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ON CHEN’S THEOREM OVER PIATETSKI–SHAPIRO TYPE PRIMES

AND ALMOST–PRIMES

Jinjiang Li & Fei Xue & Min Zhang

Abstract. In this paper, we establish a new mean value theorem of Bombieri–Vinogradov
type over Piatetski–Shapiro sequence. Namely, it is proved that for any given constant A > 0
and any sufficiently small ε > 0, there holds

∑

d6xξ

(d,l)=1

∣

∣

∣

∣

∣

∑

A1(x)6a<A2(x)
(a,d)=1

g(a)

(

∑

ap6x
ap≡l (mod d)

ap=[k1/γ ]

1−
1

ϕ(d)

∑

ap6x

ap=[k1/γ ]

1

)∣

∣

∣

∣

∣

≪
xγ

(log x)A
,

provided that 1 6 A1(x) < A2(x) 6 x1−ε and g(a) ≪ τsr (a), where l 6= 0 is a fixed integer and

ξ := ξ(γ) =
238 + 17

38
γ −

238 − 1

38
− ε

with

1−
18

238 + 17
< γ < 1.

Moreover, for γ satisfying

1−
0.03208

238 + 17
< γ < 1,

we prove that there exist infinitely many primes p such that p+2 = P2 with P2 being Piatetski–
Shapiro almost–primes of type γ, and there exist infinitely many Piatetski–Shapiro primes p

of type γ such that p + 2 = P2. These results generalize the result of Pan and Ding [37] and
constitutes an improvement upon a series of previous results of [29, 31, 39, 47].

1. Introduction and main result

The ternary Goldbach problem asserts that every odd integer n > 9 can be represented in
the form

n = p1 + p2 + p3, (1.1)

where p1, p2, p3 are odd prime numbers. In 1937, Vinogradov [46] solved that asymptotic form
of the representation of the type (1.1) exists for every sufficiently large odd integer. Recently,
Helfgott [14, 15, 16, 17] completely solved the problem and proved that the ternary Goldbach
conjecture is true. The binary Goldbach problem, which states that every even integer N > 6
can be written as the sum of two odd primes, also remains unsettled. Another central problem
in the theory of prime distribution, namely the twin prime conjecture, states that there exist
infinitely many primes p such that p + 2 is also prime. Although the conjecture has resisted
all attacks, there have been spectacular partial achievements. One of the well–known results is
due to Chen [7, 8], who proved that there exist infinitely many primes p such that p+2 has at
most 2 prime factors.

An important approach for investigating the binary Goldbach problem is by the use of sieve
methods, especially for Selberg’s sieve method. As usual, we denote by Pr an almost–prime
with at most r prime factors, counted according to multiplicity. In Selberg’s sieve method, the
estimate of the error term is quite crucial. The mean value theorem can be used to achieve this
estimate on average over special arithmetic progressions. Generally speaking, stronger results
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can be derived if a better improvement can be made on the extension of the ‘level’ of the mean
value theorem.

In 1947, by using the large sieve method developed by Linnik, Rényi [41] was the first to
prove that the following estimate

∑

d6xξ

max
y6x

max
(l,d)=1

∣

∣

∣

∣

∣

∑

n6y
n≡l (mod d)

Λ(n)−
y

ϕ(d)

∣

∣

∣

∣

∣

≪
x

(log x)A
(1.2)

holds for ξ < ξ0 with some fixed ξ0 < 1, where A > 0 is arbitrary. From (1.2), Rényi [41] showed
that there exists an r ∈ N

+ such that every sufficiently large even integer N is representable in
the form

N = p + Pr, (1.3)

where p is a prime number. However, Rényi did not give a quantitative connection between ξ0
and r. Later, Barban [3] and Pan [32, 34] proved that (1.2) holds for ξ0 = 1/6 and ξ0 = 1/3,
independently and respectively. When ξ0 = 1/3, Pan [32] firstly gave a quantitative estimate
of r and showed that (1.3) holds for r = 5. Afterwards, Barban [4] and Pan [33], independently
and respectively, proved that (1.2) holds for ξ0 = 3/8, from which they both obtained that
(1.3) holds for r = 4. It is easy to see that, under the generalized Riemann Hypothesis
(GRH), (1.2) holds for ξ0 = 1/2. In 1965, Bombieri [5] and Vinogradov [45] independently and
unconditionally showed that (1.2) holds for ξ0 = 1/2. To be specific, Bombieri [5] proved that,
for any given A > 0, there holds

∑

d6x1/2(log x)−B

max
y6x

max
(l,d)=1

∣

∣

∣

∣

∣

∑

n6y
n≡l (mod d)

Λ(n)−
y

ϕ(d)

∣

∣

∣

∣

∣

≪
x

(log x)A
, (1.4)

provided that B > 3A + 23. Afterwards, Gallagher [10] give a valuable simple proof of (1.4).
In 1965, by using the result of Barban [4], i.e. ξ0 = 3/8, Buchstab [6] proved that (1.3) holds
for r = 3. The hitherto best result in this direction is due to Chen [7, 8] who showed that (1.3)
holds for r = 2 by using the ‘weighted sieve’ established by himself and the ‘switching principle’
constructed by himself. In his famous work, Chen [8] had to prove a result which is a varied
theorem of Bombieri [5] on the distribution of primes in arithmetic progressions. Subsequently,
Pan and Ding [35, 36, 37] formulate a new mean value theorem which is a generalized form of
Bombieri–Vinogradov theorem that incorporates Chen’s case. In [37], Pan and Ding showed
that, for any given A > 0, if 1 6 A1(x) < A2(x) 6 x1−ε, there holds

∑

d6x1/2(log x)−B

max
y6x

max
(l,d)=1

∣

∣

∣

∣

∣

∑

A1(y)6a<A2(y)
(a,d)=1

f(a)

(

∑

an6y
an≡l (mod d)

Λ(n)−
y

aϕ(d)

)
∣

∣

∣

∣

∣

≪
x

(log x)A
, (1.5)

where f(a) ≪ τk(a) and B > 2A + 22k+2(22k+2 + 1) + 21, τ(a) denotes the Dirichlet divisor
function. Here we emphasize that (1.4) can be deduced from (1.5) by choosing appropriate
function f(a).

For 1/2 < γ < 1, the Piatetski–Shapiro sequences are sequences of the form ([n1/γ ])∞n=1. Such
sequences have been named in honor of Piatetski–Shapiro, who, in [40], proved that ([n1/γ ])∞n=1

contains infinitely many primes for 11
12
< γ < 1. To be specific, Piatetski–Shapiro showed that,

for γ ∈ (11
12
, 1), the counting function

πγ(x) := #
{

p 6 x : p = [n1/γ ] for some n ∈ N
+
}

satisfies the asymptotic formula

πγ(x) =
xγ

log x
(1 + o(1)) (1.6)
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as x→ ∞. The range of γ in the above asymptotic formula, in which it is known that ([n1/γ ])∞n=1

contains infinitely many primes, has been extended many times over the years due to a number
of mathematicians [1, 13, 19, 20, 22, 23, 25, 27, 30, 42]. The hitherto best result which makes
(1.6) work is currently known to hold for all γ ∈ (2426

2817
, 1) thanks to Rivat and Sargos [43].

Moreover, Rivat and Wu [44] also showed that there exist infinitely many Piatetski–Shapiro
primes for γ ∈ (205

243
, 1) by showing a lower bound of πγ(x) with the excepted order of magnitude.

In 1992, Balog and Friedlander [2] firstly found an asymptotic formula for the number of
solutions of the equation (1.1) with variables restricted to the Piatetski–Shapiro primes. An
interesting corollary of their theorem is that every sufficiently large odd integer can be written
as the sum of two primes and a Piatetski–Shapiro prime of type γ, provided that γ ∈ (8

9
, 1).

Afterwards, their studies in this direction were subsequently continued by Jia [21] and by
Kumchev [24], and generalized by Cui [9] and Li and Zhang [28], consecutively and respectively.

Based on the above results, it is interesting to investigate the solvability of the equation (1.3)
when p is a Piatetski–Shapiro prime. It is naturally expected that a theorem of Bombieri–
Vinogradov type holds for the Piatetski–Shapiro primes. In the early days, the only result in
this direction, due to Leitmann [26], gives a very low level of distribution which does not allow
us to determine the value of the parameter r.

In 2003, Peneva [39] obtained a mean value theorem of Bombieri–Vinigradov’s type for
Piatetski–Shapiro primes. Namely, she proved that, for any given constant A > 0 and any
sufficiently small ε > 0, there holds

∑

d6xξ

(d,l)=1

∣

∣

∣

∣

∣

∑

p6x
p≡l (mod d)

p=[k1/γ]

1−
1

ϕ(d)
πγ(x)

∣

∣

∣

∣

∣

≪
xγ

(log x)A
, (1.7)

where l 6= 0 is a fixed integer and

ξ = ξ(γ) =

{

755
424
γ − 331

212
− ε, for 662

755
< γ 6 608

675
,

5
4
γ − 13

12
− ε, for 608

675
< γ < 1.

(1.8)

By (1.8) and sieve methods, Peneva [39] firstly showed that for every sufficiently large even
integer N , (1.3) is solvable with p = [n1/γ ] a Piatetski–Shapiro prime, and r being the least
positive integer satisfying the inequality

r + 1−
log 4

1+3−r

log 3
>

1

ξ(γ)
+ ε.

Using the above level ξ in (1.8), Peneva [39] proved that (1.3) is solvable for r = 7 with a
Piatetski–Shapiro prime p = [n1/γ ] and 0.9854 < γ < 1. Essentially, from the arguments similar
to that in Peneva [39], one can obtain that, there exist infinitely many Piatetski–Shapiro primes
of type γ such that p+ 2 = P7 with 0.9854 < γ < 1.

