋆B ≤ (a⋆ + σ1/2)
−m.

Let p ∈ N be a large integer to be chosen shortly. To obtain the claimed estimate for the norm
‖·‖⋆1, note that for any f in the Banach space B⋆, since ‖·‖⋆B ≤ ‖·‖⋆1 ≤ B ‖·‖⋆B = |b|1+κ ‖·‖⋆B , iterating
the above estimate yields

∥∥R(z)2pmf
∥∥⋆
1
≤ B

∥∥R(z)2pmf
∥∥⋆
B
≤ B ‖R(z)pmf‖⋆B

(a⋆ + σ1/2)pm
≤ B ‖f‖⋆1

(a⋆ + σ1/2)2pm
.

Since m = ⌈log |b|⌉, choosing p large enough, depending only on a⋆ and σ1, we can ensure that
B/(a⋆ + σ1/2)

pm ≤ 1/apm⋆ . In particular, taking λ⋆ to be the positive solutions of the quadratic
polynomial x 7→ x2 + 2a⋆x− a⋆σ1/2, we obtain the desired estimate with c⋆ = 2p. �

Let X denote the generator of the semigroup Lt acting on B⋆ (which exists by Corollary 7.2). In
light of the above results, we obtain by [But16a,But16b, Theorem 1] the following decomposition

of the transfer operator Lt. There are complex numbers {λi}Ni=1 with Re(λi) ≤ 0, finite rank
projectors Πi : B⋆ → B⋆, bounded operators Ni, and a one-parameter semigroup Pt of bounded
operators on B⋆ such that

Lt = Pt +
N∑

i=1

etλietNiΠi.

Moreover, for a suitable σ > 0 depending only on λ⋆ in Corollary 9.6 and σ0 given by Theorem 6.4,
we have that

‖Ptf‖′1 ≪ e−σt ‖Xf‖⋆1 ,

for all t ≥ 0 and f ∈ B⋆. Finally, we have N di
i = 0 for some di ∈ N, and ΠiΠj = δij , ΠiPt = 0, and

NiΠi = ΠiNi = Ni for all i, j, t.
Thus, letting

Q =
N∑

Re(λi)6=0

λiNi, Π =
∑

Re(λi)6=0

Πi,

this concludes the proofs of Theorem 1.1 and 1.2 once we show that the only eigenvalue λi on the
imaginary axis is 0 and that its associated nilpotent operator Ni vanishes. This is proved in the
following lemma.

Lemma 9.7. The intersection of the spectrum of X with the imaginary axis consists only of the
eigenvalue 0 which has algebraic multiplicity one.

Proof. In what follows, we endow elements ϕ of C2
c (X) with the norm ‖ϕ‖′C2 given by multiplying

the C2-norm of ϕ with a suitable power of the reciprocal of the injectivity of its support so that
‖ϕ‖′C2 dominates the implicit constant depending on ϕ in Lemma 9.4. Such power exists by the
proof of the lemma. The dual space C2

c (X)∗ is endowed with the corresponding strong dual norm.
Let Φ : B⋆ → C2

c (X)∗ denote the linear map which extends the mapping f 7→ (ϕ 7→
∫
fϕ dmBMS

from C2
c (X)M to the dual space C2

c (X)∗. The fact that this mapping extends continuously to B⋆
follows by Lemma 9.4. We claim that Φ is injective. This claim is routine in the absence of cusps,
and we briefly outline why it also holds in general.
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To prove this claim, note first that the coefficients e⋆1,0(·;x) and e⋆1,1(·;x) extend from C2
c to

define seminorms on B⋆. In particular, given any f ∈ B⋆ and fn ∈ C2
c (X)M tending to f in B⋆,

we have e⋆1,ℓ(f ;x) = limn→∞ e⋆1,ℓ(fn;x) for ℓ = 0, 1 and for every x ∈ N−
1 Ω. Since the coefficient

e⋆1,ℓ(f) is defined by taking a supremum over x, it follows that we can find a sequence xn ∈ N−
1 Ω

such that e⋆1,ℓ(fn;xn) converges to e⋆1,ℓ(f). In particular, we obtain the following inequality which
serves to exchange the order of taking limits and suprema

e⋆1,ℓ(f) ≤ sup
x∈N−

1 Ω

lim
n→∞

e⋆1,ℓ(fn;x). (9.3)

Now, suppose f ∈ B⋆ is in the kernel of Φ and let fn ∈ C2
c (X)M be a sequence of functions

converging to f . By continuity, Φ(fn) tends to 0 in C2
c (X)∗. One then checks that this implies that

for every fixed x ∈ N−
1 Ω, we have that e⋆1,ℓ(fn;x) → 0 as n→ ∞ for ℓ = 0, 1. Combined with (9.3),

this shows that ‖f‖⋆1 = 0, and hence Φ is injective as claimed.
We now show that this injectivity implies the claim of the lemma. Via the relationship between

the spectra of X and the resolvents (cf. Section 7.5), we obtain by Theorem 6.4 that the intersection
of the spectrum σ(X) with the imaginary axis consists of a discrete set of eigenvalues. Similarly,
finiteness of the multiplicities of each of these eigenvalues is a consequence of quasi-compactness of
the resolvent.

Let b ∈ R be such that ib is one such eigenvalue with eigenvector 0 6= f ∈ B⋆ and note that this
implies that Ltf = eibtf . We show that Φ(f) is a multiple of the measure mBMS. This implies that
b = 0 by injectivity since mBMS is the image of the constant function 1 under Φ. To do so, we
use the fact that the geodesic flow is mixing12 with respect to mBMS by work of Rudolph [Rud82]
and Babillot [Bab02]. Let ϕ ∈ C2

c (X) be arbitrary and let θn =
∫
fn dm

BMS and ξ =
∫
ϕ dmBMS.

Then, for every t ≥ 0 and n ∈ N, we have

|Φ(f)(ϕ)− θnξ| ≤
∣∣∣∣Φ(f)(ϕ)−

∫
ϕLtfn dmBMS

∣∣∣∣+
∣∣∣∣
∫
ϕLtfn dmBMS − θnξ

∣∣∣∣ . (9.4)

By mixing, for every fixed n, the second term can be made arbitrarily small by taking t large
enough. Moreover, since Φ(f) = e−ibtΦ(Ltf), the first term is bounded by

∣∣∣∣e
−ibtΦ(Ltf)(ϕ)− e−ibt

∫
ϕLtfn dmBMS

∣∣∣∣+ |e−ibt − 1|
∣∣∣∣
∫
ϕLtfn dmBMS

∣∣∣∣ . (9.5)

The first term in (9.5) is equal to |Φ(Lt(f − fn)(ϕ)|, which is Oϕ(‖f − fn‖⋆1) in view of Lemmas 9.4

and 7.1. Similarly, since fn converges to f in B⋆, the second term is Oϕ(|e−ibt− 1| ‖f‖⋆1). To bound

this term, note that one can find arbitrarily large t so that eibt is arbitrarily close to 1.
Therefore, using a diagonal argument, this implies that we can find a sequence t(n) tending to

infinity so that the upper bound in (9.4) tends to 0 with n. If ξ 6= 0, the above argument implies
that θn is Oϕ(Φ(f)(ϕ)) and hence converges (along a subsequence) to some θ ∈ R. In particular,
the values of Φ(f) and θmBMS agree on ϕ in this case. If ξ = 0, then the above argument shows
that Φ(f)(ϕ) = 0 so that the same conclusion also holds.

The assertion on the algebraic multiplicity, which in particular involves ruling out the presence
of Jordan blocks, is standard and can be deduced from quasi-compactness of the resolvent and the
bound on its norm given in Corollary 7.3 following very similar lines to [BDL18, Corollary 5.4] to
which we refer the interested reader for details.

�

12We refer the reader to [BDL18, Corollary 5.4] for this deduction using only ergodicity of the flow.
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9.2. Proof of Theorem 9.2. The remainder of this section is dedicated to the proof of Theo-
rem 9.2. Let a ∈ (0, 2] to be determined. We assume that z = a + ib with b > 0, the other case
being identical. For the convenience of the reader, we summarize the notation used in this section
in Table 1.

Time partition. Let p : R → [0, 1] be a smooth bump function supported in (−1, 1) with the
property that ∑

j∈Z
p(t− j) = 1, ∀t ∈ R. (9.6)

Let m ∈ N and T0 > 0 be parameters to be specified later. Changing variables, we obtain

R(z)m =

∫ ∞

0

tm−1e−zt

(m− 1)!
Lt dt

=

∫ ∞

0

tm−1e−zt

(m− 1)!
p(t/T0)LtR(z)m dt+

∞∑

j=0

((j + 2)T0)
m−1e−zjT0

(m− 1)!

∫

R

pj(t)e
−ztLt+jT0 dt, (9.7)

where we define pj as follows:

pj(t) :=

(
jT0 + t

(j + 2)T0

)m−1

p

(
t− T0
T0

)
. (9.8)

Note that pj is supported in the interval (0, 2T0) for all j ≥ 0.

Contribution of pre-mixing times. We also discard the first few terms in the sum over j. Let
J0 ∈ N be a parameter to be specified later. By the triangle inequality for the seminorm e⋆1,0 and
Lemma 7.1, we have

e⋆1,0




J0∑

j=0

((j + 2)T0)
m−1e−zjT0

(m− 1)!

∫

R

pj(t)e
−ztLt+jT0fdt




≤
∫ (J0+2)T0

0

tm−1e−at

(m− 1)!
e⋆1,0(Ltf)dt≪

((J0 + 2)T0)
me⋆1,0(f)

(m− 1)!
.

We will choose

m = ⌈log b⌉. (9.9)

Hence, since a ≤ 2 by assumption, when b is large enough13, we get

e⋆1,0




J0∑

j=0

((j + 2)T0)
m−1e−zjT0

(m− 1)!

∫

R

pj(t)e
−ztLt+jT0fdt


≪

e⋆1,0(f)

(a+ 1)m
. (9.10)

A similar argument also shows that

e⋆1,0

(∫ ∞

0

tm−1e−zt

(m− 1)!
p(t/T0)Ltf dt

)
≪

e⋆1,0(f)

(a+ 1)m
,

where we used the fact that p(t/T0) is supported in (−T0, T0). Thus, we may assume for the
remainder of the section that

j > J0. (9.11)

13Over the course of the proof, b will be assumed large depending on all the parameters we choose in the argument.
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Notation Definition

δ = δΓ critical exponent
Λ = ΛΓ, Ω = ΩΓ limit set and non-wandering set

∆,∆+ (3.1)
β Remark 9.1
m ⌈log b⌉
T0 time discretization
pj partition of time variable (9.8)
J0 initial segment of resolvent (9.10)
j summand index in resolvent (9.11)
ε1 small parameter to absorb implicit consts (9.16)
f̟ ψ̟f (9.14)
α proportion of time in cusp (9.17)
Kj fixed compact set (9.18)
ιj inj radius of Kj

pj,w (9.22)
w discretization of (0, 2T0) (9.22)
gwj gw+jT0 (9.24)

M mollifier (9.24)
F M(f̟) (9.24)
P0
j flow boxes meeting N−

1 Ω (9.28)

D volume entropy (9.19)
γ 1/2
gγ amount of time we flow g(w+jT0)/2 (9.30)
xj gγx (9.34)

N+
1 (j) neighborhood of N+

1 (9.35)
Fγ L(w+jT0)/2F (9.36)
yρ center of flow box Bρ (9.38)
Tρ transversal to strong unstable in Bρ (9.38)
Iρ,j indexes unstable leaves landing in Bρ at time (w + jT0)/2
Wℓ ℓth unstable piece in Bρ
xρ,ℓ center of Wℓ (9.39)
sρ,ℓ return time to compact for xρ,ℓ (9.41)
Wρ local unstable leaf of yρ (9.50)
τℓ the temporal distance function (9.51)
φρ,ℓ test function after change of variables (9.51)
JΦℓ Jacobian of stable holonomy (9.51)
κ (9.55)
Jρ support of integration in t (9.56)
Ai cusp adapted partition (9.59)

ti, ri, y
i
ρ cusp-adapted partition parameters (9.60)

wik,ℓ frequencies (9.64)

Cρ,j,i/Sρ,j,i close/separated pairs of unstable disks (9.66)
κ Proposition 9.13

ε2, λ Theorem 9.16
A D + 2∆+ + 1 (9.75)

Table 1. Summary of notation in the proof of Theorem 9.2.
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Let 0 < ε1 ≪ 1 be a small parameter to be chosen later. The advantage of taking J0 large is that
it allows us to give a reasonable estimate on the sum of the errors of each term in (9.7). Indeed,
taking J0 large enough so that 2/J0 ≤ ε1, in view of (7.5), we have that

∞∑

j=J0+1

((j + 2)T0)
m−1e−ajT0

(m− 1)!
≤ e2aT0

(
1 +

2

J0

)m ∫ ∞

0

tm−1e−at

(m− 1)!
dt = e2aT0

(
1 + ε1
a

)m
. (9.12)

We will take J0 large enough (independently of b) so that the loss of a factor of 1 + ε1 does not
exceed the gains we make over the course of the proof.

Contribution of non-recurrent orbits. We will estimate the contribution of each term in the
sum over j in (9.7) individually.

In Section 7.3, we defined a the decomposition of the operator LT0 using a given height V0 ≥ 1;
cf. (7.10). In particular, we can rewrite the jth of the sum in (9.7) as follows:

∫

R

pj(t)e
−ztLt+jT0f dt =

∑

̟∈{1,2}j

∫

R

pj(t)e
−ztLt+jT0(ψ̟f) dt. (9.13)

We estimate the contribution of each ̟ separately. Fix some ̟ ∈ {1, 2}j , and for convenience, set

f̟ := ψ̟f. (9.14)

We will frequently use the estimates

e⋆1,0(f̟) ≪ e⋆1,0(f), ‖f̟‖⋆1 ≪ ‖f‖⋆1 , (9.15)

which follow by Lemma 7.7.
In this subsection, we handle the contribution of the terms corresponding to trajectories which

spend a large proportion of their time at height larger than V0. More precisely, let α ≥ 0 be a small
parameter to be chosen at the end of the argument, and suppose ̟ ∈ {1, 2}j is such that

# {1 ≤ i ≤ j : ̟i = 2} ≥ αj.

First, it follows by Lemma 7.8 and induction that

e⋆1,0(Lt+jT0(f̟)) ≤ C0e
⋆
1,0(LjT0(f̟)) ≤ Cj+1

0 e−βαjT0e⋆1,0(f̟),

where we take C0 ≥ 1 to be a constant larger than the implicit constant in that lemma. In what
follows, we assume ε1 is smaller than βα/10. We take T0 to be large enough, depending on ε1 and
C0, we may assume that C0 ≤ eε1T0 . Hence, by (9.15), we obtain

e⋆1,0(Lt+jT0(f̟)) ≪ e−(βα−ε1)jT0e⋆1,0(f).

