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EXPONENTIAL MIXING VIA ADDITIVE COMBINATORICS

OSAMA KHALIL

ABSTRACT. We prove that the geodesic flow on a geometrically finite locally symmetric space of
negative curvature is exponentially mixing with respect to the Bowen-Margulis-Sullivan measure.
The approach is based on constructing a suitable anisotropic Banach space on which the infinitesimal
generator of the flow admits an essential spectral gap. A key step in the proof involves estimating
certain oscillatory integrals against the Patterson-Sullivan measure. For this purpose, we prove a
general result of independent interest asserting that measures on R? that do not concentrate near
proper affine subspaces enjoy polynomial Fourier decay outside of a sparse set of frequencies. As
an intermediate step, we show that the LI-dimension (1 < ¢ < o0) of iterated self-convolutions of
such measures tend towards that of the ambient space. Our analysis also yields that the Laplace
transform of the correlation function of smooth observables extends meromorphically to the entire
complex plane in the convex cocompact case and to a strip of explicit size beyond the imaginary
axis in the case the manifold admits cusps.

1. INTRODUCTION

1.1. Exponential mixing and Pollicott-Ruelle resonances. Let X be the unit tangent bundle
of a quotient of a real, complex, quaternionic, or a Cayley hyperbolic space by a discrete, geomet-
rically finite, non-elementary group of isometries I'. Denote by g¢; the geodesic flow on X and by
mPBMS the Bowen-Margulis-Sullivan probability measure of maximal entropy for g;. Let dp be the
critical exponent of I'. We refer the reader to Section 2 for definitions. The following is the main
result of this article in its simplest form.

Theorem 1.1. The geodesic flow on X is exponentially mizing with respect to mBMS. More pre-
cisely, there exists o9 = 0o(X) > 0 such that for all f € C3(X), g € C*>(X) and t >0,

[ fom-gmtS = [ p a5 [ gt g 0, ().

The dependence on g in the implicit constant is through its C?-norm and the injectivity radius of
1ts support.

The results also hold for functions with unbounded support and controlled growth in the cusp;
cf. Section 9. Theorem 1.1 follows immediately from the following more precise result showing that
the correlation function admits a finite resonance expansion.

Theorem 1.2. There exists o > 0 such that the following holds. There exist complexr numbers
(NI in the strip {—o < Re(z) < 0}, a finite rank projector 11, and a matriz Q with eigenvalues
\; acting on the range of I such that for all f € C3(X), g € C*(X) and t > 0, we have

/ fogi-g dmBMS — / f AdmBMS /g dmBMS +/ qg- etQH(f) dmBMS + ||f||03 Og (e—at) ]
X D¢ e

The dependence on g in the implicit constant is through its C*-norm and the injectivity radius of
1ts support.

The eigenvalues \; above are known as Pollicott-Ruelle resonances. Theorem 1.1 follows from
the above result by taking o to be the absolute value of the largest real part of the A;’s. Indeed,
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the norm of the matrix e*@ is bounded by e~*0. The reader is referred to Section 9.1 for a more
precise discussion of the Banach spaces on which these operators live.
Given two bounded functions f and g on X, the associated correlation function is defined by

prg(t) = / fog-gdmBMS tcR.
X

Its (one-sided) Laplace transform is defined for any z € C with positive real part Re(z) as follows:

Pr.q(2) 3:/0 e ppg(t) dt.

Theorem 1.2 implies that for suitably smooth f and g, pr, admits a meromorphic continuation to
the half plane Re(z) > —o with the only possible poles at {\;}.

Remark 1.3. The constant ¢ in Theorem 1.2 depends only on non-concentration parameters
of Patterson-Sullivan measures near proper generalized sub-spheres of the boundary at infinity;
cf. Corollary 12.2 for details. In particular, Theorem 1.2 implies that o does not change if we replace
I" with a finite index subgroup. For example, in the case of geometrically finite hyperbolic surfaces,
o can be taken a non-decreasing function of the critical exponent ér if I' is convex cocompact and
of the quantity 20r — 1 for cusped surfaces. The interested reader is referred to [MN20, MN21] for
recent developments on a closely related problem yielding uniform resonance free regions for the
Laplacian operator on random covers of convex cocompact hyperbolic surfaces.

Our analysis also yields the following result. Let ér denote the critical exponent of I' and define

o(l) = (1.1)

00, if " is convex cocompact,
min {0r, 20r — kmax, Fmin}, otherwise,

where kpax and ki, denote the maximal and minimal ranks of parabolic fixed points of I" respec-
tively; cf. Section 3.1 for the definition of the rank of a cusp.

Theorem 1.4. Let k € N. For all f,g € C*¥*3(X), ps., is analytic in the half plane Re(z) > 0 and
admits a meromorphic continuation to the half plane:

Re(z) > —min{k,o(I")/2},

with 0 being the only pole on the imaginary axis. In particular, when I' is convex cocompact and
f,9 € CX(X), prg admits a meromorphic extension to the entire complex plane.

Theorem 1.4 is deduced from an analogous result on the meromorphic continuation of the family
of resolvent operators z — R(z),

R(z) == /0 T, i OF(X) — (X, (1.2)

defined initially for Re(z) > 0, where L; is the transfer operator given by f — fogs; cf. Theorem 6.4
for a precise statement. Amnalogous results regarding resolvents were obtained for Anosov flows
in [GLP13] and Axiom A flows in [DG16,DG18] leading to a resolution of a conjecture of Smale
on the meromorphic continuation of the Ruelle zeta function; cf. [Sma67]. We refer the reader
to [GLP13] for a discussion the history of the latter problem.

1.2. Li-flattening of measures on R? under convolution. The key new ingredient in our
proof of Theorem 1.1 is the statement that the conditional measures of the BMS measure along the
strong unstable foliation enjoy polynomial Fourier decay outside of a very sparse set of frequencies;
cf. Corollary 1.8.

The key step in the proof is an Li-flattening result for convolutions of measures on R? of in-
dependent interest. Roughly speaking, it states that the L?-dimension (Def. 1.5) of a measure
improves under iterated self-convolutions unless i is concentrated near proper affine hyperplanes in
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R? at almost every scale. The proof of this result provided in Section 11 can be read independently
of the rest of the article.
We formulate here a special case our results under the following non-concentration condition and
refer the reader to Definition 11.1 for a much weaker condition under which these results hold.
We need some notation before stating the result. Let Dj, denote the dyadic partition of R? by
translates of the cube 27%[0,1)¢ by 27¥Z9. We recall the notion of L9-dimension of measures.

Definition 1.5. For ¢ > 1, the Li-dimension of a Borel probability measure p on R¢, denoted
dimg p, is defined to be

. e e log, EPeDk w(P)?
dimg p := hkn_ig;f (a— Dk .

The Frostman exponent of u, denoted dimy, , is defined to be

dimy, g := lim inf log, maxpep, () .
k—o0 —k

We say that Borel measure p on R? is (C, a)-uniformly affinely non-concentrated if there exist
C > 1 and a > 0 such that for every ¢ > 0, z € R? 0 < r < 1, and every affine hyperplane
W < R4, we have

p(WE) N B(z,r)) < Ce®u(B(z,r)), (1.3)

where W) and B(z,r) denote the r-neighborhood of V and the r-ball around z respectively.
The following is our main result on flattening under convolution with non-concentrated measures.

Theorem 1.6. Let1 < g < oo, C > 1 and a,n > 0 be given. Then, there exists e = (C,a,n,q) > 0
such that if p is any compactly supported Borel probability measure on R® which is (C, a)-uniformly
affinely non-concentrated, then

dimg(p * v) > dimg v + ¢,

for every compactly supported probability measure v on R% with dimgv < d —n.
In particular, dimy pu*" converges to d at a rate depending only on the non-concentration pa-
rameters C' and «, and, hence, the same holds for dim, u*" for all ¢ > 1.

Remark 1.7. We refer the reader to Section 11 where a more quantitative form of Theorem 1.6 is
obtained under a much weaker non-uniform non-concentration condition; cf. Definition 11.1. This
quantitative form is necessary for our applications and the weaker hypothesis is essential in the
presence of cusps.

The L?-dimension case of Theorem 1.6 has the following immediate corollary asserting that the
Fourier transform of affinely non-concentrated measures enjoys polynomial decay outside of a very
sparse set of frequencies.

Corollary 1.8. Let i be as in Theorem 1.6 and denote by [i its Fourier transform. Then, for every
e >0, there is § > 0 such that for all T > 0,

{llsh <72 1)1 > 77} = 0(79),

where | - | denotes the Lebesgue measure on R,

Corollary 1.8 generalizes the work of Kaufman [Kau84] and Tsujii [Tsul5] for self-similar mea-
sures on R by different methods.
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Remark 1.9. A large class of dynamically defined measures, which includes self-conformal mea-
sures, is known to be affinely non-concentrated; cf. [RS20, Proposition 4.7 and Corollary 4.9] for
measures on the real line and the results surveyed in [DFSU21, Section 1.3] for measures in higher
dimensions under suitable irreducibility hypotheses®. In particular, Theorem 1.6 applies to these
measures generalizing prior known special cases for certain self-similar measures on R by different
methods; cf. [FL09, MS18].

Theorem 1.6 was obtained for measures on the real line by Rossi and Shmerkin in [RS20] under the
uniform non-concentration hypothesis above. Their work builds crucially on a 1-dimensional inverse
theorem due to Shmerkin in [Shm19] which was the key ingredient in his groundbreaking solution
of Furstenberg’s intersection conjecture. Proposition 11.10 can be regarded as a higher dimensional
substitute for Shmerkin’s inverse theorem. A similar higher dimensional inverse theorem for L?-
dimension was announced by Shmerkin in his ICM survey [Shm21, Section 3.8.3].

In Section 12, we show that Corollary 1.8 applies to Patterson-Sullivan measures when X is
real hyperbolic (and to certain projections of these measures in the other cases, see discussion in
Section 1.5 below).

For convex cocompact hyperbolic surfaces, Bourgain and Dyatlov showed that PS measures
in fact have polynomially decaying Fourier transform [BD17]. Their methods are different to
ours and are based on Bourgain’s sum-product estimates. Their result was extended to convex
cocompact Schottky real hyperbolic 3-manifolds in [LNP21] by similar methods. These results
imply Corollary 1.8 in these special cases, however Corollary 1.8 also applies to measures whose
Fourier transform does not tend to 0 at infinity (e.g. the coin tossing measure on the middle 1/3
Cantor set). In forthcoming work, we apply our methods to generalize these results to hyperbolic
manifolds of any dimension which are not necessarily of Schottky type.

1.3. Exponential recurrence from the cusp. An important ingredient in our arguments is the
following exponential decay result on the measure of the set of orbits with long cusp excursions,
which is of independent interest. Denote by Nt the expanding horospherical group associated to
gi for and t > 0 the orbits of which give rise to the strong unstable foliation. Let N, be the r-ball
around identity in N (cf. Section 2.5 for the definition of the metric on NT). We denote by Q C X
the non-wandering set for the geodesic flow; i.e. the closure of the set of its periodic orbits.

Theorem 1.10. Let o(T") be as in (1.1) and let 0 < B < o(I')/2 be given. For every e > 0, there
exists a compact set K C Q and Ty > 0 such that the following holds for oll T > Tp,0 < 8 < 1 and
x € Q. Let xx be the indicator function of K. Then,

T
s <n € N : /0 Xk (gnz) dt < (1 — 9)T> <LBze e~ B9=aT u(NF),
The implicit constant is uniform as x varies in any fized compact set.

The reader is referred to Theorem 7.9 for a stronger and more precise statement. Theorem 1.10
implies that the Hausdorff dimension of the set of points in IV 1+ x whose forward orbit asymptotically
spends all of its time in the cusp is at most o(I')/2. This bound is not sharp and can likely be
improved using a refinement of our methods. We hope to return to this problem in future work.

1.4. Prior results. In the case I' is convex cocompact, Theorem 1.1 is a special case of the
results of [Stol1] which extend the arguments of Dolgopyat [Dol98] to Axiom A flows under certain
assumptions on the regularity of the foliations and the holonomy maps. The special case of convex
cocompact hyperbolic surfaces was treated in earlier work of Naud [Nau05]. The extension to frame
flows on convex cocompact manifolds was treated in [SW20, CS22].

IThe results referenced in [DFSU21] require the open set condition, while [RS20] does not.
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In the case of real hyperbolic manifolds with dr strictly greater than half the dimension of the
boundary at infinity, Theorem 1.1 was obtained in [EO21], with much more precise and explicit
estimates on the size of the essential spectral gap. The methods of [EO21] are unitary representation
theoretic, building on the work of Lax and Phillips in [LP82], for which the restriction on the critical
exponent is necessary. Earlier instances of the results of [EO21] under more stringent assumptions
on the size of op were obtained by Mohammadi and Oh in [MO15], albeit the latter results are
stronger in that they in fact hold for the frame flow rather than the geodesic flow.

The case of real hyperbolic geometrically finite manifolds with cusps and arbitrary critical expo-
nent was only recently resolved independently in [LP23] where a symbolic coding of the geodesic
flow was constructed. This approach builds on extensions of Dolgopyat’s method to suspension
flows over shifts with infinitely many symbols; cf. [AM16, AGY06]. The extension of their result to
frame flows was carried out in [LPS23].

Finally, we refer the reader to [DG16] and the references therein for a discussion of the history
of the microlocal approach to the problem of spectral gaps via anisotropic Sobolev spaces.

1.5. Outline of the argument. The article has several parts that can be read independently of
one another. For the convenience of the reader, we give a brief outline of those parts.

The first part consists of Sections 2-5. After recalling some basic facts in Section 2, we prove a
key doubling result, Proposition 3.1, in Section 3 for the conditional measures of m®MS along the
strong unstable foliation.

In Section 4, we construct a Margulis function which shows, roughly speaking, that generic orbits
with respect to mPMS are biased to return to the thick part of the manifold. In Section 5, we prove
a statement on average expansion of vectors in linear representations which is essential for our
construction of the Margulis function. The main difficulty in the latter result in comparison with
the classical setting lies in controlling the shape of sublevel sets of certain polynomials in order to
estimate their measure with respect to conditional measures of mPMS along the unstable foliation.

The second part consists of Sections 6 and 7. In Section 6, we define anisotropic Banach spaces
arising as completions of spaces of smooth functions with respect to a dynamically relevant norm
and study the norm of the transfer operator as well as the resolvent in their actions on these spaces
in Section 7. The proof of Theorem 1.4 is completed in Section 7. The approach of these two
sections follows closely the ideas of [GL06,GL08,AG13], originating in [BKL02]. Theorem 1.10 is
deduced from this analysis in Section 7.6.

The third part concerns a Dolgopyat-type estimate which is a key technical estimate in the
proof of Theorems 1.1 and 1.2. Its proof occupies Section 9 with auxiliary technical results in
Sections 8, 10, and 12. Readers familiar with the theory of anisotropic spaces may skip directly to
Section 9, taking the results on recurrence from the cusps from previous sections as a black box.

The Dolgopyat-type estimate, obtained in Theorem 9.2, provides a contraction on the norm
of resolvents with large imaginary parts. Theorems 1.1 and 1.2 are deduced from this result in
Section 9.1. The principle behind Theorem 9.2, due to Dolgopyat, is to exploit the non-joint
integrability of the stable and unstable foliations via certain oscillatory integral estimates; cf. [Dol98,
Liv04, GLP13,GPL22,BDL18].

A major difficulty in implementing this philosophy lies in estimating these oscillatory integrals
against Patterson-Sullivan measures, which are fractal in nature in general. In particular, we
cannot argue using the standard integration by parts method in previous works on exponential
mixing of SRB measures using the method of anisotropic spaces, see for instance [Liv04, GLP13,
GPL22,BDL18], where the unstable conditionals are of Lebesgue class.

We deal with this difficulty using Corollary 11.5 by taking advantage of the fact that the estimate
in question is an average over oscillatory integrals. This idea is among the main contributions of
this article. We hope this method can be fruitful in establishing rates of mixing of hyperbolic flows
in greater generality.
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In the case of variable curvature (i.e. when X is not real hyperbolic), the action of the derivative
of the geodesic flow on the strong unstable distribution is non-conformal which causes additional
difficulties in the analysis, particularly in the presence of cusps. We deal with this difficulty by
working with the projection of the unstable conditionals to the directions of slowest expansion and
verify non-concentration for those projections instead. See Remark 9.15 for further discussion.

In Section 10, we obtain a linearization of the so-called temporal distance function. In Section 12,
we verify the non-concentration hypotheses of Corollary 1.8 (more precisely, we verify the weaker
hypothesis of Corollary 11.5) for the projection of the unstable conditionals of m®MS onto the
directions with weakest expansion. This allows us to apply Corollary 11.5 towards estimating the
oscillatory integrals arising in Section 9. The proof of Theorem 9.2 is completed in that section.

Finally, Section 11 is dedicated to the proof of Theorem 1.6 and Corollary 1.8. Among the
key ingredients in the proof are the asymmetric Balog-Szemerédi-Gowers Lemma due to Tao and
Vu (Theorem 11.6) as well as Hochman’s inverse theorem for the entropy of convolutions (Theo-
rem 11.8). This section can be read independently from the rest of the article.

Acknowledgements. The author thanks the Hausdorff Research Institute for Mathematics at
the Universitat Bonn for its hospitality during the trimester program “Dynamics: Topology and
Numbers” in Spring 2020 where part of this research was conducted. This research is supported
in part by the NSF under grant number DMS-2247713. The author thanks Hee Oh, Peter Sarnak,
and Pablo Shmerkin for helpful discussions regarding this project.

2. PRELIMINARIES

We recall here some background and definitions on geometrically finite manifolds.

2.1. Geometrically Finite Manifolds. The standard reference for the material in this section
is [Bow93]. Suppose G is a connected simple Lie group of real rank one. Then, G can be identified
with the group of orientation preserving isometries of a real, complex, quaternionic or Cayley
hyperbolic space, denoted H%, of dimension d > 2, where K € {R,C,H, Q}. In the case K = Q,
then d = 2.

Fix a basepoint o € Hﬁi. Then, G acts transitively on H% and the stabilizer K of o is a maximal
compact subgroup of G. We shall identify H% with K\G. Denote by A = {g;:t € R} a one
parameter subgroup of GG inducing the geodesic flow on the unit tangent bundle of Hﬁé. Let M < K
denote the centralizer of A inside K so that the unit tangent bundle TIH% may be identified with
M\G. In Hopf coordinates, we can identify T'H% with R x (9HE x OHE — A), where 0HZ denotes
the boundary at infinity and A denotes the diagonal.

Let I' < G be an infinite discrete subgroup of G. The limit set of I', denoted Ar, is the set of
limit points of the orbit I' - 0 on 8H]‘é. Note that the discreteness of I' implies that all such limit
points belong to the boundary. Moreover, this definition is independent of the choice of o0 in view
of the negative curvature of H%. We often use A to denote Apr when I' is understood from context.
We say I is non-elementary if Ar is infinite.

The hull of Ar, denoted Hull(Ar), is the smallest convex subset of HE containing all the geodesics
joining points in Ar. The convex core of the manifold Hﬁl{ /T is the smallest convex subset containing
the image of Hull(Ar). We say HE /T is geometrically finite (vesp. convexr cocompact) if the closed
1-neighborhood of the convex core has finite volume (resp. is compact), cf. [Bow93]. The non-
wandering set for the geodesic flow is the closure of the set of vectors in the unit tangent bundle
whose orbit accumulates on itself. In Hopf coordinates, this set, denoted ), coincides with the
projection of R x (Ar x Ar — A) mod TI'.

A useful equivalent definition of geometric finiteness is that the limit set of I' consists entirely of
radial and bounded parabolic limit points; cf. [Bow93]. This characterization of geometric finiteness
will be of importance to us and so we recall here the definitions of these objects.
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A point £ € A is said to be a radial point if any geodesic ray terminating at £ returns infinitely
often to a bounded subset of H% /T'. The set of radial limit points is denoted by A,..

Denote by N T the expanding horospherical subgroup of G associated to g;, t > 0. A point p € A
is said to be a parabolic point if the stabilizer of p in I', denoted by I',, is conjugate in G' to an
unbounded subgroup of M NT. A parabolic limit point p is said to be bounded if (A — {p} /T',) is
compact. An equivalent charachterization is that p € A is parabolic if and only if any geodesic ray
terminating at p eventually leaves every compact subset of H]‘Ii{ JT. The set of parabolic limit points
will be denoted by A,,.

Given g € G, we denote by gt the coset of P~g in the quotient P~\G, where P~ = N~ AM is
the stable parabolic group associated to {g; : t > 0}. Similarly, g~ denotes the coset PTg in P*\G.
Since M is contained in P*, such a definition makes sense for vectors in the unit tangent bundle
M\G. Geometrically, for v € M\G, v* (resp. v™) is the forward (resp. backward) endpoint of the
geodesic determined by v on the boundary of Hﬁé. Given z € G/T, we say 2% belongs to A if the
same holds for any representative of z in G; this notion being well-defined since A is I' invariant.

Notation. Throughout the remainder of the article, we fix a discrete non-elementary geometrically
finite group I' of isometries of some (irreducible) rank one symmetric space Hf( and denote by X
the quotient G/T', where G is the isometry group of Hﬁé.

2.2. Standard horoballs. Since parabolic points are fixed points of elements of I, A contains
only countably many such points. Moreover, I' contains at most finitely many conjugacy classes of
parabolic subgroups. This translates to the fact that A, consists of finitely many I' orbits.

Let {p1,...,ps} C 8Hﬁi§ be a maximal set of nonequivalent parabolic fixed points under the action
of I'. As a consequence of geometric finiteness of I', one can find a finite disjoint collection of open
horoballs Hy, ..., Hs C H& with the following properties (cf. [Bow93]):

(a) H; is centered on p;, fori =1,...,s.
(b) H,' N H,I' =0 for all i # j.
(c) Forallie{1,...,s} and 1,72 € T’

Hiyi NHiyp # 0 = Hiy = Hiva, 7y 92 € Dy
(d) Hull(Ar) \ (U;_; H;I') is compact mod T..

2.3. Conformal Densities and the BMS Measure. The critical exponent, denoted dr, is de-
fined to be the infimum over all real number s > 0 such that the Poincaré series

Pr(s,0) := Ze_Sd(""Y"’) (2.1)
yerl’

converges. We shall simply write 6 for ér when I' is understood from context. The Busemann
function is defined as follows: given z,y € H% and & € OH%, let 7 : [0,00) — Hﬁl{ denote a geodesic
ray terminating at £ and define

Pe(z,y) = lim dist(z, (1)) — dist(y, 7(t)).

A T-invariant conformal density of dimension s is a collection of Radon measures {I/x tx € H{é} on
the boundary satisfying
vy,
duy,
Given a pair of conformal densities {u,} and {v,} of dimensions s; and s respectively, we can
form a I' invariant measure on Tl]HI%, denoted by m#" as follows: for z = (£1,&2,t) € TlH%

dmhv (€1, Ea, t) = e*1Pea 05286 (0) gy (€) du, (E9) dt.

Moreover, the measure m#*" is invariant by the geodesic flow.

(€) = e~*%@w) e ¢ gHE.
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When T' is geometrically finite and K = R, Patterson [Pat76] and Sullivan [Sul79] showed
the existence of a unique (up to scaling) I'-invariant conformal density of dimension dr, denoted
{ pbs oz e Hﬁé}. Geometric finiteness also implies that the measure m/ #"" descends to a finite
measure of full support on 2 and is the unique measure of maximal entropy for the geodesic flow.
This measure is called the Bowen-Margulis-Sullivan (BMS for short) measure and is denoted mBMS,

Since the fibers of the projection from G/I" to TlHﬁé/F are compact and parametrized by the
group M, we can lift such a measure to one G/T', also denoted mPM3, by taking locally the product
with the Haar probability measure on M. Since M commutes with the geodesic flow, this lift is
invariant under the group A. We refer the reader to [Rob03] and [PPS15] and references therein
for details of the construction in much greater generality than that of Hfé.

2.4. Stable and unstable foliations and leafwise measures. The fibers of the projection
G — TIHI‘?< are given by the compact group M, which is the centralizer of A inside the maximal
compact group K. In particular, we may lift mPMS to a measure on G/T, also denoted mBMS,
and given locally by the product of mPMS with the Haar probability measure on M. The leafwise
measures of mBMS on N7 orbits are given as follows:

dpt(n) = " P D Gl (na) ), (2.2)
They satisfy the following equivariance property under the geodesic flow:
g e = € Ad(ge) - (2.3)
Moreover, it follows readily from the definitions that for all n € N T,
()sfing =ty (2.4)

where (n),uY, is the pushforward of ¥, under the map u — un from N7 to itself. Finally, since M
normalizes N* and leaves mPMS invariant, this implies that these conditionals are Ad(M )-invariant:
for all m € M,

ity = Ad(m). il (2.5)

2.5. Cygan metrics. We recall the definition of the Cygan metric on N*, denoted dp+. These
metrics are right invariant under translation by N1, and satisfy the following convenient scaling
property under conjugation by g;. For all » > 0, if NI denotes the ball of radius r around identity
in that metric and ¢t € R, then

Ad(g))(N;}) = N, (2.6)
To define the metric, we need some notation which we use throughout the article. For x € K,
denote by z its K-conjugate and by |z| := v/Zz its modulus. This modulus extends to a norm on

K™ by setting

) = fuif?,
(2
for u = (u1,...,u,) € K"

We let ImK denote those x € K such that z = —x. For example, ImK is the pure imaginary
numbers and the subspace spanned by the quaternions %,j and k in the cases K = C and K = H
respectively. For u € K, we write Re(u) = (v + @)/2 and Im(u) = (v — u)/2.

The Lie algebra n™ of N* splits under Ad(g;) into eigenspaces as n} @ nj , where nj, = 0 if
and only if K = R. Moreover, we have the identification n} = K91 and nj, = Im(K) as real
vector spaces; cf. [Mos73, Section 19]. We denote by |-||" the following quasi-norm on n't: given
(u,s) €nt ®ng,,

I )l =l +1512) 7" 27)
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With this notation, we can define the metric as follows: the distance of n := exp(u, s) to identity
is given by:
dy+(n,1d) := ||(u, 5)]" (2.8)

Given ny,ny € NT, we set dy+(n1,n2) = dy+ (nlngl,Id).

2.6. Local stable holonomy. In this Section, we recall the definition of (stable) holonomy maps
which are essential for our arguments. We give a simplified discussion of this topic which is sufficient
in our homogeneous setting homogeneous. Let x = u™y for some y € Q2 and v~ € N, . Since the
product map N~ x A x M x NT — G is a diffeomorphism near identity, we can choose the norm
on the Lie algebra so that the following holds. We can find maps p~ : N;7 — P~ = N~ AM and
ut : Ny — N7 so that

*(n), Vn € Ny . (2.9)
Then, it follows by (2.2) that for all n € N,, we have

nu” =p (n)u

d,UZ (u+ (n)) = P (na)+ (u+(n)y’nw)dug(n).

Moreover, by further scaling the metrics if necessary, we can ensure that these maps are diffeomor-
phisms onto their images. In particular, writing ®(nx) = u™(n)y, we obtain the following change
of variables formula: for all f € C(N,),

/ f(n) dp(n) = / F((h) T (n))e Pt ST g (2.10)

Remark 2.1. To avoid cluttering the notation with auxiliary constants, we shall assume that the
N~ component of p~(n) belongs to N, for all n € Nj” whenever u~ belongs to N; .

2.7. Notational convention. Throughout the article, given two quantities A and B, we use the
Vingogradov notation A < B to mean that there exists a constant C' > 1, possibly depending on
I’ and the dimension of G, such that |A| < C'B. In particular, this dependence on I' is suppressed
in all of our implicit constants, except when we wish to emphasize it. The dependence on I' may
include for instance the diameter of the complement of our choice of cusp neighborhoods inside €2
and the volume of the unit neighborhood of Q2. We write A <, , B to indicate that the implicit
constant depends parameters x and y. We also write A = O5(B) to mean A <, B.

3. DOUBLING PROPERTIES OF LEAFWISE MEASURES

The goal of this section is to prove the following useful consequence of the global measure formula
on the doubling properties of the leafwise measures. The result is an immediate consequence of
Sullivan’s shadow lemma in the case I' is convex cocompact. In particular, the content of the
following result is the uniformity, even in the case €2 is not compact. The argument is based on the
topological transitivity of the geodesic flow when restricted to 2.