In 2011, by using the same level ξ in (1.8), Wang and Cai [47] improved the result of Peneva
[39], and showed that there exist infinitely many Piatetski–Shapiro primes of type γ such that
p+ 2 = P5 with 29

30
< γ < 1. Afterwards, Lu [31], in 2018, reestablished a mean value theorem

of Bombieri–Vinigradov’s type with level ξ = ξ(γ) = (13γ− 12)/4− ε for 12
13
< γ < 1. By using

this level, Lu [31] strengthened the result of Wang and Cai [47]. He proved that there exist
infinitely many Piatetski–Shapiro primes of type γ such that p+ 2 = P4 with 0.9993 < γ < 1.
Subsequently, Li, Zhang and Xue [29] reconstructed the mean value theorem of Bombieri–
Vinigradov’s type with level

ξ = ξ(γ) =
129

4
γ −

255

8
− ε

for 85
86
< γ < 1, by which and the weighted sieve of Richert they proved that there exist infinitely

many Piatetski–Shapiro primes of type γ such that p+ 2 = P3 with 0.9989445 < γ < 1.
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In this paper, we shall firstly generalize the result of Pan and Ding [37] and formulate a new
mean value theorem which is a generalized form of Bombieri–Vinogradov’s type over Piatetski–
Shapiro sequences that incorporates Chen’s argument [8]. After that, by using Chen’s trick,
i.e. ‘Chen’s weighted sieve’ and ‘switching principle’, we shall establish stronger conclusion and
improve the previous result about the topic of shifted prime on Piatetski–Shapiro sequence.

Theorem 1.1. Suppose that l 6= 0 is a fixed integer, and γ is a real number satisfying

1−
18

238 + 17
< γ < 1.

Then for any given constant A > 0 and any sufficiently small ε > 0, there holds

∑

d6xξ

(d,l)=1

∣

∣

∣

∣

∣

∑

A1(x)6a<A2(x)
(a,d)=1

g(a)

(

∑

ap6x
ap≡l (mod d)

ap=[k1/γ ]

1−
1

ϕ(d)

∑

ap6x
ap=[k1/γ ]

1

)
∣

∣

∣

∣

∣

≪
xγ

(log x)A
, (1.9)

provided that 1 6 A1(x) < A2(x) 6 x1−ε and g(a) ≪ τ sr (a), where

ξ := ξ(γ) =
238 + 17

38
γ −

238 − 1

38
− ε;

the implied constant in (1.9) depends only on A and ε.

In Theorem 1.1, if we take A1(x) ≡ 1 and

g(a) =

{

1, if a = 1,

0, if a > 1.
(1.10)

Then (1.9) becomes

∑

d6xξ

(d,l)=1

∣

∣

∣

∣

∣

∑

p6x
p≡l (mod d)

p=[k1/γ ]

1−
1

ϕ(d)

∑

p6x
p=[k1/γ ]

1

∣

∣

∣

∣

∣

≪
xγ

(log x)A
,

so that Theorem 1.1 is a generalization of (1.7) with its enlarged level ξ → 9
19

= 0.473684 . . .
as γ tends to 1. Thus, one can obtain the following corollary.

Corollary 1.2. Suppose that l 6= 0 is a fixed integer, and γ is a real number satisfying

1−
18

238 + 17
< γ < 1.

Then for any given constant A > 0 and any sufficiently small ε > 0, there holds

∑

d6xξ

(d,l)=1

∣

∣

∣

∣

∣

∑

p6x
p≡l (mod d)

p=[k1/γ ]

1−
1

ϕ(d)

∑

p6x
p=[k1/γ ]

1

∣

∣

∣

∣

∣

≪
xγ

(log x)A
, (1.11)

where

ξ := ξ(γ) =
238 + 17

38
γ −

238 − 1

38
− ε;

the implied constant in (1.11) depends only on A and ε.

Remark 1. Under exponent pair hypothesis, i.e. (ε, 1
2
+ ε) is an exponent pair, it follows from

Lemma 3.2, Lemma 4.1 and Lemma 5.1 that (1.9) holds for

ξ = ξ(γ) =
5

2
γ − 2− ε (1.12)

with 4
5
< γ < 1, from which and (1.10) one can obtain (1.7) with ‘level’ defined as in (1.12)

provided that 4
5
< γ < 1.
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Remark 2. By using the method exactly the same as that during proving Theorem 1.1, one
can establish the following mean value theorem with Piatetski–Shapiro type’s shifted product ap
as follows

∑

d6xξ

(d,l)=1

∣

∣

∣

∣

∣

∑

A1(x)6a<A2(x)
(a,d)=1

g(a)

(

∑

ap6x
ap≡l (mod d)

ap±2=[k1/γ ]

1−
1

ϕ(d)

∑

ap6x
ap±2=[k1/γ ]

1

)
∣

∣

∣

∣

∣

≪
xγ

(log x)A
, (1.13)

where the explicit formula of ξ = ξ(γ) and the range of γ, which makes the (1.13) work, are
exactly the same as is shown in Theorem 1.1.

Theorem 1.3. Suppose that γ is a real number satisfying

1−
0.03208

238 + 17
< γ < 1.

Then there exist infinitely many primes p such that

p+ 2 = P2

with P2 being Piatetski–Shapiro almost–primes of type γ.

Theorem 1.4. Suppose that γ is a real number satisfying

1−
0.03208

238 + 17
< γ < 1.

Then there exist infinitely many Piatetski–Shapiro primes p of type γ such that

p+ 2 = P2.

Remark 3. The process of the proof of Theorem 1.4 is essentially the same as that of Theorem
1.3 except replacing Theorem 1.1 with Corollary 1.2. Therefore, we only give the details of the
proof of Theorem 1.3 and omit the proof of Theorem 1.4.

Remark 4. The key point of improving the number r such that p + 2 = Pr with Piatetski–
Shapiro prime or almost–prime is to enlarge the level ξ = ξ(γ), for γ near to 1, of the mean value
theorem of Bombieri–Vinigradov’s type over Piatetski–Shapiro sequence. In order to compare
the result in this paper with the previous results (e.g., see the literatures [39, 31, 29]), we list
the numerical result as follows:

ξ(γ) =
5

4
γ −

13

12
− ε →

1

6
= 0.1666 . . . , for γ → 1;

ξ(γ) =
13γ − 12

4
− ε →

1

4
= 0.25, for γ → 1;

ξ(γ) =
129

4
γ −

255

8
− ε→

3

8
= 0.375, for γ → 1;

ξ(γ) =
238 + 17

38
γ −

238 − 1

38
− ε →

9

19
= 0.473684 . . . , for γ → 1;

ξ(γ) =
5

2
γ − 2− ε→

1

2
= 0.5, for γ → 1. (under exponent pair hypothesis)

Notation. Throughout this paper, x is a sufficiently large number; ε and η are sufficiently
small positive numbers, which may be different in each occurrences. Let p and q, with or
without subscripts, always denote a prime number. We use [x], {x} and ‖x‖ to denote the
integral part of x, the fractional part of x and the distance from x to the nearest integer,
respectively. Denote by Pr an almost–prime with at most r prime factors, counted according
to multiplicity. As usual, ϕ(n),Λ(n), τr(n) and µ(n) denote Euler’s function, von Mangoldt’s
function, the Dirichlet divisor function of dimension r, and Möbius’ function, respectively. Let
(m1, m2, . . . , mk) and [m1, m2, . . . , mk] be the greatest common divisor and the least common
multiple ofm1, m2, . . . , mk, respectively. We write L = log x; e(t) = exp(2πit); ψ(t) = t−[t]− 1

2
.
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The notation n ∼ X means that n runs through a subinterval of (X, 2X ], whose endpoints are
not necessarily the same in the different occurrences and may depend on the outer summation
variables. f(x) ≪ g(x) means that f(x) = O(g(x)); f(x) ≍ g(x) means that f(x) ≪ g(x) ≪
f(x).

2. Preliminaries

In this section, we shall reduce the problem of estimating the sum in (1.9) to estimating
exponential sums over primes.

For 1/2 < γ < 1, it is easy to see that

[−kγ ]− [−(k + 1)γ] =

{

1, if k = [m1/γ ] for some m ∈ N
+,

0, otherwise.

For convenience, we put D = xξ. In order to prove (1.9), we only need to show that

∑

d6D
(d,l)=1

∣

∣

∣

∣

∣

∑

A1(x)6a<A2(x)
(a,d)=1

g(a)

(

∑

an6x
an≡l (mod d)

Λ(n)
(

[−(an)γ ]− [−(an + 1)γ]
)

−
1

ϕ(d)

∑

an6x

Λ(n)
(

[−(an)γ ]− [−(an + 1)γ]
)

)
∣

∣

∣

∣

∣

≪
xγ

(log x)A
.