Finally, in light of (9.12), since there are at most 2j such words ̟, taking T0 large enough so that
2ε1 ≤ eε1T0 and summing the above errors over j, we obtain an error term of the form

e2aT0e⋆1,0(f)

(
1 + ε1

a+ βα− 2ε1

)m
≤ e⋆1,0(f)

(
1 + 2ε1

a+ βα− 2ε1

)m
≤

e⋆1,0(f)

(a+ βα/2)m
, (9.16)

where the first inequality can be ensured to hold by taking b large enough in view of (9.9) and the
second inequality holds whenever ε1 is small enough.
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Contribution of recurrent orbits. The remainder of the section, is dedicated to estimating the
contribution of orbits that spend a definite proportion of time in the thick part, i.e. the terms where
̟ satisfies

# {1 ≤ i ≤ j : ̟i = 2} < αj. (9.17)

Let us define

Kj :=
{
y ∈ X : V (y) ≤ e(2βαj+3β)T0

}
, ιj := min {1, inj(Kj)} . (9.18)

We note that Proposition 4.3 implies that

ι−1
j ≪ e(4αj+6)T0 , (9.19)

where we used the fact that χK ≤ 2; cf. (4.2).
Recalling the definition of ψ̟ in (7.11), we have that ψ̟ is supported on the points of height at

most eβαjT0V0. Hence, the support of f̟ satisfies

supp(f̟) ⊆ Kj. (9.20)

Let x ∈ N−
1 Ω be arbitrary. The same argument in the proof of (9.16) shows that if V (x) ≥ eβαjT0 ,

then Lemma 7.1 implies that we obtain a gain of e−(βα−ε1)jT0e⋆1,0(f). Thus, we may assume for the
remainder of the section that

V (x) ≤ eβαjT0 . (9.21)

Fix some suitable test function φ for e⋆1,0. In particular, φ has C0,1(N+) norm at most 1. The
integrals we wish to estimate take the form

∫

N+
1

φ(n)

∫

R

pj(t)e
−ztLt+jT0(f̟)(gsnx) dtdµux(n)

=

∫

R

e−zt
∫

N+
1

pj(t)φ(n)f̟(gs+t+jT0nx) dµ
u
x(n)dt,

for all s ∈ [0, 1]. We again only provide the estimate in the case s = 0 to simplify notation, the
general case being essentially identical.

Recall that pj is supported in the interval (0, 2T0). In particular, the extra t in Lt+jT0 could be
rather large, which will ruin certain trivial estimates later. To remedy this, recall the partition of
unity of R given in (9.6) and set

pj,w(t) := pj(t+ w)p(t), ∀w ∈ Z. (9.22)

Using a change of variable, we obtain
∫

R

e−zt
∫

N+
1

pj(t)φ(n)f̟(gt+jT0nx) dµ
u
x(n)dt

=
∑

w∈Z
e−zw

∫

R

e−zt
∫

N+
1

pj,w(t)φ(n)f̟(gt+w+jT0nx) dµ
u
x(n)dt. (9.23)

Note the above sum is supported on 0 ≤ w ≪ T0, and the support of each integral in t is now
(−1, 1). For the remainder of the section, we fix some w ∈ Z in that support.

Approximation with mollifiers. Let M := M1/10, where for ε > 0, Mε denotes the mollifier
defined in Section 8. To simplify notation, we set

gwj := gw+jT0 , F := M(f̟). (9.24)

Since φ ∈ C0,1(N+
1 ) with ‖φ‖C0,1 ≤ 1, it follows by Proposition 8.3 and (9.15) that

∣∣∣∣
∫

N+
1

φ(n)Lt(f̟ − F )(gwj nx) dµ
u
x

∣∣∣∣≪ e−(t+w+jT0)e⋆1,0(f)V (x)µux(N
+
1 ).
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Arguing as in (9.16), summing the above errors over j, we get an error term of the form

e⋆1,0(f)V (x)µux(N
+
1 )× e2aT0T0

(
1 + ε1

(a+ 1− ε1)

)m
≤
e⋆1,0(f)V (x)µux(N

+
1 )

(a+ 1/2)m
, (9.25)

where we again assume that b is large enough and ε1 is small enough so that the above inequality
holds.

Hence, we may replace f̟ with F in (9.23). We will frequently use the following observation.
Writing F = F − f̟ + f̟ and using Proposition 8.3 and (9.15), we have that

e⋆1,0(F ) ≪ e⋆1,0(f). (9.26)

Partitions of unity and flow boxes. We let Pj denote a partition of unity of the unit neigh-
borhood of Kj so that each ρ ∈ Pj is M -invariant and supported inside a flow box Bρ of radius
ιj/10. With the aid of the Vitali covering lemma, we can arrange for the collection {Bρ} to have
a uniformly bounded multiplicity, depending only on the dimension of G. We can choose such a
partition of unity so that for all ρ ∈ Pj ,

‖ρ‖C1 ≪ ι−1
j . (9.27)

We also introduce the following subcollection of Pj :

P0
j :=

{
ρ ∈ Pj : Bρ ∩N−

1/2Ω 6= ∅
}
. (9.28)

Note that the cardinality of P0
j is controlled in terms of the injectivity radius ιj in (9.18). Indeed,

since Γ is geometrically finite, the unit neighborhood of Ω has finite volume. Moreover, the flow
boxes Bρ with ρ ∈ P0 are all contained in such a unit neighborhood and have uniformly bounded
multiplicity; cf. (9.28). Finally, each Bρ has radius at least ιj for all ρ ∈ Pj . Thus, letting D ∈ N

be such that the Lebesgue measure of Bρ is ≍ ιDj , we see that

#P0
j ≪Γ ι

−(2D+1)
j . (9.29)

Note that the dimension of X is 2D+1+ dim(M), however the bound above involves 2D+1 only
since each flow box is M -invariant.

Localizing away from the cusp. We begin by restricting the support of the integral away from
the cusp. Define the following smoothed cusp indicator function ζj : X → [0, 1]:

ζj(y) := 1−
∑

ρ∈Pj

ρ(y).

Let

γ = 1/2, gγ := gγ(w+jT0). (9.30)

It will be convenient to take T0 large enough so that

(1− γ)(w + jT0) = γ(w + jT0) ≥ 4. (9.31)

First, we note that Proposition 8.4 implies

|LtF (gwj nx)| ≪ e⋆1,0(f̟)LtV (gwj nx).

Note that by definition, ζj is supported outside of the sublevel set Kj in (9.18). Hence, the
Cauchy-Schwarz inequality yields
∣∣∣∣∣

∫

N+
1

ζj(g
γnx)LtV (gwj nx) dµ

u
x

∣∣∣∣∣

2

≤ µux

(
n ∈ N+

1 : V (gγnx) > e2βαjT0
)
×
∫

N+
1

LtV 2(gwj nx) dµ
u
x,
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where we used the fact that |φ| is bounded by 1 and ζj is non-negative. Recall that we are assuming
that V 2 satisfies the Margulis inequality in Theorem 4.1; cf. Remark 9.1. Hence, by Theorem 4.1
and Chebychev’s inequality, we obtain

∣∣∣∣∣

∫

N+
1

φ(n)ζj(g
γnx)LtF (gwj nx) dµux

∣∣∣∣∣≪ e⋆1,0(f̟)µ
u
x(N

+
1 )V 3/2(x)e−βαjT0 .

Using the bound on V (x) in (9.21) along with (9.15), we thus obtain
∫

N+
1

φ(n)LtF (gwj nx) dµux(n)

=
∑

ρ∈Pj

∫

N+
1

φ(n)ρ(gγnx)LtF (gwj nx) dµux +O
(
e⋆1,0(f)µ

u
x(N

+
1 )V (x)e−βαjT0/2

)
. (9.32)

As before, using (9.12) and taking b large enough and ε1 small enough, we see that the sum of the
above error terms over j gives an error term of the form

O

(
e⋆1,0(f)µ

u
x(N

+
1 )V (x)

(a+ βα/4)m

)
. (9.33)

Saturation and post-localization. Our next step is to partition the integral over N+
1 into pieces

according to the flow box they land in under flowing by gγ . To simplify notation, we write

xj := gγx. (9.34)

We denote by N+
1 (j) a neighborhood of N+

1 defined by the property that the intersection

Bρ ∩ (Ad(gγ)(N+
1 (j)) · xj)

consists entirely of full local strong unstable leaves in Bρ. We note that since Ad(gγ) expands N+

and Bρ has radius < 1, N+
1 (j) is contained inside the N+

2 . Since φ is supported inside N+
1 , we have

χN+
1
(n)φ(n) = χN+

1 (j)(n)φ(n), ∀n ∈ N+. (9.35)

For simplicity, we set

ϕj(n) := φ(Ad(gγ)−1n), Aj := Ad(gγ)(N+
1 (j)).

For ρ ∈ P, we let Wρ,j denote the collection of connected components of the set

{n ∈ Aj : nxj ∈ Bρ} .
Moreover, since x ∈ N−

1 Ω, we see that the the restriction of the support of µux to N+
1 consists of

points n ∈ N+ with nx ∈ N−
2 Ω; cf. Remark 2.1. In view of (9.31), this implies that the non-zero

summands in the right side of (9.32) necessarily correspond to those ρ in P0
j .

To simplify notation, let

Fγ := L(1−γ)(w+jT0)(F ). (9.36)

In view of (9.35), changing variables using (2.3) yields

∑

ρ∈Pj

∫

N+
1

φ(n)ρ(gγnx)F (gt+w+jT0nx) dµ
u
x(n)

= e−δγ(w+jT0)
∑

ρ∈P0
j ,W∈Wρ,j

∫

n∈W
ϕj(n)ρ(nxj)Fγ(gtnxj) dµ

u
xj (n). (9.37)
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Transversals. We fix a system of transversals {Tρ} to the strong unstable foliation inside the
boxes Bρ. Since Bρ meets N−

1/2Ω for all ρ ∈ P0
j , we take yρ in the intersection Bρ ∩N−

1/2Ω. In this

notation, we can find neighborhoods of identity P−
ρ ⊂ P− =MAN− and N+

ρ ⊂ N+ such that

Bρ = N+
ρ P

−
ρ · yρ, Tρ = P−

ρ · yρ. (9.38)

We also let Mρ, Aρ, and N−
ρ be neighborhoods of identity in M,A and N− respectively so that

P−
ρ =MρAρN

−
ρ .

Centering the integrals. It will be convenient to center all the integrals in (9.37) so that their
basepoints belong to the transversals Tρ of the respective flow box Bρ; cf. (9.38).

Let Iρ,j denote an index set for Wρ,j. For W ∈ Wρ,j with index ℓ ∈ Iρ,j, let nρ,ℓ ∈W , mρ,ℓ ∈Mρ,

n−ρ,ℓ ∈ N−
ρ , and tρ,ℓ ∈ (−ιj , ιj) be such that

xρ,ℓ := mρ,ℓg−tρ,ℓnρ,ℓ · xj = n−ρ,ℓ · yρ ∈ Tρ. (9.39)

Note that since x belongs to N−
1 Ω, we have that

xρ,ℓ ∈ N−
1 Ω, (9.40)

cf. (9.31) and Remark 2.1. Moreover, if we let uℓ = Ad((gγ)−1)(nρ,ℓ) ∈ N+
1 (j), then in light of the

restriction on ̟ in (9.17), we may and will assume that there is sρ,ℓ > 0 such that

γ(w + jT0) ≤ sρ,ℓ ≤ γ(w + jT0) + αjT0, V (gsρ,ℓuℓx) ≪T0 1. (9.41)

Indeed, the support of f̟ is restricted to those points n ∈ N+ whose gt orbit spends at most
α-proportion of t ∈ [0, jT0] outside the set {V ≤ V0}.

Regularity of test functions. For each such ℓ and W , let us denote Wℓ = Ad(mρ,ℓgtρ,ℓ)(Wn−1
ρ,ℓ)

and

φ̃ρ,ℓ(t, n) := pj,w(t− tρ,ℓ) · eztρ,ℓ · φ(Ad(mρ,ℓg
γg−tρ,ℓ)

−1(nnρ,ℓ)) · ρ(gtρ,ℓnxρ,ℓ). (9.42)

Note that φ̃ρ,ℓ has bounded support in the t direction and (9.27) implies

∥∥∥φ̃ρ,ℓ
∥∥∥
C0(R×N+)

≤ 1,
∥∥∥φ̃ρ,ℓ(t, ·)

∥∥∥
C0,1(N+)

≪ ι−1
j , (9.43)

for all t ∈ R. Moreover, recalling (9.8), we see that
∥∥∥φ̃ρ,ℓ

∥∥∥
C0,1(R×N+)

≪ ι−1
j m. (9.44)

Changing variables using (2.3) and (2.4), we can rewrite the integral in t of the right side of (9.37)
as follows:

e−δγ(w+jT0)
∫

R

e−ztpj,w(t)
∑

ρ∈P0
j ,W∈Wρ,j

∫

n∈W
ϕj(n)ρ(nxj)Fγ(gtnxj) dµ

u
xj(n)dt

= e−δγ(w+jT0)
∑

ρ∈P0
j

∑

ℓ∈Iρ,j

∫

R

e−zt
∫

n∈Wℓ

φ̃ρ,ℓ(t, n)Fγ(gt+tρ,ℓnxρ,ℓ) dµ
u
xρ,ℓ

(n)dt, (9.45)

where we also used M -invariance of Fγ ; cf. Remark 8.2.
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Mass estimates. We record here certain counting estimates which will allow us to sum error
terms in later estimates over P0

j . Note that by definition of N+
1 (j), we have

⋃
ρ∈Pj ,W∈Wρ,j

W ⊆ Aj.

Thus, using the log-Lipschitz and contraction properties of V , it follows that
∑

ρ∈P0
j ,ℓ∈Iρ,j

µuxρ,ℓ(Wℓ)V (xρ,ℓ) ≪
∫

Aj

V (nxj) dµ
u
xj (n)

= eδγ(w+jT0)
∫

N+
1 (j)

V (gwj nx) dµ
u
x(n) ≪ eδγ(w+jT0)µux(N

+
1 )V (x), (9.46)

where we used the fact that |tρ,ℓ| < 1 and the last inequality follows by Proposition 3.1 since

N+
1 (j) ⊆ N+

2 . We also used the fact that the partition of unity P0
j has uniformly bounded multi-

plicity.

Remark 9.8. We note the exact same argument as above gives
∑

ρ∈P0
j ,ℓ∈Iρ,j

µuxρ,ℓ(Wℓ)V
2(xρ,ℓ) ≪ eδγ(w+jT0)µux(N

+
1 )V 2(x), (9.47)

in view of our choice of V at the beginning of the section; cf. Remark 9.1.

We shall also need the following weighted number of flow boxes parametrized by P0
j . For each

ρ ∈ P0
j , we fix some ℓρ ∈ Iρ,j . If Iρ,j is empty, we set xρ,ℓρ = yρ and Wℓρ = ∅. This lemma is only

relevant in the case Γ contains parabolic elements, since otherwise the estimate in (9.29) suffices.

Lemma 9.9. Recall the constant D in (9.29). Then, we have
∑

ρ∈P0
j

µuxρ,ℓρ (Wℓρ) ≪ ι
−(2D+1)
j eδαjT0 .

