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Abstract

Motion planning of autonomous agents in partially known environments with
incomplete information is a challenging problem, particularly for complex tasks.
This paper proposes a model-free reinforcement learning approach to address
this problem. We formulate motion planning as a probabilistic-labeled partially
observable Markov decision process (PL-POMDP) problem and use linear tempo-
ral logic (LTL) to express the complex task. The LTL formula is then converted
to a limit-deterministic generalized Büchi automaton (LDGBA). The problem
is redefined as finding an optimal policy on the product of PL-POMDP with
LDGBA based on model-checking techniques to satisfy the complex task. We
implement deep Q learning with long short-term memory (LSTM) to process the
observation history and task recognition. Our contributions include the proposed
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method, the utilization of LTL and LDGBA, and the LSTM-enhanced deep Q
learning. We demonstrate the applicability of the proposed method by conducting
simulations in various environments, including grid worlds, a virtual office, and
a multi-agent warehouse. The simulation results demonstrate that our proposed
method effectively addresses environment, action, and observation uncertainties.
This indicates its potential for real-world applications, including the control of
unmanned aerial vehicles (UAVs).

Keywords: motion planning, partially observable environments, complex tasks, linear
temporal logic, reinforcement learning, recurrent neural networks

1 Introduction

The partially observable Markov decision process (POMDP) [1] provides a mathe-
matical framework to model decision-making problems, including motion planning of
autonomous agents, e.g., unmanned aerial vehicles (UAVs). It differs from Markov
decision processes (MDPs) [2] that have been widely applied in robotics and
autonomous systems, assuming the environment is fully observable. POMDPs are
more realistic for real-world applications in which the agent (e.g., the robot) may
lack enough information from perception and cannot completely identify the state of
the environment. On the other hand, simple go-to-goal motion planning tasks have
been extensively studied by conventional pathfinding techniques [3] and reinforce-
ment learning (RL) methods [4]. However, complex tasks like surveillance missions
are more relevant to real-world applications. Therefore, it is challenging for the agent
to learn how to plan its motions to accomplish complex tasks in partially observable
environments, especially considering environment and action uncertainties.

Over the past decade, researchers have attempted to solve POMDP problems (with
simple go-to-goal tasks) by using various model-based reinforcement learning (RL)
algorithms. Many modern solvers can handle large spatial domains with thousands of
states [5]. A commonly-used approach includes point-based value iteration (PBVI) [6,
7] methods, consisting of model-based algorithms to approximately solve the POMDP
problems by computing a value function over a finite subset of the belief space. It
shall be noted that a belief state represents a probability distribution of the states
where the agent can be. After each transition, the belief state needs to be updated
by the transition and observation probabilities via the Bayesian approach [8]. Indeed,
such model-based approaches transform a POMDP problem into an equivalent MDP
problem with the corresponding belief state space.

Another solution to POMDP problems is the model-free RL approach, in which the
agent doesn’t know transition and observation probabilities. Consequently, the policy
maps a sequence of observations (i.e., the observation history) to the selected action.
Mnih et al.[9, 10] first introduced a deep Q-Learning (i.e., DQN) and tested it on
several Atari 2600 games, in which the Q networks were trained to reach human-level
performances. Particularly, their Q networks took the last four frames (in grayscale) as
the input and utilized a convolutional neural network (CNN) [11] to extract the image
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features for a fully-connected neural network to predict Q values (i.e., the state-action
values). However, since the environment was modeled as MDPs in their work, this
approach bypassed the issue of partial observability, and the last four frames allowed
the agent to access limited past experiences.

Based on the above-mentioned works, Hausknecht and Stone [12] proposed adding
a recurrent neural network (RNN) to the Q network architecture. They modeled the
Atari 2600 games as POMDP problems and proposed a so-called deep recurrent Q-
networks (DRQNs) by replacing the first post-convolutional fully-connected layer of
Q networks with a long short-term memory (LSTM) [13], which took a single image
at each time step as the input feature. Hence, this approach was able to integrate
the entire observation history instead of utilizing the observation sequences with a
fixed length (e.g., four frames of images as the input in [9]). In addition, Foerster et
al.[14] extended the DRQN to handle multi-agent RL problems in partially observable
environments by proposing a deep distributed recurrent Q-networks (DDRQN), where
the last action was fed as the input to the Q network. Zhu et al.[15] developed a
new network architecture called action-specific deep recurrent Q-network (ADRQN),
in which an LSTM layer processed the action history and associated observations for
the Q value computing. Some other similar works, including [16, 17], implemented
recurrent neural networks (RNNs) for the control policy on POMDP problems with
continuous state spaces.

It shall be noted that the works on POMDP problems mentioned above consider
simple go-to-goal missions only. However, complex tasks have been included in MDP
problems via formal languages [18], such as linear temporal logic (LTL). Generally,
user-defined high-level specifications can be expressed as an LTL formula, which is
then converted to an ω-automaton over infinite words with a Büchi or a Rabin accep-
tance condition [19]. Consequently, robotic motion planning problems can be solved
via control synthesis for a product of MDP and automaton. Recently, this formal
approach was employed to verify the task objectives when solving POMDP problems
with certain temporal logic constraints. Chatterjee et al. [20] studied the undecidabil-
ity of the qualitative model checking in an infinite-horizon POMDP. Their approach
relied on exploring the entire belief space and was most suitable to the problems with
small state spaces. They also concluded that it might be unable to acquire the optimal
policy, ensuring the maximum satisfaction probability of the specific logic formula in
POMDPs.

Other works like [21–23] proposed solving such problems by converting LTL spec-
ifications to a deterministic Rabin automaton (DRA), then constructing a product of
POMDP and DRA. Specifically, Sharan et al. [21] and Ahmadi et al. [23] employed
finite state controllers (FSCs) to limit the policy search via the value iteration method.
Also, Bouton et al. [22] utilized the approximate POMDP solver, SARSOP [7], to
search for an optimal policy on the finite belief state space of the product POMDP.
However, those approaches are model-based RL methods, which require the agent
to know the transition and observation probabilities. Such a requirement limits the
applications in unknown environments. It shall be noted that the most related work
that employs RNNs and model-checking for POMDP problems satisfying the tempo-
ral logic constraints was carried out by Carr et al. [24, 25]. Their proposed method
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focused on constructing a policy-based procedure to iteratively improve the current
policy by implementing RNN. However, their approach constructed an underlying
MDP to map the original POMDP and utilized a model-based RL solver, SARSOP
[7], to approximate the value function. Hence, as they stated, it was still a model-based
approach.

On the other hand, It has been shown in [26] that a limit-deterministic Büchi
automaton (LDBA) has more advantages than a DRA in model-free and model-based
RL learning when solving MDP problems. Hasanbeig et al. [27] stated that converting
the LTL specification into an LDBA might result in a smaller automaton state space
than a DRA. Furthermore, unlike LDBAs, a limit-deterministic generalized Büchi
automaton (LDGBA) has multiple accepting sets and enables the agent can visit
all accepting sets infinitely often. In addition, the conversion of LDGBA avoids the
sparsity of reward caused by LDBA, which may slow down the convergence in RL [28].