Define the following exponents:

A :=min {9,20 — kmax, Fmin }
Ay = max{d,20 — kmin, kmax | - (3.1)
where kpax and kpin denote the maximal and minimal ranks of parabolic fixed points of I" respec-

tively. If T has no parabolic points, we set kpax = kmin = 9, so that A = A, = 4.

Proposition 3.1 (Global Doubling and Decay). For every 0 < o <5, z € Ny Q and 0 <r <1,
we have
o pi(NF) Yo<o<1,0<r<1,

YN <
p (Ng) oAt (NF) Yo > 1,0 < r < 5/o.
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Remark 3.2. The above proposition has very different flavor when applied with o < 1, compared
with ¢ > 1. In the former case, we obtain a global rate of decay of the measure of balls on the
boundary, centered in the limit set. In the latter case, we obtain the so-called Federer property for
our leafwise measures.

Remark 3.3. The restriction that < 5/¢ in the case o > 1 allows for a uniform implied constant.
The proof shows that in fact, when o > 1, the statement holds for any 0 < r < 1, but with an
implied constant depending on o.

3.1. Global Measure Formula. Our basic tool in proving Proposition 3.1 is the extension of
Sullivan’s shadow lemma known as the global measure formula, which we recall in this section.
Given a parabolic fixed point p € A, with stabilizer I', C I, we define the rank of p to be twice
the critical exponent of the Poincaré series Pr, (s,0) associated with T',; cf. (2.1).
Given £ € OH , we let [0€) denote the geodesic ray. For t € R, denote by £(¢) the point at
distance ¢ from o on [0€). For z € HE, define the O(x) to be the shadow of unit ball B(z,1) in HE
on the boundary as viewed from o. More precisely,

Oz) == {g € OHY : [o€) N B(z, 1) # (z)} .

Shadows form a convenient, dynamically defined, collection of neighborhoods of points on the
boundary.

The following generalization of Sullivan’s shadow lemma gives precise estimates on the measures
of shadows with respect to Patterson-Sullivan measures.

Theorem 3.4 (Theorem 3.2, [Sch04]). There exists C = C(I',0) > 1 such that for every { € A and
allt >0,

PS
1 1o (O(E(t)))
CT = Saneeo) 5 = ¢

where
d(t) = dist(&(t),T - o),

and k(&(t)) denotes the rank of a parabolic fized point p if £(t) is contained in a standard horoball
centered at p and otherwise k(£(t)) = 9.

A version of Theorem 3.4 was obtained earlier for real hyperbolic spaces in [SV95] and for complex
and quaternionic hyperbolic spaces in [New03].

3.2. Proof of Proposition 3.1. Assume that ¢ < 1, the proof in the case ¢ > 1 being identical.
F ix a non-negative C°° bump function 1 supported inside N;" and having value identically 1 on
1/2 Given € > 0, let ¢.(n) = ¥(Ad(g—10gc)(n)). Note that the condition that 1. (Id) = ¢ (Id) =

implies that for x € X with 2™ € A,

(1) > 0, Ve > 0. (3.2)
Note further that for any r > 0, we have that xy+ < ¢r < x N
First, we establish a uniform bound over = € €. Consider the following function f, : Q — (0, 00):
u

o<r<i p2(vr)
We claim that it suffices to prove that

fcr(x) < UAa (3.3)
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uniformly over all x € Q and 0 < ¢ < 1. Indeed, fix some 0 < r <1 and 0 < ¢ < 1. By enlarging
our implicit constant if necessary, we may assume that o < 1/4. From the above properties of 9,
we see that

(NG < g (Quoyr/z) € 02 (Wyys) < o2 b (N,D).

Hence, it remains to prove (3.3). By [Rob03, Lemme 1.16], for each given r > 0, the map
x = p(Yer)/pl(1),) is a continuous function on Q. Indeed, the weak-x continuity of the map
x — uY is the reason we work with bump functions instead of indicator functions directly. Moreover,
continuity of these functions implies that f, is lower semi-continuous.

The crucial observation regarding f, is as follows. In view of (2.3), we have for ¢t > 0,

_ i (Yor) <
folom) = w0 ety <9

Hence, for all B € R, the sub-level sets Q0-p := {f, < B} are invariant by g; for all ¢ > 0. On
the other hand, the restriction of the (forward) geodesic flow to  is topologically transitive. In
particular, any invariant subset of €2 with non-empty interior must be dense in 2. Hence, in view
of the lower semi-continuity of f,, to prove (3.3), it suffices to show that f, satisfies (3.3) for all =
in some open subset of €.

Recall we fixed a basepoint o € H% belonging to the hull of the limit set. Let z, € G denote
a lift of o whose projection to G/T" belongs to Q. Let E denote the unit neighborhood of z,. We
show that £ N Q C { fo K O'A}. Without loss of generality, we may further assume that o < 1/2,
by enlarging the implicit constant if necessary.

First, note that the definition of the conditional measures p* immediately gives

Mg|N4+ = MoPS|(N4+,x)+a Vz € E.
It follows that
phS (N - 2) ™) < () < > (N - ) F),
for all 0 <r <2 and x € E. Hence, it will suffice to show

PS + .\t
Ko ((Ncrr .Z') ) <<O’A,
pES((NyF - 2)t)

forall 0 <o < 1.
To this end, there is a constant C; > 1 such that the following holds; cf. [Cor90, Theorem 2.2]%.
For all x € E, if ¢ = ", then, the shadow S, = {(nz)" : n € N;I} satisfies

O(|logr| +C1)) € S CO(|logr| — Ch)), VO <r <2. (3.4)
Here, and throughout the rest of the proof, if s < 0, we use the convention
O(&(5)) = O(£(0)) = OHE.
Fix some arbitrary x € F and let £ = . To simplify notation, set for any ¢,7 > 0,
ty := max {|logor| — C1,0}, ty :==|logr|+ Cy,
d(t) := dist(£(?), I - 0), k(t) == k(£(1)),

where k(£(t)) is as in the notation of Theorem 3.4.
By further enlarging the implicit constant, we may assume for the rest of the argument that

—logo > 2C4.
This insures that ¢, > t, and avoids some trivialities.
2The quoted result in [Cor90] is stated in terms of the so-called Carnot-Caratheodory metric on N, which enjoys the

same scaling property in (2.6). In particular, this metric is equivalent to the Cygan metric in (2.8) by compactness
of the unit sphere in the latter.
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Let 0 < r < 1 be arbitrary. We define constants oy := 0 < 01 < 09 < 03 := 1 as follows. If
E(ty) = 0 (i.e. £(t5) is in the complement of the cusp neighborhoods), we set 01 = 0. Otherwise,
we define o1 by the property that £(|log oqr|) is the first point along the geodesic segment joining
&(ty) and £(t,) (traveling from the former point to the latter) meets the boundary of the horoball
containing £(t,). Similarly, if k(¢,) = 0, we set o9 = 1. Otherwise, we define o9 by the property
that £(]log oar|) is the first point along the same segment, now travelling from £(¢,) towards &(¢,),
which intersects the boudary of the horoball containing £(¢,). Define

toy == to, tos == tr, ty; :=|logoyr| fori=1,2.
In this notation, we first observe that k(t,,) = k(t5,) = J. In particular, Theorem 3.4 yields
é
16> (S r) (‘71)

PS <\

16> (Seor) 02
Note further that the projection map Hﬁé — H% /T restricts to an (isometric) embedding on cusp
horoballs. Combined with convexity of horoballs and the fact that geodesics in H% are unique
distance minimizers, this implies that, for i = 0,2, the distance between the projections of {(t,,)
and {(t,,,,) to H]‘Ii{ /T is equal to |ts, — ts,,,|. In particular, there is a constant C; > 1, depending

only on the diameter of the complement of the cusp neighborhoods in the quotient Hﬁl{ and on the
constant C4, such that, for ¢ = 0,2, we have

—Co —log(o;/0iy1) < d(ts,) < —log(oi/oip1) + Ca.
Hence, it follows using Theorem 3.4 and the above discussion that

PS é 20—k(toq)
Ho (SooT) < <@> ed(tog) (k(tog)—0) < <@> ’ )

MES(SUW) 01 01
Similarly, we obtain
5 k(ts
Ho(Sour) <Q> oty (k(ty)~0) (%) s
ILL(I;)S(SO'3T’) 03 g3

Therefore, using the following trivial identity

165°(Sor) 185> (Soor) 15> (Sorr) 16> (Soar)
65 (Sr) 155 (Sovr) 16> (Soar) p65(Sr)

we see that f(z) < o2, where A is as in the statement of the proposition. As z € F was arbitrary,
we find that £ C {fU < O’A}, thus concluding the proof in the case o < 1. Note that in the case
o > 1, the constants o; satisfy 0;/0;+1 > 1, so that combining the 3 estimates requires taking the
maximum over the exponents, yielding the bound with Ay in place of A in this case.

Now, let r € (0, 1] and suppose = v~y for some y € Q and u~ € N5 . By [Cor90, Theorem 2.2],
the analog of (3.4) holds, but with shadows from the viewpoint of = and y, in place of the fixed
basepoint o. Recalling the map n — u*(n) in (2.9), one checks that this implies that this map is
Lipschitz on N;~ with respect to the Cygan metric, with Lipschitz constant < Cy. Moreover, the
Jacobian of the change of variables associated to this map with respect to the measures py and py,

is bounded on N;", independently of y and u~; cf. (2.10) for a formula for this Jacobian. Hence,
the estimates for x € N, Q) follow from their counterparts for points in 2.

4. MARGULIS FuncTIiONS IN INFINITE VOLUME

We construct Margulis functions on 2 which allow us to obtain quantitative recurrence estimates
to compact sets. Our construction is similar to the one in [BQ11] in the case of lattices in rank 1
groups. We use geometric finiteness of I' to establish the analogous properties more generally. The
idea of Margulis functions originated in [EMMO98|.
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Throughout this section, we assume I' is a non-elementary, geometrically finite group containing
parabolic elements. The following is the main result of this section. A similar result in the special
case of quotients of SLy(R) follows from combining Lemma 9.9 and Proposition 7.6 in [MO23].

Theorem 4.1. Let A > 0 denote the constant in (3.1). For every 0 < 5 < A/2, there exists a
proper function Vg : Ni Q — R such that the following holds. There is a constant ¢ > 1 such that
forallz € Ny Q andt >0,

v,
— Vs(ginz) dut(n) < ce P Vs(z) + c.
pi(NT) Iy v

Our key tool in establishing Theorem 4.1 is Proposition 4.2, which is a statement regarding
average expansion of vectors in linear represearntations of G. The fractal nature of the conditional
measures /1y poses serious difficulties in establishing this latter result.

4.1. Construction of Margulis functions. Let p1,...,pq € A be a maximal set of inequivalent
parabolic fixed points and for each ¢, let I'; denote the stabilizer of p; in I'. Let P; < G denote the
parabolic subgroup of G fixing p;. Denote by U; the unipotent radical of P; and by A; a maximal
R-split torus inside F;. Then, each U; is a maximal connected unipotent subgroup of G admitting
a closed (but not necessarily compact) orbit from identity in G/I". As all maximal unipotent
subgroups of G are conjugate, we fix elements h; € G so that h;U;h; 1 — N*. Note further that G
admits an Iwasawa decomposition of the form G = K A;U; for each i, where K is our fixed maximal
compact subgroup.

Denote by W the adjoint representation of G on its Lie algebra. The specific choice of repre-
sentation is not essential for the construction, but is convenient for making some parameters more
explicit. We endow W with a norm that is invariant by K.

Let 0 # vy € W denote a vector that is fixed by NT. In particular, vy is a highest weight vector
for the diagonal group A (with respect to the ordering determined by declaring the roots in N T to
be positive). Let v; = h;vg/ ||hivol|. Note that each of the vectors v; is fixed by U; and is a weight
vector for A;. In particular, there is an additive character y; : A; — R such that

a-v; = eX"(a)vi, Va € A;. (4.1)

We denote by A;F the subsemigroup of A; which expands U; (i.e. the positive Weyl chamber deter-
mined by U;). We let «; : A; — R denote the simple root of A; in Lie(U;). Then,

1, if K=R
i= i) =<7 . ’ 4.2
Xi = e XK {2 if K = C, H,O. (42)

Given 8 > 0, we define a function Vg : G/I' = R4 as follows:
Va(gl) == max ]| 7. (4.3)

welJi—; g1 v

The fact that V3(gI') is indeed a maximum will follow from Lemma 4.6.

4.2. Linear expansion. The following result is our key tool in establishing the contraction esti-
mate on Vg in Theorem 4.1.

Proposition 4.2. For every 0 < 8 < A/2, there exists C = C(B) > 1 so that for all t > 0,
x € Ny Q, and all non-zero vectors v in the orbit G - vy C W, we have

1 _ _ -
W/N lgen ol 77X dpig(n) < CemP o] 770x
T 1 1
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We postpone the proof of Proposition 4.2 to Section 5. Let my : W — W™ denote the projection
onto the highest weight space of g;. The difficulty in the proof of Proposition 4.2 beyond the case
G = SLy(R) lies in controlling the shape of the subset of N* on which |74 (n - v)|| is small, so that
we may apply the decay results from Proposition 3.1, that are valid only for balls of the form N .
We deal with this problem by using a convexity trick. A suitable analog of the above result holds
for any non-trivial linear representation of G.

The following proposition establishes several geometric properties of the functions Vg which are
useful in proving, and applying, Theorem 4.1. summarizes the main geometric properties of the
functions V. This result is proved in Section 4.4.

Proposition 4.3. Suppose Vg is as in (4.3). Then,
(1) For every x in the unit neighborhood of ), we have that

inj(z) 7 <r V3P (x),

where inj(x) denotes the injectivity radius at x. In particular, Va is proper on .
(2) Forallg € G and all z € X,

gl ~? Vi(z) < Vi(gz) < |lg~Y” Va(a).

(3) There exists a constant £9 > 0 such that for all x = gI' € X, there exists at most one vector
v el 9T - v; satisfying ||v|| < eo.

4.3. Proof of Theorem 4.1. In this section, we use Proposition 4.3 to translate the linear ex-
pansion estimates in Proposition 4.2 into a contraction estimate for the functions V3.
Let tg > 0 be be given and define

—1n1
wo = sup max { lgeyn| X | (grym) [
nGNl+

where ||-|| denotes the operator norm of the action of G on W. Then, for all n € N;” and all z € X,
we have

wy Va(x) < Vilgene) < woVi (), (4.4)

where V; = Vj for 8 = 1.
Let €9 be as in Proposition 4.3(3). Suppose = € X is such that Vi (z) < wp/e9. Then, by (4.4),
for any 8 > 0, we have that

1 / u 2_—1\g8
_— Va(gi,nax) dug(n) < By = (wpe . 4.5

Now, suppose = € Ny € is such that Vi(z) > wp/ep and write = gI' for some g € G. Then,
by Proposition 4.3(3), there exists a unique vector v, € |J,; gI" - v; satisfying Vi(z) = ||U*H_1/XK.
Moreover, by (4.4), we have that Vi (g, nx) > 1/g¢ for all n € Nif. And, by definition of wy, for
all n € Ny, || g4y m)*Hl/ X& < gg. Thus, applying Proposition 4.3(3) once more, we see that g,nv, is

the unique vector in (J; g¢,ngI" - v; satisfying
Va(gionz) = [lginodl| X<, Wn e N

Moreover, since the vectors v; all belong to the G-orbit of vg, it follows that v, also belongs to
G - vg. Thus, we may apply Proposition 4.2 as follows. Fix some § > 0 and let C = C(5) > 1 be
the constant in the conclusion of the proposition. Then,

1 / 1 "y Bt Y —pt
—— | Vi(gna)dpt = ——— / gonv|| =X dutt < Ce P10 o, || 7/ = CePovy(a).
pe(NF) Sy PO T (N S g - g
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Combining this estimate with (4.5), we obtain for any fixed ty,

) s Voon) i) < Ce Vi) + By (4.6)

for all z € Q. We claim that there is a constant ¢; = ¢1(8) > 0 such that, if ¢o is large enough,
depending on [, then

N+ / Vi (grtona) duy(n) < cfe” M0V (z) + 2By, (4.7)

for all k € N. By Proposition 4.3, this claim completes the proof since Vs(g:y) < V3(9g|1/1, jt,¥), for
all t > 0 and y € X, with an implied constant depending only on tg and 5.

The proof of (4.7) is by now a standard argument, with the key ingredient in carrying it out
being the doubling estimate Proposition 3.1. We proceed by induction. Let k& € N be arbitrary and
assume that (4.7) holds for such k. Let {n; € Ad(gk,)(N;") : i € I} denote a finite collection of

points in the support of ,ugkto » such that Njn; covers the part of the support inside Ad(gk, (N7)).
We can find such a cover with uniformly bounded multiplicity, depending only on NT. That is
ZXN+ <<XUN+ (n), VneNt.
el
Let z; = nigr,x. By (4.6), and a change of variable, cf. (2.3) and (2.4), we obtain

6kt0/ VB I(k+1)to VT dﬂx < Z/ Vﬁ gtonxz) d,Ux < ZMI Nl ) <C€ BtOVg( )—I—BQ>

i€l iel
It follows using Proposition 4.3 that py (N Waly) < [, N V(ny) dpy,(n) for all y € X. Hence,

/ Vi(gee1na) dui(n) < e~ 3~ / (Ce™ o Va(na:) + Bo) dyit, ().
N . N

Note that since g; expands NT by at least !, we have

A = Ad(9—kt,) (U Nf'm) C N;.
i
Using the bounded multiplicity property of the cover, we see that, for any non-negative function
p, we have

Z/ ’I’Ll‘l d,ux —/ Qp(ngkto ZXNer )d'ugktox <</

" @(ngktox) d'ugktox'
el el U; N

Changing variables back so the integrals take place against uY, we obtain

e~ Okto Z/ (Ce PVg(na;) + By) dut, < /A (Ce_ﬁtovﬁ(gktonx) + BO) dpy

el k

< CePio / . VBlgrona) dpg + Bopz (Ny).
N2
To apply the induction hypothesis, we again pick a cover of N2+ by balls of the form Nl+ n, for a
collection of points n € N2Jr in the support of p¥. We can arrange for such a collection to have a
uniformly bounded cardinality and multiplicity. By essentially repeating the above argument, and
using our induction hypothesis for &, in addition to the doubling property in Proposition 3.1, we
obtain

Ce—ﬁto/ Va(greona) dpls + Bopt(Ng) < (Cete PFHD0V(2) 4 2ByCe™ 10 + Bo)ut(N}),
Ny

2
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where we also used Proposition 4.3 to ensure that Vz(nz) < Vj(z), for all n € N5 . Taking c; to
be larger than the product of C' with all the uniform implied constants accumulated thus far in the
argument, we obtain

1 _ _
ﬁ/ Va(ge+1)tone) dpg(n) < itle=Blk+io V() + 2c1e P By + B
:u’:c(Nl ) N

Taking to large enough so that 2cie #% < 1 completes the proof.

4.4. Geometric properties of Margulis functions and proof of Proposition 4.3. In this
section, we give a geometric interpretation of the functions Vg which allows us to prove Proposi-
tion 4.3. Item (2) follows directly from the definitions, so we focus on the remaining properties.
The data in the definition of V3 allows us to give a linear description of cusp neighborhoods as
follows. Given g € G and i, write g = kau for some k € K, a € A; and u € U;. Geometrically, the
size of the A component in the Iwasawa decomposition G = K A;U; corresponds to the value of the
Busemann cocycle |3,,(Kg,0)|, where Kg is the image of g in K\G; cf. [BQ16, Remark 6.5] and
the references therein for the precise statement. This has the following consequence. We can find
0 < g; < 1 such that
HAd(a)|Lie(Ui) <e¢& < Kg € Hp, (4.8)

where H,, is the standard horoball based at p; in HE = K\G.
The functions Vz(z) roughly measure how far into the cusp x is. More precisely, we have the
following lemma.

Lemma 4.4. The restriction of Vg to any bounded neighborhood of €} is a proper map.

Proof. In view of Property (2) of Proposition 4.3, it suffices to prove that Vs is proper on (.
Now, suppose that for some sequence g, € G, we have g,I" tends to infinity in 2. Then, since
I' is geometrically finite, this implies that the injectivity radius at g,I" tends to 0. Hence, after
passing to a subsequence, we can find v, € I' such that g,7, belongs to a single horoball among
the horoballs constituting our fixed standard cusp neighborhood; cf. Section 2.2. By modifying ~,
on the right by a fixed element in I' if necessary, we can assume that K g,v, converges to one of
the parabolic points p; (say p1) on the boundary of Hf( = K\G.

Moreover, geometric finiteness implies that (Ar \ {p1})/T"1 is compact. Thus, by multiplying
gnYn by an element of I'y on the right if necessary, we may assume that (g,7v,)~ belongs to a fixed
compact subset of the boundary, which is disjoint from {p;}.

Thus, for all large n, we can write g,v, = knanun, for k, € K, a, € A; and u, € U;, such
that the eigenvalues of Ad(a,) are bounded above; cf. (4.8). Moreover, as (g,7,)~ belongs to a
compact set that is disjoint from {p;} and (g,v,)* — p1, the set {u,} is bounded. To show that
Va(gnI') = o0, since U; fixes v; and K is a compact group, it remains to show that a,, contracts v;
to 0. Since g,y is unbounded in G while k,, and u,, remain bounded, this shows that the sequence
ap, is unbounded. Upper boundedness of the eigenvalues of Ad(a,) thus implies the claim. O

Remark 4.5. The above lemma is false without restricting to 2 in the case I" has infinite covolume
since the injectivity radius is not bounded above on G/T". Note also that this lemma is false in the
case I' is not geometrically finite, since the complement of cusp neighborhoods inside €2 is compact
if and only if I" is geometrically finite.

The next crucial property of the functions Vj is the following linear manifestation of the existence
of cusp neighborhoods consisting of disjoint horoballs. This lemma implies Proposition 4.3(3).

Lemma 4.6. There exists a constant g > 0 such that for all x = gI' € X, there exists at most one
vector v € |J; gI" - v; satisfying ||v|| < eo.

Remark 4.7. The constant g roughly depends on the distance from a fixed basepoint to the cusp
neighborhoods.
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Proof of Lemma 4.6. Let g € G and i be given. Write g = kau, for some k € K, a € A; and u € U;.
Since U; fixes v; and the norm on W is K-invariant, we have ||g - v;|| = ||a - v;|| = eXi(®); cf. (4.1).
Moreover, since W is the adjoint representation, we have

HAd(a)‘Lie(Ui) H = eXi(a)7

and the implied constant, denoted C, depends only on the norm on the Lie algebra.

Let 0 < &; < 1 be the constants in (4.8) and define ¢y := min; ¢;/C. Let z = gI" € G/T". Suppose
that there are vectors 1,72 € I' and vectors v;,, v, in our finite fixed collection of vectors v; such
that H 9vj 'fuin < gg for 7 = 1,2. Then, the above discussion, combined with the choice of ¢;
in (4.8), imply that K gv; belongs to the standard horoball H; in H% based at p;;. However, this
implies that the two standard horoballs Hyv; L and Hovyy L intersect non-trivially. By choice of
these standard horoballs, this implies that the two horoballs H ﬂj_l are the same and that the two
parabolic points p;; are equivalent under I'. In particular, the two vectors v;,,v;, are in fact the
same vector, call it v;,. It also follows that ~; 1y sends H to itself and fixes the parabolic point it
is based at. Thus, v, Ly, fixes v, by definition. But, then, we get that

972 - Vi = g (V5 12) - Vig = g1+ Vi -

This proves uniqueness of the vector in | J, gI"- v; with length less than o, if it exists, and concludes

the proof.
O

Finally, we verify Proposition 4.3 (1) relating the injectivity radius to V3.
Lemma 4.8. For all x in the unit neighborhood of ), we have
inj(z) ™! <r VﬁXK/B(x),
where xx is given in (4.2).

Proof. Let x € Q and set g = Kx. Let xp € K\G & H% denote a lift of Zg. Then, x¢ belongs to
the hull of the limit set of I'; cf. Section 2.

Since inj(-)~! and Vj are uniformly bounded above and below on the complement of the cusp
neighborhoods inside €2, it suffices to prove the lemma under the assumption that zg belongs to
some standard horoball H based at a parabolic fixed point p. We may also assume that the lift zq
is chosen so that p is one of our fixed finite set of inequivalent parabolic points {p;}.

Geometric finiteness of I' implies that there is a compact subset K, of GH%\ {p}, depending
only on the stabilizer I', in I', with the following property. Every point in the hull of the limit
set is equivalent, under I',, to a point on the set of geodesics joining p to points in K,. Thus,
after adjusting zo by an element of I', if necessary, we may assume that xo belongs to this set.
In particular, we can find g € G so that xg = K¢ and g can be written as kau in the Iwasawa
decomposition associated to p, for some k € K,a € Ay, and u € Up3 with the property that Ad(a)
is contracting on U, and u is of uniformly bounded size.

Note that it suffices to prove the statement assuming the injectivity radius of x is smaller than
1/3, while the distance of 2 to the boundary of the cusp horoball H,, is at least 1. Now, let v € I’
be a non-trivial element such that z¢7y is at distance at most 1/2 from zy. Then, this implies
that both xy and z¢y belong to H,. In particular, the standard horoballs H, and H,y intersect
non-trivially, and hence must be the same. It follows that v belongs to I',,.

Let M, denote the centralizer of A, inside K. Since I'j, is a subgroup of M,U,,, we can find v in
the Lie algebra of M,U, so that v = exp(v). In view of the discreteness of I', we have that ||v|| > 1.

3The groups A, and U, were defined at the beginning of the section.



18 OSAMA KHALIL

Since the exponential map is close to an isometry near the origin, we see that
dist(gyg~", 1d) < [Ad(au)(v)|| > X< || Ad(u) (v)]],

where xk is given in (4.2) and we used K-invariance of the norm. Here, « is the simple root of A,
in the Lie algebra of U, and eXx2(a) js the smallest eigenvalue of Ad(a) on the Lie algebra of the
parabolic group stabilizing p. Note that since x¢ belongs to H,, a(a) is strictly negative.

Recalling that u belongs to a uniformly bounded neighborhood of identity in G and that ||v]| > 1,
it follows that dist(gyg~",Id) > (@) Since  was arbitrary, this shows that the injectivity radius
at x satisfies the same lower bound.

Finally, let v, € {v;} denote the vector fixed by U,. Using the above Iwasawa decomposition,
we see that Vﬁl /B (x) > Hava_l/ X — e=xp(9)/XK where Yy, is the character on A, determined by v,
cf. (4.1). This concludes the proof in view of (4.2) and the fact that x, = xxka. O

5. SHADOW LEMMAS, CONVEXITY, AND LINEAR EXPANSION

The goal of this section is to prove Proposition 4.2 estimating the average rate of expansion of
vectors with respect to leafwise measures. This completes the proof of Theorem 4.1.

5.1. Proof of Proposition 4.2. We may assume without loss of generality that ||v|| = 1. Let W+
denote the highest weight subspace of W for A, = {g; : t > 0}. Denote by 7, the projection from
W onto W+. In our choice of representation W, the eigenvalue of A, in W7 is eXk! | where yi is
given in (4.2). It follows that
1 —B/xx g,u —pt_ 1 / —B/xx g, u
n- < . n).

O i o oI dzo) < e [ st 017 dgio)
Hence, it suffices to show that, for a suitable choice of 5, the integral on the right side is uniformly
bounded, independently of v and x (but possibly depending on 3).

For simplicity, set Sk = 3/xk. A simple application of Fubini’s Theorem yields

[ee]
[ et ol dny = [T iz(ne N sl < o) an
N 0
For v € W, we define a polynomial map on Nt by n — p,(n) := |74 (n - v)||* and set
S(v,e) :={neNT:py(n) <e}.
To apply Proposition 3.1, we wish to efficiently estimate the radius of a ball in N containing the
sublevel sets S (v, t=2%/ BK) N N;". We have the following claim.

Claim 5.1. There exists a constant Cp > 0, such that, for all € > 0, the diameter of S(v,e) N Nfr
is at most Cpel/4xx.