Therefore, it is sufficient to prove that

∑

d6D
(d,l)=1

∣

∣

∣

∣

∣

∑

A1(x)6a<A2(x)
(a,d)=1

g(a)

(

∑

an6x
an≡l (mod d)

Λ(n)
(

(an + 1)γ − (an)γ
)

−
1

ϕ(d)

∑

an6x

Λ(n)
(

(an+ 1)γ − (an)γ
)

)
∣

∣

∣

∣

∣

≪
xγ

(log x)A
, (2.1)

∑

d6D
(d,l)=1

∣

∣

∣

∣

∣

∑

A1(x)6a<A2(x)
(a,d)=1

g(a)
∑

an6x
an≡l (mod d)

Λ(n)
(

ψ
(

− (an)γ
)

− ψ
(

− (an + 1)γ
))

∣

∣

∣

∣

∣

≪
xγ

(log x)A
, (2.2)

and

∑

d6D
(d,l)=1

1

ϕ(d)

∣

∣

∣

∣

∣

∑

A1(x)6a<A2(x)
(a,d)=1

g(a)
∑

an6x

Λ(n)
(

ψ
(

− (an)γ
)

− ψ
(

− (an + 1)γ
))

∣

∣

∣

∣

∣

≪
xγ

(log x)A
. (2.3)

The estimate (2.1) can be obtained from the new mean value theorem of Bombieri–Vinogradov
type, which was established by Pan and Ding [35, 36, 37], by using partial summation to get
rid of the smooth weighted function f(t) = (t+1)γ − tγ and it holds for every γ ∈ (1/2, 1) and
D = x1/2−ε, where ε > 0 is sufficiently small. Hence, we only have to show (2.2) and (2.3).
First, we shall give the proof of (2.2) in details, and (2.3) can be treated similarly by following
the processes of the proof of (2.2). Clearly, (2.2) will follow, if we can prove that for X 6 x,
there holds

∑

d6D
(d,l)=1

∣

∣

∣

∣

∣

∑

A1(x)6a<A2(x)
(a,d)=1

g(a)
∑

an∼X
an≡l (mod d)

Λ(n)
(

ψ
(

− (an)γ
)

− ψ
(

− (an+ 1)γ
))

∣

∣

∣

∣

∣

≪
xγ

(log x)A
, (2.4)
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Let η > 0 be a sufficiently small number. If X 6 x1−η, then the left–hand side of (2.4) is

≪
∑

d6D
(d,l)=1

∣

∣

∣

∣

∣

∑

A1(x)6a<A2(x)
(a,d)=1

g(a)
∑

an∼X
an≡l (mod d)

Λ(n)
(

(an + 1)γ − (an)γ
)

∣

∣

∣

∣

∣

+
∑

d6D
(d,l)=1

∣

∣

∣

∣

∣

∑

A1(x)6a<A2(x)
(a,d)=1

g(a)
∑

an∼X
an≡l (mod d)

Λ(n)
(

[−(an)γ ]− [−(an + 1)γ]
)

∣

∣

∣

∣

∣

≪ L
∑

A1(x)6a<A2(x)

τ sr (a)
∑

an∼X

(an)γ−1τ(|an− l|) + L
∑

A1(x)6a<A2(x)

τ sr (a)
∑

an∼X
an=[k1/γ ]

τ(|an− l|)

≪ X
η
3

∑

b∼X

bγ−1τ(b) +X
η
3

∑

b∼X
b=[k1/γ ]

τ(b) ≪ Xγ+ η
2 ≪ xγL−A.

Hence, we can assume that x1−η 6 X 6 x. It is easy to see that, for ξ 6 (1− η)/2, there holds

Xξ 6 D 6 Xξ+ η
2 .

Now, we use the well–known expansions (e.g., see the arguments on page 245 of Heath–Brown
[13])

ψ(t) = −
∑

0<|h|6H

e(th)

2πih
+O(E(t, H)), (2.5)

where

E(t, H) := min

(

1,
1

H‖t‖

)

=
∞
∑

h=−∞

bhe(th)

and

bh ≪ min

(

log 2H

H
,
1

|h|
,
H

|h|2

)

.

Inserting (2.5) into the left–hand side of (2.4), the contribution of the error term in (2.5) to the
left–hand side of (2.4) is

∑

d6D
(d,l)=1

∑

A1(x)6a<A2(x)
(a,d)=1

g(a)
∑

an∼X
an≡l (mod d)

Λ(n)
(

E((an)γ, H) + E((an+ 1)γ, H)
)

= E1 + E2, (2.6)

say. We treat E1 only, since the estimate of E2 is exactly the same. For E1, we have

E1 ≪ L
∑

d6D
(d,l)=1

∑

A1(x)6a<A2(x)
(a,d)=1

τ sr (a)
∑

an∼X
an≡l (mod d)

E((an)γ, H)

≪ Xη/10
∑

d6D
(d,l)=1

∑

m∼X
m≡l (mod d)

(

∑

m=an
A1(x)6a<A2(x)

(a,d)=1

)

E(mγ , H)

≪ Xη/9
∑

d6D
(d,l)=1

∑

m∼X
m≡l (mod d)

∞
∑

h=−∞

bhe(hm
γ)

≪ Xη/9
∑

d6D
(d,l)=1

∞
∑

h=−∞

|bh|

∣

∣

∣

∣

∣

∑

m∼X
m≡l (mod d)

e(hmγ)

∣

∣

∣

∣

∣

. (2.7)

Now, we use the following estimate, which is an analogue of Lemma 1 of Heath–Brown [13] for
arithmetic progressions, to give the upper bound estimate of the innermost sum in (2.7).
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Lemma 2.1. Let 1 6 d 6 X, X < X1 6 2X. Then
∑

X<m6X1
m≡l (mod d)

e(hmγ) ≪ min
(

Xd−1, d−1|h|−1X1−γ + dκ−ℓ|h|κXκγ−κ+ℓ
)

,

where (κ, ℓ) is an exponent pair.

Proof. See Lemma 2.1 of Li, Zhang and Xue [29]. �

Taking (κ, ℓ) = (1
2
, 1
2
) in Lemma 2.1, we obtain

E1 ≪ Xη/9
∑

d6D

(

|b0|Xd
−1 +

∑

h 6=0

|bh|
(

|h|−1X1−γd−1 + |h|1/2Xγ/2
)

)

≪ X1+η/8H−1 +X1−γ+η/9
∑

d6D

d−1
∑

h 6=0

|h|−2

+Xγ/2+η/9D

(

∑

0<|h|6H

|h|−1/2 +H
∑

|h|>H

|h|−3/2

)

≪ X1+η/8H−1 +X1−γ+η/8 +Xγ/2+η/8H1/2D ≪ xγL−A,

provided that

H = X1−γ+η and γ >
1

2
+ ξ. (2.8)

Therefore, it remains to show that

S :=
∑

d6D
(d,l)=1

∑

0<h6H

1

h

∑

A1(x)6a<A2(x)
(a,d)=1

τ sr (a)

×

∣

∣

∣

∣

∣

∑

an∼X
an≡l (mod d)

Λ(n)
(

e
(

− h(an)γ
)

− e
(

− h(an + 1)γ
)

)

∣

∣

∣

∣

∣

≪ xγL−A. (2.9)

Define

φh,a(n) = 1− e
(

h((an)γ − (an+ 1)γ)
)

.

By partial summation, the innermost sum on the left–hand side of (2.9) is
∑

an∼X
an≡l (mod d)

Λ(n)e(−h(an)γ)φh,a(n)

=

∫ 2X
a

X
a

φh,a(t)d

(

∑

X/a<n6t
an≡l (mod d)

Λ(n)e(−h(an)γ)

)

≪

∣

∣

∣

∣

φh,a

(

2X

a

)
∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

an∼X
an≡l (mod d)

Λ(n)e(−h(an)γ)

∣

∣

∣

∣

∣

+

∫ 2X
a

X
a

∣

∣

∣

∣

∣

∑

X/a<n6t
an≡l (mod d)

Λ(n)e(−h(an)γ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂φh,a(t)

∂t

∣

∣

∣

∣

dt

≪ hXγ−1 × max
X/a<t62X/a

∣

∣

∣

∣

∣

∑

X/a<n6t
an≡l (mod d)

Λ(n)e(−h(an)γ)

∣

∣

∣

∣

∣

, (2.10)
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where we use the estimate

φh,a(t) ≪ haγ−1tγ−1 and
∂φh,a(t)

∂t
≪ haγ−1tγ−2.

Inserting (2.10) into the left–hand side of (2.9), we obtain

S ≪ Xγ−1 ×
∑

d6D
(d,l)=1

∑

0<h6H

∑

A1(x)6a<A2(x)
(a,d)=1

τ sr (a)

∣

∣

∣

∣

∣

∑

an∼X
an≡l (mod d)

Λ(n)e(−h(an)γ)

∣

∣

∣

∣

∣

= Xγ−1 ×
∑

d6D
(d,l)=1

∑

0<h6H

∑

A1(x)6a<A2(x)
(a,d)=1

τ sr (a) · c(d, h, a)
∑

an∼X
an≡l (mod d)

Λ(n)e(−h(an)γ)

≪ Xγ−1 ×
∑

A1(x)6a<A2(x)

τ sr (a)
∑

an∼X

Λ(n)
∑

0<h6H

e(−h(an)γ)
∑

d6D
(d,l)=1
d|an−l

c(d, h, a)

= Xγ−1 ×
∑

A1(x)6a<A2(x)

τ sr (a)
∑

an∼X

Λ(n)Ga(n),

where

Ga(n) =
∑

0<h6H

Ξh,a(n)e(−h(an)
γ)

and

Ξh,a(n) =
∑

d6D
(d,l)=1
d|an−l

c(d, h, a), |c(d, h, a)| = 1.

Accordingly, in order to establish the estimate (2.9), it is sufficient to show that
∣

∣

∣

∣

∣

∑

A1(x)6a<A2(x)

τ sr (a)
∑

an∼X

Λ(n)Ga(n)

∣

∣

∣

∣

∣

≪ XL−A. (2.11)

A special case of the identity of Heath–Brown [12] is given by

−
ζ ′

ζ
= −

ζ ′

ζ
(1− Zζ)3 −

3
∑

j=1

(

3

j

)

(−1)jZjζj−1(−ζ ′),

where Z = Z(s) =
∑

k6(X/a)1/3
µ(k)k−s. From this we can decompose Λ(n) for n ∼ X/a as

Λ(n) =

3
∑

j=1

(

3

j

)

(−1)j−1
∑

k1...k2j=n

µ(k1) · · ·µ(kj) log k2j .