In this paper, we model the interactions between the agent and its partially
observable surroundings as a probabilistic-labeled POMDP (PL-POMDP). Introduc-
ing probabilistic labels in a POMDP enables us to consider both static and dynamic
events in the environment. One of the contributions of this work is converting the
LTL formula to an LDGBA, which represents LTL specifications for a complex task
in the considered POMDP problem. This has not been reported in previous works,
according to the authors’ best knowledge. After generating a product of PL-POMDP
and LDGBA, the original problem of finding a policy that satisfies LTL specifica-
tions in a PL-POMDP can be reformulated as finding an optimal policy to maximize
the collected reward on the corresponding product POMDP. Another contribution
is proposing a model-free RL approach to learn an optimal policy on the product
POMDP. We implement an RNN into Q network architectures to process the infor-
mation that the agent acquires: the observation history and the task recognition. The
latter depends on whether the agent fully recognizes the LTL-induced automaton.
Specifically, either the history of automation states or the history of the state labels
is utilized, respectively,

This paper is organized as follows: Section 2 reviews the PL-POMDP definition and
introduces deep Q-learning with RNN to solve a simple go-to-goal POMDP problem.
Section 3 presents LTL, LDGBA, and product PL-POMDP. Then, the problem of PL-
POMDP with LTL specifications is reformulated. Section 4 proposes the model-free
approaches to solve product PL-POMDP problems and provides detailed algorithms.
Finally, experiments and results are included in Section 5, followed by the discussions
and conclusions, including future works.

2 Background

In this section, we first define the probabilistic-labeled POMDP (PL-POMDP) and
then explain using DQN, a model-free RL method, to solve a POMDP problem with
simple go-to-goal tasks. Finally, a simulation example is conducted for the demonstra-
tion. Our focus in this paper is extending the DQN for the POMDP problem with
complex tasks, and the developed methodology will be detailed in Section 4.
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2.1 PL-POMDP

The POMDP is usually adopted as a mathematical description of problems in which
the agent cannot fully observe and completely identify its surroundings. We employ
PL-POMDP with the consideration of static and dynamic events.
Definition 1 (PL-POMDP). Considering the transition and observation uncertainties
and the probabilistic labels of states, we can denote a PL-POMDP by a tuple P =
(S,A, T, s0, R,O,Ω,Π, L, PL), which consists of:

• A finite set of states, S = {s1, ..., sn}.
• A finite set of actions, A = {a1, ..., am}. Particularly, A(s) is the set of actions

available for the agent at the current state s.
• A transition probability function, T : S×A×S → [0, 1] when the agent moves from

the current state s ∈ S to the next state s′ ∈ S after executing an action a ∈ A(s).
There exists

∑
s′∈S T (s, a, s′) = 1.

• An initial state, s0 ∈ S.
• A reward function, R : S × A × S → R. It shall be noted that reward function

sometimes can be defined as R(s′), R(s, a) or R(a, s′).
• A finite set of observations, O = {o1, ..., ok}. At the current state s, O(s) consists

of possible observations the agent can perceive.
• An observation probability function, Ω : S×A×O → [0, 1], represents the probability

that the agent can perceive observation o at state s′ ∈ S after executing action
a ∈ A(s). This function follows

∑
o∈O(s′) Ω(s′, a, o) = 1.

• A set of atomic propositions, Π.
• A labeling function, L : S → 2Π, outputs a set of all possible labels at state s. 2Π is

the power set of Π.
• A labeling probability function, PL(s, l), represents the probability of a label l ∈ L(s)

associated with a state s ∈ S. It satisfies
∑

l∈L(s) PL(s, l) = 1,∀s ∈ S.

When the agent interacts with its environment, it has a (transition) probability
T (s, a, s′) to move from state s ∈ S to state s′ ∈ S after choosing and executing
an action a ∈ A(s). At the next state s′, the agent has an (observation) probability
Ω(s′, a, o) to perceive an observation o ∈ O(s′). In addition, the agent receives a reward
as feedback from the environment based on the reward function R(s, a, s′).

The states’ labels are atomic propositions representing event occurrences at specific
states. In addition, the labeling probability function can characterize a static event l
at state s if L(s) = {l} and PL(s, l) = 1 or a dynamic event otherwise. The labels
indicate goal states to handle simple go-to-goal tasks. When considering a complex
task, we can use formal language to formulate the task regarding labels and then
convert the formula to a finite state automaton. The labels are also input symbols for
the induced automaton. Therefore, the accomplishment of the complex task can be
validated via model checking during the motion planning. We will provide the details
of such an approach in Section 3.
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Fig. 1 Q network architecture.

2.2 DQN for POMDP problems

To solve a POMDP problem with unknown transition probability, DQN is employed
to map a sequence of observations to Q values for action selection. We consider obser-
vation histories up to j previous time steps, so the sequence of observations is denoted
as ot = (ot−j , ot−j+1, ot−j+2, ..., ot) with a length of j + 1. Consequently, the policy
is a function of observation sequence. The agent’s objective in deciding a course of
action is maximizing the expected return as below, representing the total discounted
rewards the agent can collect from the current time under a policy ξ.

Uξ(st) = Eξ
[ ∞∑
τ=0

γτR(st+τ , a, st+τ+1)
∣∣∣st] (1)

where st is the agent’s state at time t, and γ ∈ [0, 1] is the discount factor to balance
the importance between immediate and future rewards. Then, the optimal policy can
be found as ξ∗(ot) = argmaxξU

ξ (s0).
We implement an LSTM to process the observation sequence in the Q network

architecture as shown in Figure 1. LSTM is one type of RNN that can model tempo-
ral dependencies between observations by introducing feedback loops in the network
architecture. After processing the observation at each time step, the output is fed back
into the network as input (together with the following observation) for the next time
step. This allows the network to capture information about the order and timing of
observations in the sequence. One-dimensional convolutional neural networks (CNNs)
and deep neural networks (DNNs) can also be used to process time-series data. How-
ever, they don’t explicitly model the temporal dependencies between observations, and
DNNs cannot process input sequences of variable length. In the next subsection, we
use a simple go-to-goal simulation example to demonstrate the advantages of RNN in
Q networks over CNN and DNN.

DQN usually has two Q networks: an evaluation Q-network QE(ot, at; θE) and a
target Q-network QT (ot, at; θT ), where θE and θT are the network weights, respec-
tively. The evaluation Q-network QE is usually updated at each iteration by randomly
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Fig. 2 A 10 x 10 grid world

selecting a batch of data samples from a so-called replay memory [29] during the learn-
ing process. At the same time, the target Q-network QT keeps fixed weights until
copying from the evaluation Q-network QE once in a while, i.e., θT = θE .