Let us show how to conclude the proof assuming this claim. By estimating the integral over [0, 1]
trivially, we obtain

[ (e N o < o) < v +
0 1

Claim 5.1 implies that if 2 (S(v,e) N N;") > 0 for some € > 0, then S(v,e) N Ny is contained
in a ball of radius 2Cye!/%x% | centered at a point in the support of the measure | N Recalling
that g = 8/xx, we thus obtain

o o
/ Ly <S(v, t_z/BK) N N1+> dt < / sup iy (BN+ (n, 2C’Ot_1/2ﬁ)> dt, (5.2)
1 1

nesupp(u) NN}

(e.o]

I <S(v,t_2/5K) me) dt. (5.1

where for n € N and r > 0, By+(n,r) denotes the ball of radius r centered at n.
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To estimate the integral on the right side of (5.2), we use the doubling results in Proposition 3.1.
Note that if n € supp(p¥), then nz belongs to the limit set Ap. Since z € N; Q by assumption,
this implies that nz belongs to N, € for all n € Nfr in the support of p¥; cf. Remark 2.1. Hence,
changing variables using (2.4) and applying Proposition 3.1, we obtain for all n € supp(u%) N N,

Ly <BN+ (n, 2C0t_1/2ﬁ)> =l <BN+ (Id, 2Cot_1/25)> < A28 (N;5).

Moreover, for n € Nfr , we have, again by Proposition 3.1, that
fina (NT) < pig(NS") < g (NY).
Put together, this gives

1 nesupp(uy)NN; 1

The integral on the right side above converges whenever 5 < A/2, which concludes the proof.

5.2. Prelimiary facts. We begin by recalling the Bruhat decomposition of G. Denote by P~ the
subgroup MAN~ of G.

Proposition 5.2 (Theorem 5.15, [BT65]). Let w € G denote a non-trivial Weyl “element” satis-
fying wgaw™" = g_;. Then,
G=P N*| |Pw. (5.3)

We shall need the following result, which is yet another reflection in linear representations of GG
of the fact that G has real rank 1.

Proposition 5.3. Let V' be a normed finite dimensional representation of G, and vy € V' be any
highest weight vector for g; (t > 0) with weight e for some A > 0. Let v be any vector in the orbit
G - vy and define

1
G0,V a) = {o e 6 pim <2 <51,

Then, there exists g, € G such that

G(v,V<Ngt)) C P gy

Proof. Let h € G be such that v = hvy and let g € G(v,V<*(g;)). By the Bruhat decomposition,
either gh = pn for some p € P~ and n € NT, or gh = pw for some p € P~ and w being the
long Weyl “element”. Suppose we are in the first case, and note that Nt fixes vy since it is a
highest weight vector for g;. Moreover, Ad(g;)(p) converges to some element in G as t tends to
o0. Since gigv = eMAd(g¢)(p)vo, we see that log ||gigv|| /t — A as t tends to oo, thus contradicting
the assumption that g belongs to G(v,V<*(g;)). Hence, gh must belong to P~w. This implies the
conclusion by taking g, := wh™'.

O

The following immediate corollary is the form we use this result in our arguments.

Corollary 5.4. Let the notation be as in Proposition 5.3. Then, Nt N G(v, W (g;)) contains at
most one point.

Proof. Recall the Bruhat decomposition of G in Proposition 5.2. Let g, € G be as in Proposition 5.3
and suppose that ng € P~ g, N NT. Let pg € P~ be such that ng = pgg,.

First, assume g, = pyn, for some p, € P~ and n, € N*. Then, ng = pop,ny. Then, non,! €
P~ N N* ={Id}. In particular, ng = n,, and the claim follows in this case.
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Now assume that g, = p,w for some p, € P, so that ng = pop,w € P~w N NT. This is a
contradiction, since the latter intersection is empty as follows from the Bruhat decomposition.
O

5.3. Convexity and Proof of Claim 5.1. Let By C Lie(N ™) denote a compact convex set whose
image under the exponential map contains Nfr and denote by By a compact set containing B; in
its interior.

Define n] to be the unit sphere in the Lie algebra n™ of N in the following sense:

wf o= {uent :dye (exp(u), 1d) = 1},

where dp+ is the Cygan metric on NT; cf. Section 2.5. Given u,b € n™, define a line £, : R — n*
as follows:

Ly p(t) :==tu+ b,

and denote by £ the space of all such lines ¢, such that u € nj. We endow £ with the topology
inherited from its natural identification with its nf x n™. Then, the subset £(Bj) of all such lines
such that b belongs to the compact set By is compact in L.

Recall that a vector v € W is said to be unstable if the closure of the orbit G - v contains 0.
Highest weight vectors are examples of unstable vectors. Let A/ denote the null cone of G in W,
i.e., the closed cone consisting of all unstable vectors. Let N7 C A denote the compact set of unit
norm unstable vectors. Note that, for any v € N, the restriction of p, to any £ € L is a polynomial
in t of degree at most that of p,. We note further that the function

p(v,£) == sup {p,(£(t)) : £(t) € B2}
is continuous and non-negative on the compact space N1 x £(Bjy). We claim that
px = 1nf {p(v,£) : (v,€) € N1 x L(By)}

is strictly positive. Indeed, by continuity and compactness, it suffices to show that p is non-
vanishing. Suppose not and let (v, ¢) be such that p(v,#) = 0. Since Bj is contained in the interior
of B, the intersection

I(0) :={teR:{(t) € By}

is an interval (by convexity of By) with non-empty interior. Since p,(¢(-)) is a polynomial vanishing
on a set of non-empty interior, this implies it vanishes identically. On the other hand, Corollary 5.4
shows that p, has at most 1 zero in all of n™, a contradiction.

Positivity of p, has the following consequence. Our choice of the representation W implies that
the degree of the polynomial p, is at most 4y, where xk is given in (4.2). This can be shown by
direct calculation in this case.* By the so-called (C, a)-good property (cf. [Kle10, Proposition 3.2]),
we have for all € > 0

[ {t € I(0) : pu(€(t)) < €}| < Cale/pe) /™= |1(0)),

where Cy > 0 is a constant depending only on the degree of p,, and | - | denotes the Lebesgue
measure on R.

To use this estimate, we first note that the length of the intervals I(¢) is uniformly bounded over
L(By). Indeed, suppose for some u = (uq,u2q),b € nt and £ = £, € L(B1), I(£) has endpoints
t1 < to so that the points £(t;) belong to the boundary of Bs. Recall that the Lie algebra n™ of N*
decomposes into g; eigenspaces as n} @ nj_, where nj,, = 0 if and only if K = R. Set 1 = £(t1)

n general, such a degree can be calculated from the largest eigenvalue of g: in W; for instance by restricting the
representation to suitable subalgebras of the Lie algebra of G that are isomoprhic to sl2(R) and using the explicit
description of sl2(R) representations.
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and zo = {(t3). Since N is a nilpotent group of step at most 2, the Campbell-Baker-Hausdorff
formula implies that exp(z2) exp(—z1) = exp(Z), where Z € n" is given by

1 1
J =x9— T+ 5[:172, —l‘l] = (752 — tl)u+ §(t2 — tl)[b,u].

Note that since n3, is the center of n™, [b,u] = [b, us] belongs to n,. Hence, we have by (2.8) that

2) 1/4

Since exp(u) is at distance 1 from identity, at least one of |[uy| and ||uge|| is bounded below by
10~!'. Moreover, we can find a constant § € (0,1072) so that for all b € By and all y, € n} with
lyal| < @ such that ||[b, ya]|| < 1072, Together this implies that

1
U2q + §[b7 u]

dy+ (exp(e1), exp(x2)) = ((tz —t1)! lua* + (5 — £2)°

min {tg —t, (85 — t%)lp} < diam (By),

where diam (Bp) denotes the diameter of B;. This proves that [I({)] = to —t; < 1, where the
implicit constant depends only on the choice of B;. We have thus shown that

| {t € I(0) : pu(L(t)) < e} ] < e/ Hxx, (5.4)

We now use our assumption that v belongs to the G orbit of a highest weight vector vg. Since
vo is a highest weight vector, it is fixed by NT. Hence, the Bruhat decomposition, cf. (5.3) with
the roles of P~ and P reversed, implies that the orbit G - vy can be written as

G'vozPJr-vol_lPer'vo,

where w is the long Weyl “element”. Recall that PT = N*tMA, where M is the centralizer of
A = {g:} in the maximal compact group K. In particular, M preserves eigenspaces of A and
normalizes N*. Recall further that the norm on W is chosen to be K-invariant.

First, we consider the case v € PTw - vy and has unit norm. For v' € W, we write [v'] for its
image in the projective space P(W). Then, since w - vy is a joint weight vector of A, we see that
the image of PTw - vy in P(W) has the form NTM - [w - vg]. Setting vy := w - vy, we see that

S(nm vy, e) = S(muy,e) -n~t = Ad(m N (S(vy,€)) -n Y, (5.5)

where we implicitly used the fact that M commutes with the projection 74 and preserves the norm
on W. Since the metric on N7 is right invariant under translations by N* and is invariant under
Ad(M), the above identity implies that it suffices to estimate the diameter of S(vi,e) N Ny in
the case v € PTw - vy. Similarly, in the case v € PT - vy, it suffices to estimate the diameter of
S(vo,e) NN 1+ .

Let S(v,e) = log S(v,€) denote the pre-image of S(v,¢) in the Lie algebra n* of N* under the
exponential map. By Corollary 5.4, for any non-zero v € N, either S(v,¢) is empty for all small
enough ¢, or there is a unique global minimizer of p,(-) on N, at which p, vanishes. In either
case, for any given v € A"\ {0} in the null cone, the set S(v, ) is convex for all small enough € > 0,
depending on v. Let sg > 0 be such that S(v,e) is convex for v € {vg,v;} and for all 0 < & < sq.

Fix some v € {vg,v1} and € € [0, s0]. Suppose that z; # 2o € S(v,e) N By. Let r denote the
distance dy+ (21, 22). Let v/ = zg — 21, u = v//r and b = 1. Set £ = £, and note that £, ,(0) = 3
and £, 4(r) = zq. Since By is convex, the set S(v,e) N By is also convex. Hence, the entire interval
(0,7) belongs to the set on the left side of (5.4) and, hence, that r < /X% Since z; and z9 were
arbitrary, this shows that the diameter of S(v,e) N By is O(eV/*Xx) as desired.
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6. ANISOTROPIC BANACH SPACES AND TRANSFER OPERATORS

In this section, we define the Banach spaces on which the transfer operator and resolvent asso-
ciated to the geodesic flow have good spectral properties.

The transfer operator, denoted L;, acts on continuous functions as follows: for a continuous
function f, let

Etf ;:fogt' (61)
For z € C, the resolvent R(z) : Co(X) — C(X) is defined formally as follows:

R(2)f = /000 e Ly f dt.

If I is not convex cocompact, we fix a choice of 5 > 0 so that Theorem 4.1 holds and set V' = V3.
If T is convex cocompact, we take V = Vg = 1 and we may take § as large as we like in this case.
Note that the conclusion of Theorem 4.1 holds trivially with this choice of V. In particular, we
shall use its conclusion throughout the argument regardless of whether I' admits cusps.

Denote by C5*1(X)M the subspace of C**1(X) consisting of M-invariant functions, where M is
the centralizer of the geodesic flow inside the maximal compact group K. In particular, CfH(X )M
is naturally identified with the space of C**! functions on the unit tangent bundle of HZ /T
cf. Section 2. The following is the main result of this section.

Theorem 6.1 (Essential Spectral Gap). Let k € N be given. Then, there exists a seminorm ||-||,
on C* (XM non-vanishing on functions whose support meets Q, and such that for every z € C,
with Re(z) > 0, the resolvent R(z) extends to a bounded operator on the completion of C*+1(X)M
with respect to ||-||;, and having spectral radius at most 1/Re(z). Moreover, the essential spectral
radius of R(z) is bounded above by 1/(Re(z) + 0p), where

oo := min{k, 5} .
In particular, if I' is convex cocompact, we can take og = k.

By the completion of a topological vector space V' with respect to a seminorm ||-||, we mean the
Banach space obtained by completing the quotient topological vector space V/W with respect to
the induced norm, where W is the kernel of ||-||.

The proof of Theorem 6.1 occupies Sections 6 and 7.

6.1. Anisotropic Banach Spaces. We construct a Banach space of functions on X containing
C* functions satisfying Theorem 6.1.

Given r € N, let V;~ denote the space of all C” vector fields on N pointing in the direction of
the Lie algebra n~ of N~ and having norm at most 1. More precisely, V,~ consists of all C" maps
v: Nt = n~, with C" norm at most 1. Similarly, we denote by V? the set of C" vector fields
v: NT — a:= Lie(A4), with C" norm at most 1. Note that if w € a is the vector generating the
flow gy, i.e. gy = exp(tw), then each v € V? is of the form v(n) = ¢(n)w, for some ¢ € C"(NT) such
that [|¢[|cr(n+) < 1. Define

V, =V uV.

For v € V, denote by L, the differential operator on C'(X) given by differentiation with respect
to the vector field generated by v. Hence, for ¢ € C1(G/T),

) = lim plexp(sv)z) — p(z)
5—0 S

For each k € N, we define a norm on C*(NT) functions as follows. Letting V* be the unit ball
in the Lie algebra of N*, 0 < £ < k, and ¢ € C*(NT), we define ¢;(¢) to be the supremum of

Lyp(x
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|Lyy -+ Lo, (¢)| over N* and all tuples (vy,...,v) € (VF)’. We define | ¢||ox to be Z?:o 27lcy(9).
One then checks that for all ¢1, ¢y € CF(NT), we have

”¢1¢2Hck < ”<Z51Hck H¢2”ck~ (6-2)

Following [GLO06, GL08], we define a norm on C¥*1(X) as follows. Given f € C*(X), k¢
non-negative integers, v = (v1,...,7) € Vl§+£ (i.e. £ tuple of C¥** vector fields) and x € X, define

1
i (Ny)

G(n) Ly, -+ Ly, (f)(gsn) dpz(n)] , (6.3)

ek (fi) = -
1

sup

V(x)

where the supremum is taken over all s € [0, 1] and all functions ¢ € C¥+(N;") which are compactly
supported in the interior of N;t and having H‘JSHCHZ(ND <1.

For v € VI€+Z+1= we define eﬁgvéﬁ(f;a:) analogously to ey ¢ ~(f;x), but where we take s = 0 and
take the supremum over ¢ € C*H+L(N ) instead® of C*+¢(N;"). Given r > 0, set

1/10
Q=N Q. (6.4)
We define
ek (f) = sup epo~(f;2), ere(f) = sup epe(f). (6.5)
zeQy veVEL,
Finally, we define | f||,, and | f||;, by
9= goas e, Wflli= o s g, (i) (6.6

. _
'yEVkHH,xEQl/Q

Note that the (semi-)norm || f||;, is weaker than || f||, since we are using more regular test functions
and vector fields, and we are testing fewer derivatives of f.

Remark 6.2. Since the suprema in the definition of ||-||, are restricted to points on Q7 , |||,
defines a seminorm on C*+1(X)M. Moreover, since ()] is invariant by g; for all ¢ > 0, the kernel of
this seminorm, denoted Wy, is invariant by £;. The seminorm ||-||, induces a norm on the quotient
CH1(X)M /W), which we continue to denote |[|-|,.

Definition 6.3. We denote by B the Banach space given by the completion of the quotient
CH1(X)M /W), with respect to the norm |||, where CE*1(X)M denotes the subspace consisting
of M-invariant functions.

Note that since [|||}, is dominated by |||, |-}, descends to a (semi-)norm on CA*+1(X)M /W,
and extends to a (semi-)norm on By, again denoted |-||}..
The following is a reformulation of Theorem 6.1 in the above setup.

Theorem 6.4. For all z € C, with Re(z) > 0, and for all k € N, the operator R(z) extends to
a bounded operator on By with spectral radius at most 1/Re(z). Moreover, the essential spectral
radius of R(z) acting on By, is bounded above by 1/(Re(z) + 0¢), where

oo := min{k, 5} .

In particular, if I' is convexr cocompact, we can take og = k.

5The restriction on the supports allows us to handle non-smooth conditional measures; cf. proof of Prop. 6.6.
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6.2. Hennion’s Theorem and Compact Embedding. Our key tool in estimating the essential
spectral radius is the following refinement of Hennion’s Theorem, based on Nussbaum’s formula.

Theorem 6.5 (cf. [Hen93] and Lemma 2.2 in [BGKO07]). Suppose that B is a Banach space with
norm ||-|| and that ||-||" is a seminorm on B so that the unit ball in (B,]-||) is relatively compact in
Il Suppose R is a bounded operator on B such that for some n € N, there exist constants r > 0
and C > 0 satisfying

IR ]| < v [lvllg + C ol (6.7)
for all v € B. Then, the essential spectral radius of R is at most r.

In this Section, we show, roughly speaking, that the inclusion of By, into Bj, is a compact operator;
Proposition 6.6.

Proposition 6.6. Let K C X be such that
sup{V(z):x € K} < oc.

Then, every sequence fn, € C*1(X)M | such that f, is supported in K and has | fully <1 for all
n, admits a Cauchy subsequence in ||-||}..

6.3. Proof of Proposition 6.6. We adapt the arguments in [GL06,GL08| with the main difference
being that we bypass the step involving integration by parts over NT since our conditionals u%
need not be smooth in general. The idea is to show that since all directions in the tangent space
of X are accounted for in the definition of |-||, (differentiation along the weak stable directions
and integration in the unstable directions), one can estimate ||-||}, using finitely many coefficients
er(f;x;). More precisely, we first show that there exists C' > 1 so that for all sufficiently small
£ > 0, there exists a finite set = C Q so that for all f € C*1(X)M, which is supported in K,

11 < CoNFll+ Csup [ 6L+ Lo dit, (68)
1

where the supremum is over all 0 < ¢ < k—1, all (vy,...,v¢) € V,€+é+1, all functions ¢ € C’kM*l(N;)
with ||¢||ckrerr < 1 and all z; € 2.

First, we show how (6.8) completes the proof. Let f, € C**1(K) be as in the statement.
Let € > 0 be small enough so that (6.8) holds. Since C*T*1(N.) is compactly included inside
C*+(N,), we can find a finite collection {¢; : 7} C C**(N,") which is e dense in the unit ball of
CHHTY(NS). Similarly, we can find a finite collection of vector fields {(v]",...,vf") : m} C Vi,
which is ¢ dense in V,g 441 in the CF++1 topology. Then, we can find a subsequence, also denoted
fn, so that the finitely many quantities

{/ (Zstv’ln’”vanfn d,u;i :i,j,m}
Ny

converge. Together with (6.8), this implies that

an1 - fn2||;§ <¢g,

for all large enough n1,ng, where we used the fact that || f,||, < 1 for all n. As e was arbitrary, one
can extract a Cauchy subequence by a standard diagonal argument. Thus, it remains to prove (6.8).

Fix some f € C*1(X)M which is supported inside K. Let an arbitrary tuple v = (vy,...,v;) €
V,ﬁJrngl be given and set

Y =Ly - Ly, f.
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Let ¢ € Ck”“(Nf;w) and write Q = N1J710' To estimate e ,_(f;2) using the right side of (6.8),
we need to estimate integrals of the form
1 1
— [ o(n)y(nz) duZ(n), (6.9)
V(z) p (NY7) Iy
for all z € 91/2

Denote by p : X — [0,1] a smooth function which is identically one on the 1-neighborhood €2
of Q and vanishes outside its 2-neighborhood. Note that if f is supported outside of Q!, then the
integral in (6.9) vanishes for all z and the estimate follows. The same reasoning implies that

oAl = 11> lefll =11

Hence, we may assume that f is supported inside the intersection of K with Q'. In particular, for
the remainder of the argument, we may replace K with (the closure of) its intersection with Q*.

This discussion has the important consequence that we may assume that K is a compact set in
light of Proposition 4.3. Let K denote the 1-neighborhood of K and fix some z € K1 N Q] /2 By
shrinking €, we may assume it is smaller than the injectivity radius of K;. Hence, we can find a
finite cover By,..., By of K1N Ql_/ with flow boxes of radius € and with centers E := {z;} C 91/2

Step 1: We first handle the case where z belongs to the same unstable manifold as one of the
x;’s. Note that we may assume that ) intersects the support of p¥ non-trivially, since otherwise
the integral in question is 0. Let uw € ) be one point in this intersection and let x = uz. Thus,
by (2.4), we get

[ otmna) o = [ oo dutt) = | otmitee) duzco)

Let ¢y (n) := ¢(nu). Then, ¢, is supported inside Qu~'. Moreover, since u € Q, Q, = Qu~ ' is a
ball of radius 1/10 containing the identity element. Hence, Qu~' C N1+ and, thus,

o(nu)p(nz) du(n / du ()b (nz) dpc(n).
Qu

Fix some ¢ > 0. We may assume that ¢ < 1/10. Note that = belongs to the 1-neighborhood of
K. Then, x = uy L2; for some i and some uy € NZ, by our assumption in this step that z belongs
to the unstable manifold of one of the z;’s. By repeating the above argument with z, u, x, @ and
¢ replaced with x, us, x;, Q, and ¢, respectively, we obtain

bulmtng) dutin) = [ ou(mua)(nrs) di, o).
Ny Quugy

Note that @, is contained in the ball of radius 1/5 centered around identity. Since us € N7 and
e < 1/10, we see that Quuz_l C Ny Tt follows that

buln)p(naz:) dpt. (n / G () (1) dp. (),
N}

where ¢y,u(n) = ¢u(nuz) = ¢(nugu). The function ¢, satisfies |[Guoullcrrerr = (@]l grress < 1
Finally, let o1, 2 : N* — [0, 1] be non-negative bump C? functions where p; = 1 on N;" and while
2 is equal to 1 at identity and its support is contained inside N1+ . Since y = py(;) is continuous
for i = 1,2, by [Rob03, Lemme 1.16], and is non-zero on ], we can find, by compactness of K, a
constant C' > 1, depending only on K (and the choice of ¢1, ¢2), such that

1/C <y (Nf) < C, Vye KiNQy. (6.10)

Hence, recalling that ¢ = L,, --- L,, f and that V(z) > 1, we conclude that the integral in (6.9) is
bounded by the second term in (6.8).
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Step 2: We reduce to the case where z is contained in the unstable manifolds of the x;’s. Let
i be such that z € B;. Set 21 = z and let zp € (N7 - x;) be the unique point in the intersection of
N7 - z; with the local weak stable leaf of 21 inside B;. Let p; € P~ := M AN~ be an element of
the € neighborhood of identity P~ in P~ such that z; = p; 2.

€
We will estimate the integral in (6.9) using integrals at zo. The idea is to perform weak stable

holonomy between the local strong unstable leaves of zg and z;. To this end, we need some notation.
Let Y € p~ be such that p; = exp(Y') and set

p; =exp(tY), 2z =p; 20,
for t € [0,1]. Let us also consider the following maps u;” : N7 — NT and p; : N;” — P~ defined
by the following commutation relations

np; = p; (n)u; (n), Vn € N

Recall we are given a test function ¢ € C’kM*l(NlJ;lO). We can rewrite the integral we wish to
estimate as follows:

o) duty () = [ om0 di(n) = [ 60y (n)u (n)za) dit ().
N N

Let U;” C Nt denote the image of u;". Note that if ¢ is small enough, U;” C N,§ for all ¢ € [0, 1].
We may further assume that ¢ is small enough so that the map u; is invertible on U, for all
t € [0,1] and write ¢; := ¢ o (u;") . For simplicity, set

pi (n) = By ()~ (n)).
Write my(n) € M and b, (n) € AN~ for the components of p, (n) along M and AN~ respectively
so that
Py (n) = my(n)by (n).
We denote by J; the Radon-Nikodym derivative of the pushforward of u¥, by u,” with respect to

py,; cf. (2.10) for an explicit formula. Thus, changing variables using n uf (n), and using the
M-invariance of f, we obtain

o(n)u(nz) dut, = / o1 (M7 ()nz) Ty (n) dut, = / b1 (n) 1 (b7 (n)nz0) 1 (n) dial,
Nl
where 1) is given by

o= Lo Lahe i) = AdGm((uf) () (wi() " ().

Here, we recall that Ad(M) commutes with A and normalizes N~ so that 0! is a vector field with
the same target as v;.

Let b~ denote the Lie algebra of AN~ and denote by @}, : U;" x [0,1] — b~ the vector field
tangent to the paths defined by b, . More explicitly, w; is given by the projection of tY to b~.
Denote w(n) := Ad(m¢(n))(w;(n)). Then, using the M-invariance of f as above once more, we
can write

1 ~
(b (n)nzg) — P (nz)) / 8t n)nzg) dt :/0 Ly, () (pr (n)nzo) dt.

To simplify notation, let us set w; = w; o u;", and

Fy = Lviou:r o Lviou:rf
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Using a reverse change of variables, we obtain for every t € [0, 1] that
/ 1(n) L, ($0) (py (n)nz0)J1 (n) dus, = / (¢11) 0w (1) Ly, (F) (B, (n)uf (n)z0) i () dt,

— [y 0w () Ly (F)nza) - I ) it (o)
where we used the identities p, (n)u; (n) = np; and z; = p; zp. Let us write

®i(n) := (¢1.1) 0w (n) - Iy (n),
which we view as a test function. Hence, the last integral above amounts to integrating ¢ + 1

weak stable derivatives of f against a C**¢ function. Moreover, since ¢ is supported in Nf}lo’ we
may assume that ¢ is small enough so that ®; is supported in Nfr for all t € [0,1], and meets
the requirements on the test functions in the definition of || f||,. Since z = z; belongs to Ql_/2 by
assumption, we may further shrink e if necessary so that the points z all” belong to Q7. Thus,

decomposing w; into its A and N~ components, and noting that ||w;|| < €, we obtain the estimate

/‘Pt(n) L, (Fy)(nze) dpiz, (n) < e || fllp V(ze) 2, (NY)- (6.11)

To complete the argument, note that the integral we wish to estimate satisfies

1
[ otz ait, = [ @) a,+ [ [ @) LBz di ) de. (612
1

Moreover, recall that zg belongs to the same unstable manifold as some x; € Z. Additionally, since
¢ is supported in N1710’ by taking € small enough, we may assume that ¢, is supported inside N1J75.
Hence, arguing similarly to Step 1, viewing ¢1.J; as a test function, we can estimate the first term
on the right side above using the right side of (6.8).

The second term in (6.12) is also bounded by the right side of (6.8), in view of (6.11). Here we
are using that y — ,uZ(NlJr ) and y — V(y) are uniformly bounded as y varies in the compact set
Kjy; cf. (6.10). This completes the proof of (6.8) in all cases, since ¢ and z were arbitrary.

7. THE ESSENTIAL SPECTRAL RADIUS OF RESOLVENTS

In this section, we study the operator norm of the transfer operators £; and the resolvents R(z)
on the Banach spaces constructed in the previous section. These estimates constitute the proof of
Theorem 6.1. With these results in hand, we deduce Theorem 1.4 at the end of the section.

7.1. Strong continuity of transfer operators. Recall that a collection of measurable subsets
{B;} of a space Y are said to have intersection multiplicity bounded by a constant C' > 1 if for all
i, the number of sets Bj in the collection that intersect B; non-trivially is at most C. In this case,
one has

Y xm(y) < Cxumly), VyevY.
i
The following lemma implies that the operators £; are uniformly bounded on By for ¢t > 0.
Lemma 7.1. For every k., € NU{0}, v € VﬁH, t>0, and x € 7,

enin(Lof;7) < e s ey o (F)(e™P + 1)V (2)),

where () > 0 is the number of stable derivatives determined by . In partitcular, e(y) = 0 if only
if £ =0 or all components of v point in the flow direction.

6The Jacobians are smooth maps as they are given in terms of Busemann functions; cf. (2.10).
"This type of estimate is the reason we use stable thickenings €2, of €2 in the definition of the norm instead of €.
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Proof. Fix some x € Q and v = (vy,...,v¢) € VﬁM. Since the Lie algebra of N~ has the orthogonal
decomposition g_, ® g_2+, Where « is the simple positive root in g with respect to g;, we have that
gt contracts the norm of each stable vector v € V,_, , by at least e~t. Tt follows that for all v € Vit

and w € Vlng

Lo(Lef)(x) = lJoel| Lo, (f)(gew),  Luw(Lef)(x) = Lu(f)(gex), (7.1)
for all f € C*FTH(X)M | where vy = Ad(g;)(v) and T; = v;/ ||ve||. Moreover, we have
lvell < e~ Jlull = e~ [lu]].