Thus, we can express
∑

n∼X/a

Λ(n)Ga(n) in terms of sums

∑

. . .
∑

k1···k2j∼X/a
ki∼Ki

µ(k1) · · ·µ(kj)(log k2j)Ga(k1 · · ·k2j),

where 1 6 j 6 3, K1K2 · · ·K2j ∼ X/a and K1, . . . , Kj 6 (2X/a)1/3. By dividing the Kj into
two groups, we have
∣

∣

∣

∣

∣

∑

A1(x)6a<A2(x)

τ sr (a)
∑

n∼X/a

Λ(n)Ga(n)

∣

∣

∣

∣

∣

≪η X
η max

∣

∣

∣

∣

∣

∑

A1(x)6a<A2(x)

τ sr (a)
∑∑

kn∼X/a
k∼K

α(k)β(n)Ga(kn)

∣

∣

∣

∣

∣

,

(2.12)
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where the maximum is taken over all bilinear forms with coefficients satisfying one of

|α(k)| 6 1, |β(n)| 6 1, (2.13)

or
|α(k)| 6 1, β(n) = 1,

or
|α(k)| 6 1, β(n) = log n,

and also satisfying in all cases
K 6 X/a. (2.14)

We refer to the case (2.13) as being Type II sums and to the other cases as being Type I sums
and write for brevity ΣII and ΣI , respectively. In the following two sections, we shall give
appropriate upper bound estimates for the sums of Type II and Type I, respectively.

3. Estimate of Type II Sums

We begin by putting the two variables a and k together, i.e. m = ak, and breaking up the
ranges for m and h into intervals (M, 2M ] and (J, 2J ] so thatMN ≍ X and 1

2
6 J 6 H . Then,

for the Type II sums ΣII , there holds

ΣII =
∑

m∼M

∑

n∼N
MN∼X

(

∑

m=ak
A1(x)6a<A2(x)

k∼K

τ sr (a)α(k)

)

β(n)
∑

h∼J

Φh(mn)e
(

− h(mn)γ
)

≪ Xη
∑

m∼M

∣

∣

∣

∣

∣

∑

n∼N
mn∼X

∑

h∼J

β(n)Φh(mn)e(−h(mn)
γ)

∣

∣

∣

∣

∣

,

where
Φh(mn) =

∑

d6D
(d,l)=1
d|mn−l

c′(d, h), |c′(d, h)| = 1.

Denote by T a parameter, which will be chosen later. We decompose the collection of available
pairs (n, h) into sets St, for 1 6 t 6 T , defined by

St =

{

(n, h) : n ∼ N, h ∼ J,
4JNγ(t− 1)

T
< hnγ

6
4JNγt

T

}

.

Hence one has

ΣII ≪ Xη
∑

16t6T

∑

m∼M

∣

∣

∣

∣

∣

∑∑

(n,h)∈St

mn∼X

β(n)Φh(mn)e(−h(mn)
γ)

∣

∣

∣

∣

∣

,

which combined with Cauchy’s inequality yields

|ΣII |
2 ≪ XηTM

∑

16t6T

∑

m∼M

∣

∣

∣

∣

∣

∑∑

(n,h)∈St

mn∼X

β(n)Φh(mn)e(−h(mn)
γ)

∣

∣

∣

∣

∣

2

≪ XηTM
∑

16t6T

∑∑

(n1,h1)∈St

∑∑

(n2,h2)∈St

∣

∣

∣

∣

∣

∑

m∼M
mn1∼X
mn2∼X

Φh1(mn1)Φh2(mn2)e
((

h1n
γ
1 − h2n

γ
2

)

mγ
)

∣

∣

∣

∣

∣

≪ XηTM
∑

n1∼N

∑

n2∼N

∑

h1∼J

∑

h2∼J

|λ|64JNγT−1

∣

∣

∣

∣

∣

∑

m∼M
mn1∼X
mn2∼X

Φh1(mn1)Φh2(mn2)e(λm
γ)

∣

∣

∣

∣

∣

,
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where
λ = h1n

γ
1 − h2n

γ
2 .

Denote by S the innermost sum over m. By the definition of the quantity Φh(·), we have

S =
∑

m∼M
mn1∼X
mn2∼X

∑

d16D
(d1,l)=1
d1|mn1−l

c′(d1, h1)
∑

d26D
(d2,l)=1
d2|mn2−l

c′(d2, h2)e(λm
γ).

If the system of the congruences
{

mn1 ≡ l (mod d1)

mn2 ≡ l (mod d2)

is not solvable, then S = 0. If the above system is solvable, then there exists some positive
integer g = g(d1, d2, l, n1, n2) with 1 6 g 6 [d1, d2] such that the system is equivalent to m ≡ g

(mod [d1, d2]). In this case, we change the order of summation of S to derive that

S =
∑

d16D
(d1,l)=1

c′(d1, h1)
∑

d26D
(d2,l)=1

c′(d2, h2)
∑

m∼M
mn1∼X
mn2∼X

m≡g (mod [d1,d2])

e
(

λmγ
)

.

Therefore, by Lemma 2.1, we deduce that for any exponent pair (κ, ℓ) there holds

S ≪
∑

d16D
(d1,l)=1

∑

d26D
(d2,l)=1

∣

∣

∣

∣

∣

∑

m∼M
mn1∼X
mn2∼X

m≡g (mod [d1,d2])

e(λmγ)

∣

∣

∣

∣

∣

≪
∑

d16D
(d1,l)=1

∑

d26D
(d2,l)=1

min

(

M

[d1, d2]
,

M1−γ

|λ|[d1, d2]
+ |λ|κ[d1, d2]

κ−ℓMκγ−κ+ℓ

)

.

In order to compute the contribution of the term |λ|κ[d1, d2]
κ−ℓMκγ−κ+ℓ to |ΣII |

2, we need the
following Lemma.

Lemma 3.1. For 1
2
< α < 1, J > 1, N > 1, ∆ > 0, let N (∆) denote the number of solutions

of the following inequality
∣

∣h1n
α
1 − h2n

α
2

∣

∣ 6 ∆, h1, h2 ∼ J, n1, n2 ∼ N.

Then we have
N (∆) ≪ ∆JN2−α + JN log(JN).

Proof. See the arguments on pp. 256–257 of Heath–Brown [13]. �

From the following estimate

∑

d16D

∑

d26D

[d1, d2]
κ−ℓ ≪

∑

d16D

∑

d26D

(

(d1, d2)

d1d2

)ℓ−κ

=
∑

16r6D

∑

k16D/r

∑

k26D/r

1

rℓ−κkℓ−κ
1 kℓ−κ

2

≪
∑

16r6D

rκ−ℓ

(

∑

k6D/r

kκ−ℓ

)2

≪
∑

16r6D

rκ−ℓ
(

Dr−1
)2(κ−ℓ+1)

≪ Dκ−ℓ+1,

we know that the total contribution of the term |λ|κ[d1, d2]
κ−ℓMκγ−κ+ℓ to |ΣII |

2 is

≪ XηTM

(

∑

d16D

∑

d26D

[d1, d2]
κ−ℓ

)

|λ|κMκγ−κ+ℓ ×
∑

n1∼N

∑

n2∼N

∑

h1∼J

∑

h2∼J

|λ|64JNγT−1

1

≪ XηTMDκ−ℓ+1(JNγT−1)κMκγ−κ+ℓ · N (4JNγT−1)
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≪ XηTM−κ+ℓ+1Dκ−ℓ+1(JMγNγT−1)κ · N (4JNγT−1)

≪ Xκγ+ηT 1−κM−κ+ℓ+1Dκ−ℓ+1Jκ · N (4JNγT−1). (3.1)

If |λ| 6 M−γ , then M [d1, d2]
−1 6 M1−γ |λ|−1[d1, d2]

−1, and thus the total contribution of the
term M [d1, d2]

−1 to |ΣII |
2 is

≪ XηTM ·ML3 ×
∑

n1∼N

∑

n2∼N

∑

h1∼J

∑

h2∼J

|λ|6M−γ

1 ≪ XηTM2 · N (M−γ), (3.2)

where we use the elementary estimate
∑

d16D

∑

d26D

[d1, d2]
−1 ≪ (logD)3.

If |λ| > M−γ , then M [d1, d2]
−1 > M1−γ |λ|−1[d1, d2]

−1. It follows from the splitting argument
that the total contribution of the term M1−γ |λ|−1[d1, d2]

−1 to |ΣII |
2 is

≪ XηTM ·M1−γL3 × max
M−γ6∆64JNγT−1

∑

n1∼N

∑

n2∼N

∑

h1∼J

∑

h2∼J

∆<|λ|62∆

1

|λ|

≪ XηTM2−γ × max
M−γ6∆64JNγT−1

∆−1 · N (2∆), (3.3)

which covers the upper bound estimate (3.2). From Lemma 3.1, we know that

N (∆) ≪ ∆JN2−γ + JNL,

which combined with (3.1) and (3.3) yields
∣

∣ΣII

∣

∣

2
≪ Xκγ+ηT 1−κM−κ+ℓ+1Dκ−ℓ+1Jκ · N (4JNγT−1)

+XηTM2−γ × max
M−γ6∆64JNγT−1

(JN2−γ + JN∆−1)

≪ Xη
(

Xκγ+2T−κM−κ+ℓ−1Dκ−ℓ+1Jκ+2 +Xκγ+1T 1−κM−κ+ℓDκ−ℓ+1Jκ+1

+ TJX2−γ + TMXJ
)

. (3.4)

We choose T such that the first term and the fourth term in the above estimate are equal.
Accordingly, we take

T =
[

X
κγ+1
κ+1 M

−κ+ℓ−2
κ+1 D

κ−ℓ+1
κ+1 J

]

+ 1. (3.5)

Putting (3.5) into (3.4), we obtain
∣

∣ΣII

∣

∣

2
≪ Xη

(

X
κ(γ+1)+2

κ+1 M
ℓ−1
κ+1D

κ−ℓ+1
κ+1 J2 +X

2(κγ+1)
κ+1 M

2(ℓ−1)
κ+1 D

2(κ−ℓ+1)
κ+1 J2

+X
2κ+3−γ

κ+1 M
−κ+ℓ−2

κ+1 D
κ−ℓ+1
κ+1 J2 +Xκγ+1M−κ+ℓDκ−ℓ+1Jκ+1 + JX2−γ +MXJ

)

,

which combined with J ≪ H = X1−γ+η and D 6 Xξ+η/2 for ξ 6 (1− η)/2 yields
∣

∣ΣII

∣

∣

2
≪ Xη

(

X
3κ+4−(κ+2)γ

κ+1
+κ−ℓ+1

κ+1
ξM

ℓ−1
κ+1 +X

2(κ+2−γ)
κ+1

+
2(κ−ℓ+1)

κ+1
ξM

2(ℓ−1)
κ+1

+X
4κ+5−(2κ+3)γ

κ+1
+κ−ℓ+1

κ+1
ξM

−κ+ℓ−2
κ+1 +Xκ+2−γ+(κ−ℓ+1)ξM−κ+ℓ +X3−2γ +MX2−γ

)

.