At each step (e.g., time t) during the learning process, the target Q-network
(QT ) predicts Q values based on the sequence of observations ot so that the agent
can choose an action at via the ε-greedy technique [4]. After executing the selected
action and perceiving an observation ot+1, a new sequence of observation ot+1 =
(ot−j+1, ot−j+2, ot−j+3, ..., ot+1) is generated. Consequently, an experience is formed
as et = (ot, at, rt,ot+1), where rt = R(st, at, st+1). The experience is recorded as one
data sample in the replay memory D, where the data samples are randomly selected
to update the new Q values for Q network updating. The equation used to update the
Q value associated with at is defined below.

Qnew(ot, at) = QE(ot, at; θE) + α

[
rt + γmax

at+1

QT (ot+1, at+1; θT )−QE(ot, at; θE)

]
(2)

where α is the learning rate.

2.3 A go-to-goal example

We take a simple go-to-goal example in a grid world to demonstrate DQN, i.e., a
model-free RL method, to solve a POMDP problem. Figure 2 illustrates a 10 × 10 grid
world, in which the blue area labeled as ‘a’ and the green area labeled as ‘b’ are the
initial and goal state, respectively. The block states, i.e., obstacles, are labeled with
‘B’. The agent, e.g., a mobile robot in the grid world, must move from the initial state
to the goal state. It can take four actions at each state: up, left, down, and right.
Due to the action uncertainty, the agent has a probability of 0.9 to take the selected
action. Otherwise, it takes two side-way actions with equally weighted probabilities. In
addition, the agent will remain in the current state if the next state is outside the grid
world or the obstacles. After reaching the next state, the agent can observe this state
with a probability of 0.9 and adjacent states with a total probability of 0.1 uniformly
distributed. The discount factor γ is set as 0.98.
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Fig. 3 The comparison of accumulated rewards by using Q networks with LSTM, CNN, and DNN.

It shall be noted that the observations are states in this grid world example. There-
fore, the observation sequence is pre-processed by the technique of one-hot encoding
since the row and column indices of a state are ordinal data. The generated 1-D vec-
tor as the input is fed into the LSTM layer. The extracted feature is then passed to
two fully-connected layers with 16 neurons, respectively, to predict the corresponding
Q values. The rectified linear unit (ReLU) is utilized as the activation function in the
Q networks. The learning process for this problem includes 500 steps per episode for
1,000 episodes. Two Q networks, the evaluation network QE and the target network
QT , are randomly initialized. The training batch size for the evaluation network is 32,
and the target network is updated by copying the weight coefficients of QE every 50
steps.

We also test two other Q network architectures by implementing CNN and deep
neural network (DNN). CNN-based Q networks use a 2D convolutional layer (filter=6,
kernel size=(3,3), strides=1) followed by another 2D convolutional layer (filter=12,
kernel size=(2,2), strides=1) before the fully connected layers. The DNN uses the fully
connected layers only. Figure 3 compares the averaged accumulated rewards collected
by the agent every ten episodes (the trend lines represent the simple moving average
(SMA) of rewards every 50 episodes). The results illustrate that Q networks with
LSTM can achieve faster convergence and a higher accumulated reward.

An optimal policy can be derived from the Q networks after convergence. Figure 4
displays a path generated from the derived policy for the agent moving on the grid
world to accomplish this simple go-to-goal task. The start state is marked as the large
purple solid circle, and the reached states are marked as light red dots. The brighter
red dot and the bend of the black route indicate this state has been visited more than
once. It shall be noted that even if the policy converges and approaches the optimal,
the generated path may not. This is because of observation and action uncertainties.

3 Problem Definition

In this study, we introduce a framework for solving a PL-POMDP problem with LTL
specifications by transforming the LTL formula into an LDGBA that represents the
task variables and safety constraints of the POMDP and generating a product of
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Fig. 4 A path generated from the derived policy.

POMDP and LDGBA. The problem of satisfying the given LTL constraints in a
POMDP is equivalent to the problem of reaching (Büchi) accepting states in the
product POMDP.

3.1 Linear temporal logic (LTL)

Linear temporal logic [18] is a logical formalism for linear-time properties, repre-
senting the relation between state labels in sequential executions. In addition to the
Boolean connectors, LTL extends propositional logic by adding some temporal oper-
ators, including two basic ones © (pronounced “next”) and U (pronounced “until”).
This study assumes that a ∈ Π is an atomic proposition, and φ, φ1 and φ2 are single
LTL formulas. Then, LTL formulas can be formed according to the following grammar
[30]:

φ := True | a | φ1 ∧ φ2 | ¬φ | ©φ | φ1Uφ2 (3)

where negation (¬) and conjunction (∧) are the Boolean operators. Formula ©φ is
true at the current time if φ is true the next time. In addition, Formula φ1Uφ2 is true
at the current time if φ2 is true for some future time and φ1 is true at all times until
that future time.

Other commonly-used temporal operators are ♦ (pronounced “eventually”) and
� (pronounced “always”). Formula ♦φ ensures that φ will be true eventually in the
future, while �φ is true from now on forever. They can be derived as follows:

eventually : ♦φ ≡ True Uφ
always : �φ ≡ ¬(♦¬φ)

(4)

When using |= to represent the satisfaction relationship, we can interpret the semantics
of an LTL formula over words as below. A word is an infinite sequence w = w0w1 . . .
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with wi ∈ 2Π where Π is a set of atomic propositions for all i ≥ 0.

w |= True
w |= α ⇔ α ∈ L(w[0])
w |= φ1 ∧ φ2 ⇔ w |= φ1 and w |= φ2

w |= ¬φ ⇔ w |6= φ
w |=©φ ⇔ w[1 :] |= φ
w |= φ1Uφ2 ⇔ ∃t s.t. w[t :] |= φ2,∀t′ ∈ [0, t),w[t′ :] |= φ1

(5)

3.2 Limit-deterministic generalized Büchi automaton
(LDGBA)

The previous subsection describes that a user-specified complex task can be formulated
via LTL. Then, we can convert the LTL formula into an automaton, including LDGBA
[31], to evaluate task satisfaction via model checking [18].
Definition 2 (LDGBA). An LDGBA A = (Q,Σ, δ, q0,F) consists of a finite set
of states Q, a finite alphabet (i.e., a finite set of input symbols) Σ = 2Π where Π
is a set of atomic propositions, a transition function δ : Q × (Σ ∪ {ε}) → 2Q, an
initial state q0 ∈ Q, and a set of accepting sets F = {F1,F2, . . . ,Ff} where Fi ⊆ Q,
∀i ∈ {1, . . . , f}. Furthermore, the state set Q can be decomposed into deterministic
and non-deterministic sets, i.e., QD and QN , respectively. They satisfy the following
requirements.

• QD ∪QN = Q and QD ∩QN = ∅.
• The state transitions in QD are total, i.e., |δ (q, α) | = 1.
• The transitions in QD are restricted within it, i.e., δ (q, α) ⊆ QD for every state
q ∈ QD and α ∈ Σ.

• The ε-transitions do not take the input symbols and are only valid from q ∈ QN to
q′ ∈ QD.

• The accepting sets, consisting of accepting states, are only defined in the determin-
istic set. In other words, Fi ⊆ QD for every Fi ∈ F .