Proof. Fix some ρ with Iρ,j 6= ∅, and write ℓ = ℓρ. Then, recall that Wℓ = Ad(mρ,ℓgtρ,ℓ)(Wn−1
ρ,ℓ)

and that Wn−1
ρ,ℓ = N+

ιj ⊆ Aj ⊂ N+. Recalling (9.39), we have that

xρ,ℓ = mρ,ℓg−tρ,ℓnρ,ℓ · xj = mρ,ℓg−tρ,ℓg
γuℓ · x,

where uℓ = Ad((gγ)−1)(nρ,ℓ). In other words, uℓ is nothing but the point on the unstable disk
through x whose forward orbit at time γ(w+ jT0) lands on the weak stable disk through yρ. Note
that uℓ belongs to N

+
1 (j) ⊂ N+

2 , since nρ,ℓ belongs to Aj .
Arguing as in (9.41), using the restriction on̟ in (9.17), we can find s′ between γ(w+jT0)−αjT0

and γ(w + jT0) so that V (gs′uℓx) ≪T0 1. Hence, changing variables using (2.3), (2.4), and (2.5),
we get

e−δtρ,ℓµuxρ,ℓ(Wℓ) = µunρ,ℓxj
(Wn−1

ρ,ℓ) = eδγ(w+jT0)µuuℓx

(
N+
e−γ(w+jT0)ιj

)

= eδ(γ(w+jT0)−s
′)µugs′uℓx

(
N+

es
′−γ(w+jT0)ιj

)
.

Since the height of gs′uℓx is OT0(1) and r := es
′−γ(w+jT0)ιj ≤ 1, the measure µugs′uℓx

(
N+
r

)
is OT0(1)

by definition of the conditional measures in (2.2). Hence, our choice of s′ implies

µuxρ,ℓ(Wℓ) ≪T0 e
δαjT0 .

The lemma follows by combining these estimates with (9.29). �

The point of the above lemma is that the sum in question has, in general, much fewer terms
than the sum in (9.46).
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Stable holonomy. Fix some ρ ∈ P0
j . Recall the points yρ ∈ Tρ and n−ρ,ℓ ∈ N−

ρ satisfying (9.39).

The product mapM×N−×A×N+ → G is a diffeomorphism on a ball of radius 1 around identity;
cf. Section 2.6. Hence, given ℓ ∈ Iρ,j, we can define maps ũℓ, τ̃ℓ, mℓ and ũ

−
ℓ from Wℓ to N

+, R, M
and N− respectively by the following formula

gt+tρ,ℓnn
−
ρ,ℓ = gt+tρ,ℓmℓ(n)ũ

−
ℓ (n)gτ̃ℓ(n)ũℓ(n) = mℓ(n)ũ

−
ℓ (t, n)gt+tρ,ℓ+τ̃ℓ(n)ũℓ(n), (9.48)

where we set ũ−ℓ (t, n) = Ad(gt+tρ,ℓ)(ũ
−
ℓ (n)). We define the following change of variable map:

Φℓ : R×Wℓ → R×N+, Φℓ(t, n) = (t+ τ̃ℓ(n), ũℓ(n)). (9.49)

We suppress the dependence on ρ and j to ease notation. Then, Φℓ induces a map between the
weak unstable manifolds of xρ,ℓ and yρ, also denoted Φℓ, and defined by

Φℓ(gtnxρ,ℓ) = gt+τ̃ℓ(n)ũℓ(n)yρ.

In particular, this induced map coincides with the local strong stable holonomy map inside Bρ.
Note that we can find a neighborhood Wρ ⊂ N+ of identity of radius ≍ ιj such that

Φℓ(R ×Wℓ) ⊆ R×Wρ, (9.50)

for all ℓ ∈ Iρ,j . Moreover, by shrinking the radius ιj of the flow boxes by an absolute amount
(depending only on the metric on G) if necessary, we may assume that all the maps Φℓ in (9.49)
are invertible on R×Wρ. Hence, we can define the following:

τℓ(n) = τ̃ℓ(ũ
−1
ℓ (n)) + tρ,ℓ ∈ R, u−ℓ (t, n) = ũ−ℓ (t− τℓ(n), ũ

−1
ℓ (n)) ∈ N−,

φρ,ℓ(t, n) = e−a(t−τℓ(n)) × JΦℓ(n)× φ̃ρ,ℓ(t− τℓ(n), ũ
−1
ℓ (n)), (9.51)

and JΦℓ denotes the Jacobian of the change of variable Φℓ; cf. (2.10).
Changing variables and using M -invariance of Fγ , we obtain

∑

ℓ∈Iρ,j

∫

R

e−zt
∫

n∈Wℓ

φ̃ρ,ℓ(t, n)Fγ(gt+tρ,ℓnxρ,ℓ) dµ
u
xρ,ℓ

(n)dt

=
∑

ℓ∈Iρ,j

∫

R

∫

Wρ

e−ib(t−τℓ(n))φρ,ℓ(t, n)Fγ(u
−
ℓ (t, n)gtnyρ) dµ

u
yρ(n)dt.

(9.52)

Stable derivatives. Our next step is to remove Fγ from the sum over ℓ in (9.52). Due to non-joint
integrability of the stable and unstable foliations, our estimate involves a derivative of f in the flow
direction. In particular, in view of the way we obtain contraction in the norm of flow derivatives
in Lemma 7.6, this step is the most “expensive” estimate in our argument. In essence, all the prior
setup was aimed at optimizing the gain in this step.

Recall the definition of Fγ in (9.36). Since yρ belongs to N−
1/2Ω and u−ℓ (t, n) belongs to a

neighborhood of identity in N− of radius O(ιj) (cf. (9.18)), uniformly over (t, n) in the support of
our integrals, Proposition 8.5 and (9.15) yield

|Fγ(u−ℓ (t, n)gtnyρ)− Fγ(gtnyρ)| ≪ e−(1−γ)(w+jT0) ‖f‖⋆1 µuyρ(N+
1 )V (yρ), (9.53)

where we implicitly used the fact that Wρ ⊂ N+
1 and |t| ≤ 1. Indeed, the additional gain is due to

the fact that gs contracts N
− by at least e−s for all s ≥ 0.

To sum the above errors over ℓ and ρ, we wish to use (9.46). We first note that Proposition 3.1
and the fact Wρ has diameter ≍ ιj imply that

µuyρ(N
+
1 ) ≪ ι

−∆+

j µuyρ(Wρ),
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where ∆+ is the constant in (3.1). Moreover, Propositions 3.1 and 4.3 allow us to use closeness of
yρ and xρ,ℓ along with regularity of holonomy to deduce that

V (yρ)µ
u
yρ(Wρ) ≍ V (xρ,ℓ)µ

u
xρ,ℓ

(Wℓ). (9.54)

Here, we also use the fact that both xρ,ℓ and yρ belong to N−
1 Ω; cf. (9.40).

Hence, we can use (9.46) to estimate the sum of the errors in (9.53) yielding the following estimate
on the main term in (9.45):

e−δγ(w+jT0)
∑

ρ∈P0
j

∑

ℓ∈Iρ,j

∫

R

∫

Wρ

(
∑

ℓ∈Iρ,j
e−ib(t−τℓ(n))φρ,ℓ(t, n)

)
Fγ(gtnyρ) dµ

u
yρdt

+O
(
e−(1−γ)(w+jT0) ‖f‖⋆1 µux(N+

1 )V (x)ι
−∆+

j

)
,

where we used that the above integrands have uniformly bounded support in R×N+, independently
of ℓ (and ρ). Indeed, the boundedness in the R direction follows from that of the partition of unity
pj; cf. (9.8). We also used (9.43) to bound the C0 norm of φρ,ℓ. Summing the above error term
over j and w using (9.12) and (9.19), we obtain

OT0

(‖f‖⋆1 µux(N+
1 )V (x)× (1 + ε1)

m

(a+ (1− γ)− 4α∆+ − ε1)m

)
.

Taking γ, α and ε1 small enough, while taking b large, we get

O

(‖f‖⋆1 µux(N+
1 )V (x)

(a+ 9/10)m

)
.

Recall the norm ‖·‖⋆B defined in (9.2) and note that ‖·‖⋆1 ≤ B ‖·‖⋆B. Choosing a and κ > 0 small
enough, we can ensure that e1+κ/(a + 9/10) is at most 1/(a + 1/10). With this choice, taking
B = b1+κ yields an error term of the form:

O

(‖f‖⋆B µux(N+
1 )V (x)

(a+ 1/10)m

)
. (9.55)

Mollifiers and Cauchy-Schwarz. We are left with estimating integrals of the form:
∫

R×Wρ

Ψρ(t, n)Fγ(gtnyρ) dµ
u
yρdt, Ψρ(t, n) :=

∑

ℓ∈Iρ,j
e−z(t−τℓ(n))φρ,ℓ(t, n). (9.56)

We begin by giving an apriori bound on Ψρ. Denote by Jρ ⊂ R the bounded support of the
integrand in t coordinate of the above integrals. Note that (9.43) and the fact that |t| ≪ 1 imply

‖φρ,ℓ‖L∞(Jρ×Wρ)
≪ 1, ‖Ψρ‖L∞(Jρ×Wρ)

≪ #Iρ,j. (9.57)

To simplify notation, we let

r = (1− γ)(w + jT0).

Note that we have that yρ ∈ N−
1 Ω, |Jρ| ≪ 1, r ≥ 1 and Wρ ⊆ N+

1 . Hence, Proposition 8.4, along
with (9.26), the definition of Fγ in (9.36) and the Cauchy-Schwarz inequality, yield
∣∣∣∣∣

∫

R×Wρ

Ψρ(t, n)Fγ(gtnyρ) dµ
u
yρdt

∣∣∣∣∣

2

≪ e⋆1,0(f)
2

∫

Jρ×Wρ

|Ψρ(t, n)|2 dµuyρdt
∫

N+
1

V 2(grnyρ) dµ
u
yρ .

Thus, Remark 9.1 and the Margulis inequality for V 2 in Theorem 4.1 yield
∣∣∣∣∣

∫

R×Wρ

Ψρ(t, n)Fγ(gtnyρ) dµ
u
yρdt

∣∣∣∣∣

2

≪ e⋆1,0(f)
2V 2(yρ)µ

u
yρ(N

+
1 )

∫

Jρ×Wρ

|Ψρ(t, n)|2 dµuyρdt. (9.58)
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Cusp-adapted partitions. To estimate the right side of (9.67), it will be convenient to linearize
the phase functions τk. For this purpose, we need to pick a partition of unity of Wρ, where the
diameter of the ball supporting an element of the partition of unity is determined by a certain
return time of its center to a given compact set. This is achieved in the next result.

Proposition 9.10. For all b ≥ 1 and x ∈ N−
1 Ω, there exists a cover {Ai : i} of N+

1 and a set

Rx ⊆ N+
1 with µux(N

+
1 \ Rx) ≪ b−β/2V (x)µux(N

+
1 ) such that for all i with Ai ∩Rx 6= ∅, we have

(1) Ai has the form Ai = N+
ri · ui for some ri > 0 and ui ∈ N+

1 .
(2) If ti = − log ri, then V (gtiux) ≪β 1 for all u ∈ Ai.

(3) b−8/10 ≪β ri ≪β b
−7/10.

(4)
∑

i µ
u
x(Ai) ≪ µux(N

+
1 ).

Proof. Let r0 ≥ 1 be the constant provided by Theorem 7.9 applied with ε = β/100. Let m0 =
⌈r−1

0 log b⌉ and let H = e3βr0 be the height provided by Theorem 7.9. Then, we have

µux


n ∈ N+

1 :
∑

1≤ℓ≤m0

χH(gℓr0nx) > 99m0/100


 ≪β b

−β/2V (x)µux(N
+
1 ).

Denote the set on the left side in the above estimate by Ex and define a function ς : N+
1 \ Ex →

[7/10, 8/10] by setting ς(n) to be the least value of η ∈ [7/10, 8/10] such that V (gη log bnx) ≤ H.

Let Rx := supp(µux) ∩N+
1 \ Ex and consider its cover {Au : u ∈ Rx}, where each Au is the ball

around each u of radius b−ς(u). Using the Vitali covering lemma and the uniform doubling result
in Proposition 3.1, we can find a finite subcover {Aui : i} such that

∑
i µ

u
x(Aui) ≪ µux(N

+
1 ). This

completes the proof by taking Ai := Aui .
�

Let {Ai} be the cover provided by Proposition 9.10, applied with x = yρ. Since Wρ ⊆ N+
1 , by

discarding elements of this cover that are disjoint of Wρ if necessary, we shall assume that each Ai
intersects Wρ non-trivially. Combining this result with (9.57), we obtain
∫

Jρ×Wρ

|Ψρ(t, n)|2 dµuyρdt ≤
∑

i

∫

Jρ×Ai

|Ψρ(t, n)|2 dµuyρdt+O
(
b−β/2#I2ρ,jV (yρ)µ

u
yρ(N

+
1 )
)
. (9.59)

Linearizing the phase. We now turn to estimating the sum of oscillatory integrals in (9.59). For
k, ℓ ∈ Iρ,j, we let

ψk,ℓ(t, n) := φρ,k(t, n)φρ,ℓ(t, n).

Expanding the square, we get
∑

i

∫

Jρ×Ai

|Ψρ(t, n)|2 dµuyρdt =
∑

i

∑

k,ℓ∈Iρ,j

∫

Jρ×Ai

e−ib(τk(n)−τℓ(n))ψk,ℓ(t, n) dµ
u
yρdt.

Using (2.3) and (2.4), we change variables in the integrals using the maps taking each Ai onto
N+

1 . More precisely, recall that Ai is a ball of radius ri around ui such that uiyρ ∈ Ω. Letting

ti = − log ri, yiρ = gtiuiyρ, τ ik = τk(Ad(g−ti)(n)ui), ψik,ℓ(t, n) = ψk,ℓ(t,Ad(g−ti)(n)ui),
(9.60)

we can rewrite the above sum as
∑

i

∑

k,ℓ∈Iρ,j

∫

Jρ×Ai

e−ib(τk(n)−τℓ(n))ψk,ℓ(t, n) dµ
u
yρdt

≤
∑

i

e−δti
∑

k,ℓ∈Iρ,j

∣∣∣∣∣

∫

Jρ×N+
1

e−ib(τ
i
k(n)−τ iℓ (n))ψik,ℓ(t, n)dµ

u
yiρ
dt

∣∣∣∣∣ . (9.61)
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We note that the radius ri of Ai satisfies

b−8/10 ≪ e−ti = ri ≪ b−7/10. (9.62)

We also recall from Proposition 9.10 that ri was chosen so that

V (yiρ) ≪ 1, ∀i. (9.63)

This is important for the proof of Theorem 9.16 below.
Next, we use the coordinate parametrization of N+ by its Lie algebra n+ := Lie(N+) via the

exponential map. We suppress composition with exp from our notation for simplicity and continue
to denote by µuyiρ

and N+
1 their pushforward to n+ by exp.

Recall from Section 2.5 the parametrization of N− by its Lie algebra n− = n−α ⊕ n−2α via the
exponential map and similarly for N+. Let wi = (vi, ri) ∈ n+α × n+2α be such that ui = exp(wi),
where ui is the center of the ball Ai. Recall the notation for transverse intersection points n−ρ,k
in (9.39). For each k ∈ Iρ,j, write

n−ρ,k = exp(uk + sk)

with uk ∈ n−α and sk ∈ n−2α. With this notation, we have the following formula for the temporal
functions τk. The proof of this lemma is given in Section 10.

