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Procedural Content Generation via Knowledge
Transformation (PCG-KT)

Anurag Sarkar, Matthew Guzdial, Sam Snodgrass, Adam Summerville, Tiago Machado, Gillian Smith

Abstract—We introduce the concept of Procedural Content
Generation via Knowledge Transformation (PCG-KT), a new
lens and framework for characterizing PCG methods and ap-
proaches in which content generation is enabled by the process
of knowledge transformation—transforming knowledge derived
from one domain in order to apply it in another. Our work
is motivated by a substantial number of recent PCG works
that focus on generating novel content via repurposing derived
knowledge. Such works have involved, for example, performing
transfer learning on models trained on one game’s content
to adapt to another game’s content, as well as recombining
different generative distributions to blend the content of two
or more games. Such approaches arose in part due to limitations
in PCG via Machine Learning (PCGML) such as producing
generative models for games lacking training data and generating
content for entirely new games. In this paper, we categorize
such approaches under this new lens of PCG-KT by offering
a definition and framework for describing such methods and
surveying existing works using this framework. Finally, we
conclude by highlighting open problems and directions for future
research in this area.

Index Terms—procedural content generation, transfer learn-
ing, conceptual blending, computational creativity, transforma-
tion

I. INTRODUCTION

Procedural content generation (PCG) describes the set of ap-
proaches for generating game content via algorithmic means.
There are several lenses through which we describe and
understand PCG including search-based PCG (SBPCG) [1],
PCG as a constructive method [2], PCG as a representation
of values [3], and PCG as a means for providing different
player experiences [4]. Each of these lenses has been informed
primarily by a focus on formalizing and generating content for
a single game.

A recent interest in the application of machine learning to
procedural content generation (PCGML [5]) has revealed not
only a new technical approach to content generation but also
new research questions and trajectories informed by a data-
oriented approach to content generation. PCGML approaches
generally focus on learning a distribution over existing content
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and then sampling from that distribution to produce new
content. However, PCGML models can only generate content
from within a distribution learned from their training data.
This has led to certain core problems in PCGML namely, how
do we create new game content for a game with little or no
training data and how can we produce entirely new content that
references existing content but that is distinct from it? Such
problems give rise to further questions and avenues of work.
For example, generating new content that inherits important
characteristics from existing content without directly repeating
or plagiarizing it, or recombining knowledge derived from
existing content to generate new content and discover new
game and level designs.

We identify a number of potential, longstanding challenges
in PCG that can be addressed by answering the above ques-
tions. One is automated game design i.e., the production
of entirely novel video games. While there have been prior
approaches to this problem [6], they are still relatively few in
number. This is in part due to the large amount of design
knowledge required to produce such a system [7]. If we
could transform knowledge from existing games towards the
production of new games, we could sidestep this issue.

Controllability stands as another core PCG problem, with
the focus on how users might best achieve their desired goals
with a PCG system. A common problem when it comes to
controllability is that a procedural content generator is unable
to meet a user’s needs [8]. For example, a user may wish
to generate some content X . If the closest the PCG system
can get is to generate some content Y , then the user will be
unable to satisfactorily control the system. But if the system
had the ability to transform Y → X , then this problem could
be resolved.

In this article, with a view towards addressing such prob-
lems, we describe a new lens for characterizing PCG research
and practice: Procedural Content Generation via Knowledge
Transformation (PCG-KT). We provide a framework and vo-
cabulary for describing PCG systems by the methods and
extent to which they transform knowledge between domains.
We further survey existing systems that are situated in novel
positions within this framework, and pose new potential areas
of PCG research that are uncovered by this framing.

We would like to note that we introduce PCG-KT as a lens
for understanding PCG processes, not as a category of PCG
approaches. Unlike SBPCG or PCGML, we are not identifying
a group of PCG approaches related by an underlying AI tech-
nology. Instead, we use this lens and framework to allow us to
compare and contrast PCG approaches based on the extent to
which they involve the transformation of knowledge. All PCG
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Figure 4: An example level sampled with each mapping method (i.e., manual, random, our approach). From the top, the
mappings are Kid Icarus: R1

2, R2
3, B2, M1; Kid Kool: R1

1, R2
3, B3, M3.

showing the effects of the vertical orientation of the Kid
Icarus. Conversely, the Kid Kool mappings have linearity
values falling between the training level and the Kid Icarus
mappings, likely as a result of the mountainous structures
and multiple height sections in the Kid Kool levels.

Lastly, we see that the manually defined mappings for Kid
Kool and Kid Icarus and the mappings found with our ap-
proach for Kid Icarus are able to approximate the leniency
value of the original training level, whereas the random map-
pings for Kid Icarus vary wildly (due to mappings that as-
sign common tiles to enemies), and are often too low in the
remaining Kid Kool mappings (due to the vastness of the Kid
Kool levels paired with the relative infrequency of enemies).

To visualize the space of different levels generated by
each approach, Figure 3 shows a two-dimensional projection
of the sampled levels along with the 16 Super Mario Bros.
levels, where each dot represents one level. Levels were pro-
jected based on a measure of distance between them. To
determine the distance between two levels, we represented
them as a histogram of high-level tiles, and computed the
Euclidean distance between these histograms. High-level
tiles were found by clustering 4 ⇥ 4 tile sections using k-
medoids (k = 40) with all the training levels and one trans-
formed level from each tile mapping. It is interesting to see
how closely grouped all the levels sampled using the Kid
Kool levels are (red, yellow, orange). This may be due to
our constraints locking more tiles, or due to how similar Kid
Kool is to Super Mario Bros. Additionally, the original Su-
per Mario Bros. levels and the levels sampled with the base-
line (green) are closer to the Kid Kool level clusters than to
the Kid Icarus level clusters, which further supports that the
Kid Kool levels are more similar to the training levels. No-
tice, levels sampled using the Kid Icarus (shades of blue)

mappings are mostly separated into different clusters corre-
sponding to the different methods (i.e., Mi, Rj

i , Bi). Fur-
thermore, levels produced with the manual mappings (dark
blue), are close to the levels produced using the mappings
found with our approach (blue), showing that our approach
can find mappings more similar to human devised mappings
than to random mappings. The figure also shows the narrow
space covered by the original levels in the training set.

Figure 4 shows example levels sampled with each tile
mapping. The Kid Icarus mapping levels contain a large
amount of platforms (made of enemies, pipe pieces, and
solid tiles), which mimic the structures in the Kid Icarus
maps. Also note the mountainous structures in the Kid Kool
mappings levels, which are present in the Kid Kool maps.

Conclusions and Future Work
This paper describes an approach for transforming
videogame levels from one game to another to supplement
a set of training levels in a target domain for use by a statis-
tical procedural level generator. These transformations are
done by finding a mapping between the tile types in one
game to the tile types in the target domain. Our approach
is able to find tile mappings that provide better output than
random tile mappings, and similar output to manually pro-
duced mappings. Additionally, we find the choice of out-of-
domain levels has a large impact on the output levels (i.e.,
Kid Icarus mappings produced levels very different from
Kid Kool mappings). However, this approach is limited to
transferring only what is represented by the current tile for-
mat, which does not include gameplay mechanics. In the
future, we will explore more complex representations to al-
low for more complex domains and cross-genre adaptation.
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Fig. 1: Example of our framework applied to an example from [9]. Initial Kid Icarus level data (raw knowledge G1) is used
to derive a Markov level design model (extracted knowledge K1) via a derivation function (D). This knowledge is passed as
input through a transformation function (T ), which uses a mapping and a Mario level to derive a Markov level design model
for Super Mario Bros. levels (transformed knowledge K2), which can be used to output novel content.

approaches could be understood as falling within PCG-KT, but
most involve zero or trivial transformation. On the other end of
the spectrum, there are approaches that radically transform the
derived knowledge to approximate secondary or nonexistent
knowledge. For clarity in introducing these concepts, we focus
on the latter of these in this paper. However, we view PCG-
KT as a descriptive framework, not as a prescriptive set of
conditions determining sufficient knowledge transformation to
qualify as PCG-KT.