A run of an LDGBA, subject to an input word w = w0w1 . . ., can be expressed as
q = q0q1 . . ., according to the transition function δ(qi, wi) = qi+1. Let inf (q) represent
the infinite portion of q. Theoretically, q satisfies the LDGBA acceptance condition,
i.e., the LDGBA accepts the word w, if there exists inf (q) ∩ Fi 6= ∅, ∀i ∈ {1, . . . f}.
We suggest readers check Owl [19] for more details about automaton generation. This
study aims to solve the POMDP problems with LTL constraints as defined below.
Problem 1. Given a PL-POMDP P and a complex task expressed via an LTL
formula. The objective is to find a policy ξ∗(ot), where ot denotes a sequence of obser-
vations on P, that can complete the task by satisfying the acceptance condition of the
LTL-induced LDGBA.
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3.3 Product POMDP

Definition 3 (Product POMDP). Given a PL-POMDP P =
(S,A, T, s0, R,O,Ω,Π, L) and an LDGBA A = (Q,Σ, δ, q0,F), the prod-
uct PL-POMDP (simply named as the product POMDP) is defined by
P× = P × A = (S×, A×, T×, s×0 , R

×, O,Ω×,F×), consisting of the following
components.

• A finite set of labeled states, S× = S × Q or s× = 〈s, q〉 ∈ S× where s ∈ S and
q ∈ Q.

• A finite set of actions, A× = A ∪ {ε}.
• A transition function, T× = S× ×A× × S× → [0, 1], and

T×
(
s×, a×, s×

′
)

=

 T (s, a×, s′) q′ = δ (q, l) , l ∈ L(s′) and a× ∈ A
1 a× ∈ {ε} and q′ ∈ δ(q, ε) and s′ = s,
0 otherwise.

(6)

where s×
′

= 〈s′, q′〉.
• An initial state s×0 = 〈s0, q0〉 ∈ S× where s0 ∈ S and q0 ∈ Q.
• A reward function R× = S× ×A× × S× → R, and

R×(s×, a×, s×
′
) =

{
R(s, a×, s′) a× ∈ A, l ∈ L(s′), q′ = δ (q, l) ∈ Fi, and Fi ∈ F

0 otherwise.
(7)

• An observation function Ω× = S× ×A× ×O → [0, 1] is

Ω×(s×
′
, a×, o) = Ω(s′, a×, o) (8)

If a× ∈ A. Otherwise, if a× ∈ {ε}, the agent stays at the same state s, i.e., s′ = s,
but q′ = δ(q, ε), and no observation is perceived.

• A set of accepting sets F× =
{
F×1 ,F

×
2 , ...,F

×
f

}
where F×i = {〈s, q〉|s ∈ S; q ∈ Fi}

and i = 1, ...f .

A random path on the product POMDP, represented by (s0, q0)(s1, q1) . . . , is an
integration of a path s0s1 . . . on the PL-POMDP and a path q0q1 . . . on the LDGBA.
Similar to (1), the expected return starting from the initial state under a policy ξ×

on the product POMDP can be written as

Uξ
×

(s×0 ) = Eξ
×

[ ∞∑
t=0

γtR(s×t , a
×
t , s
×
t+1)

∣∣∣s×t=0 = s×0

]
(9)

It shall be noted that the product POMDP P× can be viewed as a PL-POMDP P
with the augmented state space, which includes automaton state space. Therefore, the
product POMDP accounts for the temporal logic specifications represented by LDGBA
A. Any feasible path on P× shares the intersections between an accessible path over
the original PL-POMDP P and a word accepted by the LTL-induced automaton A.
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For example, a path σξ
×

= (s0, q0)(s1, q1) . . . can be generated by the derived policy

ξ× on the product POMDP P×. If there exists inf(σξ
×

) ∩ F×i 6= ∅,∀i = 1, ...f , where
F× captures the acceptance conditions of LDGBA A, this path is accepted. In other
words, the run q0q1 . . . satisfies the LDGBA acceptance condition, or the LDGBA
accepts the corresponding word.

Therefore, according to many previous studies on solving MDP problems with
LTL specifications via the product MDP [30, 32–34], an optimal policy ξ×

∗
(ot,qt)

on the product POMDP P× is equivalent to the optimal policy ξ∗(ot) on the PL-
POMDP P while satisfying LTL specifications. ot is the observation history while qt
is the corresponding history of transitioned automaton state. It shall be noted that
it is assumed that the agent receives labels, i.e., input symbols in automata, as part
of the feedback. Therefore, if the agent is fully aware of the task, i.e., LTL-induced
automaton, the history of transitioned automaton states can be derived. Then, we can
reformulate Problem 1 as follows.
Problem 2. A product POMDP P× = P ×A, defined in Section 3.3, is constructed
from a PL-POMDP P describing the partially observable environment and an LDGBA
A expressing LTL specifications φ for a complex task. The objective is to find a policy
ξ×
∗
(ot,qt), where ot and qt denote the sequences of observations and transitioned-

automaton states, respectively, over P× so that the expected return (9) is maximized.
On the other hand, if the agent is unaware of the task, the agent cannot derive

automaton state transitions based on the label feedback. Consequently, the policy on
the product POMDP is a function of the observation history and the perceived label
history as ξ×

∗
(ot, lt). Then, the above problem formulation can be corresponding

revised.

4 Methodology

In this study, we propose model-free RL approaches (i.e., DQNs) on product POMDPs
to synthesize optimal motion planning for the agent in a partially observable environ-
ment subject to LTL specifications. As discussed and demonstrated in Section 2, RNNs
have the advantage of being included in Q networks for solving POMDP problems
because they can capture relative temporal dependencies in the observation history.
In the proposed methods, we extend the RNN-enhanced Q networks to process the
perceived observations and the recognition of complex tasks.

We consider two scenarios, depending on whether the agent acknowledges the
assigned task. If the agent is explicitly assigned the task, it has full knowledge of
the LTL-induced automaton, including the transition function. Consequently, once it
reaches a product POMDP state, i.e., an augmented state, it can derive the associ-
ated automaton state, although the POMDP state is not fully observable. It shall be
noted the state labels are distinguished from the observations. We assume that the
agent can acquire state labels correctly via feedback from the environment. Therefore,
in this case, in addition to the observation history, our method takes the identified
automaton state as another input feature to Q networks. On the other hand, if the
agent is not explicitly assigned the task and has no knowledge of the automaton’s
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transition function, (POMDP) state labels are taken as an additional input feature to
Q networks.