Let ¢ be a test function and ¢ € C(X)M. Using (2.3) to change variables, we get
p(n)Y(ginx) duy(n) = 6_&/ P(g—tnge)h(ngsx) dﬂgt:c(")-
i Ad(go)(N})

Let {p; : i € I'} be a partition of unity of Ad(g;)(IN;") so that each p; is non-negative, C*, and
supported inside some ball of radius 1 centered inside Ad(g;)(N;"). Such a partition of unity can
be chosen so that the supports of p; have a uniformly bounded multiplicity®, depending only on
NT. Denote by I(A) the subset of indices 7 € I such that there is n; € NT in the support of the
measure fg . with the property that the support of p; is contained in Nfr - n;. In particular, for
i € I'\ I(A), pifig,, is the 0 measure. Then, we obtain

Z /N P(g—tngt)(ngix) dpg,,(n).

i€I(A i

/ (g—tnge)(ngix) dpg,,(n
Ad(ge)(N;)
Setting x; = n;g;x and changing variables using (2.4), we obtain

olgme) dut() == S [ pilmota-ennig o) dyis ) (72

i€I(A)

The bounded multiplicity of the partition of unity implies that the balls Nfr -n; have intersection
multiplicity bounded by a constant Cy, depending only on N*. Enlarging Cj if necessary, we may
also choose p; so that ||pi|| ke < Co. In particular, Cy is independent of ¢ and .

For each i, let ¢;(n) = pi(nn;)¢(g_imn;g;). Since p; is chosen to be supported inside Nfr n;, then
¢; is supported inside N1 Moreover, since p; is C™, ¢; is of the same differentiability class as
¢. Since conjugation by g_; contracts NT, we see that ||¢ o Ad(g—¢)||crse < ||@llcrse < 1 (note
that the supremum norm of ¢ o Ad(g—;) does not decrease, and hence we do not gain from this
contraction). Hence, since ||pg[|cnie < Co, (6.2) implies that ||¢s]| ss0 < Co.

First, let us suppose that ¢ > 1. Then, using Remark 2.1, since x € Ny €2, one checks that x;
belongs to N; Q as well for all i. Applying (7.2) with ¢ = Ly, - - - L,, f, we obtain

[ ot iz == 3 / Gi(n)(na,) du,

i€I(A)

< Coern(f) 16 0 Ad(gt)llgnie €™ D pl (NOV(2:).  (7.3)
i€I(A)

8Note that the analog of the classical Besicovitch covering theorem fails to hold for N with the Cygan metric when
N is not abelian; cf. [KR95, pg. 17]. Instead, such a partition of unity can be constructed using the Vitali covering
lemma with the aid of the right invariance of the Haar measure. To obtain a uniform bound on the multiplicity here
and throughout, it is important that such an argument is applied to balls with uniformly comparable radii.
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By the log Lipschitz property of V' provided by Proposition 4.3, and by enlarging Cj if necessary,
we have V (x;) < CoV (nz;) for all n € N;". It follows that

Z%Nl xZ<COZ/ i) dug, ().

i€l (A i€l (A

Recall that the balls N -n; have intersection multiplicity at most C. Moreover, since the support
of p; is contained inside Ad(g;)(N;"), the balls N{'n; are all contained in N, Ad(g;)(N;"). Hence,
applying the equivariance properties (2.3) and (2.4) once more yields

Z / (nx;) dugy,(n) < Co/ V(ngi) dpg,,(n) < Coe&/ . V(ginx) dud(n).

ieI(A) Ny Ad(ge)(Ny) N;

Here, we used the positivity of V and that Ad(g—¢)(Ny )Ny~ € N;~. Combined with (7.2) and the
contraction estimate on V', Theorem 4.1, it follows that

[ otmpitama) dut < CheeV(a) + (N Jewal ),

for a constant ¢ > 1 depending on 8. By Proposition 3.1, we have p%(N;) < Cu(Ny"), for a
uniform constant C7 > 1, which is independent of . This estimate concludes the proof in view
of (7.1).

Now, let s € [0,1] and ¢ > 0. If ¢ + s > 1, then the above argument applied with ¢ + s in place
of t implies that

<g e =Ml o (e PV (2) + (N,

d(n)p(geqsnx) dpy
Ny

as desired. Otherwise, if ¢ + s < 1, then by definition of e s, we have that

< ko (f)V (@) (NT).

O()Y(ge+snz) dpy
Ny

Since ¢ is at most 1 in this case and V(z) > 1 on Qf, the conclusion of the lemma follows in this
case as well.
O

As a corollary, we deduce the following strong continuity statement which implies that the
infinitesimal generator of the semigroup £; is well-defined as a closed operator on B with dense
domain. When restricted to C**1(X)M | this generator is nothing but the differentiation operator
in the flow direction. This strong continuity is also important in applying the results of [Butl6a]
to deduce exponential mixing from our spectral bounds on the resolvent in Section 9.

Corollary 7.2. The semigroup {L; : t > 0} is strongly continuous; i.e. for all f € By,
lim || L f — =0.
tlfélH tf — fllx

Proof. For all f € C*1(X)M one easily checks that since V(-) > 1 on any bounded neighborhood
of Q, then

1Lef = flliy < sup ([Legsf — Lsfllorx -
0<s<1

Moreover, since f belongs to C**1 the right side above tends to 0 as t — 0 by the mean value
theorem. Now, let f be a general element of By, and let f, € C**1 be a sequence tending to f in
||-Il.- Then, by the triangle inequality, we have

1£ef = Fll S WEef = Lefully + 11£efn = Fullp + 1o = £l -
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We note that the first term satisfies the bound
ILef = Lefnlly, < f = Fallg s

uniformly in ¢ > 0, by Lemma 7.1. The conclusion of the corollary thus follows by the previous
estimate for elements of C*+1(X)M, O

7.2. Towards a Lasota-Yorke inequality for the resolvent. Recall that for all n € N,

n [e'e] 25n—1 o
R(z) —/0 e 1)!6 L dt, (7.4)

as follows by induction on n. The following corollary is immediate from Lemma 7.1 and the fact
that

* tn_l —zt o ¢! —Re(2)t n
/0 (n—l)!e dt‘ < /0 (n—l)!e dt = 1/Re(2)", (7.5)

for all z € C with Re(z) > 0.
Corollary 7.3. For all n,k,¢ € NU{0}, f € CE*Y(X)M and 2z € C with Re(z) > 0, we have

-1
ere(R(2)" f;2) <p exe(f) <(Re(z)1+ By + ﬁi(i)") <p ex(f)/Re(2)".

In particular, R(z) extends to a bounded operator on By with spectral radius at most 1/Re(z).

Note that Lemma 7.1 does not provide contraction in the part of the norm that accounts for the
flow direction. In particular, the estimate in this lemma is not sufficient to control the essential
spectral radius of the resolvent. The following lemma provides the first step towards a Lasota-Yorke
inequality for resolvents for the coefficients ej o when ¢ < k. The idea, based on regularization of
test functions, is due to [GLO6]. The doubling estimates on conditional measures in Proposition 3.1
are crucial for carrying out the argument.

Lemma 7.4. For allt> 2 and 0 </ < k, we have
ero(Lif) <ig e Mep(f) + efo(f)-

Proof. Fix some 0 < £ < k. Let x € Q] and ¢ € C*(NJH). Let (v;); € VI€+£ and set F' =
Ly, --- Ly, f. We wish to estimate the following:

sup P(n)F(gessna) dp.
0<s<1JN

To simplify notation, we prove the desired estimate for s = 0, the general case being essentially
identical.

Let € > 0 to be determined and choose 1. to be a C°° bump function supported inside N and
satisfying [|1c||c1 < 7! Define the following regularization of ¢

Mo - D

where du denotes the right-invariant Haar measure on NT. Recall the definition of the coefficients
¢r above (6.2). Let 0 <m < k+ ¢ and (w;) € (VT)™. Then,

J 1w, Ly (@) () — Luy, -+~ Ly, () (un) e (u) du
L+ L (6 = Me(6)) ()] < T du
[ dist(n, un)v:(u) du

J e(u) du '
Now, note that if 9.(u) # 0, then dist(u,Id) < e. Hence, right invariance of the metric on N*
implies that ¢, (¢ — M:(9)) < ecmi1(9).

< Cm+1(¢)
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Moreover, we have that ¢, (Mc(¢)) < cn(¢) for all 0 < m < k4 £. It follows that cjys(¢p —
M (9)) < 2¢k44(0). Finally, given (w;) € (VF)F+1 integration by parts implies
i ka+£+1 ((25) (un) ' Lwl (wE)(u) du
fN+ Ye(u) du

In particular, since ||| o1 < €7, we get cprrp1(Me(d)) < e tegre(d). Since g; expands N T by
at least e, this discussion shows that for any ¢ > 0, if ||¢||r+e < 1, then

Ly Lugs g (Mo(6))(n) = J2Fw

kbl o—mt = (k+0)t

166 = Me(8) 0 Ad(g-i)lonse < & Y S+ S,

kAl —mt =1 (k1)

e
IMe(6) 0 Ad(g-)lonsers < D+~ — (7.6)

Set A; = Ad(g:)(N;"). Then, taking ¢ = e, we obtain

[ s F(gme) dut = [ o) F(gins) du
Nl

= /((b — Me())(n)F(ginz) dpy + /Ma(ﬂﬁ)(n)F(gmx) dpy. (7.7)

To estimate the second term we recall that the test functions for the weak norm were required
to be supported inside V| /10 On the other hand, the support of M.(¢) may be larger, but still

inside N .. To remedy this issue, we pick a partition of unity {p;:7 € I} of N5, so that each
pi is smooth, non-negative, and supported inside some ball of radius 1/20. We also require that
| pill crresr <i 1. We can find such a partition of unity with cardinality and multiplicity, depending
only on Nt (through its dimension and metric).

Similarly to Lemma 7.1, we denote by I(A) C I, the subset of those indices i such that there

is some n; € N1 in the support of of p% so that the support of p; is contained inside N1 10" In
particular, for i € I\ I(A), p;p is the 0 measure.
Now, observe that the functions n > p;(nn;)M.(¢)(nn;) are supported inside N; /10 Thus,

writing z; = n;g1x, using a change of variable, and arguing as in the proof of Lemma 7.1, cf. (7.3),
we obtain

[ MA@ F(gina) dut = 3 [ (piMo(8)) 0 Adlg1) () F1-1m12) dit
i€I(A)
< eke Z [(piMe(9)) 0 Ad(g—1) || crrera -V(wi)uzi(Nf)-
iel(A)

The point of replacing = with gix is that since z belongs to Ny €2, g1 belongs to N /29 which
satisfies the requirement on the basepoints in the definition of the weak norm.

Note that the bounded multiplicity property of the partition of unity, together with the doubing
property in Proposition 3.1, imply that

D (N < (NG ) < p(NY).
iel

Moreover, combining the Leibniz estimate (6.2) with (7.6), we see that the C****! norm of
(piMc(¢)) o Ad(g—¢) is Ok(1). Hence, by properties of the height function V' in Proposition 4.3, it
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follows that
/ M.(6)(n)F(gnz) dp® < € o(f)V (@)t (N7H).

Using a completely analogous argument to handle the issues of the support of the test function,
we can estimate the first term in (7.7) as follows:

1 / kt
(¢ — Mc(9)(n)F(genz) dpg <p e ere(f)-
V(@) u(NT) Iy )
Since (v;) € Vﬁ 4T € and ¢ € Cktt (Nfr ) were all arbitrary, this completes the proof. O

It remains to estimate the coefficients ey ;. First, the following estimate in the case all the
derivatives point in the stable direction follows immediately from Lemma 7.1.

Lemma 7.5. For all v = (v;) € (V;;,)F, we have
ex iy (R(2)" f) <p

Proof. Indeed, Lemma 7.1 shows that
ehien(Lef) < e Mep i (f).

Moreover, induction and integration by parts give | [ tnle=GHRL /(n — 1)ldt| < 1/(Re(2) + k)™
This completes the proof. O

1
(e + 7 4

To give improved estimates on the the coefficient ey in the case some of the components
of v point in the flow direction, the idea (cf. [AG13, Lem. 8.4] and [GLP13, Lem 4.5]) is to take
advantage of the fact that the resolvent is defined by integration in the flow direction, which provides
additional smoothing. This is leveraged through integration by parts to estimate the coefficient
kk DY erp—1-

To see how such estimate can be turned into a gain on the norm of the resolvents, follow-
ing [AG13], we define the following equivalent norms to ||-||,. First, let us define the following
coefficients:

€k,e 0</t<k,
€k s ‘= 0=k ) Chkw = SUp €k k-

SUPye(vy, )k Chiky £ YEVE\Var ¥

Given B > 1, define
kz ek kw(f)

Hf”k,B s Z o ) Hf”k,B,w = Tﬁf

Finally, we set
1,5 = llkBs + 1fllk B (7.8)

Lemma 7.6. Let n,k € N and z € C with Re(z) > 0 be given. Then, if B is large enough,
depending on n,k, B and z, we obtain for all f € C*TY(X)M that

n 1
||R(Z) f||k7B7w < (Re(z) k4 1)n ||f||k7B .

Proof. Fix an integer n > 0. We wish to estimate integrals of the form

0 no —zt
o)L Lo [T EE s ) ) )
N 0

o0 4n ,—zt
- / o(u) / O Ly~ Loy (Los ) (u) dt dyc(u),
N. 0

+ n!
1
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with 0 < s <1 and at least one of the v; pointing in the flow direction.

First, let us consider the case vy points in the flow direction. Then, vg(u) = ¥, (u)w, where w
is the vector field generating the geodesic flow, for some function v, in the unit ball of C2¥(NT).
Hence, for a fixed u € Nf’ , integration by parts in ¢, along with the fact that f is bounded, yields

00 tne—zt
/0 TLvl Ly, -+ Ly (Lot f) (uz) dt

[e¢) tn—l —zt

o0 4n ,—zt
— Gu(u) /0 Ly L (Lo ) dt — () /0 T

= Un(w)zLo, -+ Lo, (LsR(2)" ) (uz) — p(u) Loy - Loy, (LsR" (2) f) ().

Recall by Lemma, 7.1 that e; o(R(2)" f) <3 ek (f)/Re(z)" for all n € N; cf. Corollary 7.3. It follows
that

Ly, - Ly,_, (Liysf)(ux) dt

ety (R(2)"Tf) < e o1 (R(2)"f) + |2len i1 (R(z)" T f) <5 <%> ek k—1(f)-

In the case v points in the stable direction instead, we note that Ly Ly = LiyLy + Ly, ) for any
two vector fields v and w, where [v, w] is their Lie bracket. In particular, we can write Ly, - -- Ly, as
a sum of at most k terms involving k£ —1 derivatives in addition to one term of the form L, - - - Ly, ,
where wj, points in the flow direction. Each of the terms with one fewer derivative can be bounded
by err—1(R(2)" f) <5 err—1(f)/Re(2)"*1, while the term with k derivatives is controlled as in
the previous case. Hence, taking the supremum over v € ka \ (Vz_k)k and choosing B to be large
enough, we obtain the conclusion. O

7.3. Decomposition of the transfer operator according to recurrence of orbits. In order
to make use of the compact embedding result in Proposition 6.6, we need to localize our functions
to a fixed compact set. This is done with the help of the Margulis function V. In this section, we
introduce some notation and prove certain preliminary estimates for that purpose.

Recall the notation in Theorem 4.1. Let Ty > 1 be a constant large enough so that €70 > 1.
We will enlarge Ty over the course of the argument to absorb various auxiliary uniform constants.
Define Vj by

Vo = 70, (7.9)

Let py, € C(X) be a non-negative M-invariant function satisfying py, = 1 on the unit neighbor-
hood of {z € X : V(z) < Vp} and py, =0 on {V > 2V}. Moreover, we require that py, < 1. Note
that since Tj is at least 1, we can choose py; so that its C?* norm is independent of Tp.

Let ¢1 = py, and 92 =1 — 11. Then, we can write

Lrf =Lif + Laf,
where L;f = L, (i f), for i € {1,2}. It follows that for all j € N, we have

J
ﬁjT()f = Z Ewl tee ijf = Z ﬁ]T()(wwf)7 ww = waz o g—(j—i)To' (710)

we{1,2} we{1,2} i=1
Note that if w; = 1 for some 1 < i < j, then, by Proposition 4.3, we have

sup  V(z) <PV, Io=j-max{l1<i<j:w;=1}. (7.11)
z€supp (Yo )
For simplicity, let us write

fw = wwf

The following lemma estimates the effect of multiplying by a fixed smooth function such as .
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Lemma 7.7. Let ¢ € C*(X) be given. Then, if B > 1 is large enough, depending on k and
6]l e, we have

1flleps < Ifllkps-

Proof. Given 0 < /¢ <k and 0 < s < 1, we wish to estimate integrals of the form
[ 0L L0 aina) dun),
1

The term Ly, --- L,,(¢f) can be written as a sum of ¢ terms, each consisting of a product of ¢
derivatives of ¥ by ¢ — i derivatives of f, for 0 < i < ¢. Viewing the product of ¢ by i derivatives
of ¥ as a C*¥+¢=7 test function, and using (6.2) to bound the C¥**~% norm of such a product, we
obtain a bound of the form

¢
ek s (VF) < Wllcar D enis(f)-
i=0
Hence, given B > 1, we obtain

kg ko1 A "k Cepes(f)
1.5 = Z yek,z(wf) < [[¥ll cor Z 5 Zek,i,s(f) < 19l g2 B " pl
=0 0" =0

= i =0

Thus, the conclusion follows as soon as B is large enough, depending only on &k and [|1)| s2x- O

The above lemma allows us to estimate the norms of the operators £;, for i = 1,2 as follows.

Lemma 7.8. If B > 1 is large enough, depending on k and ||pv;||c2r, we obtain
2]

Proof. The first inequality follows by Lemmas 7.1 and 7.7, since |[¢;| - < 1 for ¢ = 1,2. The
second inequality follows similarly since

Ya(grynz) # 0 = V(gnynx) > Vo.

By Proposition 4.3, this in turn implies that, whenever 1s(gr,nx) # 0 for some n € Nfr , then
V(x) > €10, by choice of V4. O

7.4. Proof of Theorems 6.1 and 6.4. Theorem 6.1 follows at once from 6.4. Theorem 6.4
will follow upon verifying the hypotheses of Theorem 6.5. The boundedness assertion follows by
Corollary 7.3. It remains to estimate the essential spectral radius of the resolvent R(z).

Write z = a + ib € C. Fix some parameter 0 < # < 1 and define

o = min {k, 560} .

Let 0 < € < 0 /5 be given. We show that for a suitable choice of r and B, the following Lasota-Yorke
inequality holds:

~ — BT
oWl [l <

/1,5
(a4 o — 3e)rtt
where CI{M, .. = 11isaconstant depending on k,r and z, while W,. is a compactly supported smooth
function on X, and whose support depends on 7.

First, we show how (7.12) implies the result. Note that, since the norms |||, and |||, 5 are
equivalent, the Lasota-Yorke inequality (7.12) holds with |-, in place of [|-[|, 5 (with a different
constant Cy . . 5). Hennion’s Theorem, Theorem 6.5, applied with the strong norm ||-[|, and the

1RG5 <

+ Cloros 195 f Il s (7.12)

weak semi-norm ||, e}, implies that the essential spectral radius pess of R(z) is at most 1/(a +
o —3¢). Note that the compact embedding requirement follows by Proposition 6.6. Since € > 0 was
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arbitrary, this shows that pess(R(z)) < 1/(a + o). Finally, as 0 < § < 1 was arbitrary, we obtain
that

Pess(R(2)) < Re(s) + o0’

completing the proof.
To show (7.12), let an integer > 0 be given and J, € N to be determined. Using (7.10) and a
change of variable, we obtain

o0 41, ,—2t
RGYHS = [
0

7!
To e 2t oo e 2t Jr (J+1)To e 2t
:/ , £tfdt+/ , £tfdt+2/ — L. f dt.
0 T (Jr'f‘l)TO T = 3To T

First, by Lemma 7.6, if B is large enough, depending on r, k and z, we obtain
1
+1
I1RE " b < gy Miks:

It remains to estimate |R(z)" ™ f||, ;. Note that fOTO Pe L dt < T3+ /rl. Hence, taking r large

r!
enough, depending on k, a, 8 and Ty, and using Lemma 7.1, we obtain for any B > 1,
To tTe—at

/T”Te_“cfdt <5 Wl | < —1 g
0 t A k.B 0 T! _(CL+I€+1)T+1 k.B -

r!
Similarly, taking J, to be large enough, depending on k, a, 3, and r, we obtain for any B > 1,

0 r, —zt
/ ! CLif dt
( r.

Jr+1)To

k,B,s

0 tre—at 1

< dt < .
ks L o o S e s

To estimate the remaining term in R(z)"*1f, let 1 < j < J, and w = (w;); € {1,2}’ be given.
Let 65 denote the number of indices i such that w; = 2. Then, taking B large enough, depending
on k and C?*(¢,), it follows from Lemma 7.1 and induction on Lemma 7.8 that

1Let570 W D)l e < Co 1570 W ) s < CETe 0= | £l (7.13)

where we take Cy > 1 to be larger than the implied uniform constant in Lemma 7.8 and the implied
constant in Lemma 7.1. Suppose 0, > 6. Then, by taking T to be large enough, we obtain

—(BO—€)j Tt
1 Coesmy WDl s < €T £

On the other hand, if 8, < 0, we apply Lemma 7.4 to obtain for all 0 < ¢ < k,
ert(Lisjry (W f)) i g e TTORey (e f) + €, ((V f),

where we may assume that T is at least 2 so that the same holds for ¢t + jTp, thus verifying the
hypothesis of the lemma. Moreover, we note that (7.11), implies that 1 is supported inside a
sublevel set of V', depending only on 6 and J,.. Let ¥, denote a smooth bump function on X which
is identically 1 on the union of the (finitely many) supports of ¢, as @ ranges over tuples in {1, 2}’
with 6, < 0 and for 1 < j < J,. Note that for any such w, arguing as in the proof of Lemma 7.7,
we obtain

e;f,f(wwf) = e;f,f(ww\l’rf) <k H\I’T’f”;c

For the coefficient ey, 3, Lemma 7.5 shows that for any v € (VQ_k)k, we have

ekt (Lirimy(Vm f)) <g e~ THTOke 4 (4 f).
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Combining these estimates, and using Lemma 7.7, we obtain

1£etim WDl e < Coe™ T HD Yol g + Chres W £
< e 2N g flly gy + Chz 10 Fl

where we enlarge the constant Cy as necessary to subsume the implied constants and the constant
Chyr2p > 1 is large enough, depending on B, so the above inequality holds. The inequality on the
second line follows by taking Tp large enough depending on Cy and e.

Putting the above estimates together, we obtain

Ir (J+1)To e 2t t+
JTo e
g / L.f dt < E e—aiTo E : / AL Sl VA ||£t+jT0(zpwf)||k7B7s dt
j=1"To k.B.s we (1,2}
Jr To . r, —at
~(ato—2057 [ L+ JT0)"e™
<l 3 e 0 /0 D

J- ; : To t iTh)"e—at
+ Clgep [ W0 fl D 2™ / (t+iTo) e
j=1 0 r!

(c—2€)T Jr gre=(ato—2e)t / !
<Ol [ i+ G011

where we take C}, . g=1to be a constant large enough so that the last inequality holds.
Next, we note that

JIr tre—(a+o—2e)t (3] tre—(a+o—2e)t 1
—dt < dt = .
1 7! 0 7! (a4 o0 —2¢)r+!

Thus, taking r to be large enough depending on a and T, and combining the estimates on
|R(2)" 1 f|, 5, and |[|R(z)" T f]|, 5., We obtain (7.12) as desired.

7.5. Proof of Theorem 1.4. Recall the notation in the statement of the theorem. We note that
switching the order of integration in the definition of the Laplace transform shows that

Prg(z) = /R( )(f)g dmPMS Re(2) > 0.

In particular, the poles of j , are contained in those of the resolvent R(z).

On the other hand, Corollary 7.2 implies that the infinitesimal generator X of the semigroup L
is well-defined as a closed operator on By with dense domain. Moreover, R(z) coincides with the
resolvent operator (X —zId)~! associated to X, whenever z belongs to the resolvent set (complement
of the spectrum) of X.

We further note that the spectra of X and R(z) are related by the formula o(X) = z—1/0(R(z)).
In particular, by Theorem 6.4, in the half plane Re(z) > —oy, the poles of R(z) coincide with the
eigenvalues of X. In view of this relationship between the spectra, the fact that the imaginary axis
does not contain any poles for the resolvent, apart from 0, follows from the mixing property of the
geodesic flow with respect to mPMS. We refer the reader to Lemma 9.7 for a proof of this assertion®.

Finally, we note that in the case I" has cusps,  was an arbitrary constant in (0, A/2), so that
we may take og in the conclusion of Theorem 6.4 to be the minimum of k£ and A/2 in this case.
This completes the proof of Theorem 1.4.

9Lemma 9.7 is obtained for a slightly different norm but the proof is identical.



EXPONENTIAL MIXING & ADDITIVE COMBINATORICS 37

7.6. Exponential recurrence from the cusp and Proof of Theorem 1.10. As a corollary
of our analysis, we obtain the following stronger form of Theorem 1.10 regarding the exponential
decay of the measure of orbits spending a large proportion of their time in the cusp. This result is
crucial to our arguments in later sections. The deduction of Theorem 1.10 in its continuous time
formulation from the following result follows using Proposition 4.3 and is left to the reader.

Theorem 7.9. For every € > 0, there exists rg <g 1/e such that the following holds for all
meN,r>ry,0<0<1andxec N, Q. Let H= e*B70 and let xg be the indicator function of the
set {x: V(z) > H}. Then,

pe [ ne N Z xa (grenz) > 0m | < e BO=Emy ()2 (N]).
1<¢<m

Proof. The argument is very similar to the proof of the estimate (7.13), with small modifications
allowing for the height H to be independent of the step size r. This subtle difference from (7.13)
will be important later in the proof of Corollary 12.2.

Let 79 > 1 to be chosen later in the argument depending on ¢ and S and set Vp = 2P0, As
before, let py, : X — [0, 1] denote a smooth compactly supported function which is identically 1 on
{V < V,} and vanishing outside {V > 2Vp}. Let ¢ = 1 — py, and set

D=1 og_r.

Then, roughly speaking, v is the indicator function of the set of points which land in the cusp in
two successive steps of size rg. Let r > ry and define the following operators:

Li(f) = Lof,  La(f) = Lo(Df).

Then, given m € N and @ € {1,2}™, let L = L, 0--- 0 Lq,,. Then, note that
ﬁw(f) = ﬁmr(r‘;wf)y where r‘;w = H 1; © gd(e—k)r-
ltop=2
Similarly to Lemma 7.8, Lemma 7.1 implies the bounds
ero(Lif) <gero(f),  eno(Laf) <pe Pero(f). (7.14)

Note that the argument in Lemma 7.8 only guarantees the second bound for the coefficient e; o
since 1; involves composition with ¢g_,, which scales its stable derivatives by powers of ™.

Let Cg > 1 be a constant large enough so that V(gyy) > e_ﬁ‘ﬂV(y)/Cg for all y € X and
t € R. Such a constant exists by Proposition 4.3. By enlarging ry if necessary, we may assume that
efro > 2C3. Let H = e3P0 and define

E, = {neNfr:V(ggrnx)>H<:>wg:2}.
Then, for all n € N1+,

&w(gmrnx) > ]]-Ew (n) (715)
Denote by 6 the proportion of indices ¢ for which w, = 2. Then, we see that

n € N : Z XH(grenz) > 0m 3 C U E_.
1<t<m w0:05>0

We wish to apply (7.14) with f the constant function on X. One checks that this f belongs
to the space By and e o(f) < 1. Let C7 > 1 denote a constant larger than e; o(f) and the two
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implicit constants in (7.14). Then, applying (7.14) iteratively for m times, and using (7.15), we
obtain

Hi(Bz) < e10(La(f)) < O™ P=m0V () i (N ero(f) < O le™P0=m0V (a) it (NY).

Since there are at most 2" choices of w, the result follows by taking ry large enough so that
(2C)) Mo < 2. O

8. FrRACTAL MOLLIFIERS

In this section, we introduce certain mollification operators on smooth functions on X. These
operators have the advantage that, roughly speaking, their Lipschitz norms are dominated by the
norms introduced in (6.6). This property is very convenient in the estimates carried out in Section 9.
The idea of using mollifiers to handle analogous steps is due to [BL12].

8.1. Definition and regularity of mollifiers. Fix a non-negative C'°° bump function ¢ sup-
ported inside N172 and having value identically 1 on N;; 4 We also choose ¢ to be symmetric and

Ad(M )-invariant, i.e.