II. PCG VIA KNOWLEDGE TRANSFORMATION

In this section, we outline nomenclature and a generalized
framework for PCG via Knowledge Transformation (PCG-
KT). We acknowledge that PCG is broad and that there are
many different kinds of content, knowledge, and transfor-
mation processes used in the field. We refer the reader to
Section III for a framework for differentiating between types of
knowledge transformation, as well as examples of how existing
systems fit into this framework.

We provide a formalized definition for PCG-KT in order
to identify prior work, to prompt reflection on how this lens
both fits and reframes existing approaches to PCG, and to
encourage future work in under-explored directions.

For our definition we employ the following vocabulary:
• Games (G: a set of games; G: a game G ⊆ G). A

game, or set of games, forms the domain that situates
and contextualizes the knowledge transformation process.
We deliberately do not adopt any one prescriptive def-
inition of “game” here: a game might be theoretical,
in-development, or published; renowned or unknown; a
research “toy” or established; digital or analog; procedu-
rally generated or fully authored by a human. The nature
of the game(s) informs the types of knowledge that can
be derived, and the broader context and cultural situation
of that knowledge.

• Knowledge (K: a set of knowledge derived from a set
of games; K: a unit of knowledge). We use the term
“knowledge” to describe information derived from a set
of games that can be applied to a new set of games
(with or without transformation). This information could
take many different forms, including authored content
(sprites, level maps), functional design aspects (e.g.,
mechanics, game states), or broader information related

to overall game experience (e.g., inferred style heuristics,
automated playtraces). The knowledge may vary in scope
(e.g., a single sprite or an entire ruleset). It may also
be represented in a form that is independent of what
either the original or target games use to function. For
example, the ASCII representation used in level maps in
the Video Game Level Corpus (VGLC) [10] is knowledge
that is derived from those games, yet not in the format
those games use (and indeed, elides some features of the
original level maps such as non-interactable decorations).

• Derivation (A derivation function D that produces
knowledge from a game: D(Gi) = Ki). Knowledge
should be derived from some set of games according to
a reproducible process. This knowledge may be derived
by hand, automatically, or via some hybrid process. The
derivation process does not need to apply directly to
the game as an artifact (e.g., spritesheets extracted from
game ROMs). For example, knowledge derived through
inference from playtraces or gameplay video still follows
a clear derivation process related to the game.

• Transformation (A transformation function T that takes
knowledge as input and produces knowledge as output:
T (Ki) = Kj). This function accepts knowledge that has
been derived from a set of games and alters it in such
a way that it instead represents knowledge that could be
derived from a new set of games. Note that this could be
an identity transformation if the target and input games
are sufficiently similar (e.g., extracted jumping mechanic
information shared between platforming games.)

PCG via Knowledge Transformation means casting the gen-
erative process as one of deriving, transforming, and applying
knowledge from one (set of) games to another (set of) games.
More formally:

K1 = D1(G1) (1)
T (K1) = K2 ≈ D2(G2) (2)

G2 6⊆ G1 (3)

An overview of the application of this PCG-KT framework is
depicted in Figure 1.
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III. FRAMEWORK FOR DESCRIBING PCG VIA
KNOWLEDGE TRANSFORMATION

In this section, we propose a set of features and axes
for describing approaches to PCG-KT. Using the definitions
presented in the previous section, we can frame many existing
PCG approaches as exhibiting a form of knowledge transfor-
mation. For clarity, we will discuss a higher level descriptive
category and then its underlying features and possible axes.

A. Knowledge Structure

When discussing and describing these transformation ap-
proaches, it is important to consider the structure of the knowl-
edge being transformed. Specifically, we consider structure at
each of the three different stages of the transformation process;
the raw input, the extracted input, and the transformed output.

1) Raw Knowledge: This is the knowledge closest to the
input domains, meant to represent the input game(s) or do-
main(s) themselves, and is denoted:

Gi

Its structure depends on the context of the transformation,
especially the domain (i.e., which game(s)); and the knowledge
to be extracted from that domain (e.g., level designs, story
structures, sprite palettes, character designs, etc.). For example,
in a lot of PCGML work, a tile-based representation of a
level can be taken as the raw knowledge, as in Figure 1.
This enables methods for learning about the level structure in
discrete patterns (e.g., [11], [12]). Alternatively, if the process
started from images of input levels and converted them into
some ML-parsable representation like tiles, the input images
would be considered the raw knowledge. Other raw input
formats such as segmented videos of playtraces enabled other
methods to learn about gameplay relationships and object
placements in the levels [13]. This is relevant to knowledge
transformation as all later steps, including the possible output
of the transformation, will depend upon this knowledge. Thus,
different raw knowledge formats have different affordances for
a PCG-KT process. For example, the tile-based raw knowledge
would not support working with portals as it does not include
them.

2) Extracted Knowledge: This is the knowledge that is
immediately extracted from the raw input knowledge prior to
performing transformation, and is denoted:

Ki = Di(Gi)

Its structure depends on the raw input knowledge, the methods
used for extracting the knowledge, and the type of transfor-
mations to be performed. Such knowledge can be categorized
based on whether it is direct or latent. Closer to the direct
end, we could imagine a multi-layer [14] or hierarchical [15]
representation of the levels annotated with level features.
Somewhere in the middle, we could have a learned probability
table of tile distributions [11]. At the latent end, we could have
the weights of a neural network trained on those levels [12]
or the latent vector representations of the levels [16], [17].

3) Transformed Knowledge: Lastly, we have the knowledge
after the transformation has been performed, which is denoted:

T (Ki) = Kj ≈ Dj(Gj)

The structure of this knowledge can be described similarly as
the structure of the knowledge prior to transformation, and so
we will not repeat the same descriptions. It is important to note
however that while many existing approaches use the same
structure for the extracted and transformed knowledge, this is
not required. For example, we can conceive of a method that
takes a set of learned probability tables that model the level
design, and outputs a set of latent vectors meant to blend those
models together, or that takes a set of neural network weights
from two models trained to produce different kinds of game
content, and outputs content for a third, unseen game.

B. Derivation Function

The derivation function is the process by which the extracted
knowledge is derived from the raw knowledge described
above. In the knowledge extraction equation Ki = Di(Gi),
the derivation function is Di. There are a variety of ways
to construct the derivation function. We describe three broad
categories ranging from hand-authored to hybrid to automated,
representing a sliding scale where the function can be either
more or less hand-authored (or automated), with fully manual
and fully automated lying on the extreme ends of the spectrum.

1) Hand-Authored: Hand-authored derivation functions
rely on manual authorship and domain expertise to pull the
extracted knowledge from the raw knowledge. An example
of such a function would involve a human domain expert
analyzing a set of input levels and then devising a set of design
rules for the given game (e.g., holes can only be 4 tiles wide;
cave levels can only have specific enemies, etc.). This extracted
knowledge can then be used in the transformation. Another
example could be manually tagging and labelling structures
or patterns within content (levels, stories, quests, etc.).

2) Automated: At the other end of the spectrum, automated
derivation functions rely on automated rules, heuristics or
machine learned information in order to pull the extracted
knowledge from the raw knowledge. For example, Sum-
merville and Mateas [12] and Snodgrass and Ontañón [11] use
backpropagation and occurrence counting, respectively, as the
derivation function for pulling out the extracted knowledge. In
those examples, the extracted knowledge is the trained model,
be it a conditional probability distribution or an LSTM. If we
think of the domain of stories or quests, we can imagine an
approach that pulls out word embeddings from the narrative
text to use as the extracted knowledge. The derivation function
here could be a simple word clustering method, or a neural
network approach that returns latent vector encodings.