4.1 Automaton state sequence as additional input

Suppose the agent is fully aware of the task. In that case, the automaton is fully knowl-
edgeable, and the automaton states (i.e., q states) can be induced from the acquired
labels according to the automaton transition function. Consequently, in addition to
the observation history, automaton states can be directly used as input to the Q net-
works. Indeed, we utilize a sequence of q states with a length of k, qt = q̄1 . . . q̄k,
where q̄ denotes the induced q state, representing the automation evolution by times
step t corresponding to the agent’s transitions on the PL-POMDP. It shall be noted
that the sequences of observations ot = ot−j . . . ot have a length of j + 1 and are gen-
erated based on the observation history from time step t − j to the current time t.
However, since the automaton space is usually smaller than the POMDP space, and
the automaton state transition doesn’t occur at each time step, it is not practical to
generate the history of the automaton transition by recording the automaton state
at each time step. Instead, we use First in, first out (FIFO) to track the automaton
transitions, and each transition is recorded only once. Consequently, qt may maintain
the same for several consecutive steps until the next automaton state is reached. In
addition, ot and qt usually don’t have the same length.

After each transition a×t ∈ A, the observed ot+1 and induced automaton state
qt+1 are used to generate the new sequences of observations ot+1 and q states
qt+1. Together with the previous sequences, a new experience can be written as
(ot,qt, a

×
t , r

×
t ,ot+1,qt+1), which is recorded as one data sample in the replay mem-

ory. If there is no new automation transition, qt+1 = qt. It shall be noted that
the ε-transition is one of the available actions in the product POMDP as defined in
Section 3.3 if it exists in the LTL-induced LDGBA. In our approaches, no observa-
tion is perceived after an ε-transition because the agent remains at the same POMDP
state. However, the automaton state is changed and recorded in the corresponding
automaton state sequence for the next time step.

Figure 5 illustrates the architecture of the Q networks in our model-free RL
approaches. The sequences of observations ot and automaton states qt at time step
t are pre-processed by one-hot-encoding before entering LSTMs, respectively. Since
these two sequences don’t have the same length, two separate LSTMs are adopted
to extract the hidden states, which are then concatenated and flattened for the
fully-connected layers to estimate Q values.

Similar to a general DQN, our DQN on the product POMDP also has two iden-
tical Q networks: the evaluation network Q×E(ot,qt, a

×
t ; θ×E) and the target network

Q×T (ot,qt, a
×
t ; θ×T ) where a× ∈ A. The target network is utilized for the next action

selection and Q value prediction. On the other hand, the evaluation network is trained
every M steps by a batch of data samples randomly selected from the replay memory.
After every K steps, the target network is updated by copying the weight coefficients
of the evaluation networks. Using two neural networks can prevent the bootstrapping
of the DQN with a single neural network.
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Fig. 5 The architecture of Q networks taking ot and qt as input.

The output of each data sample in the selected batch is a Q value, which can be
updated as the equation below.

Q×new(ot,qt, a
×
t ) = Q×E(ot,qt, a

×
t ; θ×E )+α

[
r×t + γmax

a×t+1

Q×T (ot+1,qt+1, a
×
t+1; θ×T )−Q×E(ot,qt, a

×
t ; θ×E )

]
(10)

where r×t = R×(s×t , a
×
t , s
×′
t ), α is the learning rate, and γ is the discount factor.

Therefore, each data sample has the input features ot and qt and the output target
Q×new to train and update the evaluation Q network, QE . In addition, the following
loss function is used to update the weight coefficients of the evaluation Q-network.

L(θ×E ) = E(ot,qt,a
×
t ,r
×
t ,ot+1,qt+1)∼U(D)

(r×t + γmax
a×t+1

Q×T (ot+1,qt+1, a
×
t+1; θ×T )−Q×E(ot,qt, a

×
t ; θ×E )

)2


(11)

Algorithm 1 demonstrates training the evaluation Q network during the agent
interactions with the environment. Once converged, the Q network can predict the
state-action value (i.e., Q value) function to derive the optimal policy for the studied
POMDP problem with temporal logic specifications.

4.2 Label sequence as the additional input

If the agent is unaware of the task, i.e., the LTL-induced automaton is not knowledge-
able, the state labels need to be the additional input for Q networks. We modified the
Q network architecture in Figure 5 by replacing the automaton state sequence with
a label sequence (i.e., a sequence of input symbols) in addition to the observation
sequence. As mentioned above, state labels differ from observations and can be pre-
cisely received by the agent as feedback. Consequently, the sequence of the collected
experience becomes (ot, lt, a

×
t , r

×
t ,ot+1, lt+1), where lt is the sequence of labels with a

length of k received by the time step t. Similar to the scenario of utilizing q states, the
labels corresponding to the POMDP states can be sparse. Hence, we utilize the same
FIFO method (as described in Section 4.1) to generate the label sequence that only
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Algorithm 1 Deep Recurrent Q-Network for Product POMDP Problems.

1: Initialize LTL formula φ, POMDP P.
2: Convert φ to an LDGBA A.
3: Construct the product POMDP P× = P ×A.
4: Initialize the evaluation network Q×E , the target network Q×T , the replay memory
D, the length of observation sequence j + 1, the empty q state sequence q0 with
length of k, the learning rate α, the discount factor γ, the total number of episodes
E, the total number of steps N , the batch size M , and the Q×T update steps K.

5: while The current episode e in E do
6: Randomly select a start state s×0 .
7: while The current step i in N do
8: Select a random action a×i if i < j + 1; otherwise, select an action via the
ε-greedy technique.

9: Obtain the observation ot+1 and induce the automaton state qt+1.
10: Generate ot+1 and qt+1.
11: Collect the rewards r×i .
12: Store the experience 〈oi,qi, a×i , r

×
i ,oi+1,qi+1〉 in D.

13: if i > 0 and i%M=0 then
14: Randomly select M data samples as U(D) from the replay memory.
15: Compute Q×new for each data sample.
16: Train Q×E by the batch of samples.
17: end if
18: if i > 0 and i%K=0 then
19: Pass the weights of Q×E to Q×T .
20: end if
21: end while
22: end while
23: Training end and save the evaluation network Q×E

stores a label once it is received. On the other hand, Algorithm 1 can be corresponding
revised.

5 Simulations and Results

We evaluate our approaches on three simulations with discrete POMDP domains.
We first perform simulations over a partially observable grid world with two different
tasks, considering ε-transition in the automaton and static/dynamic events in the
PL-POMDP. Then, we test the approaches in an office scenario where we utilize two
different observation settings. Finally, we also conduct a preliminary application of
the proposed approach to a multiagent RL case. The simulations are programmed via
Python 3.9 and Rabinizer 4. They are completed on a desktop with a 3.20 GHz eight-
core CPU and 32 GB RAM. Part of the source codes and supplementary materials
are provided 1.

1https://github.com/JunchaoLi001/Model-free DRL LSTM on POMDP with LDGBA
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Fig. 6 A 10 x 10 grid world with trapping states

5.1 Grid world Simulations

We use a 10 × 10 grid world workspace, shown in Figure.6. Several states are labeled
with ‘a’ in blue and ‘b’ in green, indicating two different events. The trapping states,
labeled with ‘c’, indicate that the agent can never leave once entering them. Other
parameters, like the transition probability and observation probability, are the same
as defined in the simple go-to-goal case in Section 2.3. Two tasks are studied. Task 1
demonstrates that our approaches can handle LDGBA with ε-transitions. Task 2 con-
siders two scenarios: static events and dynamic events, respectively. When assuming
dynamic events, each event has a 90% probability of occurring at its labeled states
and a 10% probability at the other labeled states. Both tasks are simulated for 15,000
episodes with 600 steps per episode, using the observation sequence with a length of
j + 1 = 5, the automaton state or label sequence with a length of k = 3, batch size
M = 32, and the number of steps to copy the evaluation Q network K = 50.