P(n) =(nt), P(mnm™ ) =(n), ¥Yne NT,me M. (8.1)
Given € > 0, define M, : C'(X) — C(X) be the operator defined by
ML()e) = [ o ) ). () = A, (52)

Note that 1. is supported inside N;;?

Remark 8.1. The condition that ¢.(Id) = ¥ (Id) = 1 implies that for x € X with 2+ € Ap,
pe () >0, Ve > 0. (8.3)

In particular, since the conditional measures u% are supported on points nz with (nx)* € Ar,
the mollifier M.(f) is a well-defined function on all of X. That M.(f) is continuous follows by
continuity of the map z — u¥ in the weak-* topology; cf. [Rob03, Lemme 1.16].

Remark 8.2. We note that Ad(M)-invariance of 1), and the conditional measures p2 (cf. (2.5))
implies that M. (f) is M-invariant whenever f is.

To simplify arguments related to the regularity of the function n +— 1. (n)/ub.(1.), we introduce
the following slightly stronger version of the norm ||-||; which suffices for our purposes.

Let CF(N 1+ ) denote the space of C¥—functions ¢ on N 1+ , all of whose derivatives of order k are o-
Hoélder continuous functions on N;". We endow this space with the standard norm denoted [|¢|| ;.o -
We define coefficients e ;(f) and ej ;(f), similarly to the coefficients e; o and e;; respectively
in (6.3) and (6.5), but where, in both coefficients, the supremum is taken over all test functions
¢ € COYN;) with ||¢]|con < 1, instead of C1(N;") and C?(N;"). Using these definitions, we
introduce the following seminorm on C?(X):

IF1IT = elo(f) + el (f)- (8.4)

We denote by B, the Banach space completion of the quotient space C2(X)M of M-invariant
compactly supported C2-functions by the kernel of the seminorm ||-||* with respect to the induced
norm on the quotient.

The first result asserts that M. (f) is a good approximation of f.

Proposition 8.3. For all 0 < e <1/10, and t > 1, we have
el o(Le(f —M:(f))) < (e + e el o(f)-
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In light of this statement, we will in fact only use M. with ¢ = 1/10. However, for clarity, we
state and prove the remaining results for a general value of €.

The following results estimate the regularity of mollifiers. Recall the constant A, > 0 in (3.1).
The first result is an estimate of L™ type.

Proposition 8.4. For all 0 <e <1 and x € Ny ), we have
IML(f)(2)] < &2 tel o (/)V ().

Finally, we need the following Lipschitz estimate on mollifiers along the stable direction. Recall
the stable parabolic group P~ = N~ AM parametrizing the weak stable manifolds of g;.

Proposition 8.5. For all0 <& <1/10, p~ € P~, and x € X so that x belongs to N3_/4§2 and p~
is of the form u~gim for u~ € Nl_/10’ [t| < 1/10 and m € M, we have that

M (f)(p~x) = Me(f)(2)] < dist(p™, 1d)e™ 72 || £}V (2).

The above results are straightforward in the case of smooth mollifiers, however some care is
required in our case due to the fractal nature of the conditionals and (possible) non-compactness
of ). This is in part the reason for the non-standard shape of the chosen mollifier. The proofs of
the above results are rather technical and can be skipped on a first reading.

8.2. Preliminary estimates. We begin by providing some tameness estimates for our mollifiers.
The first lemma extends the applicability of Proposition 3.1 to points that are near, but not
necessarily in, €2.
Lemma 8.6. For all x € Ny €2, and 0 < ¢ <1, we have

u )
lun:c (¢€)

uniformly over n € N1+ in the (e/10)-neighborhood of the support of u®.
Proof. Since ¢, = 1, pb () > u%x(N§4). Let u be in the support of p¥, which is at distance

¢/10 from n. In particular, uz € N5, ©Q by Remark 2.1. Hence, using a change of variables and
Proposition 3.1, we obtain

pare (V) iy (N3E) g (NGE - (™)) gy (NGE)
B 0e) = (V) (N () = (N )

< 1.

The next statement is roughly a Lipschitz estimate on conditional measures.

Lemma 8.7. For all 0 < e <1 and x € Ny §, we have the following. For all ni,ny € Nfr with
dy+(ni1,n2) <e/2, we have

1 _ 1 E_ldNJr(nl,ng)
M%lx (w&‘) M;LLQSL‘ (w&‘) M%gx (1/18) ’

provided ny is at distance at most €/10 from the support of p.

<

Proof. Let 0 = n1n2_1. Since . is supported inside N;;z. we have by the symmetry of ¢ in (8.1)
and the right invariance of the metric dy+ on N that

|tz (Ve) = Hnga (Pe)] é/l%(n)—%(m)l duiilx(n)Z/I%(n_l)—we(ff_ln_l)l iy, (1)

< Hw&”cl dN+(n17n2):u’?le(N€+)7
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where on the last line we used the fact that the integrands are non-zero only on the union N¥, U

e/2
Ng%a C N.. Moreover, Lemma 8.6 implies that p% . (N)/ps .(¥e) < 1. The conclusion follows
since ||1he]|on < 7t O

8.3. Regularity of mollifiers and proof of Proposition 8.3. Let ¢ € CO’I(Nf') be a test
function and let x € Ny Q. Set ¢ = ¢ o Ad(g—¢) and z; = giz. Then, using (2.3) to change
variables, we obtain

/ p(MM. (f)(ginz) dug(n) = e~ / pe(n)Me (f)(nt) dpg, (n)-

We can rewrite the integral on the right side in a convenient form using the following series of
formal manipulations. Let 9., (n) = ve(n)/py (). First, using the definition of M. and (2.4) to
change variables, we get

[t o) dut ) = [ i) [t (00 () i, o) dit )
— [ 0u0) [l o) it (') i ).
Next, using Fubini’s Theorem and the symmetry of 4. provided by (8.1), we get
[t dut o) = [ ([ e i dot o)) o) i o)
— [ ([ trreaatntay ™) dut o)) i) i o'

Finally, we obtain the desired convenient form of the integral upon changing variables using (2.4)
once more to get

/ pr(n)Me (f)(na) dyg, (n) = / < / @r(nn ) e iy () dityyy, (n)>f (n'we) dpg, ().
It is thus natural to define the following function:

((nn.(n) dut,. (n
o) = [ un Vet )y () = 2 )

respectively, ®. ,; is supported inside

Note that, since ¢; and 1. are supported in Net and N

e/2
+ +
Net+€/2 c N2et :

We wish to estimate integrals of the form

/ (Prea(n’) — e poa(n) f(0'2ia) diil, (),

for arbitrary t > 1, s € [0, 1], basepoints x and test functions ¢. First, we note that it suffices to
estimate the integrals when s = 0 since ¢ is at least 1 by assumption. We proceed by essentially
regarding ¢; — ®. ;; itself as a test function. Note that ®. ,; may not be well-defined for arbirary
n' € NT, since pgl,, (¢c) could be 0 for those n' with (n'z;)* ¢ Ar. However, @, ; is well-defined
on the (¢/4)-neighborhood of the support of yf;, by definition of ..

For this reason, let 6. : Nt — [0,1] be a smooth bump function which is identically 1 on
the (£/100)-neighborhood of the support of the measure ¥, and vanishes outside of its (¢/50)-
neighborhood. We can choose such a function to satisfy

||9€HCO < 17 HHEHC'l < 6_1,
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for instance by convolving (with respect to the Haar measure) the indicator function of the (¢/100)-
neighborhood of the support with 1 /o99. Then, we observe that

/ (0t = Pept) () f(nze) dpsg, (n) = / ((r = Pez)0c) (') f (n'ae) dpaiy, ().

The upshot is that ¥ := (¢ — . 5.1)0¢ is a well-defined function on N*. Thus, arguing exactly as
in the proof of Lemma 7.1, the conclusion of the proposition will follow as soon as we estimate the
norm |95 cf. (7.3).

We begin by estimating the C° norm ||9]|c0. Let n’ € NT be an arbitrary point in the support
of f.. Note that

_ Joe(n')e(n) du,, (1)

Pt (’I’L ) /Lg/mt (¢€) )

(8.5)

and, hence,

< J ler(n”) = pu(nn”)[ve(n) dpigyy, (n)
B Fogpr, (V)
We further observe that if ¢.(n) # 0 for some n € N7, then n is at distance at most £/2 from

identity. Moreover, since ||¢|co1 < 1 and g; expands NT by at least e, the Lipschitz constant

of ¢; is at most e~t. Hence, using the right invariance of the metric on N+, for any such n,

lor(n') — pi(nn')| < e'e/2. As n' was arbitrary and |0.(n')| < 1, it follows that ||¢]|o0 < e 'e/2.
It remains to estimate the Lipschitz constant of ¥. Let ni,ng € N;" be arbitrary points in the
support of §.. Then, note that since ||, 50 < 1 and [|6:]|c1 < 7!, we have

[9(n1) — J(n2)|
< |(90t - q)s,m,t)(nl
< (ot — (I)s,m,t)(nl

|oe(n') = Pe g e(n)

) = (0t = Pegt)(n2)] + (01 = Pert) (n1)] 10l o2 div+ (n1,m2)
) = (1 = Peap)(n2)| + e dy+ (n1, m2).
Let o = n1n2_1. Using (8.5) and a change of variable, we have
(pt = Pew) (M) —(pr — Pegt) (n2)
J(pe(n1) — @r(nn)) (¥ (n) — ve(no)) dug,,, (n)
Hity, (Ve)

" / (pr(n2) = pr(nm2)) e (1) dinys, () X <u%m(¢a) e (¢E)> ’

In estimating the Lipschitz constant, without loss of generality, we may assume that the distance
between n; and ngy is at most £/2. Hence, arguing as before and using Lemma 8.7, we obtain the
following estimate on the second term:

/((Pt(n2) — pi(nn2))Ye(n) dugzwt(n)x <,u“ 1(1[)5) a oy 1(1)[)6))
6_1dN+(n1,n2)
M%zxt (¢€)

To estimate the first term, note that symmetry of ¢. (cf. (8.1)) implies that [1).(n) — ¢.(no)] is
O(e7tdy+(n1,m2)). Moreover, since o = n1n2_1 and the support of ¢, are contained in N;;T the

< ee_t:uruLgxt (¢€) < e_th+ (nb n2)‘

function .(n) — 1. (no) is supported inside NX. Hence,

/(%(m) — pr(nn)) (e (n) — Ye(n0)) duy, () < ee™" x €™y (n1, m2) X py, 0, (N).
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Combined with Lemma 8.6 and the estimate on the second term, this shows that
[9(n1) = 9(n2)| < e 'dy+(n1,na),
thus completing the proof.

8.4. Pointwise estimates and proof of Proposition 8.4. As in the proof of Proposition 8.3,
let 6. : N* — [0,1] denote a smooth function that is identicaly 1 on the (£/100)-neighborhood of
the support of Y and vanishing outside its (¢/50)-neighborhood. We again note that we can find
such 0. with ||0-]|cx < e, Set U(n) = ¢-(n)p(Ny")/ul, (1) and note that (2.4) implies that
the function W6, belongs to CY(N;"). Moreover, we have that

1 . 1
M. (f)(z) = ) /‘I’(n)f(nx) dpy = LE(NT)
<L el (V@) [Oellco.n -
Hence, the result follows once we estimate the norm ||W0.||-0.. We begin by proving that
|0, || o is O(e72+). As a first step, we show that

/ (W0.)(n) f (n) dy”

u +
% < E_A+7 Vn € N+7¢e(n)95(n) 75 0. (86)

Since [|0:c|lco < 1, this will show that [[P6.[|o0 < e™2+.

Fix some n with 9. (n)0-(n) # 0. Then, we can find u in the £/2 ball around identity in Nt such
that uz belongs to Ny  (cf. Remark 2.1) and u is at distance at most 10~%¢ from n. Since 1. =1
on N€74, we have by (2.4) that

i (12) 2 (N, = iy (N, - () 2 (N ) (8.7)
Similarly, we have that
1y (NT) < hiagp (N3).
Let k € N be the smallest integer such that 27% < /4. Applying Proposition 3.1 with ¢ = 2F+!
and r = 27F since uz € , we obtain

it (N5) = it (N i) <€ 20784 it (N ) < e™B pl, (N)-
Together with (8.7), this concludes the proof of (8.6).

Next, we estimate the Lipschitz norm of W6, as a function on N; . Let nj,ny € N* be such that

niny ' € N;;w, and (0:.1:)(n;) # 0 for i = 1,2. Then, Lemma 8.7 and (8.6) imply that

u 1 1 [ (n1) — 1#5(”2)’)
v T} Nt _
[Blm) = Blna)] < sl ”(‘uxw(wa) i@ T )
u +
< 6_1dN+ (nl,ng)% < €_A+_1dN+(TL1,’I’L2).

Since [|0:]|co < 1 and ||f:]|ox < €77, this shows that the Lipschitz norm of W, is at most e =2+ ~1
and concludes the proof.

8.5. Weak stable derivatives and proof of Proposition 8.5. The idea of the proof is based
on performing local stable holonomy between the strong unstable disks N1+ -z and N1+ -p~x and
proceeding exactly as in the proof of Proposition 6.6. The main ingredient is an estimate on the
regularity of the test functions arising from composing . (n)/ue. (1) with holonomy maps from
T to intermediate points between x and p~x along the weak stable manifold. We omit the details
of the proof since it follows by elaborating the same ideas in the proof of Proposition 8.3. We
only remark that for p~ = u~gym as in the statement, letting w in the Lie algebra of N~ be so
that u~ = exp(w), then for all » € R with |r| < |t| and all s € [0,1], one checks that the points
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exp(sw)grma all belong to Ny €. This is relevant in ensuring that the basepoints arising over the
course of carrying out the analogous estimate to (6.11) all satisfy the requirement on basepoints
for the norm ||-||7.

9. SPECTRAL GAP FOR RESOLVENTS WITH LARGE IMAGINARY PARTS

In this Section, we establish the key estimate in the proof of Theorems 1.1 and 1.2. The estimates
in Sections 6 and 7 allow us to show that there is a half plane {Re(z) > —n}, for a suitable n > 0,
containing at most countably many isolated eigenvalues for the generator of the geodesic flow.
To show exponential mixing, it remains to rule out the accumulation of such eigenvalues on the
imaginary axis as their imaginary part tends to oo.

Remark 9.1. Throughout the rest of this section, if X has cusps, we require the Margulis function
V = Vs in the definition of all the norms we use to have

B=A/4 (9.1)

in the notation of Theorem 4.1. In particular, the contraction estimate in Theorem 4.1 holds with
VP in place of V for all 1 < p < 2. Recall that the constant A is given in (3.1).

Similarly to (7.8), we define for B # 0 an equivalent norm to ||-||7 defined in (8.4) as follows:

I1f15 o= el o(f) + el%sf)'

The following result is one of the main technical contributions of this article.

(9.2)

Theorem 9.2. There exist constants by > 1, and s, a., 0, > 0, such that the following holds. For
all z = ay + ib € C with |b| > b, and for m = [log |b|], we have that

1£17,5
(ax + U*)m’

where Cr > 1 is a constant depending only on the fundamental group I' and B = |b|'*+*.

e1o(R(z)"f) < Cr

Remark 9.3. The constants by, 5, a,, and o, depend only on non-concentration parameters of the
Patterson-Sullivan measure near proper subvarieties of the boundary at infinity. For geometrically
finite surfaces, these parameters are nothing but the critical exponent § in the convex cocompact
case and the quantity 20 — 1 in the cusped case; cf. Definition 11.1 for the precise definition
of non-concentration and Corollary 12.2 where this non-concentration is established. This non-
concentration property is used to apply the results of Section 11 in the proof of Theorem 9.2.

9.1. Proof of Theorems 1.1 and 1.2. We show here the deduction of the exponential mixing
assertion from Theorem 9.2 using the results in [Butl6a, Butl6b].

Recall the Banach space B, defined below (8.4) and the weak norm |||} defined in (6.6). The
link between the norms we introduced and decay of correlations is furnished in the following lemma.

Lemma 9.4. For all f,p € C2(X)M | we have that

/ f oo dmBS < (1711}

where the implied constant depends on |¢||q2 and the injectivity radius of its support.

Proof. Using a partition of unity, we may assume ¢ is supported inside a flow box. The implied
constant then depends on the number of elements of the partition of unity needed to cover the
support of ¢. Inside each such flow box, the measure mPMS admits a disintegration in terms of
the conditional measures p averaged against a suitable measure on the transversal to the strong
unstable foliation. Thus, the lemma follows by definition of the norm by viewing the restriction of
© to each local unstable leaf as a test function. O
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In particular, this lemma implies that decay of correlations (for mean 0 functions) would follow
at once if we verify that ||£;f||] decays in ¢ with a suitable rate. It is shown in [But16a]'" that such
decay follows from suitable spectral bounds on the resolvent. We list here the results that verify
the hypotheses of [Butl6a).

We take ||-[|} to be the weak norm ||-|| 4 in the notation of [Butl6a], while we take ||-[|7 as the
strong norm ||-||z. The strong continuity of the semigroup £; is provided by Corollary 7.2, while
Theorem 6.4 verifies [But16a, Assumption 2]*'. The following lemma verifies the weak Lipschitz
property in [Butl6a, Assumption 1].

Lemma 9.5. For allt >0,
1Lef = fIly < I -

Proof. Recall that the norm |[-||; only involves the coefficient e10; cf. (6.6). Let x € N Q and
t > 0. Then, given any test function ¢ for 6/1,07 we have that

() orme) = Fna)) st = [ [ o) Lup(ama) dutar

¢
Ny

where L, denotes the derivative with respect to the vector field generating the geodesic flow. Hence,
Lemma 7.1 implies that

(n)(f(ginx) — f(nx)) dpg

t
< V(o) (V}) /O &5 1 (Lo f) dr < tV (@)t (NF)et 1 (),

¢
Ny

where e ; is the coefficient defined above (8.4). This completes the proof since x and ¢ are
arbitrary. O

Finally, the following corollary verifies [Butl6a, Assumption 3A], thus completing the proof of
Theorems 1.1 and 1.2.

Corollary 9.6. Let the notation be as in Theorem 9.2. Then, there exist constants cy, Ax > 0,
such that the following holds. For all z = a, +1ib € C and for q = [cylog |b]], we have the following
bound on the operator norm of R(z):

1
(ax + )‘*)q,

whenever |b| > bp, where bp > 1 is a constant depending on T'.

IR(2)T <

Proof. First, we verify the corollary for the norm ||-||7;. Let e} 1, be the scaled seminorm e7 ; / b1,
Note that the arguments of Lemmas 7.5 and 7.6 imply that for z = a, + ib with |b| > a,, we have

ef,l,b(R(z)mf) < Cr HfH}; (a* + \z]) < 3Cr HfHE

= O e S T

for some constant Ct > 1 depending only on I', where we used the fact that a, + |z| < 3]b|.
Moreover, if m = [log |b|] > 3/2, we have that |b|* > e*™/2 > (1 + »/2)™ and hence a|b* is
at least (a, + »/2)™. It follows that, for all f € B,, we have

3Cr || £1%
* m B
(& R(z < ——m—.

1,1,b( ( ) f) = (a*—l—%/Z)m

108¢e also the erratum [But16b].

Horollary 7.2 and Theorem 6.4 are obtained for the norms |-|| w» k> 1, however the proof extends readily to the
norm |-} taking ||-[|} as its associated norm.
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This estimate, combined with the estimate in Theorem 9.2 implies that whenever |b| > b,,
I1R(2)™ I <r (ax +01)™",

where o1 > 0 is the minimum of o, and s/2. In particular, if |b| is large enough, depending on T,
we can absorb the implied constant in the estimate above to obtain

|R(2)™15 < (ax + 01/2)"™.

Let p € N be a large integer to be chosen shortly. To obtain the claimed estimate for the norm
||]I7, note that for any f in the Banach space By, since ||-||5 < [|-[[] < B ||5 = |b|*** |||, iterating
the above estimate yields
BIRE™ {5 - BIfI
(ax + 01/2)P™ — (ay + 01/2)2P™m
Since m = [log|b||, choosing p large enough, depending only on a, and o1, we can ensure that

B/(ay + 01/2)P™ < 1/al™. In particular, taking A\, to be the positive solutions of the quadratic
polynomial z +— 22 + 2a,2 — a,01/2, we obtain the desired estimate with c, = 2p. O

1RG) ™ £[7 < B RGP |l <

Let X denote the generator of the semigroup £; acting on B, (which exists by Corollary 7.2). In
light of the above results, we obtain by [Butl6a, But16b, Theorem 1] the following decomposition
of the transfer operator £;. There are complex numbers {)\i}ij\;1 with Re(\;) < 0, finite rank
projectors II; : B, — By, bounded operators N;, and a one-parameter semigroup P; of bounded
operators on B, such that

N
Li =P+ Z et)‘i etN"HZ-.
i=1
Moreover, for a suitable ¢ > 0 depending only on A, in Corollary 9.6 and o given by Theorem 6.4,
we have that

1Peflly < e |1 X£IIT

for all t > 0 and f € B,. Finally, we have ./\fidi = 0 for some d; € N, and ILII; = §;5, II; P, = 0, and
NI = ILN; = N for all 4, 4, t.
Thus, letting

N
Q= > AN, TI= I,
Re(A;)#0 Re(A;)#0
this concludes the proofs of Theorem 1.1 and 1.2 once we show that the only eigenvalue A; on the
imaginary axis is 0 and that its associated nilpotent operator N; vanishes. This is proved in the
following lemma.

Lemma 9.7. The intersection of the spectrum of X with the imaginary axis consists only of the
etgenvalue 0 which has algebraic multiplicity one.

Proof. In what follows, we endow elements ¢ of C2(X) with the norm ||¢||;2 given by multiplying
the C2-norm of ¢ with a suitable power of the reciprocal of the injectivity of its support so that
H(p”'cg dominates the implicit constant depending on ¢ in Lemma 9.4. Such power exists by the
proof of the lemma. The dual space C?(X)* is endowed with the corresponding strong dual norm.

Let ® : B, — C2(X)* denote the linear map which extends the mapping f +— (p — [ fo dmBMS
from C?(X)M to the dual space C?(X)*. The fact that this mapping extends continuously to B,
follows by Lemma 9.4. We claim that @ is injective. This claim is routine in the absence of cusps,
and we briefly outline why it also holds in general.
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To prove this claim, note first that the coefficients ef 4(-;x) and ef;(-;z) extend from C? to

define seminorms on B,. In particular, given any f € B, and f, € C?(X)M tending to f in B,,
we have e’l*’z(f;x) = lim, 00 e’l*’z(fn;x) for £ = 0,1 and for every z € Ny €. Since the coefficient
e’iz( f) is defined by taking a supremum over z, it follows that we can find a sequence z, € Ny Q
such that e’iz( fn;xy) converges to e’iz( f). In particular, we obtain the following inequality which
serves to exchange the order of taking limits and suprema

elo(f) < sup  lim €] ,(fn; ). (9.3)
zeN; QT

Now, suppose f € By is in the kernel of ® and let f, € C2(X)™ be a sequence of functions
converging to f. By continuity, ®(f,,) tends to 0 in C2(X)*. One then checks that this implies that
for every fixed z € Ny Q, we have that ] ,(fn;2) — 0 as n — oo for £ = 0, 1. Combined with (9.3),
this shows that || f||7 = 0, and hence ® is injective as claimed.

We now show that this injectivity implies the claim of the lemma. Via the relationship between
the spectra of X and the resolvents (cf. Section 7.5), we obtain by Theorem 6.4 that the intersection
of the spectrum o(X) with the imaginary axis consists of a discrete set of eigenvalues. Similarly,
finiteness of the multiplicities of each of these eigenvalues is a consequence of quasi-compactness of
the resolvent.

Let b € R be such that ib is one such eigenvalue with eigenvector 0 # f € B, and note that this
implies that £;f = ¢ f. We show that ®(f) is a multiple of the measure mPMS. This implies that
b = 0 by injectivity since mPMS is the image of the constant function 1 under ®. To do so, we
use the fact that the geodesic flow is mixing!'? with respect to mPMS by work of Rudolph [Rud82]
and Babillot [Bab02]. Let ¢ € C?(X) be arbitrary and let 6,, = [ f, dmPMS and ¢ = [ ¢ dmBMS.
Then, for every t > 0 and n € N, we have

D)~ .6l < [000)0) ~ [ oLufy S

+ ' / oL frn ™M — 6,

. (9.4)

By mixing, for every fixed n, the second term can be made arbitrarily small by taking ¢ large
enough. Moreover, since ®(f) = e~ ®(L,f), the first term is bounded by

e B(Lf)(p) — e / L4 fr, dmBM3

+ ‘e—ibt o 1’ ‘/Qpﬁtfn deMS

. (9.5)

The first term in (9.5) is equal to [®(L:(f — fn) ()], which is Oy (|| f — fu|]7) in view of Lemmas 9.4
and 7.1. Similarly, since f,, converges to f in By, the second term is O, (|e=™ — 1| || f||}). To bound
this term, note that one can find arbitrarily large ¢ so that e is arbitrarily close to 1.

Therefore, using a diagonal argument, this implies that we can find a sequence t(n) tending to
infinity so that the upper bound in (9.4) tends to 0 with n. If £ # 0, the above argument implies
that 6, is O,(®(f)(v)) and hence converges (along a subsequence) to some 6 € R. In particular,
the values of ®(f) and #mPMS agree on ¢ in this case. If £ = 0, then the above argument shows
that ®(f)(¢) = 0 so that the same conclusion also holds.

The assertion on the algebraic multiplicity, which in particular involves ruling out the presence
of Jordan blocks, is standard and can be deduced from quasi-compactness of the resolvent and the
bound on its norm given in Corollary 7.3 following very similar lines to [BDL18, Corollary 5.4] to

which we refer the interested reader for details.
O

12\We refer the reader to [BDL18, Corollary 5.4] for this deduction using only ergodicity of the flow.
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9.2. Proof of Theorem 9.2. The remainder of this section is dedicated to the proof of Theo-
rem 9.2. Let a € (0,2] to be determined. We assume that z = a + ib with b > 0, the other case
being identical. For the convenience of the reader, we summarize the notation used in this section
in Table 1.

Time partition. Let p : R — [0,1] be a smooth bump function supported in (—1,1) with the
property that

d pt—j)=1, VteR. (9.6)
JEZ
Let m € N and T, > 0 be parameters to be specified later. Changing variables, we obtain

- 00 25m—1e—zt

o0 ym—leg—zt e ; m—1,—2jTo
= /0 ﬁp(t/To)ﬁtR(z)m dt + Z (4 + 2():;0)_ 5 J /Rpj(t)e_zmtJroo i, (9.7)
j=0

where we define p; as follows:

Note that p; is supported in the interval (0,27}) for all j > 0.