3) Hybrid: These leverage both automated methods and
human expertise. Most approaches in practice are likely to
fall under this category, as even automated approaches may
rely on domain expertise for setting up rules, training schema,
labels, etc. Consider the automated approach of extracting a
conditional distribution of tile types to model design knowl-
edge from a game level. We can view this as a hybrid
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approach when the user is defining the neighborhood of tiles
the model should be looking at for extracting the distribution.
Alternatively, if we consider the hand-authored approach of
tagging structures or patterns in stories, then the initial output
of this approach could be used as the starting point for training
a more automated approach to tag new examples.

C. Transformation Context

The context of the transformation or how the transformation
knowledge is going to be used is another important factor to
consider. For describing the context, we propose the following
axes, though these are not meant to be exhaustive.

1) Novelty: This describes if the transformation is intended
to approximate an existing domain or explore new domains.
For example, on the approximation end of the axis, Snodgrass
and Ontañón [9] try to learn a mapping of level representations
from one game to another existing game, where some prior
knowledge is known. On the other end, Guzdial and Riedl [18]
present an exploration approach where knowledge extracted
from a set of input games is transformed and recombined to
create entirely new games. Approaches can be placed along
this spectrum based on how much prior knowledge of the
approximated domain is known, and the extent to which the
explored domains are different from the input domains.

2) Usage: This aspect of the context relates to the use of
the approach and is less of an axis and more a categorical
description of where the approach sits in a user context. For
example, is the approach being used in a prototyping setting
to explore new game ideas, a research environment to test the
underlying methods, or to produce a complete new game for
player consumption? Knowing this aspect of the context can
directly influence what kinds of knowledge can be used and
what the transformation function can look like. Usage in this
case is distinct from novelty, as for the same usage or goal,
we might have different values of novelty. When prototyping
new game mechanics, we might want very novel mechanics
(i.e. distinct from all prior mechanics our system has seen) or
we might more about how well the mechanics fit with other
aspects of the design (e.g., narrative, aesthetics, etc.)

D. Transformation Properties

This is a broad category that encompasses many aspects
of the transformation performed and is targeted towards de-
scribing the extent to which knowledge is transformed and
the relationship between the transformed and input knowl-
edge. This is distinct from just identifying input and output
knowledge as in the definition, where we did not explicitly
outline their possible relationships. When describing the extent
of the transformation, we need to consider the distance of
the transformed knowledge from the input knowledge. We use
the term distance rather loosely. Instead of defining a specific
distance metric, we discuss two types of distance depending
on the structure of knowledge and the properties of interest.

1) Representational Distance: This refers to the difference
between the knowledge structure in the input and transformed
knowledge. For example, the representational distance is quite
low if interpolating between two latent vectors as all the

knowledge has the same encoding. However, this distance is
much higher when, for example, transforming a story graph
into a set of three dimensional points in a game world. Notice,
the representational distance for many approaches is fairly low
as the knowledge structure is typically the same for the input
and transformed knowledge (e.g., mapping one tile or sprite
set to another, or modifying a learned distribution).

2) Content Distance: This is the difference between the
content of the input and transformed knowledge. For example,
the content distance between sets of sprites extracted from two
different Mario levels is much lower than the content distance
between the sets of sprites extracted from a Mario level and
a Mega Man level. If we consider two transformations, one
that produces a new set of sprites by combining individual
sprites from Mario and Mega Man, and one that creates a
new set of sprites by randomly choosing a subset of sprites
from Mario and Mega Man, then the content distance between
the resulting blended sprite set and the input set would be
larger than the distance between the resulting randomly joined
sprite set and the input set. We can think of this as equivalent
to the amount of shared information between the input and
transformed knowledge, regardless of how that information is
represented. As an example, Sarkar et al.’s approach [17] of
learning blended latent representations of several input games
has a higher content distance than Snodgrass and Sarkar’s
approach [14] that generates new levels by combining existing
parts of existing game levels using binary space partitioning,
which in turn has higher content distance than prior PCGML
methods that operated on single-game domains.

Note that these two distances are independent of each other.
Two sets of knowledge containing the same information but
represented in different ways would have high representational
distance but low content distance (e.g., representing level
design knowledge for a game as tile-based representations of
a set of levels vs. describing the levels as a set of rules for
placing objects and enemies). Similarly, two sets of knowledge
can represent different information in the same way. For
example, two neural networks with the same architecture
trained on two different games would result in knowledge sets
with low representational distance, but high content distance
as the weights of the networks would differ.

E. Transformation Function

The function used to perform the transformation relates to
all other aspects of PCG-KT since it relies on the context
of the transformation, needs the various knowledge structures
in order to perform the transformation and the properties of
the transformation depend upon this function. Here we break
down the various ways of describing the function.

1) Approach: This refers to the actual procedure or manner
in which the transformation is being performed. This can be
through updating a probability table [11], backpropagation
through a neural network [12], iteratively growing a graph
from existing extracted graphs [18], interpolating between
latent vectors [16], [17], or reducing detailed knowledge
representations from various domains into a single uniform
representation [14], [17], to name a few. For this category, the
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Game Conceptual Domain
Blending Expansion Transfer

Knowledge
Structure

Raw Knowledge VGLC Levels Gameplay Videos VGLC Levels
Extracted Knowledge VAE latent vectors Game Graphs MdMC Conditional Distribu-

tion
Transformed Knowledge Blended VAE latent vectors

via interpolation and labeling
Conceptual Expansion of
Game Graphs

VGLC Levels Converted to
Target Domain

Derivation
Function

Type Automated Automated Automated
Description Training via Backpropagation Rule Learning and Probability

Estimation
Estimating Tile Distributions
via Observation Counting

Transform
Context

Novelty New New Transfer
Usage Research Environment Research Environment Research Environment

Transform
Properties

Representation Distance Low Low Low
Content Distance High High Medium

Transform
Function

Approach Interpolation/evolution of VAE
latent vectors

Conceptual Expansion Multi-stage Pipeline for Defin-
ing Mapping between Tiles

Input Domain Set of N games Set of N games Target Game and Input
Game(s)

Output Domain New game blending the N
games

New game represented as a
combination of the N games

Input Game(s) Transformed to
Target Game Representation

Cardinality Many-to-One, Many-to-Many Many-to-One, Many-to-Many One-to-one, Many-to-one

TABLE I: The PCG-KT framework applied to three techniques: game blending, conceptual expansion and domain transfer.

function used can be nearly any procedure already used in the
PCG, ML, creativity, design, or AI literature, including manual
and hybrid approaches. Explicitly identifying the procedure
where the transformation takes place can help to more clearly
delineate the transformation approach as a whole.

2) Input/Output Domains: The input and output domains of
transformation help characterize the nature of the transforma-
tion process. For example, in works centered around blending
different games, the input domain is the set of games to be
blended and the output domain is the final blended game. Thus,
here the transformation process is one of transforming input
knowledge extracted from the individual games into output
knowledge recombining properties of the input games together.
Similarly, in the case of domain transfer for level design, the
input domain consists of a set of one or more input games and
a target game and the output domain consists of levels of the
input game(s) transformed to the target game representation.

3) Cardinality: This refers to the number of input sources
and number of outputs. We consider four types of cardinality:

1) One input domain to one output domain: this is a
standard knowledge transfer where knowledge from one
domain is transformed to represent knowledge from
another domain [9].

2) Multiple inputs to one output: this is typically a blending
approach where the input domains are transformed and
combined in some way to get a different output domain
(either new or existing) as in [14], [17], [18].