5.1.1 Task 1

The first task tested in the grid world requires the agent to visit states labeled ‘a’
or ‘b’ infinitely many times. The LTL formula is expressed below, and the induced
LDGBA is shown in Figure 7.

φ1 = (�♦a | �♦b) ∧�¬c (12)

It can be seen that the LDGBA contains ε-transitions that are included in the
set of actions, a×, in the generated product POMDP. Figure 7 also shows that the
ε-transitions can transition the automaton states from the initial state q0 to either q1

or q2, resulting in the agent to keep visiting only ‘a’ or ‘b’, respectively. Visiting ‘c’
will lead to a state (q3) without an outlet as a ”trapping” state.

According to the definition of LDGBA in Section 3.2, ε-transitions don’t take any
input symbols. They are only valid to enter the deterministic set of automaton states
where the transitions are restricted. Therefore, after an ε-transition, the agent will be
at the augmented states associated with either q1 or q2 to complete the task. Without
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Fig. 7 The LDGBA of φ1.

the loss of generality, we give each episode a random probability for selecting the ε-
transition, which only occurs once. Otherwise, the other actions, i.e., a× ∈ A, will be
chosen based on the ε-greedy method. As mentioned in Section 3.3, the agent doesn’t
perceive observations right after taking ε-transitions, and Q networks only predict Q
values of the actions other than ε-transitions.

Fig. 8 The averaged accumulated rewards of task φ1.

In Task 1, we only consider static events, i.e., PL(sa, ‘a
′) = PL(sb, ‘b

′) = 1. Also, it
is assumed that the agent is aware of the task. Therefore, the observation and q state
histories are input to predict Q values via Q networks for action selection. Figure 8
shows the evolution of accumulated reward, averaged per 10 episodes with SMA 50
episodes. Since the agent may accidentally move into the ‘trapping’ state, averaged
rewards better presents the trend of the rewards’ convergence. The reward is set as
10 whenever the agent visits accepting states. After obtaining the optimal policy, we
generate one path for the agent to accomplish the task as shown in Figure 9.

At first, the agent randomly selects actions, as shown in Figure 9(a), before gen-
erating the first observation and q state sequences. Then, Q values can be predicted,
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Fig. 9 A single round path of task φ1: (a) The path on q0. (b) The path on q1.

and the greedy action selection is applied unless an ε-transition is taken. After the ε-
transition, the automaton state is transitioned from q0 to q1, and the agent desires to
visit the state labeled ‘a’ infinitely many times. This can be seen in Figure 9(b), where
the agent moves down and then left to keep visiting state ‘a’. Due to the action uncer-
tainty, the agent occasionally visits some states multiple times, indicated as bright red
dots in Figure 9.

5.1.2 Task 2

The second task requires the agent to visit states labeled ‘a’ then ‘b’ in order infinitely
many times, subject to dynamic events due to labeling uncertainty. The LTL formula
is expressed as

φ2 = �♦(a ∧ ♦b) ∧�¬c (13)

Fig. 10 The LDGBA of φ2.

In the LTL-induced LDGBA, directly utilizing the accepting sets may fail to find
the deterministic policy as discussed in [27, 28]. Inspired by their works, we modify the
automaton structure and reward function for easing the training process. Specifically,
we augment the accepting states to separate transitions with the input symbols ‘a’ or
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‘b’, respectively. Only single-labeled transitions are kept for demonstration, as shown
in Figure 10 for Task 2. We then redesign the reward function (7), shown below, by
adding a constraint to the reward function so that the agent can visit the accepting
sets repeatedly.

R×(s×, a×, s×
′
) =

{
R(s, a×, s′) a× ∈ A, l ∈ L(s), q′ = δ (q, l) ∈ Fi,Fi ∈ F , and q′ 6= q

0 otherwise.
(14)

where q 6= q′ prevents the repeated transitions at the same automaton accepting
state by removing the rewards on the associated labeled POMDP states. After apply-
ing this constraint to the reward function, the derived optimal policy satisfies the
desired surveillance task specification. An alternative approach can be implementing
the frontier-tracking function introduced by M. Cai et al. [33].

For Task 2, we investigate the agent’s learning in the environment with dynamic
or static events combined with two scenarios that depend on the agent’s awareness of
the task. At first, to provide a detailed demonstration, we consider dynamic events
and assume that the agent fully understands the task. The labeling uncertainty is
introduced so that an event has a 90% probability of occurrence at its labeled states
and the other labeled states otherwise. For example, at the states labeled ‘a’, event ‘a’
has a 90% probability of occurrence while event ‘b’ has a 10% probability. In addition,
a q state sequence is utilized as the input of Q networks in addition to the observation
sequence.

Figure 11(1) demonstrates a single round path generated from the learned policy
for the agent to accomplish Task 2 when the agent is fully aware of the task. In
Figure 11(a), the agent starts from the initial state (purple dot) and performs five
random movements on q0 until it generates the first observation sequence (along with
the q state sequence) for decision-making. It then navigates around the trapping states
and heads to the bottom left for the states labeled ‘a’ shown as the blue square.
However, event ‘a’ doesn’t occur in the state when the agent first visits the blue area
due to the labeling uncertainty. Therefore, the agent moves downward to the next
state, where event ‘a’ occurs at the next time step. The bend of the black route at the
top of the path is caused by motion uncertainty.

After visiting the state labeled ‘a’, the automaton transition happens from q0 to
q1. In Figure 11(b), the agent moves around the area of ‘a’ states then bypasses the
trapping states in yellow to reach the states labeled ‘b’ in the top right corner. Again,
event ‘b’ doesn’t occur on the agent’s first visit. Then, the agent moves one more step
to the right, and event ‘b’ occurs. Consequently, the agent completes a single round
to visit ‘a’ and then ‘b’. At the same time, the agent is back to the automaton state
q0. Figure 11(c) shows the agent tries to move back to visit states labeled ‘a’ for the
second round, but it keeps visiting ‘b’ states a few times before heading to ‘a’ states.

We also conduct the simulation in an environment with dynamic events when the
agent is unaware of the task. The observation and label sequences are input to the Q
networks in this case. Figure 11 (2) illustrates the path generated from the learned
policy. We observe a similar phenomenon in which the agent makes a few attempts to
visit ‘a’ states before leaving for ‘b’ states. However, after we generate more paths, we
find that the agent occasionally visits the states labeled ‘b’ first because event ‘a’ has
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Fig. 11 A generated path for Task in φ2 of dynamic event with labeling uncertainty:
(1) If it is fully aware of the task (q state sequence): (a) The path on q0. (b) The path on q1. (c)
The path back on q0.
(2) If it is not aware of the task (label sequence): (d) The path on q0. (e) The path on q1. (f) The
path back on q0.