Lemma 9.11. For every i, there exists a bilinear form 〈·, ·〉 : n− × n+α → R such that the following
holds. For every k ∈ Iρ,j, there is a constant cik ∈ R such that for all n = exp(v, r) ∈ N+

1 with

v ∈ n+α and r ∈ n+2α, we have that

τ ik(n)− τ iℓ(n) = cik,ℓ + e−ti〈uk − uℓ + sk − sℓ, v〉+O(e−2ti).

Moreover, there exists a proper linear subspace Li ⊂ n−α such that for every (u, s) ∈ n−α × n−2α, the
linear functional 〈u+ s, ·〉 : n+α → R satisfies

‖〈u+ s, ·〉‖ ≫ dist(u,Li),

where ‖〈u+ s, ·〉‖ := sup‖v‖=1 |〈u+ s, v〉|.

Remark 9.12. The proof of the lemma also shows that if X is real hyperbolic, then we can take
Li = {0}.

To simplify notation, we set

wik,ℓ := e−ti(uk − uℓ + sk − sℓ). (9.64)

Note that Ad(g−ti) contracts N+ by at least e−ti ≪ b−7/10; cf. (9.62). In light of (9.57), this

ensures that the Lipschitz norm of ψik,ℓ along N
+ is ≪ b−7/10. Moreover, we recall that |Jρ| ≪ 1.

Then, we can estimate the right side of (9.61) as follows:

∑

i

e−δti
∑

k,ℓ∈Iρ,j

∣∣∣∣∣

∫

Jρ×N+
1

e−ib(τ
i
k(n)−τ iℓ(n))ψik,ℓ(t, n)dµ

u
yiρ
dt

∣∣∣∣∣

≪
∑

i

e−δti
∑

k,ℓ∈Iρ,j

∣∣∣∣∣

∫

N+
1

e−ib〈w
i
k,ℓ,v〉dµuyiρ

∣∣∣∣∣+ b−4/10µuyρ(N
+
1 )#I2ρ,j. (9.65)
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Excluding close pairs of unstable manifolds. Let Li ⊂ n−α denote the subspace provided by
Lemma 9.11. Denote by Cρ,j,i the following subset of I2ρ,j:

Cρ,j,i =
{
(k, ℓ) ∈ I2ρ,j : dist(uk − uℓ, Li) ≤ b−1/10

}
.

We also set

Sρ,j,i = I2ρ,j \ Cρ,j,i. (9.66)

Then, Cρ,j,i parametrizes pairs of unstable manifolds which are too close along the direction Li⊕n−2α
in the stable foliation. Recall that Li ⊕ n−2α = {0} when X is real hyperbolic. In particular, in this
case, Cρ,j,i simply parametrizes pairs of unstable manifolds which are too close along the stable
foliation. With this notation, the sum on the right side of (9.65) can be estimated as follows:

∑

i

e−δti
∑

k,ℓ∈Iρ,j

∣∣∣∣∣

∫

N+
1

e−ib〈w
i
k,ℓ,v〉dµuyiρ

∣∣∣∣∣

≪ #Cρ,j,iµ
u
yρ(Wρ) +

∑

i

e−δti
∑

k,ℓ∈Iρ,j

∣∣∣∣∣

∫

N+
1

e−ib〈w
i
k,ℓ,v〉dµuyiρ

∣∣∣∣∣ . (9.67)

We estimate the first term in (9.67) via the following proposition, proved in Section 12.3, using
the non-concentration properties of Patterson-Sullivan measures obtained in Section 12. We note
that this non-concentration property is not needed for the proof in the constant curvature case.

Proposition 9.13. There exists a constant κ > 0 such that for all ℓ ∈ Iρ,j,

# {k ∈ Iρ,j : (k, ℓ) ∈ Cρ,j,i} ≪T0 (b−κ/10 + e−κ(γ−α)(w+jT0))eδγ(w+jT0)..

Remark 9.14. The constant κ will be provided by Theorem 11.17.

Summarizing our estimates in (9.59), (9.65), (9.67), and Proposition 9.13, we have shown that
∫

Jρ×Wρ

|Ψρ(t, n)|2 dµuyρdt

≪
∑

i

e−δti
∑

k,ℓ∈Iρ,j

∣∣∣∣∣

∫

N+
1

e−ib〈w
i
k,ℓ,v〉dµuyiρ

∣∣∣∣∣

+
(
(b−β/2V (yρ) + b−4/10)#Iρ,j + (b−κ/10 + e−κ(γ−α)(w+jT0))eδγ(w+jT0)

)
×#Iρ,jµ

u
yρ(N

+
1 ). (9.68)

9.3. The role of additive combinatorics. To proceed, we wish to make use of the oscillations
due to the large frequencies bwik,ℓ to obtain cancellations. First, we note that Lemma 9.11 and the
separation between pairs of unstable manifolds with indices in Sρ,j,i implies that the frequencies
bwik,ℓ have large size. More precisely, the linear functionals 〈wik,ℓ, ·〉 : n+α → R satisfy

b−9/10 ≪
∥∥〈wik,ℓ, ·〉

∥∥≪ b−7/10. (9.69)

Let π : n+ → n+α denote the projection parallel to n+2α and note that the integrands on the right
side of (9.68) depend only on the n+α component of the variable. To simplify notation, we let14

νi := π∗µuyiρ

∣∣∣N+
1
. (9.70)

14Note that π is the identity map in the real hyperbolic case.
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Remark 9.15. It is worth emphasizing that the linearization provided by Lemma 9.11 only depends
on the unstable directions with weakest expansion under the flow. The reason we do so is that
our metric on n+ is not invariant by addition when X is not real hyperbolic (it is invariant by the
nilpotent group operations) and our non-concentration estimates for the measures µu• only hold for
this metric. This in particular means the results of Section 11 do not apply to these measures in
this case, which is the reason we work with projections. It is possible to develop the theory in
Section 11 for measures and convolutions on nilpotent groups such as N+ to avoid working with
projections, however we believe the approach we adopt here is more amenable to generalizations
beyond the algebraic setting of this article.

For w ∈ n−, let

ν̂i(w) :=

∫

n+α

e−i〈w,v〉 dνi(v). (9.71)

Note that the total mass of νi, denoted |νi|, is µuyiρ(N
+
1 ). Let λ > 0 be a small parameter to be

chosen using Theorem 9.16 below. Define the following set of frequencies where ν̂i is large:

B(i, k, λ) :=
{
ℓ ∈ Iρ,j : (k, ℓ) ∈ Sρ,j,i and |ν̂i(bwik,ℓ)| > b−λ|νi|

}
. (9.72)

Then, splitting the sum over frequencies according to the size of the Fourier transform ν̂i and
reversing our change variables to go back to integrating over Ai, we obtain

∑

i

e−δti
∑

(k,ℓ)∈Sρ,j,i

∫

n+α

e−ib〈w
i
k,ℓ,v〉 dνi(v)

≪
(
max
i,k

#B(i, k, λ) + b−λ#Iρ,j

)
#Iρ,jµ

u
yρ(N

+
1 ), (9.73)

where we again used the estimate
∑

i µ
u
yiρ
(Ai) ≪ µuyρ(N

+
1 ).

The following key counting estimate for B(i, k, λ) is deduced from Corollary 11.5. Its proof is
given in Section 12.4.

Theorem 9.16. For every ε2 > 0, there exists λ > 0 such that for all i and k, we have

#B(i, k, λ) ≪ε b
ε2
(
b−κ/10 + e−κ(γ−α)(w+jT0)

)
eδγ(w+jT0),

where κ > 0 is the constant provided by Proposition 9.13.

Combining estimates on oscillatory integrals. Let κ > 0 be as in Theorem 9.16. In what
follows, we assume ε is chosen smaller than κ/100 and that λ ≤ min {β/2, 4/10, κ/20}. Let

Q = (b−κ/20 + bε2e−κ(γ−α)(w+jT0))eδγ(w+jT0).

Theorem 9.16, combined with (9.58), (9.68) and (9.73), yields:
∫

R×Wρ

Ψρ(t, n)Fγ(gtnyρ) dµ
u
yρdt

≪ e⋆1,0(f)V (yρ)µ
u
yρ(N

+
1 )×

(
b−λ/2V (yρ)

1/2#Iρ,j +
√

#Iρ,j ×Q

)
, (9.74)

where we used the elementary inequality
√
x+ y ≤ √

x+
√
y for any x, y ≥ 0.

Our next goal is to estimate the sum of the above bound over ρ. Note that for all ρ ∈ P0
j , since

Wρ has radius ≍ ιj , cf. (9.18), we have by Proposition 3.1 and (9.54) that for all ℓ ∈ Iρ,j,

µuyρ(N
+
1 ) ≪ ι

−∆+

j µuyρ(Wρ) ≍ ι
−∆+

j µuxρ,ℓ(Wℓ).
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Hence, the Cauchy-Schwarz inequality yields

∑

ρ∈P0
j

V (yρ)µ
u
yρ(N

+
1 )
√

#Iρ,j ≪ ι
−∆+

j



∑

ρ∈P0
j

µuyρ(Wρ)×
∑

ρ∈P0
j ,ℓ∈Iρ,j

V 2(xρ,ℓ)µ
u
xρ,ℓ

(Wℓ)




1/2

.

We estimate the first sum above using Lemma 9.9 and the second using (9.47) to get
∑

ρ∈P0
j

V (yρ)µ
u
yρ(N

+
1 )
√

#Iρ,j ≪ V (x)µux(N
+
1 )× ι

−A/2
j × e(δ(γ(w+jT0)+αjT0)/2, (9.75)

where we set A = 2D + 2∆+ + 1. Similarly, using (9.46), and (9.54), we obtain
∑

ρ∈P0
j

V (yρ)µ
u
yρ(N

+
1 )#Iρ,j ≪ ι

−∆+

j × eδγ(w+jT0)µux(N
+
1 )V (x).

Finally, since yρ ∈ Kj, we have V (yρ) ≪T0 e
2βαjT0 ; cf. (9.18).

To simplify and combine the above bounds, recall from Remark 9.1 and (3.1) that β ≤ δ/2 so

that eβαjT0 ≤ eδαjT0/2. We also have that λ/2 ≤ κ/40. It follows that upon combining the above
estimate with (9.74) and (9.75), we obtain the following bound on the sum of the integrals in (9.74):

e−δγ(w+jT0)
∑

ρ∈P0
j

∫

R×Wρ

Ψρ(t, n)Fγ(gtnyρ) dµ
u
yρdt

≪ e⋆1,0(f)V (x)µux(N
+
1 )× ι

−A/2
j eδαjT0/2 ×

(
b−λ/2 + bε2/2e−κ(γ−α)(w+jT0)/2)

)
,

where we again used the inequality
√
x+ y ≤ √

x+
√
y.

Arguing as before using (9.12) and (9.19), the sum of the above error terms over j and w yields
an error term of the form

OT0

(
e⋆1,0(f)V (x)µux(N

+
1 )(1 + ε1)

m ×
[

b−λ/2

(a− 2αA− δα/2 − ε1)m
+

bε2/2

(a+ κ(γ − α)/2 − ε1)m

])
.

(9.76)

To simplify the above bound, recall that λ is chosen according to Theorem 9.16 and hence its
size depends on ε2, however κ is given by Proposition and is independent of ε2. Moreover, γ, λ and
κ are independent of a, α and ε1, and we are free to choose the parameters α and ε1 as small as
needed. We also recall that m = ⌈log b⌉; cf. (9.9). As before, we will absorb the dependence on T0
in (9.76) by taking b large enough at the cost of replacing ε1 with 2ε1 in the denominators of the
above expression. Hence, we may take α ≤ γ/2 and choose ε1, a, and ε2 small enough relative to
κγ to ensure that

(1 + ε1)e
ε2/2

a+ κ(γ − α)/2 − 2ε1
≤ 1

a+ κγ/10
.

Using the bound e−λ/2 ≤ 1/(1 + λ/2) and taking α and ε1 small enough depending on a, λ and A,
we obtain

(1 + ε1)e
−λ/2

a− 2αA − δα/2 − 2ε1
≤ 1

a+ aλ/4
.

Hence, taking a small enough so that aλ/4 ≤ κγ/10, the error term in (9.76) becomes

O

(
e⋆1,0(f)V (x)µux(N

+
1 )

a+ aλ/4

)
. (9.77)
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9.4. Parameter selection and conclusion of the proof. In this subsection, we finish the proof
of Theorem 9.2 assuming Lemma 9.11, Proposition 9.13, and Theorem 9.16.

Collecting the error terms in (9.10), (9.16), (9.25), (9.33), (9.55), and (9.77), and letting σ⋆ > 0
be the minimum of all the gains in these error terms, we obtain

e⋆1,0(R(z)
mf) ≪ ‖f‖⋆B

(a+ σ⋆)m
.

Letting CΓ denote the implied constant, this estimate concludes the proof of Theorem 9.2.

10. The temporal function and proof of Lemma 9.11

In this section, we give an explicit formula for the so-called temporal functions τk,ℓ appearing in
Section 9 and prove Lemma 9.11. Our argument is Lie theoretic. We refer the reader to [Kna02,
Chapter 1] for background on the material used in this section. Similar results are known more
generally outside of the homogeneous setting by more dynamical/geometric arguments building on
work of Katok and Burns [Kat94].

10.1. Taylor expansion of temporal functions. The proof of the first part of lemma consists of
establishing a formula for the so-called temporal function τ ik using the Campbell-Baker-Hausdorff
formula and then proving the that the higher order terms in the latter are O(e−2ti).

Fix k ∈ Iρ,j and recall the elements n−ρ,k ∈ N− which were defined by the displacement of the

points xρ,k from yρ along N
− inside the flow box Bρ; cf. (9.39). We also recall the elements uk ∈ n−α

and skn
−
2α chosen so that n−ρ, k = exp(uk + sk). In what follows, we set

X = uk + sk.

Given Y ∈ n+, we write Yα and Y2α for its n+α and n+2α components respectively.
Let ω denote the vector in the Lie algebra g of G generating the geodesic flow, i.e. gt = exp(tω).

Recall that M denotes the centralizer of {gt : t ∈ R} in G. Then, denoting by m its Lie algebra,
we have the splitting g = R · ω ⊕m⊕ n− ⊕ n+. For v ∈ g, let π0(v) ∈ R be such that π0(v)ω is the
image of v under the projection g → R · ω parallel to m⊕ n− ⊕ n+.

Recall the vectors wi = vi + ri ∈ n+ defined above Lemma 9.11, where vi and ri denoted the n+α
and n+2α components of wi respectively. We also recall the return times ti in (9.60). For Y ∈ n+,
let Y i = log(exp(Ad(g−ti)(Y )) exp(wi)) ∈ n+. In particular, Y i takes the form

Y i = (vi + e−tiYα) + (ri + e−2tiY2α + e−ti [Yα, vi]/2).

Let Y i
α = vi + e−tiYα and Y i

2α = ri + e−2tiY2α + e−ti [Yα, vi]/2.
By the Campbell-Baker-Hausdorff formula15, we have that exp(X) exp(Y i) = exp(Z), where

Z = X +Y i+ [X,Y i]/2+ . . . can be expressed as a sum of iterated brackets of X and Y i. In what
follows, we write Z(Y ) instead of Z to signify the dependence on Y . Roughly, τ ik(Y ) is given by
a certain projection of Z(Y ) along the flow direction and the lemma will follow from an estimate
on the higher order terms in this expansion. More precisely, it follows from the definitions of the
functions τk (cf. (9.51)) and τ ik (cf. (9.60)) that

τ ik(Y ) = π0(Z(Y
i)). (10.1)

Denote by wi
k the sum of the terms in the definition of Z(Y ) involving iterated brackets of X

and vi + ri and let cik = π0(w
i
k). Our next step is to show that

π0(Z(Y
i)) = cik + π0([uk, e

−tiYα]/2) + π0(e
−ti [sk, [Yα, vi]]/4) +O(e−2ti).