3) Multiple inputs to multiple outputs: this can also be
blending or approximating, but likely in a more ex-
ploratory way where the input knowledge is transformed
and recombined in various ways to explore different
output domains. Examples of this are [19], [20] where
the input is a group of games but rather than produce
a single blended output, different labels are used to

produce different combinations of blends where each
unique label configuration can be thought of as mapping
the set of input games to a separate blended domain
made up of a unique combination of the input games.

4) One input to multiple outputs: this is also a more
exploratory transformation where the knowledge from
a single domain is transformed and possibly abstracted
in order to explore multiple output domains.

To the best of our knowledge, while there have been systems
that combined multiple inputs into multiple outputs consecu-
tively, there have not been any systems that have attempted
to simultaneously generate multiple outputs dependent on
one another (e.g., a series of games, a set of sprites, or a
soundtrack).

To illustrate the framework using concrete examples, Table I
depicts the result of applying the PCG-KT framework to three
separate applications, game blending [16], conceptual expan-
sion [18], and domain transfer [9], showing how the features
and axes discussed above can be categorized in each case. The
raw knowledge Gi consists of VGLC levels for game blending
and domain transfer while consisting of gameplay videos in the
case of conceptual expansion. In all three cases, the derivation
function (Di(Gi)) involves a machine learning algorithm (such
as a neural network, Bayes net, or Markov model) which is
used to obtain the extracted knowledge (Ki). This is in the
form of latent vectors for game blending, game graphs for
conceptual expansion, and conditional distribution tables for
domain transfer. For the transformation function (T (Ki)), con-
ceptual blending employs latent vector interpolation, whereas
conceptual expansion requires a multi-stage pipeline including
defining tile mappings to obtain the final transformed knowl-
edge Kj . This consists of blended latent vectors for game
blending, a recombined game graph representing a new game
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in the case of conceptual expansion, and levels in the target
domain for domain transfer. These applications leverage two
broad categories of transformation functions—combinational
creativity and transfer learning. These and the examples in
Table I are discussed in more detail in Section V.

IV. RELATED WORK

In this section, we discuss related areas of prior work and
compare them to the focus of this paper.

A. Procedural Content Generation

PCG-KT is a framework for thinking about a particular PCG
process, thus all prior PCG work represents a related area.

One clear area of related work is Procedural Content Gen-
eration via Machine Learning (PCGML) [5], given that we
identify PCG-KT as a solution to major problems with this
approach. However, we believe PCG-KT also applies to cases
where the input knowledge is hand-authored, as in the work
of Permar and Magerko [21]. Thus we identify PCG-KT as
applying to PCGML, but not wholly subsumed by it.

Supervised PCGML attempts to take in knowledge in the
form of existing content and transform it (via training an ML
model and then sampling from that model) into additional
content. However, we do not consider this process to be PCG-
KT in most cases due to a difference in goals. For example,
a PCGML approach might attempt to learn a model of level
design that allows for the generation of content (e.g., new
levels) that would fit some existing game (e.g., Super Mario
Bros.) [12], [22]. In this case, the goal is explicitly that the
set of output levels should substantially resemble the original
knowledge. This is typically done by learning a distribution
based on the original, existing content and then sampling
from that distribution. It follows then that any output from
this learned model represents the same knowledge from the
original game G. While our definition of PCG-KT covers the
case in which the input game matches the output target game,
this represents a minimal or trivial transformation.

We also identify PCG-KT as distinct from most search-
based PCG (SBPCG) approaches, such as genetic algorithms
or evolutionary search [1]. In these approaches, we can con-
sider this search space as having been defined by the author’s
own game design knowledge. Thus, it is derived from a theo-
retical set of games G, in this case all of the games the author
considers when they define the search space. It then follows
that any output from this search space represents knowledge
from G. There is prior work where an entire playable game is
produced via SBPCG [6]. However, even in these cases, that
game already existed in the unchanged search space. Thus,
the output games must necessarily exist in G. In other words,
because the author’s definition of a space of games included
the output game, there is no transformation that has occurred
and the knowledge remains unchanged. Note however that
search-based methods could be classified as PCG-KT if the
search is used to perform knowledge transformation. The
appropriateness of applying PCG-KT as a lens is dependent on
the purpose of a system, not the system’s technical approach.

B. Design Patterns

In software engineering, the design structures that make
software more flexible and reusable are known as design pat-
terns [23]. The use of design patterns spans several disciplines
and in general, a design pattern describes a recurrent problem
in an environment and maps it to a core of solutions that can be
reapplied and adapted without needing to be reinvented from
scratch [24]. Because the design of a game involves activities
that are not related entirely to problem solving and engineering
skills, the concept of game design patterns was introduced to
address game mechanics, game design, and game art [25],
[26]. Prior works have used game design patterns to analyze
level designs [27], [28], [29] and interactive narrative [30].
Björk and Holopainen [25] defined game design patterns as
pieces of game design knowledge which could be identified
when they occurred in multiple games (e.g., a companion
character or collectible). There has been work that takes these
design patterns and attempts to apply them to new games [31].
However, we note that in these cases there is no effort made to
transform these patterns outside of their initial identification.
Thus a single design pattern applied to some new game is
understood to be the same pattern as that in the original games.

C. Transfer Learning and Domain Adaptation

In transforming knowledge from one domain to another,
PCG-KT touches upon transfer learning and domain adapta-
tion and in later sections, we will see examples of PCG-KT
work that leverages these techniques. Zhuang et al. [40] define
transfer learning methods as those that attempt to leverage
knowledge learned for a source task and use this source
knowledge to benefit the learning of knowledge for a target
task. Domain adaptation is defined by Pan et al. [41] as the
method of solving a learning problem in a target domain by
using training data in a different but related source domain.
In games, other than the works discussed in this paper, such
methods have primarily been used for transferring the behavior
of agents from one environment to another. Chaplot et al. [42]
used deep Q-networks to transfer agent navigation behavior
from seen to unseen maps in the VizDoom environment. Note
that this does not fall under PCGKT since the knowledge trans-
fer happens within the same game. Consequently, no content
is generated for any new game. Rusu et al. [43] introduced
progressive networks for transfer learning agent behavior
across different Atari games while Kansky et al. [44] used
schema networks to learn basic physics models of entities,
which were then used in novel configurations of Breakout not
seen during training. Melnik et al. [45] learned modules such
as object detection and trajectory based physics to transfer
an agent policy from Pong to Breakout. Relatedly, several
approaches have been attempted to ease the ability to transfer
knowledge learned in one game and apply it to another. Mittel
and Munukutla [46] and Gamrian and Goldberg [47] handle
this task by disentangling the visual aspects from the control
aspects of a learned agent. [46] transfer agent policies from
Atari Pong to Breakout while [47] perform transfer learning
to build agents capable of playing Breakout and Road Fighter.
However, note that in each of [43]-[47], while some knowledge
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Transformation Function Papers Method Generated
ContentMain

Category
Secondary
Category

Combinational
Creativity

Conceptual
Blending

[13] Hierarchical Bayes Network Levels
[16], [17] Variational Autoencoder (VAE) Levels
[32] Variational Autoencoder (VAE) Jumps
[19], [20] Conditional VAE Levels
[33] Graph Structure Knowledge Base Games
[34] Manual Conceptual Blending Games

Conceptual
Expansion

[35] Bayesian Networks Levels
[7], [18] Probabilistic Graphical Models Games

Transfer
Learning

Domain
Adaptation

[9] Multidimensional Markov Chains Levels
[36], [14] VAE, Binary Space Partitioning Levels

Style Transfer [37] Tile-to-Affordance Mapping
Autoencoder/Markov Model Levels

Design Patterns [38] Case-based Reasoning Levels
Data Mining
Association [39] Apriori Algorithm Game

Rules

TABLE II: Summary of the PCG-KT works discussed in Section V.

concerning agent behavior is being transferred from one game
to another, no new content is created as a result of the transfer,
thus failing to fall under the PCGKT definition. In [48],
Kim et al. introduced GameGAN, a neural network that can
learn a model of a game by separately modeling the static
and dynamic elements. This allows swapping the static and
dynamic elements of different games to perform a sort of
transformation. However, the transformation is minimal, closer
in nature to swapping out sprites or background images than
a transformation of game structure or mechanics.