Contribution of pre-mixing times. We also discard the first few terms in the sum over j. Let
Jo € N be a parameter to be specified later. By the triangle inequality for the seminorm e7 ; and
Lemma 7.1, we have

Jo . m—1_,—z7T;
. ((J+2)Tp)" e 0/ et
e pi(t)e * Loy im, fdt
1,0 jzz:o (m — 1)| R J +770
(Jo+2)To m—1,—at ((JO + 2)T0)m€’1( O(f)
< - - * t )
= /0 =1y Lol )dt < m 1)
We will choose
m = [logb]. (9.9)
Hence, since a < 2 by assumption, when b is large enough'?, we get
Jo : m—1_,—zjT¢ *
((j +2)Tp)mte =0 / ot e1o(f)
1 (e P Ly fdt | € ———. 9.10
€1,0 ; (m — 1)' ]Rpj( )6 t+]TOf (CL + 1)m ( )

A similar argument also shows that
o0 ym—1,—zt e"l‘o(f)
1 ——p(t/To) Lo f dt —
€1,0 </0 (m—l)!p(/ 0)Lef ><<(a+1)m7

where we used the fact that p(t/Ty) is supported in (—Tp,Tp). Thus, we may assume for the
remainder of the section that

i > Jo. (9.11)

130ver the course of the proof, b will be assumed large depending on all the parameters we choose in the argument.
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Notation Definition
6 =4dr critical exponent
A=Ap, Q=Qr limit set and non-wandering set
AAL (3.1)

I3 Remark 9.1
m [log b]

To time discretization
D) partition of time variable (9.8)

Jo initial segment of resolvent (9.10)

J summand index in resolvent (9.11)
€1 small parameter to absorb implicit consts (9.16)
fo Vo f (9.14)

o proportion of time in cusp (9.17)

K; fixed compact set (9.18)

Lj inj radius of Kj
Diw (9.22)

w discretization of (0,27p) (9.22)

9;'1} Juw+jTo (9.24)

M mollifier (9.24)

F MI(f=) (9.24)

PJQ flow boxes meeting N7 Q (9.28)

D volume entropy (9.19)

~y 1/2
g7 amount of time we flow g(,4j1,)/2 (9-30)
x; gz (9.34)

N (5) neighborhood of N;~ (9.35)

12 Lwtjmy)2F (9-36)

Yp center of flow box B, (9.38)

T, transversal to strong unstable in B, (9.38)
I, indexes unstable leaves landing in B, at time (w + j7p)/2
Wy ¢t unstable piece in B,

Ty center of Wy (9.39)

e return time to compact for z,, (9.41)
W, local unstable leaf of y, (9.50)

Ty the temporal distance function (9.51)
Gpe test function after change of variables (9.51)
JP, Jacobian of stable holonomy (9.51)

P (9.55)

J, support of integration in ¢ (9.56)

A; cusp adapted partition (9.59)

tisri, yf) cusp-adapted partition parameters (9.60)
Wy frequencies (9.64)
Chjii/Sp.ji close/separated pairs of unstable disks (9.66)

K Proposition 9.13
€9, A Theorem 9.16

A D +2A4 +1 (9.75)

TABLE 1. Summary of notation in the proof of Theorem 9.2.
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Let 0 < €1 < 1 be a small parameter to be chosen later. The advantage of taking Jy large is that
it allows us to give a reasonable estimate on the sum of the errors of each term in (9.7). Indeed,
taking Jy large enough so that 2/Jy < €1, in view of (7.5), we have that

00 1 9)Th )1 e—aiTo 9 \™ oo ym—1,—at 1 m

Z ((] +2)Tp) € < e2alo (14 = e dt = 2970 ﬁ . (9.12)
j=Jo+1 (m = 1)! Jo o (m—1) ¢

=Jo

We will take Jy large enough (independently of b) so that the loss of a factor of 1 + &1 does not
exceed the gains we make over the course of the proof.

Contribution of non-recurrent orbits. We will estimate the contribution of each term in the
sum over j in (9.7) individually.

In Section 7.3, we defined a the decomposition of the operator Lr; using a given height V) > 1;
cf. (7.10). In particular, we can rewrite the j'* of the sum in (9.7) as follows:

/R pit)e™ Lopjm fdt = ) /R pi(t)e” ™ Loyjm, (Ve f) dt. (9.13)

we{l,2}

We estimate the contribution of each w separately. Fix some w € {1, 2}j , and for convenience, set

fw = T;Z)wf (914)

We will frequently use the estimates

elolf=) <elolf),  If=li <IfIT, (9.15)

which follow by Lemma 7.7.

In this subsection, we handle the contribution of the terms corresponding to trajectories which
spend a large proportion of their time at height larger than V. More precisely, let o > 0 be a small
parameter to be chosen at the end of the argument, and suppose @ € {1,2}’ is such that

#{1<i<j:w; =2} >aj.
First, it follows by Lemma 7.8 and induction that

et o(Leriy (fo) < Coelo(Limy (f)) < CFT e oMoy ((fr),

)

where we take Cy > 1 to be a constant larger than the implicit constant in that lemma. In what
follows, we assume & is smaller than Sa/10. We take Tj to be large enough, depending on &1 and
Co, we may assume that Cy < 170, Hence, by (9.15), we obtain

€10 (Lirjn (fo)) < e”PameiToet o (f).

Finally, in light of (9.12), since there are at most 2/ such words w, taking Tj large enough so that
2¢1 < ¢5170 and summing the above errors over j, we obtain an error term of the form

24Ty I+e " 1425 " e1o(f)
e" el o(f) (m) <ejolf) (a T+ Bo— 251> < (at Baj2)m’ (9.16)

where the first inequality can be ensured to hold by taking b large enough in view of (9.9) and the
second inequality holds whenever 1 is small enough.
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Contribution of recurrent orbits. The remainder of the section, is dedicated to estimating the
contribution of orbits that spend a definite proportion of time in the thick part, i.e. the terms where
w satisfies
#{1<i<j:w =2} <aj. (9.17)
Let us define
K; = {y eX:V(y < eQﬁajJrgﬁ)TO} , ¢j == min {1, inj(Kj;)}. (9.18)
We note that Proposition 4.3 implies that
~1 « (i +6)To (9.19)

where we used the fact that yx < 2; cf. (4.2).
Recalling the definition of ¢ in (7.11), we have that 1 is supported on the points of height at
most e??7T0V]). Hence, the support of f satisfies
supp(f=) € Kj. (9.20)

Let x € Ny Q be arbitrary. The same argument in the proof of (9.16) shows that if V' (z) > 8270,
then Lemma 7.1 implies that we obtain a gain of e~ (F—<1)iTo €1 o(f). Thus, we may assume for the
remainder of the section that

V(x) < efoito, (9.21)

Fix some suitable test function ¢ for €] ;. In particular, ¢ has CYY(N7T) norm at most 1. The

integrals we wish to estimate take the form

[ o) [ pi(0 i (o) guna) dedun

Nl
/ / P (1)0() f (Goes jmymac) dpcl(n)dt,
N+

for all s € [0,1]. We again only provide the estimate in the case s = 0 to simplify notation, the
general case being essentially identical.

Recall that p; is supported in the interval (0,27p). In particular, the extra ¢ in L7, could be
rather large, which will ruin certain trivial estimates later. To remedy this, recall the partition of
unity of R given in (9.6) and set

Pjw(t) == p;(t+w)p(t), Vw € Z. (9.22)

Using a change of variable, we obtain

/ —zt/N pj fw(gt+JT07’L:E) dux( )dt
— Ze zw/ zt/ Pjw(t)d(n) fo (gtwtjmyne) dis(n)dt. (9.23)

wWEZ

Note the above sum is supported on 0 < w <« Tp, and the support of each integral in ¢ is now
(—1,1). For the remainder of the section, we fix some w € Z in that support.

Approximation with mollifiers. Let M := M, ), where for ¢ > 0, M. denotes the mollifier
defined in Section 8. To simplify notation, we set

g;v = Guw+jTo> F:=M(fz). (9.24)
Since ¢ € COH(N;") with ||¢[|cos < 1, it follows by Proposition 8.3 and (9.15) that

[0 = P ) dut| < G () @ ).
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Arguing as in (9.16), summing the above errors over j, we get an error term of the form
ECELS tolH)V @)p(NF)
(a+1—¢) (a+1/2)™ ’

where we again assume that b is large enough and &7 is small enough so that the above inequality
holds.

Hence, we may replace fr with F' in (9.23). We will frequently use the following observation.
Writing F' = F — f + f» and using Proposition 8.3 and (9.15), we have that

et o(F) < el (f). (9.26)

&5 o)V (@)t (NF) x 20T, ( (0.25)

Partitions of unity and flow boxes. We let P; denote a partition of unity of the unit neigh-
borhood of Kj so that each p € P; is M-invariant and supported inside a flow box B, of radius
¢;/10. With the aid of the Vitali covering lemma, we can arrange for the collection {B,} to have
a uniformly bounded multiplicity, depending only on the dimension of G. We can choose such a
partition of unity so that for all p € P;,

Iollen < i7" (9.27)

We also introduce the following subcollection of P;:
Pl i={pePiB,NN;,0 20} (9.28)

Note that the cardinality of PJQ is controlled in terms of the injectivity radius ¢; in (9.18). Indeed,
since I' is geometrically finite, the unit neighborhood of ) has finite volume. Moreover, the flow
boxes B, with p € PO are all contained in such a unit neighborhood and have uniformly bounded
multiplicity; cf. (9.28). Finally, each B, has radius at least ¢; for all p € P;. Thus, letting D € N

be such that the Lebesgue measure of B, is < LjD , we see that

#PY <p ;B0 (9.29)
Note that the dimension of X is 2D + 1 4 dim(M ), however the bound above involves 2D + 1 only
since each flow box is M-invariant.

Localizing away from the cusp. We begin by restricting the support of the integral away from
the cusp. Define the following smoothed cusp indicator function ¢; : X — [0, 1]:

Gly) =1-> py).

pEP;
Let
v =1/2, g = Gy (w+35To)- (9.30)
It will be convenient to take Ty large enough so that
(1 =9)(w + jTo) = v(w + jTo) = 4. (9.31)

First, we note that Proposition 8.4 implies
[LeF (g na)| < €] o(f=)LeV (gf nx).
Note that by definition, (; is supported outside of the sublevel set K; in (9.18). Hence, the
Cauchy-Schwarz inequality yields
2

‘/ N Gi(g"nx) LV (gf nw) duy| < py <n € Ny : V(g'nx) > ewo‘jTO) X /+ EtVz(g;-”n:E) dpiy,
Ny Ny
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where we used the fact that |¢| is bounded by 1 and (; is non-negative. Recall that we are assuming
that V2 satisfies the Margulis inequality in Theorem 4.1; cf. Remark 9.1. Hence, by Theorem 4.1
and Chebychev’s inequality, we obtain

< & o(fo) LNV (z)ePodTo,

| oG (g na) Lo (g ) d

Using the bound on V() in (9.21) along with (9.15), we thus obtain

/ O(n) Lo (g}'mir) dp(n)
- B(m)plg ) £ (g} nw) dyit + O (€30 (Fpe(NDIV (@)e P0T/2) - (9.32)

As before, using (9.12) and taking b large enough and e; small enough, we see that the sum of the
above error terms over j gives an error term of the form

<€T,o(f)M$(N1+)V(w)> |

(a1 Baja)m (9:33)

Saturation and post-localization. Our next step is to partition the integral over V. 1+ into pieces
according to the flow box they land in under flowing by ¢g”. To simplify notation, we write

zj =gz (9.34)
We denote by Nfr (j) a neighborhood of Nfr defined by the property that the intersection
B, N (Ad(g") (N, () - z)

consists entirely of full local strong unstable leaves in B,. We note that since Ad(g”) expands N
and B, has radius < 1, Nf’ (7) is contained inside the N2Jr . Since ¢ is supported inside Nf’ , we have

Xyt ()d(n) = X+ ;) (n)e(n),  ¥neNT. (9-35)
For simplicity, we set
pi(n) = ¢(Ad(g")'n),  Aj = Ad(g") (N (7).
For p € P, we let W, ; denote the collection of connected components of the set
{neAj:nz;eB,}.

Moreover, since z € N; €, we see that the the restriction of the support of p} to N1+ consists of
points n € NT with nz € Ny ; cf. Remark 2.1. In view of (9.31), this implies that the non-zero
summands in the right side of (9.32) necessarily correspond to those p in 77]0.

To simplify notation, let

By = Lz (F). (9:36)
In view of (9.35), changing variables using (2.3) yields
3 / B(0)p(g"1E) P (g1 4w g1yn) dii(n)

pEP;

— 0 (wtiTo) Z / )p(na;) Fy(ginw;) dpg (n).  (9.37)

PEP,WEW,
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Transversals. We fix a system of transversals {7),} to the strong unstable foliation inside the

boxes B,. Since B, meets Nl_/2Q for all p € PJQ, we take y, in the intersection B, N N1/2Q In this

notation, we can find neighborhoods of identity P,” C P~ = MAN™ and N, ;’ C N7 such that

B, = N:Pp_ Yo T,=F; y,. (9.38)
We also let M,, Ay, and N, be neighborhoods of identity in M, A and N~ respectively so that
Py =M,A,N,.

Centering the integrals. It will be convenient to center all the integrals in (9.37) so that their
basepoints belong to the transversals T}, of the respective flow box B,; cf. (9.38).
Let I,, ; denote an index set for W, ;. For W € W, ; with index ¢ € I, j, let n,, € W, m,, € M,,
n,, €N, ,and t,¢ € (—j,¢;) be such that
Tp,0 1= MpG—t, Mp s~ Tj =N, Yp € T,. (9.39)
Note that since x belongs to N; €2, we have that
xp0 € Ny, (9.40)

cf. (9.31) and Remark 2.1. Moreover, if we let u, = Ad((g7)"')(n,s) € Ny (j), then in light of the
restriction on @ in (9.17), we may and will assume that there is s,, > 0 such that

Y(w + §To) < sp0 < y(w + jTo) + ajTo, V(gsp’eugx) <7, L. (9.41)
Indeed, the support of f. is restricted to those points n € NT whose ¢; orbit spends at most
a-proportion of ¢ € [0, jTp] outside the set {V < Vp}.

Regularity of test functions. For each such ¢ and W, let us denote Wy = Ad(m, ¢g:, Z)(Wn;})
and

Gp(tn) = Pt = tpe) - €0 - SA(mp979-1,,) " (N00)) - (g1, M p0)- (9-42)

Note that 5,),5 has bounded support in the ¢ direction and (9.27) implies

Hqsp, ‘ <L (9.43)

o, 1(N+) J

S

CO(RXNT)

for all ¢ € R. Moreover, recalling (9.8), we see that

%4

-1
ot <4 (9.44)

Changing variables using (2.3) and (2.4), we can rewrite the integral in ¢ of the right side of (9.37)
as follows:

e~ (wHiTo) /Re_thj’W(t) Z / )p(nz;) Fy (genz;) dpg (n)dt

PEP)WEW,, ;

_M(w—l—jTo Z Z / —zt/ @pé t n (gt—l-tpznajm ) dﬂgp,z(n)dt’ (9.45)

pePYLEly,; W,

where we also used M-invariance of F; cf. Remark 8.2.
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Mass estimates. We record here certain counting estimates which will allow us to sum error
terms in later estimates over 77]0. Note that by definition of N (j), we have | per; wew,, W S Aj.
Thus, using the log-Lipschitz and contraction properties of V', it follows that

> WV < [ Vo) dut, (o)

pE,PJQ,ZEIpJ‘ g
=) [ (g dutn) < SOIN Y (@), (040
N{™ ()

where we used the fact that |t,] < 1 and the last inequality follows by Proposition 3.1 since
Ni(j) € NJ7. We also used the fact that the partition of unity 77]0 has uniformly bounded multi-
plicity.

Remark 9.8. We note the exact same argument as above gives
> uk W)V () < e OHT) (NP (@), (9.47)
PG'P;-),ZGIPJ
in view of our choice of V' at the beginning of the section; cf. Remark 9.1.

We shall also need the following weighted number of flow boxes parametrized by 77]0. For each
pE 77]0, we fix some ¢, € I, ;. If I, ; is empty, we set x,,, =y, and W;, = (). This lemma is only
relevant in the case I' contains parabolic elements, since otherwise the estimate in (9.29) suffices.

Lemma 9.9. Recall the constant D in (9.29). Then, we have
—(2D+1) _saj

Z Ngﬂ,lp(WZP) < Lj( + )e&x]TO.

pEPY
Proof. Fix some p with I,; # 0, and write £ = ¢,. Then, recall that W, = Ad(mpjgtp’()(Wnp_%)
and that Wn~ ! = N* € A; € N*. Recalling (9.39), we have that

p,l Lj J
Tl = Mp Gt Mp,e " Lj = Mpeg—t, g e T,

where u; = Ad((¢7)"1)(n,s). In other words, u, is nothing but the point on the unstable disk
through x whose forward orbit at time (w + j7p) lands on the weak stable disk through y,. Note
that uy belongs to N;(j) C N, since n,,¢ belongs to A;.

Arguing as in (9.41), using the restriction on @ in (9.17), we can find s’ between v (w+5Tp) —jTy
and y(w + jTp) so that V(gsupr) <1, 1. Hence, changing variables using (2.3), (2.4), and (2.5),
we get

bty u _u -1y _ 0y(w+jTo) ,u +
e P MIP’K(WZ) - an,e:cj (Wnpj) =e luuel‘ Nef'y(w+jT0)Lj
— S((w+jTo)—s") ,u +
=€ 'ugs/uel‘ NGS’*“/(wﬂ’To)Lj :

Since the height of gsrupz is Or, (1) and r := GSI—V(UH-]'TO)L]- < 1, the measure g 4,0 <N,fr> is O, (1)
by definition of the conditional measures in (2.2). Hence, our choice of s’ implies

py (Wy) < 2970,
The lemma follows by combining these estimates with (9.29). O

The point of the above lemma is that the sum in question has, in general, much fewer terms
than the sum in (9.46).
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Stable holonomy. Fix some p € 77]0. Recall the points y, € T, and N, € N, satisfying (9.39).

The product map M x N~ x Ax NT — (G is a diffeomorphism on a ball of radius 1 around identity;
cf. Section 2.6. Hence, given ¢ € I, ;, we can define maps 4, 7, my and @, from W, to N*, R, M
and N~ respectively by the following formula

Gttty N, g = Gt () Uy (1) Gz, (nyTe(n) = me(n)iy (8,0) g1, 4+7,(n)We(n), (9.48)
where we set @, (t,n) = Ad(gt+1,,)(%, (n)). We define the following change of variable map:
Pp:RxWy >Rx NT, Oy(t,n) = (t + 7o(n), ae(n)). (9.49)
We suppress the dependence on p and j to ease notation. Then, ®, induces a map between the
weak unstable manifolds of x,, and y,, also denoted ®,, and defined by
Qo(ginTpe) = Gig7,(n)Ue(N)Yp-

In particular, this induced map coincides with the local strong stable holonomy map inside B,,.
Note that we can find a neighborhood W, C N of identity of radius < ¢; such that

DR x W) CR x W, (9.50)

for all £ € I,;. Moreover, by shrinking the radius ¢; of the flow boxes by an absolute amount
(depending only on the metric on @) if necessary, we may assume that all the maps ®, in (9.49)
are invertible on R x W,. Hence, we can define the following:

Te(n) = Fo(i; ' (n)) + tpr €R,  wy(t,n) =1y, (t — 7¢(n), G, ' (n)) € N7,
Gpo(t,n) = e~ 5 JBy(n) x ¢, (t — Te(n), a5 (n)), (9.51)

and J®, denotes the Jacobian of the change of variable ®;; cf. (2.10).
Changing variables and using M-invariance of F., we obtain

Z / —zt/ ¢p7 (t,n)F. (gt+tpzna;p7)dugpl(n)dt

tel, EW,

Zg: //W B Gp,e(t, )y (uy (,n)geny,) dp, (n)dt.
(9.52)

Stable derivatives. Our next step is to remove F, from the sum over ¢ in (9.52). Due to non-joint
integrability of the stable and unstable foliations, our estimate involves a derivative of f in the flow
direction. In particular, in view of the way we obtain contraction in the norm of flow derivatives
in Lemma 7.6, this step is the most “expensive” estimate in our argument. In essence, all the prior
setup was aimed at optimizing the gain in this step.

Recall the definition of F, in (9.36). Since y, belongs to N, /9
neighborhood of identity in N~ of radius O(¢;) (cf. (9.18)), uniformly over (¢,n) in the support of
our integrals, Proposition 8.5 and (9.15) yield

| (ug (8, m)geny,) — Fy (ginyp)| < eI FIT i (NF)V (y), (9-53)

Q and wu, (t,n) belongs to a

where we implicitly used the fact that W, C Ny and |t| < 1. Indeed, the additional gain is due to
the fact that g5 contracts N~ by at least e~ for all s > 0.

To sum the above errors over £ and p, we wish to use (9.46). We first note that Proposition 3.1
and the fact W, has diameter < ¢; imply that

Ay u
iy, (NTT) <05y, (W),
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where Ay is the constant in (3.1). Moreover, Propositions 3.1 and 4.3 allow us to use closeness of
Y, and x, ¢ along with regularity of holonomy to deduce that

V(p)ty, Wp) < V(o0 pz, ,(We). (9.54)

Here, we also use the fact that both z,, and y, belong to N €; cf. (9.40).
Hence, we can use (9.46) to estimate the sum of the errors in (9.53) yielding the following estimate
on the main term in (9.45):

LD / /W <Z e TN gt ))Fv(gmyp) dpy, dt

peP? el tel,

+ 0 (70T | I it (NF)V () 2 )

where we used that the above integrands have uniformly bounded support in R x N*, independently
of £ (and p). Indeed, the boundedness in the R direction follows from that of the partition of unity
pj; cf. (9.8). We also used (9.43) to bound the C° norm of ¢,,. Summing the above error term
over j and w using (9.12) and (9.19), we obtain

oy (MIHEWV (@) x (14 )
"\ a+(1—7) 4o —e)™ )
Taking v, o and €1 small enough, while taking b large, we get
o (115 N7V (2)
(a —|—9/10) ’

Recall the norm ||-||;; defined in (9.2) and note that |||} < B|-||3. Choosing a and s > 0 small
enough, we can ensure that e'**/(a 4+ 9/10) is at most 1/(a 4+ 1/10). With this choice, taking
B = b'* yields an error term of the form:

1/ 15 (N V ()
0 . 9.55
( (a+1/10)™ (9:55)
Mollifiers and Cauchy-Schwarz. We are left with estimating integrals of the form:
[ Wt (geny) di . =3 g, (). (9.56)
RxW, Lel,

We begin by giving an apriori bound on ¥,. Denote by .J, C R the bounded support of the
integrand in ¢ coordinate of the above integrals. Note that (9.43) and the fact that |¢| < 1 imply

1Dp.ell o (g, 5wy < 1 1 pll oo, s,y < #lp.j- (9.57)
To simplify notation, we let
= (1 =) (w +jTo).

Note that we have that y, € Ny €, |J,| < 1,7 > 1 and W, C N;". Hence, Proposition 8.4, along
with (9.26), the definition of F, in (9.36) and the Cauchy-Schwarz inequality, yield

2

<ol [ 1wt dugde [ V(g s,
JpxW, N

/ W, (t,n)Fy(geny,p) dpsy, dt
RxW,

Thus, Remark 9.1 and the Margulis inequality for V2 in Theorem 4.1 yield

[ wattn) () du e
RxW,

< oDV Ay, (NT) /J ) dig e (959)
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Cusp-adapted partitions. To estimate the right side of (9.67), it will be convenient to linearize
the phase functions 7. For this purpose, we need to pick a partition of unity of W,, where the
diameter of the ball supporting an element of the partition of unity is determined by a certain
return time of its center to a given compact set. This is achieved in the next result.

Proposition 9.10. For all b > 1 and x € Ny, there exists a cover {A; :i} of Ny and a set
Ry C N{™ with p“(N{ \ Re) < b= P2V (2)u(N{") such that for all i with A; N\ Ry # 0, we have
(1) A; has the form A; = N,fg -u; for some r; >0 and u; € Nfr.
(2) Ift; = —logr;, then V(gyux) <g 1 for all u € A;.
(3) b8/ <51 < b7/10,
(4) i i (Ai) < p(NY).
Proof. Let rg > 1 be the constant provided by Theorem 7.9 applied with e = 3/100. Let my =
(1o Hog b] and let H = 3770 be the height provided by Theorem 7.9. Then, we have

pdlne Ny Z XH(gergnx) > 99mp/100 | <p 6_5/2V(az)ug(N1+).
1<t<mg
Denote the set on the left side in the above estimate by &, and define a function ¢ : N1+ \ & —
[7/10,8/10] by setting ¢(n) to be the least value of n € [7/10,8/10] such that V(gy10gpnz) < H.
Let R, := supp(u¥) N Ni™ \ & and consider its cover {A, : u € R;}, where each A, is the ball
around each u of radius b=<("). Using the Vitali covering lemma and the uniform doubling result
in Proposition 3.1, we can find a finite subcover {A,, : i} such that Y, u%(A,,) < p%(N;"). This
completes the proof by taking A; := A,,.
O

Let {A;} be the cover provided by Proposition 9.10, applied with « = y,. Since W, C Nfr , by
discarding elements of this cover that are disjoint of W, if necessary, we shall assume that each A;
intersects W), non-trivially. Combining this result with (9.57), we obtain

/J y 0, (t,n)|? dpl dt<Z/ nyf t,n)[* duy. dt+0(b BI24T2 V (yp) ;p(Nf)). (9.59)
pXWp

Linearizing the phase. We now turn to estimating the sum of oscillatory integrals in (9.59). For
k.l e 1,;, welet

wk,f(ta n) = ¢P7k (t7 n)(b[),f (t7 n)'
Expanding the square, we get

Z/ nyf tn)f du dt=>" > / e =T My o (t,n) dpl d.
i klel, ; JpxAi

Using (2.3) and (2.4), we change variables in the integrals using the maps taking each A; onto
Nfr . More precisely, recall that A; is a ball of radius r; around u; such that u;y, € €2. Letting

ti = - IOg iy y; = gtiuiypu Tli = Tk(Ad(g—tz)(n)ul)7 wlif,f(t? n) = wk,f(u Ad(g—tz)(n)ul)u

(9.60)
we can rewrite the above sum as
X3 [ ) i
7 kjefp,j JpXAi
< Ze‘éti Z / e‘ib(Ti(")_Tfi("))wzZ(t,n)d,u;ji dt|. (9.61)
i kel Jpx N ’ 8
HELp
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We note that the radius r; of A; satisfies
b8/ < et =y < b0, (9.62)
We also recall from Proposition 9.10 that r; was chosen so that
Viy) <1, Vi (9.63)

This is important for the proof of Theorem 9.16 below.

Next, we use the coordinate parametrization of Nt by its Lie algebra n™ := Lie(N™T) via the
exponential map. We suppress composition with exp from our notation for simplicity and continue
to denote by /LZ;-) and Nfr their pushforward to n™ by exp.

Recall from Section 2.5 the parametrization of N~ by its Lie algebra n=™ = n_ @ n,, via the
exponential map and similarly for N*. Let w; = (v;,7;) € nf x nj, be such that u; = exp(w;),
where u; is the center of the ball A;. Recall the notation for transverse intersection points n
in (9.39). For each k € I, ;, write

p,k

n, = exp(uy + si)

with u; € n; and s, € n,,,. With this notation, we have the following formula for the temporal
functions 7. The proof of this lemma is given in Section 10.

Lemma 9.11. For every i, there exists a bilinear form (-,-) : n= x nf — R such that the following
holds. For every k € I, ;, there is a constant c¢;, € R such that for all n = exp(v,r) € Nf’ with
v E€nt and r € nd,, we have that

Tli(n) - Té(n) = C?( + et (uk — Up + Sk — Sy, U> + 0(6_2"»1').

Moreover, there exists a proper linear subspace L; C ny such that for every (u,s) € ny x n,, , the
linear functional (u+ s,-) : nt — R satisfies

[[{u =+ s, -)[| > dist(u, L),
where |[(u + s, )| := supjy=1 [{u + s,v)|.

Remark 9.12. The proof of the lemma also shows that if X is real hyperbolic, then we can take
L; ={0}.
To simplify notation, we set

i

wy, = e Vi(uy — up + s — s¢). (9.64)

Note that Ad(g_s,) contracts N* by at least et < b~7/10; cf. (9.62). In light of (9.57), this
ensures that the Lipschitz norm of w,i ; along N +is <« b= 719, Moreover, we recall that |J,| < 1.
Then, we can estimate the right side of (9.61) as follows:

zi: e_éti Z

kEl, ;

=T =T () api (¢ ) dpt dt
e ,n)du;
/ . bt mdu

b0 (NF)#I2 . (9.65)

< Z e Ot Z
i

ke, ;

e—ib(wi’e,v) dﬂuz
N Yp
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Excluding close pairs of unstable manifolds. Let L; C n; denote the subspace provided by
Lemma 9.11. Denote by C, ;; the following subset of Iij:

Chrji = {(k:,f) € Iij dist(ug — ug, Li) < b_l/lo} .
We also set
Spji =125\ Cpji- (9.66)

Then, C), ; ; parametrizes pairs of unstable manifolds which are too close along the direction L;®ns,,
in the stable foliation. Recall that L; & n,, = {0} when X is real hyperbolic. In particular, in this
case, C, ;; simply parametrizes pairs of unstable manifolds which are too close along the stable
foliation. With this notation, the sum on the right side of (9.65) can be estimated as follows:

S S| [ ek
i Ny g

kyel, ;
K H#Cpjipl W)+ e
7

ke, ;

. (9.67)

e—ib(wiye,v) dﬂuz
Nt Yp

We estimate the first term in (9.67) via the following proposition, proved in Section 12.3, using
the non-concentration properties of Patterson-Sullivan measures obtained in Section 12. We note
that this non-concentration property is not needed for the proof in the constant curvature case.