15This formula is only valid when X and Y i are sufficiently close to the origin. As in Remark 2.1, by scaling our
metrics if necessary, we shall assume that this formula is valid whenever exp(Y i) ∈ N+

1 and exp(X) ∈ N−

1 to simplify
notation.
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To this end, note that the terms in the expansion of Z(Y i) we wish to estimate are of the
following shapes:

(1) [X, e−2tiY2α].
(2) Iterated brackets involving one copy of X and more than one copy of Y i − vi − ri.
(3) [sk, e

−tiYα].
(4) Iterated brackets involving a single copy of e−tiYα and more than one copy of X.
(5) Iterated brackets involving a single copy of e−ti [Yα, vi] and more than one copy of X.

Since Y i − vi − ri has size O(e−ti), this implies that the sum of the terms in Items (1) and (2) has
size O(e−2ti), and hence so does its image under π0.

To estimate the remaining terms, recall that if gβ and gγ are Ad(gt) eigenspaces in the Lie

algebra g of G corresponding to the eigenvalues eβt and eγt respectively, then we have the relation
[gβ, gγ ] ⊆ gβ+γ . This implies that the image under π0 of the terms in Items (3) and (4) is 0. This
also immediately implies the same conclusion for the terms in Item (5) except possibly for the term
e−ti [uk, [uk, [Yα, vi]]], which belongs to m+ R · ω.

We claim that [uk, [uk, [Yα, vi]]] belongs to m, and hence its image under π0 is 0. Let θ denote a
Cartan involution of g sending ω to −ω. In particular, θ fixes m pointwise and sends n+ onto n−

respecting their decompositions into Ad(gt)-eigenspaces. Denote by B the Killing form on g and
by Z ′ the vector [uk, [uk, [Yα, vi]]].

Recall that B(ω, ω) 6= 0 and ω is orthogonal to m with respect to B, i.e. B(ω, x′) = 0 for all
x′ ∈ m. Hence, it suffices to show that B(ω,Z ′) = 0. By a slight abuse of notation, denote by α the
eigenvalue of ad(ω) on n+α . Then, using properties of the Killing form and that uk ∈ n−α , we obtain

B(ω,Z ′) = B([ω, uk], [uk, [Yα, vi]]) = −αB(uk, [uk, [Yα, vi]]) = −αB([uk, uk], [Yα, vi]) = 0.

Thus, taking cik,ℓ = cik − ciℓ and 〈·, ·〉 : n− × n+α → R to be the following bilinear form: for any

u ∈ n−α , s ∈ n−2α, and Yα ∈ n+α :

〈u+ s, Yα〉 := π0([u, Yα]/2) + π0([s, [Yα, vi]]/4), (10.2)

completes the proof of the first part of the lemma.

10.2. The bilinear form and orthogonal projections. To prove the second part, fix some
(u, s) ∈ n−α × n−2α with u 6= 0. First, suppose that vi 6= 0. Recall that the symmetric bilinear form
Q(v,w) := −B(v, θ(w)) is positive definite and hence induces a metric on g. Let ‖·‖′ and dist′

denote the induced norm and metric respectively. Then, the restriction of ‖·‖′ to n−α is equivalent
to our chosen norm on n−α used in (2.8) (and hence the same holds for the corresponding metrics).

Let v̄i = vi/ ‖vi‖. Denote by pi : n
−
α → R the linear functional given by pi(u

−) := π0([u
−, v̄i])

and let

Li = kernel(pi).

We claim that θ(vi) is orthogonal to Li with respect to Q. More succinctly, we write

Q(θ(vi), Li) = 0. (10.3)

Let us first show how this claim implies the lemma. Note that since θ(vi) belongs to n−α , non-
degeneracy of Q and (10.3) imply that Li is a proper subspace of n−α . Moreover, we observe
that (10.3) implies that 〈u + s, v̄i〉 is given by an orthogonal projection with respect to Q in the
following sense. Note that orthogonality of m and ω implies that

〈u+ s, v̄i〉 = Q([u, v̄i], ω)/(‖ω‖′)2 = B([u, v̄i], ω)/(‖ω‖′)2,
where we used the fact that θ(ω) = −ω in the second equality. Moreover, from invariance of the
Killing form by Lie brackets and the fact that [ω, vi] = αvi, we obtain

B([u, v̄i], ω) = B(u, [v̄i, ω]) = −αB(u, v̄i) = αQ(u, θ(v̄i)),
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where we also used that θ2 = Id for the last equality. Thus, in light of the orthogonality given
in (10.3), we see that

|〈u+ s, v̄i〉| ≍ |Q(u, θ(v̄i))| ≫ dist′(u,Li) ≫ dist(u,Li),

where we used the equivalence of the restriction of the two norms ‖·‖ and ‖·‖′ to n−α as noted above.
This completes the deduction of the second part of the lemma from (10.3) in the case vi 6= 0.

To prove (10.3), we need the following observations. Let x ∈ Li be arbitrary. Then, we note that
[x, vi] belongs to m by definition of Li. Moreover, arguing as above using the relationship between
π0 and the Killing, we see that

pi(θ(vi)) = α(‖θ(vi)‖′ / ‖ω‖′)2 6= 0.

In particular, [θ(vi), vi] is non-zero and belongs to R · ω. Finally, note that ω is orthogonal to m

with respect to Q. Indeed, given y ∈ m, we have that

Q(y, ω) = B(y, ω) = B(θ(y), θ(ω)) = B(y, θ(ω)) = Q(y, ω),

where we used the fact that θ fixes m pointwise and θ(ω) = −ω. This implies that (y, ω) = 0 for
all y ∈ m as claimed.

Now, let c 6= 0 be such that [θ(vi), vi] = cω. Then, invariance of the Killing form implies

0 = B([θ(vi), vi], [x, vi]) = cB([ω, x], vi) = cαB(x, vi) = cαQ(x, vi),

where we again used that [ω, vi] = αvi and θ
2 = Id. As x was arbitrary, this implies (10.3).

If vi = 0, then a similar argument shows that 〈u + s, θ(u)〉 has size ≍ ‖u‖. Hence, the lemma
follows in this case with Li = {0}. This concludes the proof.

Finally, we note that if X is real hyperbolic, then n−2α = {0} = n+2α and (10.2) simplifies to
be 〈u, Yα〉 = π0([u, Yα]/2). In particular, taking Yα = u/ ‖u‖ and arguing as above shows that
‖〈u, ·〉‖ ≫ ‖u‖ = dist(u, 0). Hence, Li can be taken to be {0} in this case.

11. Dimension Increase Under Iterated Convolutions

The goal of this section is to prove that measures that do not concentrate near hyperplanes
in Rd become smoother under iterated self-convolutions in the sense of quantitative increase in
their L2-dimension; cf. Theorem 11.4 below. This result immediately implies Theorem 1.6. As a
corollary, we deduce that the Fourier transforms of such measures enjoy polynomial decay outside
of a very sparse set of frequencies; cf. Corollary 11.5.

Corollary 11.5 is the key ingredient in the proof of Theorem 9.16 where it is applied to (projections
of) conditional measures of the BMS measure. Moreover, the proof of Proposition 9.13 in the case
of cusped non-real hyperbolic manifolds requires a polynomial non-concentration estimate near
hyperplanes which we deduce from Theorem 11.4; cf. Theorem 11.17.

11.1. Non-uniform affine non-concentration. We begin by introducing our non-concentration
hypothesis, which allows for an exceptional set of points and scales where concentration may hap-
pen.

Definition 11.1. Let positive functions λ, ϕ, and C on (0, 1] be given. We say that a Borel
probability measure µ on Rd is (λ, ϕ,C)-affinely non-concentrated at almost every scale if for every
0 < ε, θ ≤ 1, the following holds for all k ∈ N and r ≥ C(θ):

(1) ϕ(x) tends to 0 as x tends to 0.

(2) There is an exceptional set E = E(k, ε, θ, r) ⊂ Rd with µ(E) ≤ C(θ)2−λ(θ)k.
(3) For every x ∈ supp(µ) \ E , there is a set of good scales N (x) ⊆ [0, k] ∩ N with #N (x) ≥

(1− θ)k.
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(4) For every x ∈ supp(µ) \ E , every affine hyperplane W < Rd and every ℓ ∈ N (x), we have

µ(W (ε2−rℓ) ∩B(x, 2−rℓ)) ≤ (ϕ(θ) + C(θ)ϕ(ε))µ(B(x, 2−rℓ)), (11.1)

where W (ρ) and B(x, ρ) denote the ρ-neighborhood of W and the ρ-ball around x respec-
tively for any ρ > 0.

We say µ is affinely non-concentrated at almost every scale when λ, ϕ and C are understood from
context. We say µ is affinely non-concentrated at almost every scale up to scale k0 if µ satisfies the
above conditions only for k ≤ k0.

This definition says that µ sees strong non-concentration near hyperplanes happening at nearly
all scales outside of a small exceptional set, however the size of the exceptional set is allowed to
depend on the strength and frequency of non-concentration.

Remark 11.2. Definition 11.1 is the non-concentration property we are able to verify for projec-
tions of the measures µux appearing in the proof of Theorem 9.2; cf. (9.70) . For purposes of following
the arguments in this section however, there is no harm in considering the example λ(x) = βx for
some β > 0 and the stronger bound

µ(W (ε2−rℓ) ∩B(x, 2−rℓ)) ≤ C(θ)ϕ(ε)µ(B(x, 2−rℓ)),

in place of (11.1). In fact, the above bound holds for the measures µux themselves as can be deduced
from the proof of Corollary 12.2.

For k ∈ N, let

Λk := 2−kZd,

and let Dk be the dyadic partition of Rd given by translates of 2−k[0, 1)d by Λk. For x ∈ Rd, we
denote by Dk(x) the unique element of Dk containing x. For a Borel probability measure ν, we
define νk ∈ Prob(Λk) to be the scale-k discretization of ν, i.e.

νk =
∑

λ∈Λk

ν(Dk(λ))δλ. (11.2)

For any µ ∈ Prob(Λk) and 0 < q <∞, we set

‖µ‖q :=



∑

λ∈Λk

µ(λ)q




1/q

.

The convolution µ ∗ ν of two probability measures µ and ν on Rd is defined by

µ ∗ ν(A) =
∫ ∫

1A(x+ y) dµ(x) dν(y),

for all Borel sets A ⊆ Rd.
The following lemma allows us to pass between measures and their discretizations.

Lemma 11.3. Let µ and ν be Borel probability measures on Rd.

(1) If µ is (λ, ϕ,C)-affinely non-concentrated at almost every scale, then, there is a ≥ 1 such
that for every k ∈ N, µk is (λ, aϕ, aC)-affinely non-concentrated up to scale k.

(2) For all q > 1 and k ∈ N, we have ‖(µ ∗ ν)k‖q ≍q,d ‖µk ∗ νk‖q.

The lemma is a consequence of the fact that a ball of radius r with 2−k−1 < r ≤ 2−k, k ∈ Z, can
be covered with Od(1) elements of Dk and we omit the details.

With this notation, we can now state our quantitative results.
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Theorem 11.4. Let λ, ϕ and C be given. For every ε > 0, there exist natural numbers n and k0
such that for every (λ, ϕ,C)-affinely non-concentrated Borel probability measure µ supported inside
a ball of radius 2m around the origin in Rd and for every k ≥ k0, we have

‖µ∗nk ‖22 ≪ 22dm(n−1)−(d−ε)k ,

with implicit constant depending only on d and the non-concentration parameters of µ. In particular,
for all P ∈ Dk, we have

µ
∗(n+1)
k (P ) ≪d 2

dmn−(d−ε)k/2.

The following is a more precise version of Corollary 1.8.

Corollary 11.5. Let µ be a compactly supported Borel probability measure on Rd such that µ is
affinely non-concentrated at almost every scale. Then, for every ε > 0, there is λ > 0 such that for
every T >, the set

{
w ∈ Rd : ‖w‖ ≤ T and |µ̂(w)| ≥ T−λ

}

can be covered by Oε(T
ε) balls of radius 1, where µ̂ denotes the Fourier transform of µ. The implicit

constant depends only on ε and on the diameter of the support of µ and its non-concentration
parameters.

11.2. Asymmetric Balog-Szemerédi-Gowers Lemma. The following is the asymmetric ver-
sion of the Balog-Szemrédi-Gowers Lemma due to Tao and Vu. Throughout the section, for a finite
set A ⊂ Rd, we denote by |A| its cardinality.

Theorem 11.6 (Corollary 2.36, [TV06]). Let A,B ⊂ Rd be finite sets such that ‖1A ∗ 1B‖22 ≥
2α|A||B|2 and |A| ≤ L|B| for some 0 < α ≤ 1 and L ≥ 1. Let ε′ > 0 be given. Then, there exist
sets A′ ⊆ A and B′ ⊆ B such that

(1) A′ and B′ are sufficiently dense: |A′| ≫ε′ α
Oε′(1)L−ε′ |A| and |B′| ≫ε′ α

Oε′ (1)L−ε′ |B|.
(2) A′ is approximately invariant by B′: |A′ +B′| ≪ε′ α

−Oε′ (1)Lε
′ |A′|.

Remark 11.7. The quoted result is stated in terms of the additive energy E(A,B) in loc. cit.,

which is nothing but ‖1A ∗ 1B‖22.

In order to be able to bring our affine non-concentration hypothesis into play, we will need to
convert the approximate additive invariance provided by the Balog-Szemerédi-Gowers Lemma into
exact additive obstructions to flattening under convolution, i.e. affine subspaces. Our key tool for
this step is Hochman’s inverse entropy theorem for convolutions of measures, stated in the next
subsection.

11.3. Hochman’s inverse theorem for entropy. We need some notation before stating the
result. For a Borel probability measure ν on N+, the entropy Hk(ν) of ν at scale k is defined to be

Hk(ν) := −1

k

∑

P∈Dk

ν(P ) log2 ν(P ).

By concavity of log and Jensen’s inequality, we have the following elementary inequality

Hk(ν) ≤
log2 # {P ∈ Dk : ν(P ) 6= 0}

k
. (11.3)

It also follows from Jensen’s inequality that the above inequality becomes equality if and only if ν
gives equal weights to the elements P of Dk with ν(P ) 6= 0.
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Given a Borel probability measure ν on Rd and z ∈ Rd with ν(Dk(z)) > 0, we define the
component measure νz,k by

∫
f dνz,k :=

1

ν(Dk(z))

∫

Dk(z)
f(T (y)) dν(y),

where T : Dk(z) → D0(0) is the map given by composing scaling by 2k with translation by the
element of Λk sending Dk(z) to Dk(0).

Given a Borel subset P ⊆ Prob(N+) and k ∈ N, we define

P0≤i≤k(ν
z,i ∈ P) :=

1

k + 1

k∑

i=0

∫
1P(ν

z,i) dν(z).