D. Computational Creativity

Computational Creativity (CC) is the umbrella term for
efforts to reproduce human creativity in computers [49].
Since we focus on how knowledge related to PCG can be
transformed to produce novel output in a particular creative
process, it relates to CC. CC has long been linked to games
[50], however the majority of this work has focused on
“exploratory” creativity, which is strongly associated with
SBPCG discussed previously. A more related type of creativity
to PCG-KT is “transformational” creativity [51], where a
conceptual space, which can be thought of as analogous to a
search space or distribution, is transformed via an alteration in
the variables representing the space. This has strong parallels
to our PCG-KT definition, though transformational creativity
is typically much more loosely defined. Boden defined a
third type of creativity: combinational creativity [51]. This
type of creativity refers to the combination of concepts, and
has inspired a large number of computational processes to
attempt to replicate it, with the most famous being conceptual
blending [52]. This approach is known in the psychology
field as conceptual combination [53], and has been studied
for decades as a ubiquitous cognitive process. One of the
two categories we introduce for transformation functions is
based on combinational creativity. There are other CC methods
that have some overlap with PCG-KT. For example, novelty
search [54] and surprise search [55], which attempt to locate
members of a search space or environment that are novel and
surprising respectively. While this might seem to be equivalent
to PCG-KT, because the search space remains unchanged (the
knowledge it represents remains untransformed), we do not

Fig. 2: Example of blending between Super Mario Bros. and
Kid Icarus. Reproduced with permission from [16].

consider it to be the same process. However, we could imagine
employing approaches like novelty or surprise search towards
PCG-KT, seeking novel or surprising transformations, and thus
we consider these and other CC methods to be complementary
to those discussed in this paper.

V. CATEGORIES OF TRANSFORMATION FUNCTIONS

In this section, we survey existing literature that fits under
the banner of PCG-KT. While we introduced a definition of
PCG-KT earlier and several aspects to consider when design-
ing a PCG-KT system, we anticipate that the primary differen-
tiator of PCG-KT systems is their transformation functions: the
process that actually changes the knowledge. Thus, we identify
two broad categories of PCG-KT transformation functions: (1)
combinational creativity and (2) transfer learning. In the first,
the transformation is based on combining existing PCG knowl-
edge to produce other PCG knowledge capable of generating
novel content. In the second, knowledge is transformed via
the use of transfer learning [40], taking knowledge from a
source domain and altering it to better fit some target domain.
These roughly correspond to many-to-many and many-to-
one cardinality for combinational creativity and one-to-one
cardinality for transfer learning. We discuss both categories
and cover any subcategories and particular recent approaches
that fall into each category. To help situate each discussed
work in the PCG-KT framework, we highlight the form of the
input knowledge and that of the output knowledge obtained
after applying the transformation process. Here, input and
output knowledge refer to the input extracted knowledge and
output transformed knowledge of the transformation function
(T (Ki) = Kj) described previously. An overview of the
discussed works is given in Table II.
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Fig. 3: Example interpolation between Mega Man and Metroid. Reproduced with permission from [17]

Fig. 4: Example output of a blended level design model.

Fig. 5: Original game jumps (solid) vs generated jumps (dash-
dotted) extracted from blended domains. Reproduced with
permission from [56].

A. Combinational Creativity

Combinational creativity is a type of creativity that deals
with the creation of new artifacts, ideas and/or knowledge
via recombining existing knowledge in novel, unfamiliar ways
[57]. Guzdial and Riedl drew on combinational creativity in
an early argument as to how to solve the problem of producing
novel content with supervised PCGML [35]. There are a great
number of approaches to computationally represent combina-
tional creativity. These approaches include amalgamation [58]
and compositional adaption [59], but these approaches have
largely not been applied to PCG problems. Thus we focus on
two specific combinational creativity approaches: conceptual
blending and conceptual expansion.

1) Conceptual Blending: Conceptual blending is a com-
binational creativity technique focusing on producing novel
concepts by combining or blending elements from existing
concepts. Fauconnier and Turner [52] formalized conceptual
blending in their ‘four space’ theory which describes a concept
blend as comprising of four spaces - two input spaces con-
sisting of the concepts to be blended or combined, a generic
space into which the two input concepts are projected in order
to find equivalence points amenable for blending, and a blend
space into which these points of equivalence are projected
and from which novel concepts and patterns are evolved. In
the following sections, we review prior work that utilizes
conceptual blending and how they can be specified under the
PCG-KT framework.

In [13], Guzdial and Riedl employed conceptual blending
on learned level design models. Here, the input knowledge
consisted of level design models represented as hierarchical
Bayesian networks, thus they were graph-like in nature. This

made it simple to adapt the traditional conceptual blending al-
gorithm to these models. The output knowledge was produced
by blending the models to produce new level design models
that could in turn generate new kinds of levels. For example,
combining two generative level design models that produced
underwater and castle Mario levels to create a model that could
generate underwater-castle levels as in Figure 4.

In [33], Nelson and Mateas outlined an approach to re-
combine game mechanics in order to generate new games.
The generation process involved taking a verb and/or noun
from users to describe a theme and generating an appropriate
game in response, using a set of pre-defined abstract game
templates, each of which could be implemented using different
stock sets of mechanics. The input knowledge here thus
consisted of the game templates and mechanic sets selected for
combination based on user-supplied verbs and nouns and the
output knowledge was the resulting generated game produced
via combining the selected template and mechanics.

In [34], Gow and Corneli proposed generating entire games
by blending elements from existing ones. In their framework,
the input knowledge comprised of game specifications in
the Video Game Description Language (VGDL) [60]. As an
example, they manually applied conceptual blending as the
transformation function on the VGDL specifications of the
games Frogger [61] and The Legend of Zelda [62]. This
produced as output knowledge the VGDL specification for
Frolda, a new game combining Frogger’s mechanic of crossing
a road full of hazards with Zelda’s lock-and-key mechanic.

This framework has been operationalized through the use
of ML in works by Sarkar and Cooper [16] and Sarkar et al.
[17]. Both use variational autoencoders (VAEs) [63] which
consist of encoder-decoder networks that learn continuous,
latent representations of the input data. By training on levels
from multiple games, the learned VAE latent space spans
all the games used in training and enables sampling blended
levels. In these works, the input knowledge is comprised of
the learned latent representations extracted from the original
game levels (taken from Super Mario Bros. [64], Kid Icarus
[65], Metroid [66], Mega Man [67], Castlevania [68] and
Ninja Gaiden [69]) along with the mapping between levels and
latent vectors learned by the VAE encoder and decoder. The
output knowledge is composed of the latent representations
of blended levels obtained by applying conceptual blending
via interpolation between latent vectors or by evolving such
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Fig. 6: Segments generated by conditioning on blend labels (shown below the 3rd row), using an original segment from Super
Mario Bros. (SMB) (1st row), Kid Icarus (KI) (2nd) and Mega Man (MM) (3rd). First, second and third elements of the label
correspond to SMB, KI and MM respectively. Bordered segments are originals. Reproduced with permission from [19]

Fig. 7: Example level blending The Legend of Zelda, Metroid
and Mega Man. Reproduced with permission from [20]

vectors. Example output levels are shown in Figure 2 and
Figure 3 respectively. In follow-up work, Summerville et al.
[56] extracted jump mechanics using paths in the generated
blended levels. Example extracted jump arcs are shown in
Figure 5. Here, the output knowledge additionally included the
blended jump mechanics extracted from the blended levels.