Proposition 9.13. There exists a constant k > 0 such that for all ¢ € I, ;,
#{kel,;: (k) €O, i} < (6710 4 emnlim)whiTo)) 5y (whiTh) |
Remark 9.14. The constant x will be provided by Theorem 11.17.

Summarizing our estimates in (9.59), (9.65), (9.67), and Proposition 9.13, we have shown that

/ W, (t,n)|? duy dt
Jpx W,

5t —ib(wl ) 7 u
<Y 3| etk
7 1

k,ZeIp,j

- ((0792V () + 0710 L, - (5710 4 7RO I HITO) ) e g i (N, (9.68)

9.3. The role of additive combinatorics. To proceed, we wish to make use of the oscillations
due to the large frequencies bw}M to obtain cancellations. First, we note that Lemma 9.11 and the
separation between pairs of unstable manifolds with indices in S, ;; implies that the frequencies
bw,ix have large size. More precisely, the linear functionals <w,i7€, S nt — R satisfy

b0 < |[(wj, 4, ) || < b7/ (9.69)

Let 7 : n* — nf denote the projection parallel to n;a and note that the integrands on the right
side of (9.68) depend only on the nf component of the variable. To simplify notation, we let'*

P u
V; = 7T*/,Lyzp

N (9.70)

MNote that 7 is the identity map in the real hyperbolic case.
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Remark 9.15. It is worth emphasizing that the linearization provided by Lemma 9.11 only depends
on the unstable directions with weakest expansion under the flow. The reason we do so is that
our metric on n* is not invariant by addition when X is not real hyperbolic (it is invariant by the
nilpotent group operations) and our non-concentration estimates for the measures ug only hold for
this metric. This in particular means the results of Section 11 do not apply to these measures in
this case, which is the reason we work with projections. It is possible to develop the theory in
Section 11 for measures and convolutions on nilpotent groups such as NT to avoid working with
projections, however we believe the approach we adopt here is more amenable to generalizations
beyond the algebraic setting of this article.

For w e n™, let
v;(w) ::/ e~ N0 duy (v). (9.71)
nt
Note that the total mass of v;, denoted |v;], is Iy (N{7). Let A > 0 be a small parameter to be
P
chosen using Theorem 9.16 below. Define the following set of frequencies where 7; is large:
Bli, k,\) == {e € Ly : (k,0) € S,y and |95(bwl, )| > b~ |y2-|}. (9.72)

Then, splitting the sum over frequencies according to the size of the Fourier transform 7; and
reversing our change variables to go back to integrating over A;, we obtain

St S [ et ang

i (k,0)ESp i
< <m%x #B(i, k,\) + b‘A#IM) #,i0 (N, (9.73)

where we again used the estimate ), 'UZZ (4) < ,uZp(Nfr ).

The following key counting estimate for B(i, k, A) is deduced from Corollary 11.5. Its proof is
given in Section 12.4.

Theorem 9.16. For every eo > 0, there exists A > 0 such that for all i and k, we have
#B(i, k,\) <e b2 (b—ﬁ/lo + e—ﬂ(’v—a)(w+jTo)> e 1(w+iTo)
where k > 0 is the constant provided by Proposition 9.13.

Combining estimates on oscillatory integrals. Let x > 0 be as in Theorem 9.16. In what
follows, we assume ¢ is chosen smaller than /100 and that A < min {3/2,4/10,x/20}. Let

Q= (b—li/20 + bage—/i(’y—a)(w—i-jTo))eéw(w-i-jTo).

Theorem 9.16, combined with (9.58), (9.68) and (9.73), yields:

| walt.m) (o) du e
RxW,

<<6T,o(f)V(yp)uZ,,(N1+)><< DNV () PRI, 1 BT % G ) (0.74)

where we used the elementary inequality \/z +y < /z + ,/y for any z,y > 0.
Our next goal is to estimate the sum of the above bound over p. Note that for all p € P]Q, since
W, has radius < ¢;, cf. (9.18), we have by Proposition 3.1 and (9.54) that for all £ € I, ;,

A U A u
luy (N+) < L 7L/"y (W ) - L] +luxpg(Wé)‘
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Hence, the Cauchy-Schwarz inequality yields
1/2
u _A u u
SV (NOVFL; <755 | Y (W) < Y VAt (W)
pEPY pEPY PEPYLEL,
We estimate the first sum above using Lemma 9.9 and the second using (9.47) to get
u u —A/2 w7 aj
> V(youd (NFWF#IL; < V()N x o /2 OO (wtiTo)+aiTo)/2, (9.75)
pEP)
where we set A =2D + 2A + 1. Similarly, using (9.46), and (9.54), we obtain
D Vo, (DL < 152 x DTNV (2).
pGP;»)

Finally, since y, € K;, we have V (y,) <7, €299970; cf. (9.18).

To simplify and combine the above bounds, recall from Remark 9.1 and (3.1) that 8 < §/2 so
that efT0 < £923T0/2 We also have that A/2 < x/40. It follows that upon combining the above
estimate with (9.74) and (9.75), we obtain the following bound on the sum of the integrals in (9.74):

o~ (w+iTo) Z / U,(t,n)Fy (giny,) dul dt
o Y RxW, ?
pGPj

< eio(f)V(:c)ug(Nf’) « Lj—A/2e<So¢jTo/2 % (b‘W 4 b52/2e—n(’y—a)(w+jTo)/2)) 7

where we again used the inequality \/z +y <z + /¥
Arguing as before using (9.12) and (9.19), the sum of the above error terms over j and w yields
an error term of the form

=X/ e/
or, (eio(f)V(x)uéé(Nf)(l e x [ b . b2/ D

(a —2aA —da/2 —e1)™  (a+k(y—)/2 =)™
(9.76)

To simplify the above bound, recall that A is chosen according to Theorem 9.16 and hence its
size depends on &9, however k is given by Proposition and is independent of €. Moreover, v, A and
k are independent of a,« and €1, and we are free to choose the parameters a and ¢; as small as
needed. We also recall that m = [logb]; cf. (9.9). As before, we will absorb the dependence on Ty
in (9.76) by taking b large enough at the cost of replacing €; with 2¢; in the denominators of the
above expression. Hence, we may take o < /2 and choose £1, a, and €5 small enough relative to
K7y to ensure that

(14 e1)e2/? < 1
a+k(y—a)/2 -2 ~ a+rky/10

Using the bound e=*/2 < 1/(1+4 A/2) and taking a and e, small enough depending on a, A and A,
we obtain

(14 e1)e 2 < 1
a—20A —0a/2—2e1 ~ a+ar/4
Hence, taking a small enough so that aA/4 < k7/10, the error term in (9.76) becomes

o (Aol DV @)
a+ah/4 '

(9.77)
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9.4. Parameter selection and conclusion of the proof. In this subsection, we finish the proof
of Theorem 9.2 assuming Lemma 9.11, Proposition 9.13, and Theorem 9.16.

Collecting the error terms in (9.10), (9.16), (9.25), (9.33), (9.55), and (9.77), and letting o, > 0
be the minimum of all the gains in these error terms, we obtain

115
(a+ U*)m‘

Letting Cr denote the implied constant, this estimate concludes the proof of Theorem 9.2.

10. THE TEMPORAL FUNCTION AND PROOF OF LEMMA 9.11

In this section, we give an explicit formula for the so-called temporal functions 73 , appearing in
Section 9 and prove Lemma 9.11. Our argument is Lie theoretic. We refer the reader to [Kna02,
Chapter 1] for background on the material used in this section. Similar results are known more
generally outside of the homogeneous setting by more dynamical/geometric arguments building on
work of Katok and Burns [Kat94].

10.1. Taylor expansion of temporal functions. The proof of the first part of lemma consists of
establishing a formula for the so-called temporal function 7 using the Campbell-Baker-Hausdorff
formula and then proving the that the higher order terms in the latter are O(e=2%).

Fix k € I,; and recall the elements N, € N~ which were defined by the displacement of the
points x,  from y, along N~ inside the flow box B,; cf. (9.39). We also recall the elements uj, € ng
and sgn,, chosen so that n™p, k = exp(uy + si). In what follows, we set

X = up + si.

Given Y € nt, we write Y, and Ya, for its n} and n;a components respectively.

Let w denote the vector in the Lie algebra g of G generating the geodesic flow, i.e. g; = exp(tw).
Recall that M denotes the centralizer of {g; : t € R} in G. Then, denoting by m its Lie algebra,
we have the splitting g=R-w®m@&n~ Gn'. For v € g, let mp(v) € R be such that mg(v)w is the
image of v under the projection g — R - w parallel to m @ n~ G n™.

Recall the vectors w; = v; +r; € n* defined above Lemma 9.11, where v; and r; denoted the n}
and n;a components of w; respectively. We also recall the return times ¢; in (9.60). For Y € n*,
let Y = log(exp(Ad(g_,)(Y)) exp(w;)) € nt. In particular, Y takes the form

Yi = (Uz' + C_tiYa) + (Ti + 6_2tiY2o¢ + e_ti [YOH Ul]/2)

Let Y = v; + e %Y, and Y3, = r; + e 2l Yo, + e[y, v4]/2.

By the Campbell-Baker-Hausdorff formula!®, we have that exp(X)exp(Y?) = exp(Z), where
Z=X+Y"'+[X,Y"]/2+... can be expressed as a sum of iterated brackets of X and Y. In what
follows, we write Z(Y) instead of Z to signify the dependence on Y. Roughly, 7/(Y) is given by
a certain projection of Z(Y) along the flow direction and the lemma will follow from an estimate
on the higher order terms in this expansion. More precisely, it follows from the definitions of the
functions 75, (cf. (9.51)) and 7} (cf. (9.60)) that

(V) = mo(Z(Y")). (10.1)

Denote by tv} the sum of the terms in the definition of Z(Y) involving iterated brackets of X
and v; + r; and let ¢ = mo(tvk). Our next step is to show that

m0(Z(Y")) = ¢, + mo([uk, €™ Ya]/2) + mo(e ™" [sk, [Ya, vil] /4) + O(e™").
15This formula is only valid when X and Y* are sufficiently close to the origin. As in Remark 2.1, by scaling our

metrics if necessary, we shall assume that this formula is valid whenever exp(Y*) € N;& and exp(X) € N; to simplify
notation.
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To this end, note that the terms in the expansion of Z(Y*) we wish to estimate are of the
following shapes:
(1) [X, e 5],
(2) Tterated brackets involving one copy of X and more than one copy of Y* — v; — 7.
(3) [ske™"Yal.
(4) Tterated brackets involving a single copy of e~%Y,, and more than one copy of X.
(5) Tterated brackets involving a single copy of e7%[Y,, v;] and more than one copy of X.

Since Y — v; — r; has size O(e™%), this implies that the sum of the terms in Items (1) and (2) has
size O(e~2%), and hence so does its image under 7.

To estimate the remaining terms, recall that if gg and g, are Ad(g;) eigenspaces in the Lie
algebra g of G corresponding to the eigenvalues e’ and e respectively, then we have the relation
(98, 9+] C 93+~. This implies that the image under 7y of the terms in Items (3) and (4) is 0. This
also immediately implies the same conclusion for the terms in Item (5) except possibly for the term
e~ biluy, [ug, [Ya, vi]]], which belongs to m + R - w.

We claim that [ug, [uk, [Ya, v;]]] belongs to m, and hence its image under 7 is 0. Let 6 denote a
Cartan involution of g sending w to —w. In particular, # fixes m pointwise and sends n™ onto n~
respecting their decompositions into Ad(g;)-eigenspaces. Denote by B the Killing form on g and
by Z' the vector [uy, [ug, [Ya, vi]]]-

Recall that B(w,w) # 0 and w is orthogonal to m with respect to B, i.e. B(w,z’) = 0 for all
a2’ € m. Hence, it suffices to show that B(w, Z’) = 0. By a slight abuse of notation, denote by « the
eigenvalue of ad(w) on nf. Then, using properties of the Killing form and that u; € n;, we obtain

B(w, Z") = B([w, ], [uk, [Ya, vil]) = —aB(ug, [ug, [Ya, vi]]) = —aB([ug, ug], [Ya, vi]) = 0.
Thus, taking 6275 = ¢ —cjand (-,-) : n~ x nl — R to be the following bilinear form: for any
uweng,seny, and Y, € n}:
(u+s,Yy) :=mo([u, Yal/2) + mo([s, [Ya, vi]] /4), (10.2)
completes the proof of the first part of the lemma.

10.2. The bilinear form and orthogonal projections. To prove the second part, fix some
(u,s) € ny x ny, with u # 0. First, suppose that v; # 0. Recall that the symmetric bilinear form
Q(v,w) := —B(v,0(w)) is positive definite and hence induces a metric on g. Let |-||" and dist’
denote the induced norm and metric respectively. Then, the restriction of ||-||" to n5 is equivalent
to our chosen norm on n7 used in (2.8) (and hence the same holds for the corresponding metrics).

Let v; = v;/ ||vi|]|. Denote by p; : n, — R the linear functional given by p;(u~) := mo([u™, v;])
and let

L; = kernel(p;).
We claim that 0(v;) is orthogonal to L; with respect to Q). More succinctly, we write

Q(0(vi), L;) = 0. (10.3)

Let us first show how this claim implies the lemma. Note that since 6(v;) belongs to ng, non-
degeneracy of @ and (10.3) imply that L; is a proper subspace of n,. Moreover, we observe
that (10.3) implies that (u + s,%;) is given by an orthogonal projection with respect to @ in the
following sense. Note that orthogonality of m and w implies that

(u+5,0:) = Q([u, ), ) /(lw]l)? = B([u, 7], w)/(lw]")?,

where we used the fact that #(w) = —w in the second equality. Moreover, from invariance of the
Killing form by Lie brackets and the fact that |[w,v;] = awv;, we obtain

B([u,v;],w) = B(u, [v;,w]) = —aB(u,v;) = aQ(u, §(v;)),
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where we also used that #? = Id for the last equality. Thus, in light of the orthogonality given
in (10.3), we see that

[(u+ s,0:)| < |Q(u, 8(v;))] > dist’(u, L;) > dist(u, L;),

where we used the equivalence of the restriction of the two norms ||-|| and ||-||" to n; as noted above.
This completes the deduction of the second part of the lemma from (10.3) in the case v; # 0.

To prove (10.3), we need the following observations. Let x € L; be arbitrary. Then, we note that
[, v;] belongs to m by definition of L;. Moreover, arguing as above using the relationship between
mg and the Killing, we see that

pi(0(v:)) = a6l / |]')? # 0.

In particular, [0(v;),v;] is non-zero and belongs to R - w. Finally, note that w is orthogonal to m
with respect to Q). Indeed, given y € m, we have that

Q(y,w) = B(y,w) = B(0(y),0(w)) = B(y,0(w)) = Qy,w),

where we used the fact that 6 fixes m pointwise and #(w) = —w. This implies that (y,w) = 0 for
all y € m as claimed.
Now, let ¢ # 0 be such that [#(v;), v;] = cw. Then, invariance of the Killing form implies

0 = B([0(vi),vs], [x,v;]) = eB([w, z],v;) = caB(x,v;) = caQ(z,v;),

where we again used that [w,v;] = aw; and #? = Id. As x was arbitrary, this implies (10.3).

If v; = 0, then a similar argument shows that (u + s,6(u)) has size < ||u||. Hence, the lemma
follows in this case with L; = {0}. This concludes the proof.

Finally, we note that if X is real hyperbolic, then n,, = {0} = nj_ and (10.2) simplifies to
be (u,Y,) = mo(u,Ys]/2). In particular, taking Y, = u/||u|| and arguing as above shows that
l{w, )| > ||u|| = dist(u,0). Hence, L; can be taken to be {0} in this case.

11. DIMENSION INCREASE UNDER ITERATED CONVOLUTIONS

The goal of this section is to prove that measures that do not concentrate near hyperplanes
in R% become smoother under iterated self-convolutions in the sense of quantitative increase in
their L?-dimension; cf. Theorem 11.4 below. This result immediately implies Theorem 1.6. As a
corollary, we deduce that the Fourier transforms of such measures enjoy polynomial decay outside
of a very sparse set of frequencies; cf. Corollary 11.5.

Corollary 11.5 is the key ingredient in the proof of Theorem 9.16 where it is applied to (projections
of) conditional measures of the BMS measure. Moreover, the proof of Proposition 9.13 in the case
of cusped non-real hyperbolic manifolds requires a polynomial non-concentration estimate near
hyperplanes which we deduce from Theorem 11.4; cf. Theorem 11.17.

11.1. Non-uniform affine non-concentration. We begin by introducing our non-concentration
hypothesis, which allows for an exceptional set of points and scales where concentration may hap-
pen.

Definition 11.1. Let positive functions A, ¢, and C on (0,1] be given. We say that a Borel
probability measure p on R? is (), ¢, C)-affinely non-concentrated at almost every scale if for every
0 < ¢e,0 <1, the following holds for all £ € N and r > C(6):

(1) p(x) tends to 0 as = tends to 0.

(2) There is an exceptional set £ = &(k,¢,6,7) C R? with u(E) < C(9)2- MOk,

(3) For every = € supp(u) \ &, there is a set of good scales N(z) C [0,k] NN with #N(z) >
(1—06)k.
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(4) For every x € supp(u) \ &, every affine hyperplane W < R? and every ¢ € N(x), we have

pWE A B, 27)) < (p(0) + C(O)p(e) ) n(B(z,27™)), (11.1)
where W) and B(z, p) denote the p-neighborhood of W and the p-ball around z respec-

tively for any p > 0.

We say p is affinely non-concentrated at almost every scale when A, ¢ and C' are understood from
context. We say u is affinely non-concentrated at almost every scale up to scale ko if p satisfies the
above conditions only for k < kg.

This definition says that p sees strong non-concentration near hyperplanes happening at nearly
all scales outside of a small exceptional set, however the size of the exceptional set is allowed to
depend on the strength and frequency of non-concentration.

Remark 11.2. Definition 11.1 is the non-concentration property we are able to verify for projec-
tions of the measures p appearing in the proof of Theorem 9.2; cf. (9.70) . For purposes of following
the arguments in this section however, there is no harm in considering the example A(z) = S for
some [ > 0 and the stronger bound

p(WE) 0 B(z,27%)) < C(0)p(e)u(B(x,27")),

in place of (11.1). In fact, the above bound holds for the measures p¥ themselves as can be deduced
from the proof of Corollary 12.2.

For k € N, let
Ay = 2_kZd,

and let Dy be the dyadic partition of R? given by translates of 27%[0,1)¢ by Ag. For = € RY, we
denote by Dg(x) the unique element of Dy containing x. For a Borel probability measure v, we
define v, € Prob(Ay) to be the scale-k discretization of v, i.e.

vV = Z I/(’Dk()\))(s)\ (11.2)
AEAL
For any p € Prob(Ag) and 0 < ¢ < oo, we set
1/q

el = | Y u(n)e

AEA

The convolution p* v of two probability measures p and v on R is defined by
pevd) = [ [1ae ) duto) avto),

for all Borel sets A C R<.
The following lemma allows us to pass between measures and their discretizations.

Lemma 11.3. Let u and v be Borel probability measures on RY.

(1) If p is (A, @, C)-affinely non-concentrated at almost every scale, then, there is a > 1 such
that for every k € N, py is (X, ap, aC)-affinely non-concentrated up to scale k.
(2) For all ¢ > 1 and k € N, we have ||(u*v)kll, <q.d [l * vell,-

The lemma is a consequence of the fact that a ball of radius r with 271 < r <27% k € Z, can
be covered with O4(1) elements of Dy and we omit the details.
With this notation, we can now state our quantitative results.
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Theorem 11.4. Let A\, ¢ and C be given. For every € > 0, there exist natural numbers n and kg
such that for every (X, ¢, C)-affinely non-concentrated Borel probability measure p supported inside
a ball of radius 2™ around the origin in R® and for every k > ko, we have

Hluznng < 22dm(n—1)—(d—e)k’

with implicit constant depending only on d and the non-concentration parameters of pu. In particular,
for all P € Dy, we have

Mz(nﬂ) (P) <4 odmn—(d—e)k/2
The following is a more precise version of Corollary 1.8.

Corollary 11.5. Let pu be a compactly supported Borel probability measure on R? such that p is
affinely non-concentrated at almost every scale. Then, for every e > 0, there is A > 0 such that for
every T >, the set

{w eRe: |jw|| < T and |p(w)] > T—A}

can be covered by O (T¢) balls of radius 1, where i denotes the Fourier transform of . The implicit
constant depends only on € and on the diameter of the support of p and its non-concentration
parameters.

11.2. Asymmetric Balog-Szemerédi-Gowers Lemma. The following is the asymmetric ver-
sion of the Balog-Szemrédi-Gowers Lemma due to Tao and Vu. Throughout the section, for a finite
set A C RY, we denote by |A| its cardinality.

Theorem 11.6 (Corollary 2.36, [TV06]). Let A, B C R be finite sets such that |14 % 15|35 >
2a|A||B|? and |A| < L|B| for some 0 < a <1 and L > 1. Let & > 0 be given. Then, there exist
sets A’ C A and B' C B such that

(1) A" and B' are sufficiently dense: |A'| >. oM L=¢'|A| and |B'| > o9V L='|B|.

(2) A is approzimately invariant by B': |A' + B'| <o o~ O WL A'|.

Remark 11.7. The quoted result is stated in terms of the additive energy E(A, B) in loc. cit.,
which is nothing but ||14 * 1p]/3.

In order to be able to bring our affine non-concentration hypothesis into play, we will need to
convert the approximate additive invariance provided by the Balog-Szemerédi-Gowers Lemma into
exact additive obstructions to flattening under convolution, i.e. affine subspaces. Our key tool for
this step is Hochman’s inverse entropy theorem for convolutions of measures, stated in the next
subsection.

11.3. Hochman’s inverse theorem for entropy. We need some notation before stating the
result. For a Borel probability measure v on N, the entropy Hy(v) of v at scale k is defined to be

1
Hy(v) := ~Z Z v(P)logy v(P).
PeDy,
By concavity of log and Jensen’s inequality, we have the following elementary inequality

< logy #{P € Dy : v(P) # 0}
< ’ .

It also follows from Jensen’s inequality that the above inequality becomes equality if and only if v
gives equal weights to the elements P of Dy with v(P) # 0.

Hy(v) (11.3)
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Given a Borel probability measure v on R? and z € R? with v(Dy(z)) > 0, we define the
component measure v>* by

ok = _ v
[rart = sy L HOw) iy,

where T : Dy(z) — Dy(0) is the map given by composing scaling by 2¥ with translation by the
element of Ay sending Dy (z) to Dy (0).
Given a Borel subset P C Prob(N™) and k € N, we define

k
Pocick(v™" € P) = =7 2 / Lp(v™*) dv(2).
=0

Given a linear subspace 0 < V < R% & > 0 and a probability measure v, we say that v is
(V, e)-concentrated if there is a translate L of V such that v(L()) > 1 —e. We say that v is
(V,e,m)-saturated for a given m € N if

H,,(v) > Hp(mwv) + dimV — ¢, (11.4)
where W = V+ and my v is the pushforward of v under the orthogonal projection to W.

Theorem 11.8 (Theorem 2.8, [Hocl5]). For every e, R > 0 and r € N, there are 0 > 0 and
mo, ko € N such that for all k > ko and all Borel probability measures v and p on [—R, R]?
satisfying

Hkr(:u * V) < Hkr(y) + o,

there exists a sequence of subspaces 0 < V..., Vi, < R? such that
. AT is (Vi,e) — concentrated and 1—¢
0<i<k = is (Vi e,mg) — saturated

Remark 11.9. Theorem 11.8 is stated in [Hocl5] in the case r = 1. However, the extension to
general step-size is rather routine since it roughly corresponds to working in base 2" in place of
base 2.

11.4. Flattening of discretized measures. The following quantitative result is the main ingre-
dient in the proof of Theorem 11.4.

Proposition 11.10. Let positive functions A, ¢, and C' on (0, 1] be given. Then, for every 0 < v <
1, there exist n > 0 and k1,r € N, depending on v, A\, C, and @, such that for all integers k > k
the following holds. Let p and v be arbitrary probability measures supported on 2~ *"7¢ such that p
is (A, @, C)-affinely non-concentrated up to scale k and

||VH§ > 2—(1—~/)dkr+2dn’ (115)
then
i vl < 2577 (11.6)

where m,n € N are such that u is supported inside the 2" -ball around the origin and v is supported
inside the 2™-ball.

This proposition says that the convolution of an arbitrary measure v with a non-concentrated
measure causes v to “spread out”, i.e. leads to a quantitative reduction in the ¢2 norm of v, unless
|v||5 is already very close to O.
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Lemma 11.11 (Effect of scaling the support). Let u and v be Borel probability measures on 2~*7.%
for some k such that their supports are contained inside balls of radius 2™ and 2" in R? respectively
for some m,n € N. Let i (resp. V) be the measure obtained from p (resp. v) by composing it with
the scaling map sending the 2™-ball (resp. 2™-ball) onto the 1-ball. Suppose that ||fix D], < & |||y
for some 6 > 0. Then, ||u* vy <296 ||v],.

Proof. Note that we may regard any measure 7 on 27 ¥Z% as an absolutely continuous measure
to Lebesgue on R? with density function, denoted 7, that is constant on Dr(A) and equal to
7(Dr(N))29 for every A € 27*Z%. In particular, |||, is equal to I7(| 72(gay in this notation. We
apply this observation to all the measures appearing in the lemma. The lemma now follows upon
observing that for every P € Dy, a change of variables shows that u * v(P) = 24m+%) f« p(P) O

In light of this lemma, we may assume in the proof of Proposition 11.10 that
m=0=n, ie. pand v are supported on 27 *Z% N [0,1)%. (11.7)

The remainder of this subsection is dedicated to the proof of Proposition 11.10. Let v > 0 and
n > 0 be small parameters and r,k € N be a large integer to be specified over the course of the
proof. We frequently assume that ~ is sufficiently small so that various properties hold and the
values of 7,7 and k will depend only v and the non-concentration parameters. Suppose towards a
contradiction that (11.5) holds but (11.6) fails.

11.4.1. From measures to sets. We first translate the failure of (11.6) from measures to indicator
functions of certain sets using standard arguments. This allows us to apply the Balog-Szemerédi-
Gowers Lemma.

Lemma 11.12 (Lemma 3.3, [Shm19]). For every n > 0, the following holds for all large enough
¢. Suppose that y and v are probability measures supported on Ay M [0,1)% such that ||u* v, is at
least 27" ||v||,. Then, there exist j,j' < 4nl such that the sets

A= {zen: 27wl <wi@) <277 v}, (118)
B = {a; € Ag: 2791 < y(z) < 2—1’—‘”} (11.9)

satisfy

(1) 14 # 15113 = 277 A|| B2,
(2) v]ally = 2727 |v]l,. and
(3) u(B) > 272",

Remark 11.13. The above lemma was proved in [Shm19] for measures on R, where d = 1, however
the short argument, based on the pigeonhole principle, goes through in the general case where one
uses that

#{PGDZ:PC [0,1)d} —2d >, (11.10)

to obtain the the bounds in the definition of the set B in place of the analogous 1-dimensional
count used in loc. cit.

Let A and B be as in Lemma 11.12, applied with £ = kr. Taking n small enough, we note
that (11.5) and the definition of A imply that

|A| < 2477kr+1+(1—~/)dkr < 2(1—7/2)dk7‘+1. (1111)
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11.4.2. From (?-concentration to entropy concentration. Lemma 11.12 enables us to apply Theo-
rem 11.6 with o = 274%"=1 [, = max {1,|A|/|B|}, and &' a small parameter to be chosen small
enough depending on €. Let A’ C A and B’ C B be the sets provided by Theorem 11.6. Let v/ and
i/ be the uniform probability measures supported on A’ and B’ respectively. Combining the above
estimate with (11.3), we obtain

logy |A' + B'| _ logs | A’
Hkr(,ul*V/)§ 2|kr | < Zl |

Since v/ is the uniform measure on A’ the remark following (11.3) thus implies that
Hy (W % V') < Hoe(V) 4 Oor (1) + logy L /.