According to above arguments, we deduce the following lemma.

Lemma 3.2. Assume that (κ, ℓ) is an exponent pair. Suppose that 1
2
< γ < 1 and 0 < ξ 6

(1− η)/2 subject to the conditions

γ >
κ

κ− ℓ+ 1
+ ξ + η (3.6)

and

γ >
κ + 2

κ− ℓ+ 3
+
κ− ℓ+ 1

κ− ℓ+ 3
ξ + η. (3.7)
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If there holds

X
(κ+2)(1−γ)+(κ−ℓ+1)ξ

1−ℓ
+η ≪ M ≪ Xγ−η,

then we have

ΣII ≪ X1−η.

4. Estimate of Type I Sums

As in section 3, we also put m = ak and breaking up the range for m into intervals (M, 2M ]
such that MN ≍ X . According to the definition of the quantity Ξh(·), one derives that

ΣI =
∑

m∼M

∑

n∼N
MN∼X

̟(m)β(n)
∑

0<|h|6H

e(−h(mn)γ)
∑

d6D
(d,l)=1
d|mn−l

c′′(d, h),

where

̟(m) =
∑

m=ak
A1(x)6a<A2(x)

k∼K

τ sr (a)α(k) ≪ Xη.

By changing the order of summation we obtain

ΣI ≪ L
∑

0<h6H

Hh, (4.1)

where

Hh =
∑

d6D
(d,l)=1

c′′(d, h)
∑

m∼M

̟(m)
∑

n∼N
mn∼X

mn≡l (mod d)

e(h(mn)γ).

By Lemma 2.1, we deduce that for any exponent pair (κ, ℓ) there holds

Hh ≪ Xη
∑

d6D
(d,l)=1

∑

m∼M

∣

∣

∣

∣

∣

∑

n∼N
mn∼X

mn≡l (mod d)

e(h(mn)γ)

∣

∣

∣

∣

∣

≪ Xη
∑

d6D
(d,l)=1

∑

m∼M

(

h−1X1−γM−1d−1 + hκMκ−ℓdκ−ℓXκγ−κ+ℓ
)

≪ h−1X1−γ+η + hκXκγ−κ+ℓ+ηMκ−ℓ+1Dκ−ℓ+1. (4.2)

From (4.1) and (4.2), one has

ΣI ≪ X1−γ+η +Hκ+1Xκγ−κ+ℓMκ−ℓ+1Dκ−ℓ+1

≪ X1−γ+η +Mκ−ℓ+1X1+ℓ−γ+(κ−ℓ+1)ξ+η.

According to above estimate, we obtain the following lemma.

Lemma 4.1. Assume that (κ, ℓ) is an exponent pair. Suppose that M satisfies the condition

M ≪ X
γ−ℓ

κ−ℓ+1
−ξ−η.

Then we have

ΣI ≪ X1−η.
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5. Proof of Theorem 1.1

As the illustration in section 3 and section 4, during the process of the treatment of exponen-
tial sum estimate, we regard m = ak as one variable and n as another. Hence one can deduce
from (2.12) that

∣

∣

∣

∣

∣

∑

A1(x)6a<A2(x)

τ sr (a)
∑

n∼X/a

Λ(n)Ga(n)

∣

∣

∣

∣

∣

≪η X
η max

∣

∣

∣

∣

∣

∑

m∼M

∑

n∼N
MN∼X

̟(m)β(n)F(mn)

∣

∣

∣

∣

∣

, (5.1)

where the maximum is taken over all bilinear forms with coefficients satisfying one of

|̟(m)| 6 1, |β(n)| 6 1, (5.2)

or
|̟(m)| 6 1, β(n) = 1,

or
|̟(m)| 6 1, β(n) = log n,

and also satisfying in all cases
M 6 X. (5.3)

In the argument between (2.11)–(2.13), by dividing the Kj into two groups in a judicious
fashion, with making a new variable m by bonding a and corresponding kj in one group, we
are able to reduce the range of M from (5.3).

Lemma 5.1. If we have real numbers 0 < a < 1, 0 < b < c < 1 satisfying

b <
2

3
, 1− c < c− b, 1− a <

c

2
,

then (5.1) still holds when (5.3) is replaced by the conditions

M 6 Xa for Type I sums,

and
Xb 6M 6 X c for Type II sums.

Proof. See Proposition 1 of Balog and Friedlander [2]. �

In order to prove (2.2), we need to take appropriate exponent pair (κ, ℓ) in Lemma 3.2 and
Lemma 4.1, respectively. It is easy to see that, for n > 1, there holds

An

(

1

2
,
1

2

)

=

(

1

2n+2 − 2
, 1−

n+ 1

2n+2 − 2

)

.

In Lemma 3.2, we take (κ, ℓ) = A3(1
2
, 1
2
) = ( 1

30
, 13
15
). Then the conditions (3.6) and (3.7) make

γ >
1

5
+ ξ + η (5.4)

and

γ >
61

65
+

1

13
ξ + η. (5.5)

Hence ΣII ≪ X1−η provided that

X
61(1−γ)+5ξ

4
+η ≪M ≪ Xγ−η.

In Lemma 4.1, we take

(κ, ℓ) = A36

(

1

2
,
1

2

)

=

(

1

238 − 2
, 1−

37

238 − 2

)

.

Then ΣI ≪ X1−η provided that

M ≪ X
237−1

19
γ− 238−39

38
−ξ−η.
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From Lemma 5.1, we take

a =
237 − 1

19
γ −

238 − 39

38
− ξ − η,

b =
61(1− γ) + 5ξ

4
+ η,

c = γ − η.

Then one can easily check that the conditions (2.8), (5.4) and (5.5), as well as the inequalities
in Lemma 5.1, hold. Therefore, we show that (2.11) holds, which is sufficient to complete the
proof of (2.2).

For (2.3), we can follow the process from (2.4) to (2.8). Then it suffices to show that

S∗ :=
∑

d6D
(d,l)=1

1

ϕ(d)

∑

0<h6H

1

h

∑

A1(x)6a<A2(x)
(a,d)=1

τ sr (a)

×

∣

∣

∣

∣

∣

∑

an∼X

Λ(n)
(

e
(

− h(an)γ
)

− e
(

− h(an + 1)γ
)

)

∣

∣

∣

∣

∣

≪ xγL−A. (5.6)

Afterwards, for the innermost sum on the right–hand side of (5.6), one can follow the routine
process as is shown in (2.10) to see that

S∗ ≪ Xγ−1 ×
∑

d6D
(d,l)=1

1

ϕ(d)

∑

0<h6H

∑

A1(x)6a<A2(x)
(a,d)=1

τ sr (a)

∣

∣

∣

∣

∣

∑

an∼X

Λ(n)e(−h(an)γ)

∣

∣

∣

∣

∣

= Xγ−1 ×
∑

d6D
(d,l)=1

1

ϕ(d)

∑

0<h6H

∑

A1(x)6a<A2(x)
(a,d)=1

τ sr (a) · c
∗(d, h, a)

∑

an∼X

Λ(n)e(−h(an)γ)

≪ Xγ−1 ×
∑

A1(x)6a<A2(x)

τ sr (a)
∑

an∼X

Λ(n)
∑

0<h6H

e(−h(an)γ)
∑

d6D
(d,l)=1

c∗(d, h, a)

ϕ(d)

= Xγ−1 ×
∑

A1(x)6a<A2(x)

τ sr (a)
∑

an∼X

Λ(n)G∗
a(n),

where
G∗

a(n) =
∑

0<h6H

Ξ∗
h,a(n)e(−h(an)

γ)

and

Ξ∗
h,a(n) =

∑

d6D
(d,l)=1

c∗(d, h, a)

ϕ(d)
, |c∗(d, h, a)| = 1.

Hence, in order to show (2.3), we only need to prove
∣

∣

∣

∣

∣

∑

A1(x)6a<A2(x)

τ sr (a)
∑

an∼X

Λ(n)G∗
a(n)

∣

∣

∣

∣

∣

≪ XL−A,

which can be treated almost exactly the same as the arguments in dealing with (2.2). Conse-
quently, we omit the details herein. This completes the proof of Theorem 1.1.