In follow-up work, Sarkar et al. [19] and Sarkar and Cooper
[20] used conditional VAEs which are VAEs that additionally
use labels to control properties of generated, blended levels
such as which combination of games to blend as well as
orientation. In terms of the PCG-KT framework, an interesting
distinction in these CVAE-based works is that in producing
multiple blended domains as outputs, they exhibit a many-to-
many cardinality as opposed to the many-to-one cardinality of
the VAE-based works since the latter only produce a single
blended domain as output. Example levels from [19] are
shown in Figure 6. An additional point to note is that by
enabling control over orientation, the approach in [20] enables
producing levels combining dungeon rooms with platformer
level segments (e.g. Figure 7). Thus this approach has an
even higher content distance between input and transformed
knowledge than prior methods which blend only platformers.
Note that in these conditional approaches, the input and output

knowledge is similar to that of VAE-based methods, but
here the transformation function of conceptual blending is
performed via label manipulation.

2) Conceptual Expansion: Guzdial and Riedl introduced
conceptual expansion as an alternative to traditional, non-
latent conceptual blending meant to allow for the blending
of machine learned knowledge from more than two sources
[35]. The intuition is that it breaks the combinational creativity
process into a series of functions of the form CEX(A, F ) =
α0 ∗ f0 + α1 ∗ f1...αn ∗ fn. Here, F is a set of existing,
machine-learned features, A is a set of filters that describe
what to take from each feature and X is a goal. X may
be an explicit piece of knowledge to recreate or a heuristic
defining acceptability. Thus, by changing values of F and
A an optimization approach can search a space of possible
combinations of some given set of features. Optimizing these
variables represents the transformation function in Conceptual
Expansion work.

In [35], Guzdial and Riedl applied conceptual expansion to
machine learned models of Super Mario Bros. level design to
produce new types of output levels (e.g., combining boss levels
and aboveground levels to create boss-aboveground levels).
They also made use of conceptual blending and two other
combinational creativity approaches as baselines. Notably, the
levels were not being directly recombined, but instead the in-
put knowledge was learned Bayesian network probabilities that
represented level design models. After conceptual expansion
was applied as the transformation function, the output was a
novel Bayesian network that could produce unseen new level
types as can be seen in Figure 8

In [7], Guzdial and Riedl applied Conceptual Expansion
to machine learned representations of game rules and game
levels for Super Mario Bros., Kirby’s Adventure [70], and
Mega Man. This input knowledge took the form of knowledge
graphs, combining the game rule and game level knowl-
edge, both derived from gameplay video as the source of
the raw knowledge. They found that conceptual expansion
could outperform conceptual blending and genetic algorithms
at recreating a held-out game given the other two games
and a partial specification of the held-out game. However,
in this work, Guzdial and Riedl did not attempt to produce
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Fig. 8: Examples of the different final models and an output level for the different combinational creativity approaches when
combining “castle” and “aboveground” Super Mario Bros. levels. Reproduced with permission from [35].

Fig. 9: A screenshot of the beginning of one of the Conceptual
Expansion games. Reproduced with permission from [18].

fully novel games. Instead the output knowledge was simply
an approximation of a held-out game based on a partial
specification of that held-out game.

In [18], Guzdial and Riedl demonstrated the production of
novel games from the same input knowledge: the graph of
machine learned level and rule information from the three
above games. They evaluated these games in a human subject
study compared to other combinational creativity approaches.
Their transformation function optimized output graphs using
a hand-authored heuristic and greedy search over the concep-
tual expansion representation. Their results indicated that the
conceptual expansion games outperformed games produced
by existing combinational creativity methods, but that the
heuristic was poorly designed for game quality. Determining
how best to guide the search of possible combinations is still
an important open problem. We include a screenshot of one
of the games in Figure 9.

B. Transfer Learning

Transfer learning is a machine learning technique that
focuses on transferring information or knowledge from one
domain and applying it in another. In the following sections,
we discuss prior PCG-KT methods that have made use of
transfer learning as the transformation function.

1) Domain Adaptation: This refers to approaches for trans-
forming knowledge extracted from a source domain to supple-
ment or approximate the knowledge of another target domain.
The existing domain adaptation approaches for level genera-

tion focus on finding a mapping between the representations
of the source and target domains.

In [9], Snodgrass and Ontañón presented an approach aimed
at automatically defining a mapping between the representa-
tions of multiple platforming game level domains. The core of
this approach works by converting the source domain levels to
the target domain representation using a subset of mappings
between the domains, and filtering out the poorly performing
mappings. The potential mappings are evaluated comparing
frequency of tile occurrences and structures (e.g., 2 × 2 tile
blocks) in the transformed input and target domains. The input
knowledge for this approach is the set of tile levels from the
input domain. The transformation function here is the mapping
pipeline that tries to define how to map the tiles from the
input domain to tiles in the target domain. After applying this
mapping, the output knowledge is a set of levels re-represented
as target domain levels. We include examples of different
output levels for different mappings in Figure 10.

Unlike the above work which aimed to transform from a
source domain to supplement a target domain, Snodgrass [36]
and Snodgrass and Sarkar [14] aimed to transform a source
domain to an intermediate target domain, and then either
back to the source domain [36] or to a new secondary target
domain [14]. In these approaches, the authors transform the
source domain levels into an abstract domain representation
meant to capture only the structural properties of the levels
from each source domain (i.e., map each tile type to either
a solid type or empty type). In [36], they use the abstract
levels as input to a level generator that creates variations
on that level. The variations are generated by matching the
structures in the abstract level with structures in the source
domain, and using regions of the source domain levels to
fill in the details of the abstract level. In [14], they train
VAEs on the abstract levels, and generate new levels in the
abstract domain. They then use those generated abstract levels
as input to a generator that blends the source domains instead
of transforming back to an individual source domain. In this
approach the blended levels are created by matching structures
in the generated abstract levels with structures across all the
source domains, and using the various source domains to
fill in the details of the generated abstract level. Thus, the
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Figure 4: An example level sampled with each mapping method (i.e., manual, random, our approach). From the top, the
mappings are Kid Icarus: R1

2, R2
3, B2, M1; Kid Kool: R1

1, R2
3, B3, M3.

showing the effects of the vertical orientation of the Kid
Icarus. Conversely, the Kid Kool mappings have linearity
values falling between the training level and the Kid Icarus
mappings, likely as a result of the mountainous structures
and multiple height sections in the Kid Kool levels.

Lastly, we see that the manually defined mappings for Kid
Kool and Kid Icarus and the mappings found with our ap-
proach for Kid Icarus are able to approximate the leniency
value of the original training level, whereas the random map-
pings for Kid Icarus vary wildly (due to mappings that as-
sign common tiles to enemies), and are often too low in the
remaining Kid Kool mappings (due to the vastness of the Kid
Kool levels paired with the relative infrequency of enemies).

To visualize the space of different levels generated by
each approach, Figure 3 shows a two-dimensional projection
of the sampled levels along with the 16 Super Mario Bros.
levels, where each dot represents one level. Levels were pro-
jected based on a measure of distance between them. To
determine the distance between two levels, we represented
them as a histogram of high-level tiles, and computed the
Euclidean distance between these histograms. High-level
tiles were found by clustering 4 ⇥ 4 tile sections using k-
medoids (k = 40) with all the training levels and one trans-
formed level from each tile mapping. It is interesting to see
how closely grouped all the levels sampled using the Kid
Kool levels are (red, yellow, orange). This may be due to
our constraints locking more tiles, or due to how similar Kid
Kool is to Super Mario Bros. Additionally, the original Su-
per Mario Bros. levels and the levels sampled with the base-
line (green) are closer to the Kid Kool level clusters than to
the Kid Icarus level clusters, which further supports that the
Kid Kool levels are more similar to the training levels. No-
tice, levels sampled using the Kid Icarus (shades of blue)

mappings are mostly separated into different clusters corre-
sponding to the different methods (i.e., Mi, Rj

i , Bi). Fur-
thermore, levels produced with the manual mappings (dark
blue), are close to the levels produced using the mappings
found with our approach (blue), showing that our approach
can find mappings more similar to human devised mappings
than to random mappings. The figure also shows the narrow
space covered by the original levels in the training set.