Given a linear subspace 0 ≤ V ≤ Rd, ε > 0 and a probability measure ν, we say that ν is
(V, ε)-concentrated if there is a translate L of V such that ν(L(ε)) > 1 − ε. We say that ν is
(V, ε,m)-saturated for a given m ∈ N if

Hm(ν) ≥ Hm(πW ν) + dimV − ε, (11.4)

where W = V ⊥ and πW ν is the pushforward of ν under the orthogonal projection to W .

Theorem 11.8 (Theorem 2.8, [Hoc15]). For every ε,R > 0 and r ∈ N, there are σ > 0 and
m0, k0 ∈ N such that for all k ≥ k0 and all Borel probability measures ν and µ on [−R,R]d
satisfying

Hkr(µ ∗ ν) < Hkr(ν) + σ,

there exists a sequence of subspaces 0 ≤ V0, . . . , Vk ≤ Rd such that

P0≤i≤k

(
νx,ir is (Vi, ε) − concentrated and
µx,ir is (Vi, ε,m0)− saturated

)
> 1− ε.

Remark 11.9. Theorem 11.8 is stated in [Hoc15] in the case r = 1. However, the extension to
general step-size is rather routine since it roughly corresponds to working in base 2r in place of
base 2.

11.4. Flattening of discretized measures. The following quantitative result is the main ingre-
dient in the proof of Theorem 11.4.

Proposition 11.10. Let positive functions λ, ϕ, and C on (0, 1] be given. Then, for every 0 < γ <
1, there exist η > 0 and k1, r ∈ N, depending on γ, λ,C, and ϕ, such that for all integers k ≥ k1
the following holds. Let µ and ν be arbitrary probability measures supported on 2−krZd such that µ
is (λ, ϕ,C)-affinely non-concentrated up to scale k and

‖ν‖22 > 2−(1−γ)dkr+2dn, (11.5)

then

‖µ ∗ ν‖2 ≤ 2dm−ηkr ‖ν‖2 , (11.6)

where m,n ∈ N are such that µ is supported inside the 2m-ball around the origin and ν is supported
inside the 2n-ball.

This proposition says that the convolution of an arbitrary measure ν with a non-concentrated
measure causes ν to “spread out”, i.e. leads to a quantitative reduction in the ℓ2 norm of ν, unless
‖ν‖2 is already very close to 0.
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Lemma 11.11 (Effect of scaling the support). Let µ and ν be Borel probability measures on 2−kZd

for some k such that their supports are contained inside balls of radius 2m and 2n in Rd respectively
for some m,n ∈ N. Let µ̃ (resp. ν̃) be the measure obtained from µ (resp. ν) by composing it with
the scaling map sending the 2m-ball (resp. 2n-ball) onto the 1-ball. Suppose that ‖µ̃ ∗ ν̃‖2 ≤ δ ‖ν̃‖2
for some δ > 0. Then, ‖µ ∗ ν‖2 ≤ 2dmδ ‖ν‖2.

Proof. Note that we may regard any measure τ on 2−kZd as an absolutely continuous measure
to Lebesgue on Rd with density function, denoted τ , that is constant on Dk(λ) and equal to
τ(Dk(λ))2

dk for every λ ∈ 2−kZd. In particular, ‖τ‖2 is equal to ‖τ‖L2(Rd) in this notation. We

apply this observation to all the measures appearing in the lemma. The lemma now follows upon
observing that for every P ∈ Dk, a change of variables shows that µ ∗ ν(P ) = 2d(m+n)µ̃ ∗ ν̃(P ) �

In light of this lemma, we may assume in the proof of Proposition 11.10 that

m = 0 = n, i.e. µ and ν are supported on 2−kZd ∩ [0, 1)d. (11.7)

The remainder of this subsection is dedicated to the proof of Proposition 11.10. Let γ > 0 and
η > 0 be small parameters and r, k ∈ N be a large integer to be specified over the course of the
proof. We frequently assume that γ is sufficiently small so that various properties hold and the
values of η, r and k will depend only γ and the non-concentration parameters. Suppose towards a
contradiction that (11.5) holds but (11.6) fails.

11.4.1. From measures to sets. We first translate the failure of (11.6) from measures to indicator
functions of certain sets using standard arguments. This allows us to apply the Balog-Szemerédi-
Gowers Lemma.

Lemma 11.12 (Lemma 3.3, [Shm19]). For every η > 0, the following holds for all large enough
ℓ. Suppose that µ and ν are probability measures supported on Λℓ ∩ [0, 1)d such that ‖µ ∗ ν‖2 is at

least 2−ηℓ ‖ν‖2. Then, there exist j, j′ ≤ 4ηℓ such that the sets

A :=
{
x ∈ Λℓ : 2

−j−1 ‖ν‖22 < ν(x) ≤ 2−j ‖ν‖22
}
, (11.8)

B :=
{
x ∈ Λℓ : 2

−j′−1−dℓ < µ(x) ≤ 2−j
′−dℓ

}
(11.9)

satisfy

(1) ‖1A ∗ 1B‖22 ≥ 2−4ηℓ|A||B|2,
(2) ‖ν|A‖2 ≥ 2−2ηℓ ‖ν‖2, and
(3) µ(B) ≥ 2−2ηℓ.

Remark 11.13. The above lemma was proved in [Shm19] for measures on R, where d = 1, however
the short argument, based on the pigeonhole principle, goes through in the general case where one
uses that

#
{
P ∈ Dℓ : P ⊂ [0, 1)d

}
= 2dℓ, ∀ℓ ≥ 1, (11.10)

to obtain the the bounds in the definition of the set B in place of the analogous 1-dimensional
count used in loc. cit.

Let A and B be as in Lemma 11.12, applied with ℓ = kr. Taking η small enough, we note
that (11.5) and the definition of A imply that

|A| ≤ 24ηkr+1+(1−γ)dkr ≤ 2(1−γ/2)dkr+1. (11.11)
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11.4.2. From ℓ2-concentration to entropy concentration. Lemma 11.12 enables us to apply Theo-
rem 11.6 with α = 2−4ηkr−1, L = max {1, |A|/|B|}, and ε′ a small parameter to be chosen small
enough depending on ε. Let A′ ⊆ A and B′ ⊆ B be the sets provided by Theorem 11.6. Let ν ′ and
µ′ be the uniform probability measures supported on A′ and B′ respectively. Combining the above
estimate with (11.3), we obtain

Hkr(µ
′ ∗ ν ′) ≤ log2 |A′ +B′|

kr
≤ log2 |A′|

kr
+Oε′(η) + log2 L

ε′/kr.

Since ν ′ is the uniform measure on A′, the remark following (11.3) thus implies that

Hkr(µ
′ ∗ ν ′) ≤ Hkr(ν

′) +Oε′(η) + log2 L
ε′/kr.

By (11.11), we have log2 L
ε′ ≤ ε′ log2 |A| ≤ ε′((1 − γ/2)dkr + 1).

Let

ε = 2−r,

and let σ > 0 and k0 ∈ N be the parameters provided by Theorem 11.8 applied with ε, r and with
R = 1. We shall assume that k is chosen to be larger than k0. Hence, taking ε′ small enough
(depending on σ) and η small enough (depending on ε′ and σ), we obtain

Hkr(µ
′ ∗ ν ′) < Hkr(ν

′) + σ. (11.12)

We show that the conclusion of Theorem 11.8 is incompatible the non-concentration properties
of the measure µ. Let V0, . . . , Vk be the subspaces provided by Theorem 11.8 and

S =
{
0 ≤ i ≤ k : Vi = Rd

}
.

We begin by showing that a significant proportion of the V ′
i s are proper subspaces. Intuitively,

being Rd-saturated on most scales means the measure ν is close to being absolutely continuous to
Lebesgue on Rd, in which case its ℓ2-norm would be very close to 2−dk. This would contradict (11.5).
Lemma 11.14. If ε is chosen small enough and k large enough depending on γ, then #S <
(1− γ/10)k.

Proof. Let γ1 = γ/10 and suppose that #S ≥ (1− γ1)k. Then, Theorem 11.8 and the definition of
saturation (cf. (11.4)) imply that

1

k + 1

k∑

i=0

∫
Hm0((ν

′)z,ir) dν ′(z) ≥ (1− γ1)(1 − ε)(d− ε) = (1− γ1)d−O(ε).

By [Hoc14, Lemma 3.4]16, this yields the following estimate on Hkr(ν
′):

Hkr(ν
′) ≥ (1− γ1)d−O(ε)−Or

(m0

k

)
≥ (1− γ1)d−O(ε),

where the second inequality holds whenever k is large enough depending on r and m0. Moreover,
by the remark following (11.3), we have Hkr(ν

′) = log2 |A′|/kr ≤ log2 |A|/kr. Hence, we obtain

that |A| ≥ 2((1−γ1)d−O(ε))kr. This contradicts (11.11) when ε is small enough compared to γ. �

11.4.3. A contradiction to concentration. Roughly speaking, our strategy is as follows. Armed with
Lemma 11.14, we show that the concentration provided by Theorem 11.8 together with the non-
concentration property of µ imply that B′ must have a very small measure. To get a contradiction,
we begin by deriving a lower bound on the measure of B′ with respect to our original measure µ
(not µ′). Recall the parameter ε′ chosen above (11.12).

Lemma 11.15. If η is chosen sufficiently small depending on ε′, then for all sufficiently large k,

µ(B′) ≥ 2−2dε′kr.

16The cited result is stated for step-size r = 1, however its short proof extends to work for any r with minor changes.
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Proof. Recall that the set B was defined in (11.8) and B′ ⊆ B is provided by Theorem 11.6 with
α = 2−4ηkr−1 and L = max {1, |A|/|B|}. We calculate using Lemma 11.12 and Theorem 11.6:

µ(B′) =
∑

u∈B′

µ(u) ≥ 2−j
′−dkr−1|B′| ≫ε′ 2

−j′−dkr2−Oε′ (ηkr)L−ε′ |B| ≥ 2−j
′−dkr2−Oε′(ηkr)|B||A|−ε′ .

By (11.11), we have that |A|ε′ ≪ 2dε
′kr. Moreover, Lemma 11.12 implies that

2−2ηkr ≤ µ(B) ≤ 2−j
′−dkr|B|.

The lemma then follows once η is chosen sufficiently small depending on ε′. �

Next, we define the following set of scales where the concentration provided by Theorem 11.8
gives non-trivial information:

C := {0, . . . , k} \ S =
{
0 ≤ i ≤ k : Vi � Rd

}
.

By Lemma 11.14, we know that

|C| ≥ γ1k, γ1 = γ/10. (11.13)

Our next goal is to transfer the concentration information provided by Theorem 11.8 for µ′ to
the measure µ. To do so, we convert the probabilistic concentration provided in the theorem into
geometric containment into hyperplane neighborhoods.

Recall that {Dℓ : ℓ ∈ N} is a refining sequence of dyadic partitions of Rd and Λℓ = 2−ℓZd. For
i ∈ C and w ∈ Λir, let Vw = Vi +w and set

ρi = 2−ir, Qi =
⋃

w∈Λir

V (ερi)
w ∩ Dir(w).

For x ∈ Rd, we set

C(x) = {i ∈ C : x ∈ Qi} .
In particular, for x ∈ B′, C(x) consists of scales at which x witnesses the concentration of B′.

Lemma 11.16. If k is large enough, then the subset

B′′ =
{
x ∈ B′ : |C(x)| ≥ |C|/2

}
(11.14)

satisfies

µ(B′′) ≥ 2−3dε′kr.

Proof. Let E = B′ \ B′′. First, we give an upper bound on the measure of E with respect to µ′.
Let Qci = Rd \Qi. Then, the concentration provided by Theorem 11.8 implies that

∫ ∑

i∈C
1Qc

i
(x) dµ′(x) < ε|C|.

On the other hand, we have
∫ ∑

i∈C
1Qc

i
(x) dµ′(x) ≥

∫

E

∑

i∈C
1Qc

i
(x) dµ′(x) ≥ |C|µ′(E)/2.

Recalling that µ′ is the uniform measure on B′, these inequalities show that |B′′| ≥ (1 − 2ε)|B′|.
Hence, the assertion of the lemma follows from Lemma 11.12 by the same argument as in the proof
of Lemma 11.15. �
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Parameter Definition
ε 2−r

ρi 2−ir

γ1 γ/10
γ2 small parameter depending on γ
γ3 γ1/2− γ2
ε′ small parameter depending on ε and γ
η small parameter depending on ε′

m ⌈γ3k⌉

Table 2. Summary of parameters chosen in the proof of Proposition 11.10.

Note that the scales C(x) may vary with x. Similarly, the scales at which our affine non-
concentration hypothesis holds also vary from point to point. To arrive at a contradiction, we
partition B′′ into sets where there is a fixed subset of scales of C at which the aforementioned
phenomena hold simultaneously and find an upper bound on the measure of each piece separately.

Let B′′ be as in Lemma 11.16. Let 0 < γ2 < γ1/2 be a small parameter to be chosen depending
only on γ. Recall the notation in Definition 11.1. Let E be the exceptional set provided by this
definition for our choices of k, r, and with θ = γ2 and 3ε in place of ε. Let B′′′ = B′′ \ E . By taking

r ≥ C(γ2), then our non-concentration hypothesis implies µ(E) ≤ C(γ2)2
−λ(γ2)k. Hence, taking ε′

small enough depending on r and λ(γ2), we can ensure that

µ(B′′′) ≥ 2−3dε′kr − C(γ2)2
−λ(γ2)k ≥ 2−k

√
ε′ , (11.15)

for all large enough k. For x ∈ B′′′, we let

G(x) = C(x) ∩ N (x).

By (11.13) and the definition of B′′ in (11.14), setting γ3 = γ1/2− γ2, we also have

|G(x)| ≥ γ3k, ∀x ∈ B′′′.

Given ̟ ⊆ {0, . . . , k}, we let

B′′′
̟ :=

{
x ∈ B′′′ : ̟ ⊆ G(x)

}
.

Then, the sets {B′′′
̟ : |̟| = ⌈γ3k⌉} provide a cover of B′′′. Hence, we have that

µ(B′′′) ≤
∑

|̟|=⌈γ3k⌉
µ(B′′′

̟). (11.16)

Fix a set ̟ ⊂ [0, k] ∩N as above for which B′′′
̟ 6= ∅ and denote by ℓ1 < ℓ2 < · · · < ℓm its elements.

In particular, we have

m := |̟| = ⌈γ3k⌉. (11.17)

To simplify notation, we set

F = B′′′
̟.

We recall that Λℓ(F ) denotes those elements v ∈ Λℓ = 2−ℓZd for which the corresponding cells
Dℓ(v) intersect F non-trivially. Hence, we have the following basic estimate that will be allow us
to proceed by induction on scales:

µ(F ) ≤
∑

v∈Λrℓm (F )

µ(Drℓm(v)) =
∑

w∈Λrℓm−1
(F )

∑

v∈Λrℓm (F )
Drℓm(v)⊂Drℓm−1

(w)

µ(Drℓm(v)). (11.18)

To proceed, let us summarize what our choices above entail: for every 1 ≤ i ≤ m, we have
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(1) For every w ∈ Λrℓi(F ), the affine subspace Vw = Vℓi + w satisfies

F ∩ Drℓi(w) ⊆ F ∩ Drℓi(w) ∩ V
(ερℓi)
w .