6. Proof of Theorem 1.3

In this section, we shall prove Theorem 1.3 according to the result of Theorem 1.1, Corollary
1.2, (1.13), the ‘weighted sieve’ and the ‘switching principle’ constructed by Chen [8]. First, we
list some lemmas which is necessary for proving Theorem 1.3.
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6.1. Some Preliminary Lemmas. Let A denote a finite set of integers, P denote an infinite
set of primes, P denote the set of primes which do not belong to P. For a given z > 2, we set

P (z) =
∏

p<z
p∈P

p.

Define the sifting function as

S(A ,P, z) =
∣

∣

{

a ∈ A : (a, P (z)) = 1
}
∣

∣.

For d|P (z), define Ad = {a ∈ A : a ≡ 0 (mod d)}. Moreover, we assume that |Ad| may be
written in the form

|Ad| =
ω(d)

d
X + rd, µ(d) 6= 0, (d,P) = 1, (6.1)

where ω(d) is a multiplicative function such that 0 6 ω(p) < p, X is a positive number
independent of d, and rd is an error term which is to be small on average so thatX approximates
to the cardinality of A . Also, we assume that the function ω(p) is constant on average over p
in P, which means that

∑

z16p<z2
p∈P

(

1−
ω(p)

p

)−1

6
log z2
log z1

(

1 +
K

log z1

)

(6.2)

holds for all z2 > z1 > 2, where K is a constant satisfying K > 1. For details of (6.1) and (6.2),
one can see the arguments (4.12)–(4.15) on page 28 of Halberstam and Richert [11], and the
arguments on page 205 of Iwaniec [18].

Lemma 6.1. Suppose that the conditions (6.1) and (6.2) hold. Then we have

S(A ,P, z) > XV (z)
(

f(s) +O
(

log−1/3D
))

−RD, (6.3)

S(A ,P, z) 6 XV (z)
(

F (s) +O
(

log−1/3D
))

+RD, (6.4)

where

RD =
∑

d<D
d|P (z)

|rd|, s =
logD

log z
,

V (z) = C(ω)
e−C0

log z

(

1 +O

(

1

log z

))

, (6.5)

C(ω) =
∏

p

(

1−
ω(p)

p

)(

1−
1

p

)−1

, (6.6)

where C0 denotes the Euler’s constant, f(s) and F (s) denote the classical functions in the linear
sieve theory, which are determined by the following differential–difference equation











F (s) =
2eC0

s
, f(s) = 0, 0 < s 6 2,

d

ds
(sF (s)) = f(s− 1),

d

ds
(sf(s)) = F (s− 1), s > 2.

(6.7)

Proof. For (6.3) and (6.4), one can refer to (6), (7), (8) on page 209 of Iwaniec [18], while (6.7)
can be referred to as a special case with κ = 1, β = 2 in (9) of Iwaniec [18]. Moreover, for (6.5)
and (6.6) one can see (2.4) and (2.5) of Chapter 5 in Halberstam and Richert [11]. �

Lemma 6.2. Let F (s) and f(s) be defined as in (6.7). Then we have

F (s) =
2eC0

s
, 0 < s 6 3;

F (s) =
2eC0

s

(

1 +

∫ s−1

2

log(t− 1)

t
dt

)

, 3 6 s 6 5;
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f(s) =
2eC0 log(s− 1)

s
, 2 6 s 6 4;

f(s) =
2eC0

s

(

log(s− 1) +

∫ s−1

3

dt1
t1

∫ t1−1

2

log(t2 − 1)

t2
dt2

)

, 4 6 s 6 6;

where C0 denotes Euler’s constant.

Proof. See (7.51)–(7.54) on page 127 of Chapter VII in Pan and Pan [38]. �

6.2. Weighted Sieve Method. Let x be a sufficiently large number and set

A =
{

a : a 6 x, a = p+ 2, a = [k1/γ ]
}

, P =
{

p : p > 2
}

.

Denote by 1A(n) the characteristic function of set A, i.e.,

1A(n) =

{

1, if n ∈ A,

0, if n 6∈ A.

Then one has
∣

∣

{

a : a ∈ A , a = P2

}
∣

∣ >
∑

a∈A

(a,P (x1/10.92))=1

1P2(a).

Trivially, we have
∑

a∈A

(a,P (x1/10.92))=1
µ(a)=0

1P2(a) ≪
∑

x1/10.926p6x1/2

x

p2
≪ x1−

1
10.92 .

Hence one gets
∣

∣

{

a : a ∈ A , a = P2

}
∣

∣ >
∑

a∈A

(a,P (x1/10.92))=1
(a,2)=1

µ2(a)1P2(a) +O(x1−
1

10.92 ). (6.8)

Now, we claim that, for given integer a with a 6 x which subjects to (a, P (x1/10.92)) = 1, (a, 2) =
1 and µ(a) 6= 0, there holds

1P2(a) > 1−
1

2
̺1(a)−

1

2
̺2(a)− ̺3(a), (6.9)

where

̺1(a) =
∑

x1/10.926p<x1/3.29

p|a

1;

̺2(a) =

{

1, if a = p1p2p3, x
1/10.92 6 p1 < x1/3.29 6 p2 < p3, (a, 2) = 1,

0, otherwise;

̺3(a) =

{

1, if a = p1p2p3, x
1/3.29 6 p1 < p2 < p3, (a, 2) = 1,

0, otherwise.

Actually, by noting the fact that ̺1(a) > 0, ̺2(a) > 0 and ̺3(a) > 0, if Ω(a) 6 2, then obviously
we have 1P2(a) = 1 > 1 − 1

2
̺1(a) −

1
2
̺2(a) − ̺3(a). Now, we always assume that Ω(a) > 3,

then 1P2(a) = 0. If ̺1(a) > 2, then 1P2(a) = 0 > 1 − 1
2
̺1(a) > 1 − 1

2
̺1(a) −

1
2
̺2(a) − ̺3(a).

If ̺1(a) = 1, then a must not be represented as the form a = p1p2p3p4 with x1/10.92 6 p1 <
x1/3.29 6 p2 < p3 < p4. Otherwise, one deduces that a = p1p2p3p4 > x1/10.92+3/3.29 > x, which is
a contradiction. Hence a must be written as a = p1p2p3 with x

1/10.92 6 p1 < x1/3.29 6 p2 < p3 so
that ̺2(a) = 1 and ̺3(a) = 0. In this case, there holds 1P2(a) = 0 = 1− 1

2
̺1(a)−

1
2
̺2(a)−̺3(a).

If ̺1(a) = 0, then ̺2(a) = 0, and thus every prime factor of a is not less than x1/3.29 which
combined Ω(a) > 3 makes a = p1p2p3 with x1/3.29 6 p1 < p2 < p3, i.e., ̺3(a) = 1. At this
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time, we also have 1P2(a) = 0 = 1 − 1
2
̺1(a)−

1
2
̺2(a)− ̺3(a). Above all, (6.9) holds under the

conditions given as above.
On the other hand, one has

∑

a∈A

(a,P (x1/10.92))=1
µ(a)=0
(a,2)=1

(

1−
1

2
̺1(a)−

1

2
̺2(a)− ̺3(a)

)

≪
∑

x1/10.926p6x1/2

x

p2
≪ x1−

1
10.92 ,

which combined (6.8) and (6.9) yields

∣

∣

{

a : a ∈ A , a = P2

}
∣

∣ >
∑

a∈A

(a,P (x1/10.92))=1
(a,2)=1

(

1−
1

2
̺1(a)−

1

2
̺2(a)− ̺3(a)

)

+O
(

x
9.92
10.92

)

= S −
1

2
S1 −

1

2
S2 − S3 +O

(

x
9.92
10.92

)

, (6.10)

where

S =
∑

a∈A

(a,P (x1/10.92))=1
(a,2)=1

1; Si =
∑

a∈A

(a,P (x1/10.92))=1
(a,2)=1

̺i(a), i = 1, 2, 3.

Now, we shall give the lower bound estimate of S and the upper bound estimates of Si (i =
1, 2, 3).

6.2.1. Lower Bound Estimate for S. We use (6.3) to give the lower bound of S. Hence we take

X = πγ(x), D = xξ, ω(d) =







d

ϕ(d)
, if (d, 2) = 1 and µ(d) 6= 0,

0, otherwise.

Then we have

C(ω) =
∏

p

(

1−
ω(p)

p

)(

1−
1

p

)−1

= 2
∏

p>2

(

1−
1

(p− 1)2

)

=: 2S,

say. It follows from (1.13) with (1.10) that

RD =
∑

d<xξ

d|P (x1/10.92)

∣

∣

∣

∣

∣

∑

p6x−2
p≡−2 (mod d)

p+2=[k1/γ ]

1−
1

ϕ(d)

∑

p6x−2
p+2=[k1/γ]

1

∣

∣

∣

∣

∣

6
∑

d6xξ

(d,2)=1

∣

∣

∣

∣

∣

∑

p6x
p≡−2 (mod d)

p+2=[k1/γ ]

1−
1

ϕ(d)

∑

p6x
p+2=[k1/γ ]

1

∣

∣

∣

∣

∣

≪
xγ

(log x)A
.