10% probability of occurring on those states. This phenomenon is uniquely observed
when the agent is unaware of the task.

Next, the events are assumed to be static, i.e., without labeling uncertainty. We
consider both scenarios depending on whether the agent is fully aware of the task.
After obtaining optimal policies for each scenario, we generate paths to demonstrate
the agent accomplishing the task. Figure 12 (1) shows the agent planning the motion
based on the observation history and the q state history. On the other hand, Figure 12
(2) demonstrates that the agent can accomplish the task following the policy regarding
the observation history and the label-receiving history. By following both paths, the
agent can complete the task, and the performances between the two approaches are
similar. Comparing the dynamic event cases, we don’t observe that the agent tries to
visit ‘a’ or ‘b’ states multiple times before leaving for the other.

Figure 13 compares the evolution of the accumulated rewards of Task 2 for four
cases discussed above. It can be observed that static event cases reach higher accumu-
lated rewards than dynamic event cases. It may be due to the labeling uncertainty in
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Fig. 12 A generated path for Task in φ2 of static event:
(1) If it is fully aware of the task (q state sequence): (a) The path on q0. (b) The path on q1. (c)
The path back on q0.
(2) If it is not aware of the task (label sequence): (d) The path on q0. (e) The path on q1. (f) The
path back on q0.

dynamic events. Also, regardless of the agent’s awareness of the task, the converged
accumulated rewards are similar.

5.2 Pybullet TurtleBot Simulations

Figure. 14 shows a virtual office environment generated by PyBullet 3.0 [35]. In the
office space, there are four office rooms ‘a’, ‘b’, ‘c’, and ‘d’, a storage room ‘S’, a printer
room ‘Print’, and a supply station ‘Sply’ to recharge the TurtleBot, i.e., the agent. In
addition, there are two big windows in Offices ‘a’ and ‘d’ and multiple doors in the
office space. We discretize this office space into a four-by-four grid world to generate the
POMDP model. Considering the motion uncertainties, we assume that the TurtleBot
has a probability of 0.9 to successfully execute its navigation controller by moving along
the desired direction. However, it can move to other possible directions, uniformly
sharing a probability of 0.1. Moving toward the wall will keep the TurtleBot stay at
the same location. Assuming the agent is fully aware of the assigned tasks, We test the
proposed model-free RL approach with two different observation settings in this office
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Fig. 13 Comparison of the reward evolution for task φ2.

scenario. All simulations are conducted via 10,000 episodes with 300 steps per episode.
The other computation settings are the same as in Section 5.1. We map the office
scenario for each simulation to a grid world in which the optimal policy is learned.
Then, we apply the derived optimal policy to the virtual TurtleBot in the PyBullet
platform to validate the task accomplishment.

Fig. 14 The office environment.

5.2.1 Observation of the surroundings

This setting assumes that at the current state, the TurtleBot can collect the surround-
ing observations in all four directions, following a specific order from ‘North’, ‘West’,
‘South’ to ‘East’. The observation elements are ‘wall’, ‘hallway’, ‘door’, and ‘window’.
The agent can only observe one element in each direction. It shall be noted that there
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is only one observation at each state, i.e., O(s′, a, o) = 1. However, the agent may per-
ceive the same observation in two or more states. For example, offices ‘b’ and ‘c’ have
the same observation: o(‘b’) = o(‘c’) = {‘wall’ ‘wall’ ‘wall’ ‘door’}. Consequently, the
set of observation O in this POMDP problem consists of 13 distinct observations.

Task 1:

Task 1 requires that the TurtleBot visits the printer room to collect the documents
and then carries the documents to Office ‘a’ or ‘c’, repeatedly. At the same time, the
TurtleBot shall always avoid entering the storage room ‘S’. Similar to equation (13),
this task can be expressed as an LTL formula in equation (15). Figure 15(a) shows
the induced LDGBA, and we also employ the redesigned reward in equation (14).

ϕtask1 = �♦(Print ∧ ♦(a | c)) ∧�¬S (15)

Fig. 15 The induced LDGBAs: (a) ϕtask1. (b) ϕtask2.

After the training process is converged, the optimal policy can be derived from
Q networks. Figure 16(a) illustrates a generated path with which the TurtleBot can
complete Task 1. It can be seen that after leaving the initial state, office ‘b’, the
TurtleBot moves towards the printer room, indicated via a yellow path. It visits offices
‘b’ and ‘c’ more than once on the way to the printer room due to motion uncertainty.
After the TurtleBot arrives at the printer room and collects the documents, a blue path
demonstrates that it leaves the printer room and moves to office ‘c’ for the delivery.

Task 2:

Here, we extend Task 1 to a more complex task. Task 2 indicates that the TurtleBot
must go to the supply station for recharge after delivering the documents and before
repeating Task 1. The LTL formula of Task 2 can be expressed as equation (16),
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and Figure 15(b) depicts the corresponding LDGBA, keeping the transitions with the
single label only to simplify the illustration.

ϕtask2 = (¬(a | c)UPrint) ∧ (¬SplyU(a | c)) ∧ (♦Sply) ∧ (�¬S) (16)

Fig. 16 Generated paths for the TurtleBot to accomplish tasks if it can observe surroundings in all
four directions: (a) Task 1. (b) Task 2.

Figure 16(b) shows a path generated from the learned policy for the agent to
accomplish Task 2. The TurtleBot starts outside office ‘d’. It then moves to the printer
room, collects the documents, and leaves for office ‘a’, indicated as the yellow and blue
routes, respectively. Finally, the green route shows that the agent arrives at the ‘Sply’
station for recharge after delivering the documents.

5.2.2 Observation of a single direction

We also consider another observation setting, in which the TurtleBot is supposed
to observe only one direction randomly at each state. Consequently, the observation
uncertainty increases significantly. We add a few items in the PyBullet office environ-
ment to enhance policy convergence, as shown in Figure 17. Therefore, the observable
space includes ‘hallway’, ‘wall’, ‘door’, ‘window’, ‘table’, ‘paint on the wall’, and ‘flower
by the wall.’ For example, the agent can observe ‘wall’, ‘table’, and ‘door’ with the
probabilities of 50%, 25%, and 25%, respectively, in offices ‘b’ and ‘c’.

Figure 18 demonstrates the generated paths for the agent to accomplish the same
tasks as in Section 5.2.1, respectively. Compared with the paths in Figure 16 with four
directional observations, the single observation element provides an agent with less
sense of the current state. Figure 18 also indicates that the agent encounters difficulty
deciding the right moves. For example, the yellow path in Figure 18 (a) illustrates that
the agent moves back and forth a few times in the hallway with multiple paints on
the wall before finally heading to the printer room. It is mainly because of observation
uncertainty in addition to motion uncertainty.

24



Fig. 17 The modified office environment where the agent can observe only one direction.

Fig. 18 The paths for the agent to accomplish the assigned tasks for a single round when the agent
can observe only one direction: (a) Task 1. (b) Task 2.