Figure 4 shows example levels sampled with each tile
mapping. The Kid Icarus mapping levels contain a large
amount of platforms (made of enemies, pipe pieces, and
solid tiles), which mimic the structures in the Kid Icarus
maps. Also note the mountainous structures in the Kid Kool
mappings levels, which are present in the Kid Kool maps.

Conclusions and Future Work
This paper describes an approach for transforming
videogame levels from one game to another to supplement
a set of training levels in a target domain for use by a statis-
tical procedural level generator. These transformations are
done by finding a mapping between the tile types in one
game to the tile types in the target domain. Our approach
is able to find tile mappings that provide better output than
random tile mappings, and similar output to manually pro-
duced mappings. Additionally, we find the choice of out-of-
domain levels has a large impact on the output levels (i.e.,
Kid Icarus mappings produced levels very different from
Kid Kool mappings). However, this approach is limited to
transferring only what is represented by the current tile for-
mat, which does not include gameplay mechanics. In the
future, we will explore more complex representations to al-
low for more complex domains and cross-genre adaptation.
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Fig. 10: Output levels from domain adaptation Markov models from Super Mario Bros. to Kid Icarus and Kid Kool. Reproduced
with permission from [9].

Fig. 11: Example Castlevania levels produced by the com-
bined domain adaptation and conceptual blending approach.
Reproduced with permission from [14].

KI-to-SMB Met-to-SMB MM-to-KI SMB-to-Met

Fig. 12: Example style-transferred levels involving Kid Icarus
(KI), Super Mario Bros. (SMB), Mega Man (MM) and Metroid
(Met). Reproduced with permission from [37]

input knowledge here consists of the levels in the abstract
representation, extracted from the original input levels and the
output knowledge consists of the blended levels obtained via
applying the transformation function which in this case is the
structure matching process described above. Notice while [14]
consists of both a domain adaptation stage and a combinational
creativity stage, we include it in this section because the former
is what enables the latter in this approach. Figure 11 contains
example Castlevania levels produced with this approach.

2) Platformer Style Transfer: Style transfer [72] is a pop-
ular application of creative ML in visual art and has been
the subject of a large body of research [73]. To implement
style transfer for games, Sarkar and Cooper introduced tile2tile
[37], a method for transferring style between levels of different
platformer games. In the context of PCG-KT, we can view
style transfer in games as extracting knowledge about the style
of one game and transforming it into that of another game.
While game blending is similar to style transfer, it is distinct.
Style transfer translates the style of one domain to that of
another where as in blending, the goal is to take the style
and/or content of two domains and combine them to create

Fig. 13: Constructive (left) and search-based (right) generators
built from the generalized 3x3s. Reproduced with permission
from [38].

something new. The tile2tile approach involves translating lev-
els from a source game into an affordance-based representation
using a pre-defined mapping and then using a machine-learned
model to convert from the affordance representation to the
game-specific tiles of the target game. This approach treats
the underlying affordances and the overarching game-specific
tile distribution of a level as being respectively analogous to
the concepts of content and style in visual art style transfer.
The input knowledge here consists of the levels of the source
game, the output knowledge consists of the same levels style-
transferred to the target game and the transformation function
is the combination of the hand-authored tile-to-affordance
mapping and the model trained to translate from affordances
to tiles of the target game. Example style-transferred levels are
shown in Figure 12.

3) Design Pattern Approach for Multi-Game Level Gen-
eration: In [38], Beaupre et al. took a generalization and
selection approach to procedurally generate new levels of
particular games by generalizing across level design patterns
from multiple games. This led to new game levels that did
not fit within the set of existing levels, such as Pacman levels
with collectibles outside of the default Pacman pellets. Their
approach took all the game levels from the VGDL and re-
represented each level in a more general representation (e.g.,
all enemies now considered identical, all collectibles now con-
sidered identical, etc.). From this representation, 3x3 patterns
were extracted, which then informed constructive and search-
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Fig. 14: Recommendation process for Pitako. Reproduced with permission from [71]. In this context, all sprites are associated
with a game behavior e.g. shooter, chaser, random move, etc. In a), users provide a sprite to the game engine. In b), Pitako
ranks the best sprite matches from other games (red circles) through data mining association (using confidence as a sorting
criteria). In c), users have access to the ranks. In d), after inspecting the ranks, users select a new sprite. In e), users can
inspect the two sprites in action—the one they provided and the one suggested by the system, imported from another game.

based PCG generators as seen in Figure 13. Notably, this
approach did not make use of statistical machine learning, but
instead utilized an approach similar to case-based reasoning.
In this work, the input knowledge consisted of the generalized
3x3 design patterns extracted from the original VGDL levels.
The output knowledge was made up of the generated levels
which in turn were built up using the extracted design patterns
via an evolution-based transformation function.

4) Data mining association for game rule recombination:
In [39], Machado et al. introduced Pitako, a recommender
system for game mechanics for use within their prior game
design tool Cicero. The system is built upon the VGDL and
GVGAI (General Video Game AI) framework [74] and uses
association rule mining to make suggestions to the designer
regarding adding game elements and rules. Typically used
with transaction databases, an association rule of the form
X → Y says that the presence of an item X in a transaction
implies the presence of item Y in the same transaction with
some probability. To contextualize this in a game scenario,
consider Mega Man X [75] and Super Metroid [76]. Both
have a shooting mechanic and also share the “hold button
for powerful shot” mechanic. That is, if a game implements a
shooting mechanic, it may also implement the powerful shot
rule. Framed as a transaction, having a shooting mechanic
implies the presence of the powerful shooting mechanic in
the same game. Association rules are discovered using data
mining association algorithms such as the Apriori algorithm
[77] to analyze databases of transactions. For this purpose,
Pitako uses a game catalog. The system uses the games
available in the GVGAI framework and applies a depth-first
tree search on each of them to read all the game descriptions
and put them in the catalog where every game element, from
every game, can be disassociated from its original source and
easily inserted in a target game. The catalog is organized to
facilitate that its items, which are the elements required to
describe VGDL games, can be categorized to be used as input
for data mining association algorithms. Figure 14 outlines
the Pitako recommendation process. It starts by getting the
designer game description set. In (a), the user has only one
game element. In (b), the system uses frequent itemset data

mining to identify associations that match the element in the
designer’s game to elements in the catalog of games. The red
ellipses represent elements from different games which are
candidates for being recommended. This procedure yields a
list of recommendations sorted in descending order by the
rule’s confidence level shown in (c). The designer picks the
recommendation with the highest confidence level (d) and
employs it as a new element in the game. The element shown
here is from a Frogger clone and in this example, the user is
mixing elements of Frogger and Sokoban. When the user picks
a recommendation, its game elements are transferred from a
game in the catalog and inserted into the in-development game.
Thus, the input knowledge here is the game catalog extracted
from the GVGAI games using search while the output knowl-
edge is the designed game which contains elements taken
from the input games that the user chose. The transformation
process involves both the application of the Apriori algorithm
on the catalog to generate recommendations as well as the
use of these recommendations by users when designing their
game. It is interesting to note that the transformation process
here is mixed-initiative as opposed to the more automated
transformations in other surveyed work.

VI. DISCUSSION

In this section, we summarize open problems and directions
for future work related to PCG-KT.