Then (6.3) gives

S > πγ(x)V
(

x1/10.92
)(

f(10.92ξ) +O
(

log−1/3 x
))

− RD

>
4S

ξ

(

log(10.92ξ − 1) +

∫ 10.92ξ−1

3

dt1
t1

∫ t1−1

2

log(t2 − 1)

t2
dt2

)

xγ

log2 x
(1 + o(1)). (6.11)
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6.2.2. Upper Bound Estimate for S1. By the definition of S1, we have

S1 =
∑

a∈A

(a,P (x1/10.92))=1
(a,2)=1

∑

x1/10.926p<x1/3.29

p|a

1 =
∑

x1/10.926p<x1/3.29

∑

a∈A

(a,P (x1/10.92))=1
p|a, (a,2)=1

1

6
∑

x1/10.926p<x1/3.29

∑

a∈A

(a,P (x1/10.92))=1
p|a

1 =:
∑

x1/10.926p<x1/3.29

S(Ap,P, x1/10.92), (6.12)

say. First we use (6.4) to give the upper bound of S(Ap,P, x1/10.92). Hence for x1/10.92 6 p <
x1/3.29, one has

S(Ap,P, x1/10.92) 6
1

ϕ(p)
πγ(x)V

(

x1/10.92
)

(

F

(

log(xξ/p)

log x1/10.92

)

+O
(

log−1/3 x
)

)

+RD(p)

6 21.84Se−C0 ·
1

p− 1
· F

(

10.92ξ −
10.92 log p

log x

)

xγ

log2 x
(1 + o(1)) +RD(p), (6.13)

where C0 is Euler’s constant and

RD(p) =
∑

d<xξ/p

d|P (x1/10.92)

∣

∣rdp
∣

∣.

It follows from (1.13) with (1.10) that

∑

x1/10.926p<x1/3.29

RD(p) =
∑

x1/10.926p<x1/3.29

∑

d<xξ/p

d|P (x1/10.92)

∣

∣

∣

∣

∣

∑

q6x−2
q≡−2 (mod dp)

q+2=[k1/γ ]

1−
1

ϕ(dp)

∑

q6x−2
q+2=[k1/γ ]

1

∣

∣

∣

∣

∣

6
∑

d′6xξ

(d′,2)=1

∣

∣

∣

∣

∣

∑

q6x−2
q≡−2 (mod d′)

q+2=[k1/γ ]

1−
1

ϕ(d′)

∑

q6x−2
q+2=[k1/γ ]

1

∣

∣

∣

∣

∣

≪
xγ

(log x)A
. (6.14)

It follows from (6.12)–(6.14), prime number theorem, and partial summation that

S1 6 21.84Se−C0
xγ

log2 x
(1 + o(1))×

∑

x1/10.926p<x1/3.29

1

p
· F

(

10.92ξ −
10.92 log p

log x

)

= 4S(1 + o(1))
xγ

log2 x
×

(

∫ 1
3.29

ξ− 3
10.92

dα

α(ξ − α)

+

∫ ξ− 3
10.92

1
10.92

1

α(ξ − α)

(

1 +

∫ 10.92(ξ−α)−1

2

log(β − 1)

β
dβ

)

dα

)

. (6.15)

6.2.3. Upper Bound Estimate for S2. By the definition of ̺2(a), we have

S2 =
∑

a∈A

(a,P (x1/10.92))=1
(a,2)=1

∑

a=p1p2p3
x1/10.926p1<x1/3.296p2<p3

1

=
∑

x1/10.926p1<x1/3.29

∑

x1/3.296p2<(x/p1)1/2

∑

p=p1p2p3−2
p2<p36x/(p1p2)

p1p2p3=[k1/γ ]

1.
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Define

E =
{

e : e = p1p2, x
1/10.92 6 p1 < x1/3.29 6 p2 < (x/p1)

1/2
}

,

L =
{

ℓ : ℓ = ep− 2, e ∈ E , ep 6 x
}

,

B =
{

ℓ : ℓ ∈ L , ℓ+ 2 = [k1/γ ] for some k ∈ N
+
}

.

Obviously, there holds

∣

∣E
∣

∣ 6
∑

x1/10.926p1<x1/3.29

(

x

p1

)1/2

≪
x1/2+1/6.58

log x
< x0.652.

In addition, for e ∈ E , one has
{

e = p1p2 > x1/3.29+1/10.92 > x0.3955,

e = p1p2 < p1(x/p1)
1/2 = x1/2p

1/2
1 < x1/2+1/6.58 < x0.652.

We claim that the number of the elements in L , which are not exceeding x0.3955, is less than
x0.652. Virtually, for such ℓ ∈ L satisfying ℓ 6 x0.3955, then there exists e ∈ E and prime p such
that

0 < ep− 2 = ℓ 6 x0.3955. (6.16)

If we fix the element e ∈ E , the prime p which satisfies the inequality (6.16) must be unique.
Otherwise, if there exist two primes p and p′ with p 6= p′ such that

0 < ep− 2 6 x0.3955 and 0 < ep′ − 2 6 x0.3955,

then we deduce that

x0.3955 >
∣

∣(ep− 2)− (ep′ − 2)
∣

∣ = e|p− p′| > 2e > 2x0.3955,

which is a contradiction. Consequently, we obtain

S2 6 S(B,P, x0.3955) +O(x0.652)

6 S(B,P, z) +O(x0.652) (6.17)

holds for z 6 x0.3955. Let Bd =
{

ℓ : ℓ ∈ B, ℓ ≡ 0 (mod d)
}

. Then it is easy to see that

∣

∣Bd

∣

∣ =
1

ϕ(d)
X + R

(1)
d + R

(2)
d ,

where

X =
∑

ℓ∈L

(

(ℓ+ 3)γ − (ℓ+ 2)γ
)

,

R
(1)
d =

∑

ℓ∈L

ℓ≡0 (mod d)

(

(ℓ+ 3)γ − (ℓ+ 2)γ
)

−
1

ϕ(d)

∑

ℓ∈L

(

(ℓ+ 3)γ − (ℓ+ 2)γ
)

, (6.18)

R
(2)
d =

∑

ℓ∈L

ℓ≡0 (mod d)

(

ψ
(

− (ℓ+ 3)γ
)

− ψ
(

− (ℓ+ 2)γ
)

)

. (6.19)

In order to apply (6.4) to give upper bound estimate for S(B,P, z), we need to show that

∑

d6xξ

(d,2)=1

∣

∣

∣
R

(i)
d

∣

∣

∣
≪

xγ

(log x)A
, i = 1, 2. (6.20)

We shall prove (6.20) by two following lemmas. For convenience, we put D = xξ.
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Lemma 6.3. Let R
(1)
d be defined as in (6.18). Then we have

∑

d6D
(d,2)=1

∣

∣

∣
R

(1)
d

∣

∣

∣
≪

xγ

(log x)A
.

Proof. By the definition of the set L , we only need to show that

∑

d6D
(d,2)=1

∣

∣

∣

∣

∣

∑

e∈E

(

∑

p<x/e
ep≡2 (mod d)

(

(ep+1)γ−(ep)γ
)

−
1

ϕ(d)

∑

p<x/e

(

(ep+1)γ−(ep)γ
)

)
∣

∣

∣

∣

∣

≪
xγ

(log x)A
. (6.21)

On the left–hand side of (6.21), for the sum over e ∈ E , we decompose the sum into two parts
according to whether (e, d) = 1 or (e, d) > 1. If (e, d) > 1, by noting the fact that (d, 2) = 1 ,
we always have ep 6≡ 2 (mod d) for all p < x/e. Thus the first inner sum in the brackets on the
left–hand side of (6.21) vanishes in this case. Hence the left–hand side of (6.21) is 6 R1 +R2,
where

R1 =
∑

d6D
(d,2)=1

∣

∣

∣

∣

∣

∑

e∈E

(e,d)=1

(

∑

p<x/e
ep≡2 (mod d)

(

(ep+ 1)γ − (ep)γ
)

−
1

ϕ(d)

∑

p<x/e

(

(ep + 1)γ − (ep)γ
)

)
∣

∣

∣

∣

∣

,

and

R2 =
∑

d6D
(d,2)=1

1

ϕ(d)

∣

∣

∣

∣

∣

∑

e∈E

(e,d)>1

∑

p<x/e

(

(ep+ 1)γ − (ep)γ
)

∣

∣

∣

∣

∣

.

In view of x0.3955 6 e < x0.652 for e ∈ E , by setting 1E (a) the characteristic function of E , i.e.,

1E (a) =

{

1, if a ∈ E ,

0, if a 6∈ E .

we can write

R1 =
∑

d6D
(d,2)=1

∣

∣

∣

∣

∣

∑

x0.39556a<x0.652

(a,d)=1

1E (a)

(

∑

p<x/a
ap≡2 (mod d)

(

(ap+1)γ − (ap)γ
)

−
1

ϕ(d)

∑

p<x/a

(

(ap+1)γ − (ap)γ
)

)
∣

∣

∣

∣

∣

,

and

R2 =
∑

d6D
(d,2)=1

1

ϕ(d)

∑

x0.39556a<x0.652

(a,d)>x1/10.92

1E (a)
∑

p<x/a

(

(ap+ 1)γ − (ap)γ
)

.

In order to prove the result of R1 ≪ xγ(log x)−A, by partial summation we can reduce the
matters to considering the case where there exists no weight on the prime variable p, and only
need to show that

∑

d6D
(d,2)=1

∣

∣

∣

∣

∣

∑

x0.39556a<x0.652

(a,d)=1

1E (a)

(

∑

p<x/a
ap≡2 (mod d)

1−
1

ϕ(d)

∑

p<x/a

1

)
∣

∣

∣

∣

∣

≪
x

(log x)A
,

By the theorem of Pan and Ding, i.e. (1.5), the above estimate follows immediately. For the
upper bound estimate of R2, one has

R2 ≪
∑

d6D
(d,2)=1

1

ϕ(d)

∑

x0.39556a<x0.652

(a,d)>x1/10.92

∑

p<x/a

γ(ap)γ−1 ≪
∑

d6D
(d,2)=1

1

ϕ(d)

∑

x0.39556a<x0.652

(a,d)>x1/10.92

aγ−1

∫ x
a

2

γtγ−1

log t
dt

≪
xγ

log x

∑

d6D

1

ϕ(d)

∑

x0.39556a<x0.652

(a,d)>x1/10.92

1

a
≪

xγ

log x

∑

d6D

1

ϕ(d)

∑

m|d

m>x1/10.92

1

m

∑

a16x0.652/m

1

a1
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≪
xγ

log x

∑

x1/10.926m6D

1

mϕ(m)

∑

d16D/m

1

ϕ(d1)

∑

a16x0.652/m

1

a1
≪ xγ−1/10.92 log2 x.