(2) Vℓi 6= Rd.
(3) F is disjoint from the exceptional set for non-concentration, i.e. F ∩ E(k, 3ε, θ) = ∅.
(4) ℓi is a good scale for non-concentration at every point in F , i.e. ℓi ∈ N (x) for all x ∈ F .

Observe that if V
(ερℓi )
w intersects a box Drℓi+1

(v) non-trivially, then since Drℓi+1
(v) has diameter

at most 2ερℓi = 2ε2−rℓi , we obtain

Drℓi+1
(v) ⊆ V

(3ερℓi )
w . (11.19)

This containment, along with Item (1), imply that for every 1 ≤ i < m and w ∈ Λrℓi(F ), we have
that

∑

v∈Λrℓi+1
(F )

Drℓi+1
(v)⊂Drℓi

(w)

µ(Drℓi+1
(v)) ≤ µ(V (3ερi)

w ∩ Drℓi(w)).

Recall that µ is non-concentrated near affine subspaces in the sense of Definition 11.1. Hence, for
all i and w ∈ Λrℓi(F ), Items, (2), (3) and (4) along with our non-concentration hypothesis imply
that

µ
(
V

(3ερrℓi )
w ∩ Drℓi(w)

)
≤ (ϕ(γ2) + C(γ2)ϕ(3ε)) µ (Drℓi(w)) . (11.20)

Combining these inequalities for i = m− 1 with (11.18), we obtain

µ(F ) ≤ (ϕ(γ2) + C(γ2)ϕ(3ε))
∑

w∈Λrℓm−1
(F )

µ(Drℓm−1(w)).

Hence, by induction, we obtain

µ(F ) ≤ (ϕ(γ2) + C(γ2)ϕ(3ε))
m .

Recall that F = B′′′
̟ and that ̟ is a subset of {0, . . . , k} with cardinality m (cf. (11.17)). In view of

the elementary estimate
( k
m

)
≤ (ke/m)m, there are at most (e/γ3)

m summands in (11.16). Hence,
the above estimate, combined with (11.16), implies that

µ(B′′′) ≤
(
eϕ(γ2) + eC(γ2)ϕ(3ε)

γ3

)γ3k
.

On the other hand, by (11.15), we have the lower bound µ(B′′′) ≥ 2−
√
ε′k. In particular, we arrive

at the inequality

2−
√
ε′ ≤

(
eϕ(γ2) + eC(γ2)ϕ(3ε)

γ3

)γ3
.

Recall that γ1 = γ/10, γ2 is to be chosen smaller than γ1/2, and γ3 = γ1/2−γ2. Hence, by choosing
γ2 first to be sufficiently small relative to γ1, then choosing ε very small, depending on γ2, we can
make the right side of the above inequality at most 1/2 say. These choices only force ε′ to be chosen
much smaller. This gives a contradiction since the left side gets closer to 1 as ε′ decreases.
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11.5. Proof of Theorem 11.4. Let η > 0 and r, k1 ∈ N be the parameter provided by Proposi-
tion 11.10. Let n ∈ N be the smallest integer such that (n− 1)η > (d− ε)/2. Note that by Young’s
inequality, for all a, b, k ∈ N, we have that

∥∥∥µ∗ak ∗ µ∗bk
∥∥∥
2
≤ ‖µ∗ak ‖1

∥∥∥µ∗bk
∥∥∥
2
=
∥∥∥µ∗bk

∥∥∥
2
.

We first observe that it suffices to prove the first assertion for multiples of r. Indeed, given any
probability measure ν, k ∈ N, 0 ≤ s < r, we have

∑

P∈Dkr+s

ν(P )2 =
∑

Q∈Dkr

∑

P∈Dkr+s,P⊆Q
µ(P )2 ≤ 2dr

∑

Q∈Dkr

ν(Q)2.

Let k ≥ k1 be given and suppose that
∥∥∥µ∗ℓkr

∥∥∥
2

2
≤ 22ℓdm−(d−ε)kr, (11.21)

for some ℓ ∈ N with 1 ≤ ℓ ≤ n. It follows that ‖µ∗nkr‖22 ≤ 22ndm−(d−ε)kr as desired. Now, suppose
that (11.21) fails for all 1 ≤ ℓ ≤ n. Then, applying Proposition 11.10 (n − 1)-times by induction,
we see that

‖µ∗nkr‖2 ≤ 2(n−1)(dm−ηkr) ‖µkr‖2 ≤ 2(n−1)(dm−ηkr),

where the second inequality follows since ‖µkr‖2 ≤ 1. On the other hand, failure of (11.21) for
ℓ = n implies that

ndm− (d− ε)kr/2 < (n− 1)(dm − ηkr).

This gives a contradiction to our choice of n, thus proving the first assertion. The (short) deduction
of the second assertion from the first can be found for instance in [MS18, Proof of Lemma 5.2].

11.6. Proof of Theorem 1.6, Corollary 1.8, and Corollary 11.5 from Theorem 11.4.

Note that being uniformly affinely non-concentration immediately implies that µ is affinely non-
concentrated at almost every (in fact at every) scale with an empty exceptional set. Hence, the
second assertion of Theorem 11.4 immediately implies that dim∞ µ∗n tends to d as n → ∞. The
same holds for dimq µ

∗n due to the inequality dimq µ ≥ dim∞ µ for all q > 1. Finally, the first
assertion of Theorem 1.6 follows readily from Proposition 11.10; cf. [RS20, Proof of Theorem 1.1]
for details of this deduction.

Corollaries 1.8 and 11.5 follows from Theorem 11.4 via the well-known relationship between
L2-dimension and Fourier transform. Namely, by [FNW02, Proof of Claim 2.8], we have17

∫

‖ξ‖≤1/r
|µ̂(ξ)|2 dξ ≪d r

−2d

∫
µ(B(x, r))2 dx.

for every r > 0 and any Borel probability measure µ on Rd. Moreover, if k ∈ N is such that
2−(k+1) < r ≤ 2−k, then B(x, r) can be covered by Od(1) elements of the partition Dk. It follows
that ∫

µ(B(x, 2−k))2 dx≪d 2
dk
∑

P∈Dk

µ(P )2 = 2dk ‖µk‖22 .

Hence, Corollary 11.5 follows from Theorem 11.4, Chebychev’s inequality, and the fact that the
Fourier transform is Lipschitz; i.e.

|µ̂(ξ1)− µ̂(ξ2)| ≪ ‖ξ1 − ξ2‖ .
17The reference [FNW02] proves this fact in the case d = 1, however the proof works equally well for Rd for any d.
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11.7. Polynomial affine non-concentration. In this section, we show Theorem 11.4 implies
quantitative non-concentration estimates near hyperplanes.

Theorem 11.17. Suppose µ is a compactly supported Borel probability measure on Rd which is
affinely non-concentrated at almost every scale. Then, there exist κ > 0 and C ≥ 1, depending on
the non-concentration parameters of µ and the diameter of its support, such that for all ε > 0 and
all proper affine hyperplanes W < Rd, we have that µ(W (ε)) ≤ Cεκ.

We first need the following useful observation which translates polynomial non-concentration for
self-convolution into a similar estimate for the original measure.

Lemma 11.18. Let ν be a Borel probability measure, ε, α,C > 0 be arbitrary constants, and
W < Rd be a proper affine hyperplane. Assume that ν∗2(W (ε)) ≤ Cεα. Then, ν(W (ε/2)) ≤ Cεα/2.

Proof. Note that the definition of convolution implies

ν∗2(W (ε)) =

∫ ∫
1W (ε)(x+ y) dν(x) dν(y) =

∫
ν
(
W (ε) − x

)
dν(x).

Hence, by Chebychev’s inequality and our hypothesis on ν, the set

B =
{
x ∈ Rd : ν

(
W (ε) − x

)
> εα/2

}

has ν measure at most Cεα/2. Hence, the conclusion of the lemma follows if W (ε/2) is contained
inside B. Otherwise, let x ∈ W (ε/2) \ B and observe that W (ε/2) is contained inside W (ε) − x.

However, the latter set has ν measure at most εα/2 since x /∈ B. Hence, the lemma follows in this
case as well. �

We are now ready for the proof of Theorem 11.17.

Proof of Theorem 11.17. Let m ∈ N be such that the support of µ is contained in a ball of radius
2m around the origin. By Corollary 11.4, we can find n ∈ N and r0 > 0, depending only on the
non-concentration parameters of µ, such that

µ∗2
n
(B(x, r)) ≪d 2

2ndmrd−1/2, (11.22)

for all 0 < r ≤ r0 and all x ∈ Rd.
Fix one such value of n once and for all. Let ν = µ∗2

n
and let B ⊂ Rd be a large ball containing

the supports of µ∗k for all 0 ≤ k ≤ 2n. Now, let 0 < ε ≤ 1 and a proper affine hyperplane
W < Rd be arbitrary. Then, note that W (ε) ∩B can be covered by OB,d(ε

−(d−1)) balls of radius ε

with multiplicity depending only on d. Then, (11.22) implies that ν(W (ε)) ≤ C ′ε1/2 for a suitable

constant C ′ = C ′(m,n, d) ≥ 1. By Lemma 11.18 and induction on n, this shows that µ(W (ε/2n)) ≤
C ′εκ for κ = 2−n−1. Since ε > 0 was arbitrary, this completes the proof by taking C = C ′2κn. �

12. Non-concentration of Patterson-Sullivan Measures

In this section, we prove verify the non-concentration hypothesis in Corollary 11.5 for (projec-
tions of) the measures µux. This enables us to apply this corollary to prove Proposition 9.13 and
Theorem 9.16 which are the remaining pieces in the proof of Theorem 9.2.

Let L′ denote the collection of all affine hyperplanes of the Lie algebra n+ and denote by L the
set of images of elements of L′ under the exponential map. For ε > 0 and L ∈ L, let L(ε) be the
ε-neighborhood of L. Recall that we fixed a choice of a Margulis function V in Remark 9.1 and
define

t(ε) := sup
x∈N−

1 Ω

sup
L∈L

µux(N
+
1 ∩ L(ε))

V (x)µux(N
+
1 )

. (12.1)

We also recall that Γ is a geometrically finite subgroup of G = Isom+(Hd
K).
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Theorem 12.1. Assume that Γ is Zariski-dense inside G. We have that t(ε) → 0 as ε→ 0.

As a consequence, we verify the hypotheses of Corollary 11.5 for the measures appearing in
Theorem 9.16. Namely, let π : n+ → n+α be the projection parallel to n+2α. For x ∈ N−

1 Ω, denote

by νx the measure π∗µux
∣∣∣N+

1
normalized to be a probability measure.

Corollary 12.2. For every x ∈ N−
1 Ω, the measure νx is affinely non-concentrated at almost every

scale in the sense of Definition 11.1 with parameters depending only on V (x); cf. (12.6).

12.1. Proof of Theorem 12.1. The key tool in our proof is the following result which is a
consequence of the ergodicity of the geodesic flow. The case of real hyperbolic spaces of this result
was known earlier in [FS90] by different methods.

Proposition 12.3 (Corollary 9.4, [ELO22]). For all x ∈ X and L ∈ L, µux(L) = 0.

Theorem 12.1 follows from the above result and a compactness argument. Indeed, fix an arbitrary
η > 0 and note that for all x with V (x) > 1/η, the inner supremum in the definition of t(ε) is
bounded above by η, for any choice of ε > 0. We now show that t(ε) < η for all sufficiently small
ε by restricting our attention to the bounded set of x ∈ N−

1 Ω where V (x) ≤ 1/η. Suppose not and
let xn ∈ N−

1 Ω, Ln ∈ L, εn > 0 be sequences such that V (xn) ≤ 1/η, εn → 0, and

lim inf
n→∞

µuxn(N
+
1 ∩ L(εn)

n )

µuxn(N
+
1 )

> 0. (12.2)

Passing to a subsequence if necessary, we may assume xn → y ∈ N−
1 Ω and Ln converges to some

P ∈ L (in the Hausdorff topology on compact sets). On the other hand, when xn is sufficiently
close to y, we can change variables using (2.3), (2.4), and (2.10) to get

µuxn(N
+
1 ∩ L(εn)

n ) =

∫
fnJn dµ

u
y ,

where Jn is the Jacobian of the change of variables and fn is the indicator function of the image

of N+
1 ∩ L

(εn)
n under this change of variables. By Proposition 12.3, since Ln converges to L, fn

converges to 0 pointwise µuy -almost everywhere. Additionally, Jn converges to 1 everywhere since

xn converges to y. Finally, µuxn(N
+
1 ) remains bounded away from 0 and ∞ since xn remain within

a bounded set for all n. This gives a contradiction to (12.2) and concludes the proof.

12.2. Non-concentration and proof of Corollary 12.2. The main difficulty lies in carefully
associating a set of good scales to a point in the support of the projection of µux. Our key tools are
Theorem 7.9 and Theorem 12.1. To simplify notation, we let

µ̃x := µux

∣∣∣N+
1
, ν̃x := π∗µ̃x,

where π : n+ → n+α is the projection parallel to n+2α. In particular, νx = ν̃x/µ
u
x(N

+
1 ). Let 0 < θ, ε < 1

be arbitrary. Let H, r0 = Oβ,θ(1) be the constants provided by Theorem 7.9 when applied with

ε = βθ2/4 and let r ≥ r0. For ℓ ∈ N, let tℓ = rℓ log 2 and ρℓ = 2−l. For v ∈ n+α , let Lv := π−1(v)

and denote by L(r)
v the r-neighborhood of Lv. Define

E =
{
v ∈ n+α : #

{
1 ≤ l ≤ k : µ̃x

(
n ∈ L(ρk)

v : V (gtℓnx) > H
)
> θµ̃x

(
L(ρk)
v

)}
≥ θk

}
.

Roughly speaking, E consists of vectors v for which a definite proportion points in the “strip” L(ρk)
v

above v spend a definite proportion of their time above height H. We show that this set satisfies
the requirements of Definition 11.1.
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To estimate the measure of E , Let χH denote the indicator function of the set of points z ∈ X
with V (z) > H and consider the following set

Ẽ =



v ∈ n+α : µ̃x


n ∈ L(ρk)

v :
∑

1≤ℓ≤k
χH(gtℓnx) ≥ θ2k/2


 > θ2µ̃x

(
L(ρk)
v

)
/2



 .

Roughly, the set Ẽ is defined by exchanging the sum over l and integration against µ̃x. We claim
that

E ⊆ Ẽ . (12.3)

To see this, let v ∈ E and set µl = µ̃x(n ∈ L(ρk)
v : V (gtℓnx) > H). Then, we have that

θk ≤ #
{
1 ≤ ℓ ≤ k : µl > θµ̃x(L(ρk)

v

}
<

1

θµ̃x(L(ρk)
v )

∫

L(ρk)
v

∑

1≤ℓ≤k
χH(gtℓnx) dµ̃x

≤ k

θµ̃x(L(ρk)
v )


µ̃x


n ∈ L(ρk)

v :
∑

1≤ℓ≤k
χH(gtℓnx) ≥ θ2k/2


 + θ2µ̃x(L(ρk)

v )/2


 .