A. Evaluation

It is unclear how to best evaluate knowledge transforma-
tion in a generative process. Existing works have utilized
techniques such as expressive range analysis [78], playability
measures, and user studies, while ML-based systems have
used comparisons between training and generated distributions
[79]. However, these focus on assessing the goodness and
functionality of generated outputs rather than evaluating the
properties of the transformation itself. Moreover, in certain
cases, even content evaluation methods need to be improved
upon. For example, in the case of game and level blending,
it remains unclear how best to assess the quality of blended
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levels and/or levels belonging to an entirely new domain
produced by blending. A current common approach is to
compare content produced in the new/blended domain with
content belonging to the original input domains, however these
often signal whether blending or transformation has taken
place rather than provide information about the extent, type
and quality of blending and transformation. This is analogous
to our concept of measuring the content distance of the
transformation function introduced above, but tells us little
about the other properties of the transformation. Thus in the
future, more robust and informative evaluation techniques need
to be developed. This would likely require defining specific
metrics capable of assessing various properties of knowledge
transformation, perhaps utilizing some of the other features
highlighted in our framework definition.

B. Extending to Multiple Game Genres

A majority of works utilizing knowledge transformation
(and PCG in general) have focused on platformer games.
While using games of one genre is more convenient, restricting
to one genre limits the scope and possibility space of the
transformation process. Extending knowledge transformation
approaches to multiple genres and domains could enable the
generation of new types and varieties of content. Under-
standably, working with knowledge extracted from multiple
genres would pose new challenges in terms of developing
techniques for reasoning with such knowledge and applying
transformations in a meaningful way. However, being able
to do so could promise novel gameplay experiences. Could
we design transformation functions able to combine extracted
knowledge from a platformer such as Mario with extracted
knowledge from an adventure game like Zelda? As previously
discussed, Sarkar and Cooper [20] took a step in this direction
by generating levels that combined platformer segments with
dungeon rooms but ignored considerations of mechanics in
such levels. Addressing such issues and extracting knowledge
from different genres and domains in a manner that is con-
ducive to meaningful combinations and transformations may
open up the possibility of building systems that could blend
genres of games rather than just levels or games. For example,
could such a system combine the mechanics of a platformer
with the lock-and-key progression of an adventure game to
produce a metroidvania? In terms of the PCG-KT framework,
such a system would exhibit transformation properties of even
higher content distance between input and output knowledge
since the output domain of the transformation function would
not only be a new game but possibly a new genre altogether.

C. Combining Models and Techniques

In all previously discussed works, the knowledge transfor-
mation process was performed using one primary model or
architecture such as Markov chains, Bayes Nets and VAEs.
In the future, it would be interesting to consider hybrid
knowledge transformation processes that combine the use
of these models in some meaningful way. The choice of
model used as the derivation function dictates the form of the
extracted knowledge. We have seen this take the form of latent

vector representations in the case of VAEs and probability
tables in the case of Markov chains, when applied to similar
raw knowledge. Thus, it might be fruitful to explore how
these different extracted knowledge representations could be
combined to inform and influence the transformation process
and obtain different varieties of output knowledge. For ex-
ample, could the models used for conceptual expansion be
combined with the Markov models used for domain adap-
tation or with VAEs to learn a continuous latent space of
game graphs? Alternatively, could conceptual expansion be
applied on latent vectors of different games or the design
patterns of some other prior works? Such model ensembles
could be viewed as hierarchical knowledge transformation
where the knowledge extracted from one derivation function
is used as the input to another. In other words, this can be
seen as replacing the single derivation function D with a
composition of derivation functions Dn ◦Dm ◦ ... ◦Db ◦Da,
whose application produces intermediate extracted knowledge
Ka,Kb...Km,Kn at each step. Examining the features of
such successively extracted knowledge and how they might
influence the transformed knowledge could be another fertile
direction for future work. Similarly, one could conceive of a
composition of transformation functions Tn ◦Tm ◦ ...◦Ta that
performs successive transformations on some given extracted
knowledge, producing new transformed knowledge at each
step. This could take the form of a system that produces game
blends (via conceptual blending) and then transfers the style
of the blended game to another game (via domain transfer).

D. Design Tools and Controllability

An important direction for future work is to add more
controllability to knowledge transformation processes as well
as to democratize PCG-KT models via user-facing designer
tools. For example, consider the blending related works dis-
cussed earlier. While these enable controllability via speci-
fying objective functions and supervised ML models, they
require experience and familiarity with ML and evolutionary
algorithms, thereby making it feasible for only researchers
and experts to work with such methods. Additionally, several
methods discussed in this paper, particularly those based on
ML, can be viewed as black boxes that take in input (and
optionally a set of constraints) and produce an output without
affording much room for user interaction with the genera-
tive/transformation process, thereby allowing little authorial
control. One could imagine future design tools addressing such
concerns by, for example, visualizing the latent design spaces
learned by these models and allowing users to interactively
navigate such spaces and steer the generation process. Overall,
future work needs to focus on building tools that enable a
wider variety of users to control such models (e.g., enabling
the use of UI elements and interfaces rather than defining
one-hot encoded labels and coding up fitness functions for
evolution). Such tools could take inspiration from the large
body of existing co-creative systems [80], particularly those
based on ML, such as Morai Maker [81] and TOAD-GUI [82],
both for making Mario levels, the tool from Schrum et al. [83]
for interactively exploring the latent spaces of GANs trained
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on Mario and Zelda, as well as Lode Encoder [84], a VAE-
based tool for generating Lode Runner [85] levels. Note that
in all these examples, the tools only work in one game/domain
and thus cannot be considered as tools for PCG-KT. In fact,
the Cicero and Pitako tools discussed previously are among
the few examples of PCG-KT design tools, thus speaking to
the need for developing more of these in the future. Sarkar
and Cooper [86] provide a blueprint for such a tool but at the
time of writing, no implementation exists. Incorporating more
controllability into PCG-KT approaches and operationalizing
them via user-friendly tools could further advance the field and
help PCG-KT methods be applied for game and level design
more widely. In addition to tools that help less experienced
users, future works could also consider tools that incorporate
user knowledge in performing the transformation process.
These could be viewed as creativity support tools [87] where
the user enters input knowledge taken from various domains
and the tool enables the user to either choose from a variety
of automated derivation functions to apply, create their own
hand-authored derivation functions or highlight aspects of the
input knowledge that are amenable to transformation. Such
tools could thus help incorporate a user’s creative insights into
the PCG-KT process and foster a more co-creative, human-
centered form of PCG-KT as opposed to the more automated
methods that we have surveyed in the paper.

VII. CONCLUSION

In this paper, we introduced Procedural Content Generation
via Knowledge Transformation (PCG-KT), a new lens for
PCG research that focuses on methods that generate content
via transforming knowledge between domains. We offered a
formal definition for PCG-KT, outlined a framework for char-
acterizing works under this lens, discussed several examples
of existing works that fall under the framework and concluded
with directions for future work. Prior survey papers on search-
based PCG [1] and PCGML [5] have been successful in
highlighting a specific family of PCG approaches as well
as pointing out future work directions which inspired further
research. For example, several works highlighted in this paper
were directly influenced by suggestions made in the PCGML
paper. We hope to achieve a similar result with this paper. By
highlighting this new branch of PCG, we wish to stimulate
further research in this interesting and exciting new direction.
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[9] S. Snodgrass and S. Ontañón, “An approach to domain transfer in
procedural content generation of two-dimensional videogame levels,”
in Proceedings of the 12th Artificial Intelligence and Interactive Digital
Entertainment Conference, 2016.

[10] A. J. Summerville, S. Snodgrass, M. Mateas, and S. O. Villar, “The
VGLC: The video game level corpus,” Proceedings of the 7th Workshop
on Procedural Content Generation, 2016.
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