5.3 Multi-agent Warehouse Simulation

We also preliminarily apply the developed model-free RL approaches to a multi-agent
problem. A mini-factory warehouse is modeled as an 8 × 8 grid world as shown in
Figure 19. There are two agents, and each must repeatedly move a box from one of
the locations labeled as ‘a’ in blue to any spot labeled as ‘b’ in green to drop off the
box on the convey belts. The darker and lighter gray states indicate the wall and other
immovable packages. In this case, each agent can move ‘up’, ‘down’, ‘right ’, ‘left ’ and
‘stay ’, but they cannot move to the same location simultaneously. Once both agents
complete the task within one round, more boxes await at locations ‘a’. Each agent is
rewarded for successfully moving a box to the goal location. In addition, the agents’
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Fig. 19 The warehouse environment.

initial locations are shown in Figure 19. The observation and transition probabilities
are set as the same as in Section 2.3.

We can formulate the team task via LTL as φ = �♦(a ∧ ♦b), similar to the
formula in equation (13). Also, we implement the Reward Redesign mentioned in
Section 5.1.2 for task feasibility. Multi-agent reinforcement learning (MARL) studies
how multiple agents interact in a common environment. According to agents’ actual
task requirements, MARL can be categorized as the following three broad classes [36]:

• Cooperative: Agents cooperate to achieve the team goal, in which no agent can
perform the whole task alone.

• Competitive: Agents compete against each other.
• Mixed: Agents maximize the utility that may require cooperating and/or competing.

In addition, the multi-agent system can also be modeled in a centralized or decentral-
ized framework, where a central policy or multiple independent policies can be learned
by the agents [36], respectively.

In this case, the agents work in the same environment towards a common goal.
This MARL problem can be categorized as a cooperative case. We model this problem
as a simplified decentralized POMDP (Dec-POMDP) framework. Each agent has a
set of actions Ai and a set of observations Oi, where i denotes the index of agents:
i ∈ {1, 2}. However, since they are identical agents in the same state space, we define
A1 = A2 and O1 = O2. Only static events are considered in this case.

There have been numerous previous works to solve MARL problems from various
perspectives. Inspired by the work of Zhou et al. [37], we set up cooperative com-
munication between the agents and implement it into our model-free RL algorithms.
We assume the agents have full knowledge of the task. Two independent Q networks
are initialized for each agent. For each Q network, the input consists of the observa-
tion sequence, the q state sequence, and the q state sequence from the other agent.
The agents share the task recognition information through the messages between the
agents in the same communication network. The corresponding Q networks are shown
as Figure 20. Since two Q networks are trained independently to estimate Q values
for each agent, we consider this approach a decentralized training and execution. The
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Fig. 20 Q network architectures for a MARL problem.

simulation took 30,000 episodes for 300 steps each. Figure 21 shows the trend of the
accumulated reward vs. episode.

Figure 22 shows the derived paths for both agents, represented by red and yellow
routes, respectively. At the beginning of the task in Figure 22 (a), both agents stay at
their original positions to gather sufficient observations of the surrounding environment
for decision-making. Shortly after, they leave for the loading zone in blue, and the
yellow agent waits at a state on its way to prevent a collision with the other agent (red).
Once the packages are loaded, the agents head towards the green zone to drop them
off on the convey belts, as shown in Figure 22 (b). The second run starts right after
the completion, shown in Figure 22 (c). It shall be noted that the yellow agent selects
the action ‘stay ’ a few times to wait for the other agent to pass because we prioritize
the red agent. The generated paths show that the desired cooperative task is achieved
even though separate policies are trained for the agents with limited communication.

6 Discussion

This study formulates the motion planning of autonomous agents in partially observ-
able environments as a PL-POMDP problem. We also address high-level complex
tasks by expressing them through LTLs and converting them to LDGBAs for model
checking. Consequently, such a motion planning problem became equivalent to find-
ing an optimal policy on the product of PL-POMDP and the induced LDGBA, and a
model-free RL approach is proposed. We employ LDGBAs for model checking because
they result in a smaller automaton state space than the corresponding DRAs. In
addition, they have multiple accepting sets, enabling the agent to visit all accepting
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Fig. 21 The accumulated rewards of the MARL case.

Fig. 22 The paths generated for the red and yellow agents to accomplish the assigned task.

sets infinitely often. With the implementation of the reward redesign, the modified
LDGBA can address the sparsity of rewards caused by LDBA in RL for motion plan-
ning [28]. In the future, we plan to leverage the tracking-frontier function proposed in
[33] to keep track of non-visited accepting sets in LDGBA. This could be particularly
useful when more complicated surveillance tasks for UAVs are required in partially
observable environments. By further developing this function, we aim to improve the
performance and applicability of our proposed method.

Deep Q learning is employed in the proposed model-free RL approach to learning
optimal policies on the product PL-POMDP. Specifically, LSTM is implemented into
Q network architectures to process the agent’s observation history and task recogni-
tion. Using the induced automation state or perceived label history to represent task
recognition depends on whether the agent is fully aware of the task. As the simula-
tion examples demonstrate, either representation can enhance the agent’s learning in
partially observable environments subject to complex tasks. We also investigate the
performances of Q networks by using different lengths of the input sequences. Choos-
ing too long or too short sequences can lead to an unstable training process. The
sequence lengths used in this study provide the agent with sufficient information for
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decision-making and avoid lengthy delays before initiating action selection and follow-
ing the trained policy. It shall be noted that the length selection may depend on the
solved problem. The proposed approach can be easily updated with other value-based
or policy-based deep reinforcement learning (DRL) methods in future work.

We apply the proposed model-free RL approach to the motion planning of
autonomous agents in discrete environments only in this study. Future works will
extend the approach to POMDP problems with continuous state and action spaces.
In addition, a general LDGBA can consist of non-deterministic and deterministic
sets. Although most LDGBA corresponding to the tasks considered in our simulation
examples have deterministic sets only, one example demonstrates that the proposed
approach can handle ε-transitions, which are non-deterministic. Even if the initial
state is in the non-deterministic set, the automaton state transitions are restricted
in the deterministic set after an ε-transition. Because the accepting states are in the
deterministic set only, the proposed approaches can still achieve optimal policies.

We also provide a preliminary simulation of a cooperative multi-agent system to
demonstrate the proposed approach’s versatility and adaptability. Furthermore, by
enabling the communication of task recognition between the agents, the acquired
policies show a high level of collaboration that results in successful task completion.
Although the current approach in the multi-agent simulation focuses on a simplified
scenario by using a decentralized training and execution framework, which can often
be non-stationary [36], it has the potential to address a system of multiple UAVs for
cooperative missions. In the future, it may be more appropriate to use a centralized
training and decentralized execution (CTDE) framework capable of handling a con-
tinuous state space. Moreover, the agents’ task recognition communication relies on
their full knowledge of the tasks. An alternative approach can use local observations
from other adjacent agents, so an additional neural network is needed to approximate
the communication mechanism.
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