It follows that

µ̃x


n ∈ L(ρk)

v :
∑

1≤ℓ≤k
χH(gtℓnx) ≥ θ2k/2


 > θ2µ̃x(L(ρk)

v )/2,

which in turn implies that v ∈ Ẽ . This verifies (12.3).
We now turn to finding an upper bound on the measure of Ẽ . First, we note that Fubini’s

Theorem and Theorem 7.9 imply

∫
exp


β

2

∑

1≤l≤k
χH(gtℓnx)


 dµ̃x(n) ≤ µux(N

+
1 ) +

∫ ∞

1
µ̃x


n :

∑

1≤ℓ≤k
χH(gtℓnx) > log t2/β


 dt

≪ eβθ
2k/4V (x)µux(N

+
1 )

(
1 +

∫ ∞

1
t−2 dt

)
.

To bound the integral on the left from below in terms of the measure of Ẽ , let Bk denote a cover of
n+α

∼= Rd by balls of radius ρk/3 with multiplicity bounded only in terms of the dimension d. Then,
we have

ν̃x(Ẽ) ≤
∑

B∈Bk

ν̃x(B ∩ Ẽ) ≤
∑

B∩Ẽ 6=∅
ν̃x(B).

Now, given a ball B ∈ Bk which meets Ẽ and v ∈ B ∩ Ẽ , we note that the definition of Ẽ implies

∫

L(ρk)
v

exp


β

2

∑

1≤ℓ≤k
χH(gtℓnx)


 dµ̃x ≥ θ2eβθ

2k/2µ̃x(L(ρk)
v )/2.

Hence, since π−1(B) ⊆ L(ρk)
v , (12.3) and the bounded multiplicity of Bk imply

ν̃x(E) ≤ ν̃x(Ẽ) ≪ e−βθ
2k/4V (x)µux(N

+
1 )/θ2. (12.4)

It remains to show that our desired non-concentration holds outside of E . For v ∈ n+α , define the
set of scales N (v) as follows:

N (v) =
{
1 ≤ ℓ ≤ k : µ̃x

(
n ∈ L(ρk)

v : V (gtℓnx) > H
)
≤ θµ̃x

(
L(ρk)
v

)}
.
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Let v ∈ supp(ν̃x) \ E . By definition, we have #N (v) ≥ (1 − θ)k. Let ℓ ∈ N (v) and let W1 < n+α
be a proper hyperplane. Let W = π−1(W1). Recall the function t(ε) defined in (12.1). We wish to
show that

µ̃x(W
(ερℓ) ∩ L(ρℓ)

v ) ≪ (θ +Ht(ε))µ̃x(L(ρℓ)
v ). (12.5)

Let {um} denote a maximal (ρℓ/2)-separated subset of the set F consisting of points u in L(ρℓ)
v ∩

supp(µ̃x) with V (gtℓux) ≤ H. Then,
{
N+
ρℓ
· um

}
is a cover of F with uniformly bounded multiplicity.

Let zm = grℓ log 2umx and Wm = Ad(grℓ log 2)(Wu−1
m ). Denote by

∑′
m the sum over those m for

which the ball N+
ρℓ

· um intersects the set L(ρℓ)
v ∩ supp(µ̃x) non-trivially. Changing variables, we

obtain

µ̃x(W
(ερℓ) ∩ L(ρℓ)

v ) ≤ µ̃x(L(ρℓ)
v \ F ) + 2−δrℓ

∑′

m

µuzm(W
(ε)
m ∩N+

1 )

≤ θµ̃x(L(ρℓ)
v ) + t(ε)H2−δrℓ

∑′

m

µuzm(N
+
1 ) since ℓ ∈ N (v)

≪ θµ̃x(L(ρℓ)
v ) + t(ε)Hµux(N

+
1+ρℓ

∩ L(2ρℓ)
v ) since um ∈ F.

Furthermore, using a bounded multiplicity cover of N+
1+ρℓ

∩ L(2ρℓ)
v by balls of radius 4ρℓ centered

inside L(ρℓ/2)
v and using the doubling result in Proposition 3.1, one checks that

µux(N
+
1+ρℓ

∩ L(2ρℓ)
v ) ≪ µux(N

+
1 ∩ L(ρℓ)

v ) = µ̃x(L(ρℓ)
v ).

This implies the estimate (12.5).
Let C1 ≥ 1 be the larger of the implicit constants in (12.4) and (12.5). These two estimates

imply that νx satisfies Definition 11.1 by taking

C(θ) := C1V (x)H/θ2,

ϕ(ε) := C1 max {ε, t(ε)} ,
λ(θ) := βθ2 log 2/4. (12.6)

That ϕ(ε) tends to 0 as ε→ 0 follows by Theorem 12.1.

12.3. Non-concentration and proof of Proposition 9.13. The idea of the proof is similar to
that of [Liv04, Lemma 6.2], with the significant added difficulty being the non-concentration result
for PS measures established in Theorem 11.17. We note however that the case of real hyperbolic
manifolds is much simpler in that it does not require Theorem 11.17 and instead uses only the
doubling result in Proposition 3.1.

Recall our definition of the points xρ,ℓ in (9.39) and of N+
1 (j) in the paragraph above (9.35). For

each ℓ ∈ Iρ,j, fix some uℓ ∈ N+
1 (j) ⊆ N+

3 such that

xρ,ℓ = gγp+ℓ · x, p+ℓ := mρ,ℓgtρ,ℓuℓ. (12.7)

Here, we are using that the groups A = {gt : t ∈ R} and M commute. Denote by P+ the parabolic
subgroup N+AM of G. Since M is compact, |tρ,ℓ| < 1, and N+

1 (j) is contained in N+
3 , there is a

uniform constant C > 0 such that
{
p+ℓ : ℓ ∈ Iρ,j

}
⊂ P+

C , (12.8)

where P+
C denotes the ball of radius C around identity in P+.

Fix some ℓ0 ∈ Iρ,j and denote by Cρ,j,i(ℓ0) denote the set of indices ℓ ∈ Iρ,j such that (ℓ0, ℓ) ∈
Cρ,j,i. Let Z = exp(Li ⊕ n−2α) ⊂ N−. In particular18, Z = {Id} is the trivial group in the real

18This is the reason Theorem 11.17 is not needed in this case.



78 OSAMA KHALIL

hyperbolic case. Recalling the definition of the Cygan metric in (2.8), the definition of Cρ,j,i implies
that

dN−(n−ρ,ℓ(n
−
ρ,ℓ0

)−1, Z) ≤ b−1/10.

Let ǫ := b−1/10 and denote by Z(ǫ) for the ǫ-neighborhood of Z inside N−. Let

ũ−ℓ = n−ρ,ℓ(n
−
ρ,ℓ0

)−1 ∈ Z(ǫ) ∩N−
ιj ,

where we recall that the points n−ρ,ℓ belong to N
−
ιj/10

by definition of our flow boxes Bρ; cf. paragraph

preceding (9.27). Note that

gγp+ℓ · x = ũ−ℓ · gγp+ℓ0 · x, ∀ℓ ∈ Cρ,j,i(ℓ0).
In particular, for t⋆ := γ(w + jT0) and u−ℓ = Ad(gγ)−1(ũ−ℓ ), since g

γ = gt⋆ (cf. (9.30)), we have
that

p+ℓ x = u−ℓ · p+ℓ0x ∈ (Z(et⋆ǫ) ∩N−
et⋆ ιj

) · p+ℓ0x, ∀ℓ ∈ Cρ,j,i(ℓ0). (12.9)

Our counting estimate will follow by estimating from below the separation between the points p+ℓ x,

combined with a measure estimate on the sets (Z(et⋆ǫ) ∩N−
et⋆ιj

) · p+ℓ0x.
To this end, recall the sublevel set Kj and the injectivity radius ιj in (9.18). Recall also by (9.21)

that x belongs to Kj . It follows that the injectivity radius at every point of the weak unstable
ball P+

C · x is ≫ ιj . This implies that there is a radius rj with ιj ≪ rj ≤ ιj such that for every

ℓ ∈ Cρ,j,i(ℓ0), the map n− 7→ n− · p+ℓ x is an embedding of N−
rj into X and the disks

{
N−
rj · p

+
ℓ x : ℓ ∈ Cρ,j,i(ℓ0)

}

are disjoint. Recalling (12.9), it follows that the disks N−
rj · u−ℓ form a disjoint collection of disks

inside Z(et⋆ǫ+ιj) ∩N−
(et⋆+1)ιj

. In particular,

#Cρ,j,i(ℓ0) ≤
µs
p+ℓ0

x

(
Z(et⋆ǫ+ιj) ∩N−

(et⋆+1)ιj

)

minℓ∈Cρ,j,i(ℓ0) µ
s
p+ℓ0

x
(N−

rj · u−ℓ )
, (12.10)

where µs• denote the Patterson-Sullivan conditional measures on N−, defined analogously to the
unstable conditionals in (2.2).

To obtain good bounds on the ratio in (12.10) for a given ℓ, it will be important to change the
basepoint p+ℓ0x to another point with uniformly bounded height. We do so by applying the geodesic

flow for a time sρ,ℓ, comparable to t⋆, such that V (gsρ,ℓp
+
ℓ0
x) ≪ 1. Fix some arbitrary ℓ ∈ Cρ,j,i(ℓ0)

and recall (12.7) and (12.9). Let sρ,ℓ ≥ t⋆ be as in (9.41) and set

yℓ = gsρ,ℓp
+
ℓ x.

Note that our choice of u−ℓ implies that

Z(et⋆ǫ+ιj) ∩N−
(et⋆+1)ιj

⊆
(
Z(2et⋆ǫ+ιj) ∩N−

2(et⋆+1)ιj

)
· u−ℓ .

In particular, we can use the set on the right side to estimate the numerator of (12.10). Let

Q := Z(2et⋆ǫ+ιj) ∩N−
2(et⋆+1)ιj

, Q′ := Ad(gsρ,ℓ)(Q).

Then, changing variables using (2.4) and (2.3), we have

µs
p+ℓ0

x
(Q · u−ℓ )

µs
p+ℓ0

x
(N−

rj · u−ℓ )
=

µs
p+ℓ x

(Q)

µs
p+ℓ x

(N−
rj )

=
µsyℓ(Q

′)

µsyℓ(N
−
e
−sρ,ℓrj

)
.
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Hence, by Corollary 12.2 and Theorem 11.17 and (9.41), there is κ > 0 such that

µsyℓ(Q
′) ≪T0 (ǫ+ e−sρ,ℓιj)

κµsyℓ(N
+
1 ) ≪T0 ǫ

κ + e−sρ,ℓκ.

Moreover, by the global measure formula, Theorem 3.4, since V (yℓ) ≪T0 1, we have that

µsyℓ(N
−
e
−sρ,ℓrj

) ≫T0 e
−δsρ,ℓrδj ≫ e−δsρ,ℓιδj .

Here, we used [Cor90, Theorem 2.2] to relate strong stable disks of the form N−
r ·yℓ to their shadows

on the boundary; cf. (3.4) for a precise formulation. This concludes the proof since ℓ was arbitrary.

12.4. Flattening and proof of Theorem 9.16. We wish to apply Corollary 11.5. Recall that νi
has total mass µuyiρ

(N+
1 ). Let

µ =
1

µu
yiρ
(N+

1 )
νi.

We also recall that µ is supported on n+α . We fix identifications n+α
∼= Kp ∼= n−α for some p ∈ N;

cf. Section 2.5. Note further that the restriction of the metric in (2.8) to n+α is Euclidean. In
particular, we will fix a linear isomorphism of n+α and n−α with Rd, where d = p dimK.

By Corollary 12.2, the measure µ is affinely non-concentrated at almost all scales in the sense of
Definition 11.1. Hence, we can apply Corollary 11.5 to find λ > 0 such that, for T = b4/10, the set

B(λ) :=
{
w ∈ Rd : ‖w‖ ≤ T and |µ̂(w)| ≥ T−λ

}

can be covered by Oε(T
ε) balls of radius 1. The result will follow once we estimate the spacing of

the functionals 〈wik,ℓ, ·〉.
To simplify notation, let wℓ := b〈wik,ℓ, ·〉. By (9.69), when b is large enough, we have that

b ‖wℓ‖ ≤ T . In particular, we can view the set B(i, k, λ) as a subset of B(λ) above using the map
ℓ 7→ bwℓ. By Lemma 9.11, the definition of wik,ℓ in (9.64), and (9.62), we have that

‖wℓ1 − wℓ2‖ ≫ b2/10dist(uℓ2 − uℓ1 , Li),

where Li is a certain proper subspace of n−α . In particular, by Proposition 9.13, any ball of radius
1 in Rd contains at most

OT0

(
(b−κ/10 + e−κ(γ−α)(w+jT0))eδγ(w+jT0)

)

of the vectors wℓ. This completes the proof of Theorem 9.16.
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[KR95] A. Korányi and H. M. Reimann, Foundations for the theory of quasiconformal mappings on the Heisenberg
group, Adv. Math. 111 (1995), no. 1, 1–87. MR 1317384

[Liv04] Carlangelo Liverani, On contact Anosov flows, Ann. of Math. (2) 159 (2004), no. 3, 1275–1312.
MR 2113022

[LNP21] Jialun Li, Frédéric Naud, and Wenyu Pan, Kleinian Schottky groups, Patterson-Sullivan measures, and
Fourier decay, Duke Math. J. 170 (2021), no. 4, 775–825, With an appendix by Li. MR 4280090

[LP82] Peter D. Lax and Ralph S. Phillips, The asymptotic distribution of lattice points in Euclidean and non-
Euclidean spaces, J. Functional Analysis 46 (1982), no. 3, 280–350. MR 661875

[LP23] Jialun Li and Wenyu Pan, Exponential mixing of geodesic flows for geometrically finite hyperbolic manifolds
with cusps, Invent. Math. 231 (2023), no. 3, 931–1021. MR 4549087

[LPS23] Jialun Li, Wenyu Pan, and Pratyush Sarkar, Exponential mixing of frame flows for geometrically finite
hyperbolic manifolds, arXiv e-prints (2023), arXiv:2302.03798.

[MN20] Michael Magee and Frédéric Naud, Explicit spectral gaps for random covers of Riemann surfaces, Publ.

Math. Inst. Hautes Études Sci. 132 (2020), 137–179. MR 4179833
[MN21] Michael Magee and Frédéric Naud, Extension of Alon’s and Friedman’s conjectures to Schottky surfaces,

arXiv e-prints (2021), arXiv:2106.02555.
[MO15] Amir Mohammadi and Hee Oh, Matrix coefficients, counting and primes for orbits of geometrically finite

groups, J. Eur. Math. Soc. (JEMS) 17 (2015), no. 4, 837–897. MR 3336838
[MO23] , Isolations of geodesic planes in the frame bundle of a hyperbolic 3-manifold, Compos. Math. 159

(2023), no. 3, 488—-529. MR 4556221
[Mos73] G. D. Mostow, Strong rigidity of locally symmetric spaces, Annals of Mathematics Studies, No. 78, Prince-

ton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1973. MR 0385004
[MS18] Carolina A. Mosquera and Pablo S. Shmerkin, Self-similar measures: asymptotic bounds for the dimension

and Fourier decay of smooth images, Ann. Acad. Sci. Fenn. Math. 43 (2018), no. 2, 823–834. MR 3839838
[Nau05] Frédéric Naud, Expanding maps on Cantor sets and analytic continuation of zeta functions, Ann. Sci.
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