By (11.11), we have log, L¢ < ¢'log, |A| < &' ((1 — v/2)dkr + 1).
Let

+ O (n) + log, e Jkr.

e=2"",

and let ¢ > 0 and kg € N be the parameters provided by Theorem 11.8 applied with ¢, » and with
R = 1. We shall assume that k is chosen to be larger than ky. Hence, taking & small enough
(depending on o) and 7 small enough (depending on &’ and o), we obtain

Hy (1 V') < He (V) + 0. (11.12)

We show that the conclusion of Theorem 11.8 is incompatible the non-concentration properties
of the measure u. Let Vp, ..., Vi be the subspaces provided by Theorem 11.8 and

S:{Ogigk:Vi:Rd}.

We begin by showing that a significant proportion of the V/s are proper subspaces. Intuitively,
being R%-saturated on most scales means the measure v is close to being absolutely continuous to
Lebesgue on R?, in which case its £2-norm would be very close to 2~%. This would contradict (11.5).
Lemma 11.14. If € is chosen small enough and k large enough depending on vy, then #S <

(1 —~/10)k.

Proof. Let v1 = /10 and suppose that #S > (1 —1)k. Then, Theorem 11.8 and the definition of
saturation (cf. (11.4)) imply that

k
%_H ;/Hmo((y/)z,ir) dV/(Z) > (1 — ’Yl)(l — E)(d— E) = (1 - ’Yl)d_ O(E)

By [Hocl4, Lemma 3.4]'6, this yields the following estimate on Hy,.(1'):
m
H (V) > (1 = y1)d — O(e) — O, (?0) > (1—1)d - O(e),
where the second inequality holds whenever k is large enough depending on r and mg. Moreover,
by the remark following (11.3), we have Hy,.(v') = log, |A’|/kr < log,|A|/kr. Hence, we obtain
that |A| > 2((1=71)d=0@)kr  Thig contradicts (11.11) when ¢ is small enough compared to . O

11.4.3. A contradiction to concentration. Roughly speaking, our strategy is as follows. Armed with
Lemma 11.14, we show that the concentration provided by Theorem 11.8 together with the non-
concentration property of p imply that B’ must have a very small measure. To get a contradiction,
we begin by deriving a lower bound on the measure of B’ with respect to our original measure u
(not p’). Recall the parameter € chosen above (11.12).

Lemma 11.15. If n is chosen sufficiently small depending on €', then for all sufficiently large k,
M(B/) > 2—2d£lk‘7”.

16The cited result is stated for step-size r = 1, however its short proof extends to work for any r with minor changes.
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Proof. Recall that the set B was defined in (11.8) and B’ C B is provided by Theorem 11.6 with
a = 274k=1 and I = max {1, |A|/|B|}. We calculate using Lemma 11.12 and Theorem 11.6:

M(B/) _ Z /L(U) > 2—j’—dkr—1|B/| > 2—j’—dkr2—05/(nkr)L—e’|B| > 2—j’—dkr2—061(nk7‘)|B||A|—€"
ueB’
By (11.11), we have that |A]*" < 2%'¥". Moreover, Lemma 11.12 implies that
2—27]kr < ,U(B) < 2—j’—dkr‘B"
The lemma then follows once 7 is chosen sufficiently small depending on ¢’ g

Next, we define the following set of scales where the concentration provided by Theorem 11.8
gives non-trivial information:

c::{o,...,k}\sz{ogigk:ngd}.
By Lemma 11.14, we know that
Cl >k, 7 =~/10. (11.13)

Our next goal is to transfer the concentration information provided by Theorem 11.8 for u’ to
the measure p. To do so, we convert the probabilistic concentration provided in the theorem into
geometric containment into hyperplane neighborhoods.

Recall that {D, : ¢ € N} is a refining sequence of dyadic partitions of R? and A, = 27¢Z?. For
1€C and w € Ay, let V,, = V; +w and set

pi =277, Qi = U V(P 0 Dy (w).

WEA;,

For x € Rd, we set
Clx)y={ieC:xzeQ;}.
In particular, for x € B’, C(x) consists of scales at which x witnesses the concentration of B’.
Lemma 11.16. If k is large enough, then the subset
B"={z e B':|C(z)| > |C|/2} (11.14)
satisfies
,u(B") > 2—3d£’k7"

Proof. Let E = B\ B”. First, we give an upper bound on the measure of FE with respect to p'.
Let Qf = R?\ @Q;. Then, the concentration provided by Theorem 11.8 implies that

[ 3 tarte) dw' (@) < <.

ieC
On the other hand, we have
[ to@ di@) = [ 3 10r() dul) = U ()2
ieC Eiec
Recalling that y is the uniform measure on B’, these inequalities show that |B”| > (1 — 2¢)|B’|.

Hence, the assertion of the lemma follows from Lemma 11.12 by the same argument as in the proof
of Lemma 11.15. O
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Parameter Definition
€ 27"
Pi 27
Y1 Y / 10
Yo small parameter depending on ~
V3 Y1/2 =72
e small parameter depending on € and ~
n small parameter depending on &’
m [v3k]

TABLE 2. Summary of parameters chosen in the proof of Proposition 11.10.

Note that the scales C(z) may vary with z. Similarly, the scales at which our affine non-
concentration hypothesis holds also vary from point to point. To arrive at a contradiction, we
partition B” into sets where there is a fixed subset of scales of C at which the aforementioned
phenomena hold simultaneously and find an upper bound on the measure of each piece separately.

Let B” be as in Lemma 11.16. Let 0 < 75 < 71/2 be a small parameter to be chosen depending
only on 7. Recall the notation in Definition 11.1. Let £ be the exceptional set provided by this
definition for our choices of k,r, and with 6 = 5 and 3¢ in place of €. Let B” = B”\ £. By taking
7 > C(v2), then our non-concentration hypothesis implies u(£) < C(y2)2-*(2)%. Hence, taking ¢’
small enough depending on r and A(7y2), we can ensure that

(B") > 2734k _ O(yy)2 A2k > 9=kVE (11.15)
for all large enough k. For z € B"”, we let
G(z) =C(x) NN (x).

By (11.13) and the definition of B” in (11.14), setting v3 = v1/2 — 72, we also have

|G(x)] > sk, vz € B".

Given w C {0,...,k}, we let
Bl :={zeB":wCG(x)}.

Then, the sets {BY : || = [y3k]} provide a cover of B”. Hence, we have that

pw(B")< > u(BY). (11.16)

|@|=[vsk]

Fix a set w C [0, k] NN as above for which B # () and denote by ¢1 < f3 < --+ < £, its elements.
In particular, we have

m = |w| = [y3k]. (11.17)
To simplify notation, we set
F — B///
-
We recall that Ay(F) denotes those elements v € Ay, = 27¢Z? for which the corresponding cells

Dy(v) intersect F' non-trivially. Hence, we have the following basic estimate that will be allow us
to proceed by induction on scales:

pF) < Y w(Dr, () = Y 3 1(Dye,. (v)). (11.18)
UEA’FZm (F) weArlmil(F) UEA,,«gm (F)
Der (U)CDTZ,,”,l (w)

To proceed, let us summarize what our choices above entail: for every 1 <1 < m, we have
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(1) For every w € Ay, (F'), the affine subspace V,, =V, + w satisfies
F N Dy, (w) C FN Dy, (w) N ylere),

(2) Vi, # R
(3) F is disjoint from the exceptional set for non-concentration, i.e. F NE(k,3e,0) = 0.
(4) ¢; is a good scale for non-concentration at every point in F, i.e. ¢; € N(x) for all z € F.

Observe that if Vu(,apz")

at most 2epy, = 26274 we obtain

intersects a box Dy, , (v) non-trivially, then since Dy, ,(v) has diameter

Dye,, ,(v) C VS, (11.19)

rlii1

This containment, along with Item (1), imply that for every 1 <1i < m and w € Ay, (F'), we have
that

Z N(,DT&'JA (U)) < M(sz()3€pi) N DTfi (w))
UEArZi+1 (F)
IDT'ZH,l (U)CIDT'Q (w)

Recall that p is non-concentrated near affine subspaces in the sense of Definition 11.1. Hence, for
all i and w € Ay, (F), Items, (2), (3) and (4) along with our non-concentration hypothesis imply
that

(3epre,)
i (V™ 0Dy (w)) < (9(12) + C(32)(32)) p (Drey () (11.20)
Combining these inequalities for i = m — 1 with (11.18), we obtain

p(F) < (p(12) + Cr2)e(3e)) D> (D, (w)).
weApg,, | (F)

Hence, by induction, we obtain

p(F) < (¢(r2) + C(r2)p(32)™

Recall that F' = BY and that w is a subset of {0, ..., k} with cardinality m (cf. (11.17)). In view of
the elementary estimate (T]:L) < (ke/m)™, there are at most (e/v3)"™ summands in (11.16). Hence,
the above estimate, combined with (11.16), implies that

N(Bm) < <e‘:0(72) + 60(’72)90(36)>ﬁ{3k ‘

V3

On the other hand, by (11.15), we have the lower bound u(B") > 2-Ve'k_In particular, we arrive
at the inequality

0V < (eso(w) + 670(72)90(36))’3'
3

Recall that 41 = v/10, 72 is to be chosen smaller than 7 /2, and 3 = 71 /2—~2. Hence, by choosing
v first to be sufficiently small relative to 1, then choosing € very small, depending on 2, we can
make the right side of the above inequality at most 1/2 say. These choices only force €’ to be chosen
much smaller. This gives a contradiction since the left side gets closer to 1 as &’ decreases.



EXPONENTIAL MIXING & ADDITIVE COMBINATORICS 73

11.5. Proof of Theorem 11.4. Let n > 0 and 7,k; € N be the parameter provided by Proposi-
tion 11.10. Let n € N be the smallest integer such that (n —1)n > (d —¢)/2. Note that by Young’s
inequality, for all a,b, k € N, we have that

|

We first observe that it suffices to prove the first assertion for multiples of r. Indeed, given any
probability measure v, k € N, 0 < s < r, we have

DRI DD DR I L L S (o)

PEDkr+s erkr' PeDkr'+57PgQ QEDkr

*a *b *b *b
Hoe * H My My

v e, - 2],
< el [, = |l

Let k > k1 be given and suppose that

|

for some ¢ € N with 1 < ¢ < n. It follows that ”NZ?”; < 92ndm—(d=e)kr a5 desired. Now, suppose
that (11.21) fails for all 1 < ¢ < n. Then, applying Proposition 11.10 (n — 1)-times by induction,
we see that

2 S 22de—(d—£)kr’ (1121)
2

*f
K

legr ], < 20D |y |, < 2(ndm=kr),

where the second inequality follows since ||pg,|l, < 1. On the other hand, failure of (11.21) for
¢ = n implies that

ndm — (d — e)kr/2 < (n — 1)(dm — nkr).

This gives a contradiction to our choice of n, thus proving the first assertion. The (short) deduction
of the second assertion from the first can be found for instance in [MS18, Proof of Lemma 5.2].

11.6. Proof of Theorem 1.6, Corollary 1.8, and Corollary 11.5 from Theorem 11.4.
Note that being uniformly affinely non-concentration immediately implies that p is affinely non-
concentrated at almost every (in fact at every) scale with an empty exceptional set. Hence, the
second assertion of Theorem 11.4 immediately implies that dims, ¢* tends to d as n — oo. The
same holds for dim, p#*" due to the inequality dim,u > dims, p for all ¢ > 1. Finally, the first
assertion of Theorem 1.6 follows readily from Proposition 11.10; cf. [RS20, Proof of Theorem 1.1]
for details of this deduction.

Corollaries 1.8 and 11.5 follows from Theorem 11.4 via the well-known relationship between
L?-dimension and Fourier transform. Namely, by [FNW02, Proof of Claim 2.8], we have!”

/ |A(&)? dé <4 T_zd/u(B(x,r))2 da.
llen<i/r

for every r > 0 and any Borel probability measure p on R?. Moreover, if k € N is such that
2=+ <y < 2% then B(z,r) can be covered by Og(1) elements of the partition Dj. It follows
that

/,u(B(:n,2_k))2 dx <42 > p(P)? = 2% |3
PeDy

Hence, Corollary 11.5 follows from Theorem 11.4, Chebychev’s inequality, and the fact that the
Fourier transform is Lipschitz; i.e.

|A(61) — l&2) < [|€1 — &l -

17The reference [FNWO02] proves this fact in the case d = 1, however the proof works equally well for R? for any d.
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11.7. Polynomial affine non-concentration. In this section, we show Theorem 11.4 implies
quantitative non-concentration estimates near hyperplanes.

Theorem 11.17. Suppose 11 is a compactly supported Borel probability measure on R% which is
affinely non-concentrated at almost every scale. Then, there exist kK > 0 and C > 1, depending on
the non-concentration parameters of o and the diameter of its support, such that for all € > 0 and
all proper affine hyperplanes W < R?, we have that p(W©)) < Ce*.

We first need the following useful observation which translates polynomial non-concentration for
self-convolution into a similar estimate for the original measure.

Lemma 11.18. Let v be a Borel probability measure, €,a,C > 0 be arbitrary constants, and
W < R? be a proper affine hyperplane. Assume that v*>(W)) < Ce®. Then, v(W/2) < Ce/2,

Proof. Note that the definition of convolution implies

v We) = //]].W(s) (x +y) dv(z) dv(y) = /V (W(E) - x) dv(z).
Hence, by Chebychev’s inequality and our hypothesis on v, the set

B={eerl:y (WO —2) >0/}

has v measure at most Cc*/2. Hence, the conclusion of the lemma follows if W(/2) is contained
inside B. Otherwise, let z € W(/2 \ B and observe that W(/?) is contained inside W) — z.
However, the latter set has v measure at most £€*/? since z ¢ B. Hence, the lemma follows in this
case as well. O

We are now ready for the proof of Theorem 11.17.

Proof of Theorem 11.17. Let m € N be such that the support of p is contained in a ball of radius
2™ around the origin. By Corollary 11.4, we can find n € N and ry > 0, depending only on the
non-concentration parameters of u, such that

w? (B(x,r)) <q 22" 712, (11.22)

for all 0 < r < g and all z € R®.

Fix one such value of n once and for all. Let v = p*?" and let B € R? be a large ball containing
the supports of p** for all 0 < k < 2*. Now, let 0 < ¢ < 1 and a proper affine hyperplane
W < R? be arbitrary. Then, note that W) N B can be covered by O B7d(€_(d_1)) balls of radius &
with multiplicity depending only on d. Then, (11.22) implies that v(W () < C’e/2 for a suitable
constant ¢/ = C’(m,n,d) > 1. By Lemma 11.18 and induction on n, this shows that p(W(/2")) <
C'e" for k = 271, Since £ > 0 was arbitrary, this completes the proof by taking C' = C'2*". O

*

12. NON-CONCENTRATION OF PATTERSON-SULLIVAN MEASURES

In this section, we prove verify the non-concentration hypothesis in Corollary 11.5 for (projec-
tions of) the measures p%. This enables us to apply this corollary to prove Proposition 9.13 and
Theorem 9.16 which are the remaining pieces in the proof of Theorem 9.2.

Let £’ denote the collection of all affine hyperplanes of the Lie algebra n™ and denote by £ the
set of images of elements of £’ under the exponential map. For ¢ > 0 and L € £, let L) be the
e-neighborhood of L. Recall that we fixed a choice of a Margulis function V' in Remark 9.1 and
define . ©

u €
t(e) ;= sup sup e (N N L)

. (12.1)
zeN; QLEL V(x)N%(Nl—i_)

We also recall that I' is a geometrically finite subgroup of G = Isom™ (HZ).
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Theorem 12.1. Assume that I" is Zariski-dense inside G. We have that t(¢) — 0 as € — 0.

As a consequence, we verify the hypotheses of Corollary 11.5 for the measures appearing in
Theorem 9.16. Namely, let 7 : nt — n} be the projection parallel to n;a. For z € N; €, denote

by v, the measure m,u} N normalized to be a probability measure.

Corollary 12.2. For every x € Ny (2, the measure v,, is affinely non-concentrated at almost every
scale in the sense of Definition 11.1 with parameters depending only on V (zx); cf. (12.6).

12.1. Proof of Theorem 12.1. The key tool in our proof is the following result which is a
consequence of the ergodicity of the geodesic flow. The case of real hyperbolic spaces of this result
was known earlier in [FS90] by different methods.

Proposition 12.3 (Corollary 9.4, [ELO22]). For allz € X and L € L, u%(L) = 0.

Theorem 12.1 follows from the above result and a compactness argument. Indeed, fix an arbitrary
17 > 0 and note that for all  with V(z) > 1/n, the inner supremum in the definition of t(¢) is
bounded above by 7, for any choice of € > 0. We now show that ¢(¢) < n for all sufficiently small
e by restricting our attention to the bounded set of € N 2 where V(z) < 1/5. Suppose not and
let x,, € Ny Q, L,, € L, €5, > 0 be sequences such that V(z,) <1/n, &, — 0, and

o (NF A LEY)
lim inf —= =
n—oo pd, (NT)

> 0. (12.2)

Passing to a subsequence if necessary, we may assume z, — y € IN; © and L,, converges to some
P € L (in the Hausdorff topology on compact sets) On the other hand, when z,, is sufficiently
close to y, we can change variables using (2.3), (2.4), and (2.10) to get

Mx7 (N+OL /fTLJ dﬂy)

where J,, is the Jacobian of the change of variables and f,, is the indicator function of the image
of Ni N LS") under this change of variables. By Proposition 12.3, since L, converges to L, f,
converges to 0 pointwise p,-almost everywhere. Additionally, .J,, converges to 1 everywhere since

xy, converges to y. Finally, pj (Nfr ) remains bounded away from 0 and oo since z, remain within
a bounded set for all n. This gives a contradiction to (12.2) and concludes the proof.

12.2. Non-concentration and proof of Corollary 12.2. The main difficulty lies in carefully
associating a set of good scales to a point in the support of the projection of p¥. Our key tools are
Theorem 7.9 and Theorem 12.1. To simplify notation, we let

- L
Ha = Py | N Vg = Txflg,

where 7 : nT — n¥ is the projection parallel to nj, . In particular, v, = 7, /u%(N;"). Let 0 < 0, < 1
be arbitrary. Let H,rg = Ogg(1) be the constants provided by Theorem 7.9 when applied with
e =(02/4 and let r > rg. For £ € N, let t;, = rflog2 and p, = 27'. For v € n}, let L, := 77 (v)
and denote by ES,T) the r-neighborhood of £,. Define

E= {v cnl: #{1 <UI<k:fig <n€£§f’k) : V(ge,nx) >H> > Ofiy <£§f’k)>} ZHk}.

Roughly speaking, £ consists of vectors v for which a definite proportion points in the “strip” .CS,” )
above v spend a definite proportion of their time above height H. We show that this set satisfies

the requirements of Definition 11.1.
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To estimate the measure of £, Let xz denote the indicator function of the set of points z € X
with V(z) > H and consider the following set

E=Xve nt e [ n€ Egp’“) : Z xm(ge,nx) > 62k/2 > 0%, (ﬁ&ﬁk)) /2
1<t<k

Roughly, the set € is defined by exchanging the sum over [ and integration against ji,. We claim
that

ECE. (12.3)

To see this, let v € £ and set p; = fiz(n € R V(gt,nx) > H). Then, we have that

> xulgna) djis
1<<k

1
O < {10k m> 0L} < 07t (L) /cw

k
— | (Pr) . 2 2~ ¢ rlpr)
S oy (fa | LT > xu(gnz) > 6%k/2 | + 6%, (LP) /2

It follows that
fir (€ LV " xu(gne) > 0%k/2 | > 602 (LIH) /2,
1<e<k

which in turn implies that v € £. This verifies (12.3).
We now turn to finding an upper bound on the measure of £. First, we note that Fubini’s
Theorem and Theorem 7.9 imply

/eXp g Z XH(gt,nz) | diig(n) g,ug(Nfr)+/ fz [ Z XH(gtlnx)>logt2/ﬁ dt
1<I<k ! 1<0<k

< PRV (1) (N <1 +/ t2 dt) .
1

To bound the integral on the left from below in terms of the measure of £, let By, denote a cover of
n} = R? by balls of radius p/3 with multiplicity bounded only in terms of the dimension d. Then,
we have

7:(6) < Y 5(BNE) < > in(B).

BeBy, BNEHAD

Now, given a ball B € Bj, which meets £ and v € BN E, we note that the definition of € implies
/ () P 2 > xulgne) | djia > 0272, (£00) /2.
r Pk) 2
v 1<t<k
Hence, since m~1(B) C cl ’“), (12.3) and the bounded multiplicity of By imply
72(€) < 05(€) < e PRV () (N]) /6. (12.4)

It remains to show that our desired non-concentration holds outside of £. For v € n}, define the
set of scales N (v) as follows:

N(w) = {1 <U<k:[ig (n e L) V(gt,nx) > H) < Ofiy (ﬁgpk)>}.



EXPONENTIAL MIXING & ADDITIVE COMBINATORICS 7

Let v € supp(7;) \ €. By definition, we have #N (v) > (1 — 0)k. Let £ € N(v) and let Wi < nJ

be a proper hyperplane. Let W = 7=1(W3). Recall the function t(g) defined in (12.1). We wish to
show that

e (WEP) 0 £00) < (04 HE())n (£27). (12.5)

Let {u,,} denote a maximal (pg/2)-separated subset of the set F' consisting of points u in £ n

supp(fiz) with V(gy,uz) < H. Then, {N o U, } is a cover of F with uniformly bounded multiplicity.

Let 2z, = Grelog2ume and Wy, = Ad(grglog2)(Wu;nl). Denote by Z;n the sum over those m for

which the ball N, ;; - U, intersects the set ﬁSﬁ 0 supp(fiz) non-trivially. Changing variables, we
obtain

fa(WE) 01 £00) < i (£00\ F) 4+ 2777 i, (WD 0 V)
< O (LL)) + t(e) H27O! Z/ ps (N7 since ¢ € N (v)

< O (LP) + t(s)]ll/fgj(Nfﬁrp‘Z N £2ro)y since uy, € F.

Furthermore, using a bounded multiplicity cover of NlJZr pe £1()2p ) by balls of radius 4p, centered

inside £"/% and using the doubling result in Proposition 3.1, one checks that
WY, 0 ECPD) < g(NF 01 L00) = ial £,

This implies the estimate (12.5).
Let C7; > 1 be the larger of the implicit constants in (12.4) and (12.5). These two estimates
imply that v, satisfies Definition 11.1 by taking

C(9) :=C1V(z)H/6?,

p(e) := Crmax{e,t(e)},

A(0) == 562 1og 2/4. (12.6)
That ¢(¢) tends to 0 as e — 0 follows by Theorem 12.1.

12.3. Non-concentration and proof of Proposition 9.13. The idea of the proof is similar to
that of [Liv04, Lemma 6.2], with the significant added difficulty being the non-concentration result
for PS measures established in Theorem 11.17. We note however that the case of real hyperbolic
manifolds is much simpler in that it does not require Theorem 11.17 and instead uses only the
doubling result in Proposition 3.1.

Recall our definition of the points z, ¢ in (9.39) and of N;"(j) in the paragraph above (9.35). For
each ¢ € I, ;, fix some uy € Ni"(j) C N5 such that

Tot =9'Df T, Py = Mg, U (12.7)

Here, we are using that the groups A = {g; : t € R} and M commute. Denote by PT the parabolic
subgroup NtAM of G. Since M is compact, |t,¢| < 1, and Nfr (7) is contained in Ngr, there is a
uniform constant C' > 0 such that

{pf:tel,;} C P, (12.8)

where P(jﬂ denotes the ball of radius C' around identity in PT.
Fix some /g € I, ; and denote by C, ;i({o) denote the set of indices £ € I, ; such that ({y, /) €
C,ji Let Z = exp(L; ®ny,) C N~. In particular'®, Z = {Id} is the trivial group in the real

18This is the reason Theorem 11.17 is not needed in this case.



78 OSAMA KHALIL

hyperbolic case. Recalling the definition of the Cygan metric in (2.8), the definition of C, ; ; implies
that

dy-(nyg(n )", Z) <70,
Let € := b=/10 and denote by Z(©) for the e-neighborhood of Z inside N~. Let
iy =ny,(n ) € 29NN,

where we recall that the points N, belong to NL; /10 by definition of our flow boxes B,; cf. paragraph
preceding (9.27). Note that

i r=a; - gpx,  VEE Cpally).

In particular, for ¢, := y(w + jTp) and u, = Ad(g?)" (@, ), since g7 = g, (cf. (9.30)), we have
that
tx
pZ:E =u, -pZ)x € (Z(e INN

Et*bj) . pZ)l‘, Vi e ij,i(fo). (12.9)
Our counting estimate will follow by estimating from below the separation between the points pZ’x,
combined with a measure estimate on the sets (Z (e n N;*Lj) : pz(')m.

To this end, recall the sublevel set K; and the injectivity radius ¢; in (9.18). Recall also by (9.21)
that = belongs to Kj;. It follows that the injectivity radius at every point of the weak unstable
ball P(jf -x is > ¢j. This implies that there is a radius r; with ¢; < r; < ¢; such that for every

e C,ji(ly), the map n™ — n~ -pjx is an embedding of N, into X and the disks

{Nr_j -pjm = Cp,m(ﬁo)}

are disjoint. Recalling (12.9), it follows that the disks Ny - uy form a disjoint collection of disks

inside Z(¢"<t4) 0 N(;t*-i-l)bj

. In particular,
tx . —
4O, 4(00) < pjoac (et*+1)1;

- . ——
milgec, ;. (4) Mpe+ x(N"j “uy )
0

, (12.10)

where pj denote the Patterson-Sullivan conditional measures on N, defined analogously to the
unstable conditionals in (2.2).

To obtain good bounds on the ratio in (12.10) for a given ¢, it will be important to change the
basepoint pZ):E to another point with uniformly bounded height. We do so by applying the geodesic

flow for a time s, ¢, comparable to t,, such that V(gsp)zpz)x) < 1. Fix some arbitrary £ € C,;i({o)
and recall (12.7) and (12.9). Let s,, > t, be as in (9.41) and set
Yo = gs, Pf T-

Note that our choice of u, implies that

Z(€ret) A N

2 tx 40 —
(et*—i-l)bj g <Z( e"*e LJ) ﬂN

2(et*+1)bj) ) uf_
In particular, we can use the set on the right side to estimate the numerator of (12.10). Let
txe . _
Q= ZBerer) N2(et*+1)bj7 Q= Ad(gswf)(Q)'
Then, changing variables using (2.4) and (2.3), we have
s T s
e @) Q@ @)
N;Z)I(NE “uy ) N;;x(NT_]) NZZ(N;SPVZ )

Tj
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Hence, by Corollary 12.2 and Theorem 11.17 and (9.41), there is £ > 0 such that
3, (Q) <y (€ €70 t0;) g, (NF) gy € o0
Moreover, by the global measure formula, Theorem 3.4, since V(yy) <7, 1, we have that

s - —0885,0,.0 —685.0,0
,uye(Ne,Spe ) S>qy €t > e %l

oy

Here, we used [Cor90, Theorem 2.2] to relate strong stable disks of the form N, -y, to their shadows
on the boundary; cf. (3.4) for a precise formulation. This concludes the proof since ¢ was arbitrary.

12.4. Flattening and proof of Theorem 9.16. We wish to apply Corollary 11.5. Recall that v;
has total mass 1, (N;"). Let
P

1
: NZ}; (NV 1+ )
We also recall that p is supported on nf. We fix identifications nf = KP = n_ for some p € N;
cf. Section 2.5. Note further that the restriction of the metric in (2.8) to nl is Euclidean. In
particular, we will fix a linear isomorphism of n} and n, with R?, where d = pdim K.
By Corollary 12.2, the measure p is affinely non-concentrated at almost all scales in the sense of
Definition 11.1. Hence, we can apply Corollary 11.5 to find A > 0 such that, for T = b*/1°, the set

B(A) = {w eR?: |jw|| < T and |j(w)| > T—A}

V;.

can be covered by O(T*) balls of radius 1. The result will follow once we estimate the spacing of
the functionals (wj, ,,-).

To simplify notation, let wy := b(wz7£,->. By (9.69), when b is large enough, we have that
bllwe|| <T. In particular, we can view the set B(i,k, \) as a subset of B()\) above using the map
¢+ bwy. By Lemma 9.11, the definition of wj,, in (9.64), and (9.62), we have that

”'IU£1 - wéQH > b2/10diSt(ufz - u£17Li)7

where L; is a certain proper subspace of n;,. In particular, by Proposition 9.13, any ball of radius
1 in R contains at most

Or, ((b—n/l(] n e—li(“/—a)(w+jTo))65«/(1”4_]‘7‘0))
of the vectors wy. This completes the proof of Theorem 9.16.
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