This completes the proof of Lemma 6.3. �

Lemma 6.4. Let R
(2)
d be defined as in (6.19). Then we have

∑

d6D
(d,2)=1

∣

∣

∣
R

(2)
d

∣

∣

∣
≪

xγ

(log x)A
.

Proof. By the definition of R
(2)
d , it suffices to show that, for X 6 x, there holds

∑

d6D
(d,2)=1

∣

∣

∣

∣

∣

∑

ℓ∈L

ℓ≡0 (mod d)
ℓ∼X

(

ψ
(

− (ℓ+ 3)γ
)

− ψ
(

− (ℓ+ 2)γ
)

)

∣

∣

∣

∣

∣

≪
xγ

(log x)A
. (6.22)

If X 6 x1−η, then the left–hand side of (6.22) is

≪
∑

d6D
(d,2)=1

∣

∣

∣

∣

∣

∑

ℓ∼X
ℓ≡0 (mod d)

(

(ℓ+ 3)γ − (ℓ+ 2)γ
)

∣

∣

∣

∣

∣

+
∑

d6D
(d,2)=1

∣

∣

∣

∣

∣

∑

ℓ∼X
ℓ≡0 (mod d)

([

− (ℓ+ 2)γ
]

−
[

− (ℓ+ 3)γ
])

∣

∣

∣

∣

∣

≪
∑

ℓ∼X

(ℓ+ 3)γ−1τ(ℓ) +
∑

d6D
(d,2)=1

∑

ℓ∼X
ℓ≡0 (mod d)

ℓ+2=[k1/γ ]

1 ≪ Xγ+η/2 ≪ xγ(log x)−A.

Now, we assume that x1−η < X 6 x. By (2.5), the contribution of the error term in (2.5) to
the left–hand side of (6.22) is

≪
∑

d6D
(d,2)=1

∑

ℓ∼X
ℓ≡0 (mod d)

(

E((ℓ+ 2)γ, H) + E((ℓ+ 3)γ, H)
)

= E∗
1 + E∗

2 , (6.23)

say. The treatment of E∗
1 and E∗

2 is exactly the same as that of (2.7) by using Lemma 2.1 with
exponent pair (1

2
, 1
2
), provided that (2.8) holds. So we omit the process herein.

The contribution of the main term in (2.5) to the left–hand side of (6.22) is

=
∑

d6D
(d,2)=1

∣

∣

∣

∣

∣

∑

ℓ∈L

ℓ≡0 (mod d)
ℓ∼X

∑

0<h6H

e(−h(ℓ + 2)γ)− e(−h(ℓ + 3)γ)

2πih

∣

∣

∣

∣

∣

≪
∑

d6D
(d,2)=1

∑

0<h6H

1

h

∣

∣

∣

∣

∣

∑

ℓ∈L

ℓ≡0 (mod d)
ℓ∼X

(

e(−h(ℓ + 2)γ)− e(−h(ℓ + 3)γ)
)

∣

∣

∣

∣

∣

=: Υ,

say. Define
fh(ℓ) = 1− e

(

h((ℓ+ 2)γ − (ℓ+ 3)γ)
)

.

It follows from partial summation that

Υ =
∑

d6D
(d,2)=1

∑

0<h6H

1

h

∣

∣

∣

∣

∣

∑

ℓ∈L

ℓ≡0 (mod d)
ℓ∼X

e
(

− h(ℓ+ 2)γ
)

fh(ℓ)

∣

∣

∣

∣

∣

=
∑

d6D
(d,2)=1

∑

0<h6H

1

h

∣

∣

∣

∣

∣

∫ 2X

X

fh(u)d

(

∑

ℓ∈L

ℓ≡0 (mod d)
X<ℓ6u

e
(

− h(ℓ+ 2)γ
)

)
∣

∣

∣

∣

∣
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≪
∑

d6D
(d,2)=1

∑

0<h6H

1

h

(

∣

∣

∣
fh(2X)

∣

∣

∣

∣

∣

∣

∣

∣

∑

ℓ∈L

ℓ≡0 (mod d)
ℓ∼X

e
(

− h(ℓ+ 2)γ
)

∣

∣

∣

∣

∣

+

∫ 2X

X

∣

∣

∣

∣

∣

∑

ℓ∈L

ℓ≡0 (mod d)
X<ℓ6u

e
(

− h(ℓ+ 2)γ
)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂fh(u)

∂u

∣

∣

∣

∣

du

)

≪ Xγ−1 ×
∑

d6D
(d,2)=1

∑

0<h6H

max
X<u62X

∣

∣

∣

∣

∣

∑

ℓ∈L

ℓ≡0 (mod d)
X<ℓ6u

e
(

− h(ℓ+ 2)γ
)

∣

∣

∣

∣

∣

,

where we use the estimate
∣

∣fh(u)
∣

∣≪ huγ−1 and

∣

∣

∣

∣

∂fh(u)

∂u

∣

∣

∣

∣

≪ huγ−2.

Therefore, we obtain
∑

d6D
(d,2)=1

∣

∣

∣
R

(2)
d

∣

∣

∣
≪

xγ

(log x)A
+ max

x1−η<X6x
X<u62X

Xγ−1
∑

d6D
(d,2)=1

∑

0<h6H

∑

ℓ∈L

ℓ≡0 (mod d)
X<ℓ6u

δ(d, h)e
(

− h(ℓ+ 2)γ
)

≪
xγ

(log x)A
+ max

x1−η<X6x
X<u62X

Xγ−1

∣

∣

∣

∣

∣

∑

ℓ∈L
X<ℓ6u

∑

0<h6H

Θh(ℓ)e
(

− h(ℓ+ 2)γ
)

∣

∣

∣

∣

∣

, (6.24)

where
Θh(ℓ) =

∑

d6D
ℓ≡0 (mod d)

(d,2)=1

δ(d, h), and
∣

∣δ(d, h)
∣

∣ = 1.

For ℓ ∈ L and ℓ ∼ X > x1−η, we have ℓ+ 2 = p1p2p3 ∈ [x1−η, x] with p1 and p2 satisfying

x1/10.92 6 p1 < x1/3.29 6 p2 <

(

x

p1

)1/2

,

and we claim that there must be a subproduct of p1p2p3 which lies in the interval [X
45
76

+η, Xγ0−η],
where

γ0 = 1−
18

238 + 17
.

Virtually, since p1 > x1/10.92, p2 > x1/3.29 and p1p2p3 ∈ [x1−η, x], we have pi 6 Xγ0−η. If

there exists some pi ∈ [X
45
76

+η, Xγ0−η], then the conclusion follows. If this case does not exist,

we consider the product p1p2. Trivially, there holds p1p2 < p22 < x/p1 6 x1−
1

10.92 6 xγ0−η.

If p1p2 ∈ [X
45
76

+η, Xγ0−η], then the conclusion follows. Otherwise, if p1p2 < X
45
76

+η, then p3 =

(ℓ+2)(p1p2)
−1 > X(X

45
76

+η)−1 = X
31
76

−η > x
15
38 , and hence p2p3 > x

1
3.29

+ 15
38 > X

45
76

+η. In addition,

p2p3 = (ℓ + 2)p−1
1 6 x1−

1
10.92 6 Xγ0−η. Above all cases, there must exist some subproduct of

p1p2p3 which lies in the interval [X
45
76

+η, Xγ0−η].
For γ0 < γ < 1 and the definition of ξ, it is easy to see that

X
61(1−γ)+5ξ

4
+η

6 X
45
76

+η < Xγ0−η
6 Xγ−η,

which combined with (6.24) and Lemma 3.2 with exponent pair (κ, ℓ) = A3(1
2
, 1
2
) = ( 1

30
, 13
15
)

yields
∑

d6D
(d,2)=1

∣

∣

∣
R

(2)
d

∣

∣

∣
≪

xγ

(log x)A
.
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This completes the proof of Lemma 6.4. �

Taking z = xξ/3 in (6.17), it follows from (6.4), Lemma 6.3 and Lemma 6.4 that

S(B,P, xξ/3) 6 XV (xξ/3)F (3)(1 + o(1)). (6.25)

Next, we compute the quantity X definitely. We write

X =
∑

ℓ∈L

γℓγ−1 +
∑

ℓ∈L

(

(ℓ+ 3)γ − (ℓ+ 2)γ − γℓγ−1
)

. (6.26)

For the second term in (6.26), one has
∑

ℓ∈L

(

(ℓ+ 3)γ − (ℓ+ 2)γ − γℓγ−1
)

≪
∑

ℓ∈L

ℓγ−2

≪
∑

x1/10.926p1<x1/3.296p2<(x/p1)1/2

p3<x/(p1p2)

(p1p2p3 − 2)γ−2

≪
∑

x1/10.926p1<x1/3.296p2<(x/p1)1/2

(p1p2)
γ−2

∑

p3<x/(p1p2)

pγ−2
3

≪

(

∑

x1/10.926p6x

pγ−2

)2

≪

(

∑

x1/10.926m6x

mγ−2

)2

≪ x2(γ−1)/10.92 = o(1). (6.27)

For the first term in (6.26), we have
∑

ℓ∈L

γℓγ−1 = γ
∑

e∈E

∑

p3<x/e

(ep3 − 2)γ−1

= γ
∑

x1/10.926p1<x1/3.29

∑

x1/3.296p2<(x/p1)1/2

∑

2<p3<x/(p1p2)

(p1p2p3 − 2)γ−1

= γ
(

1 + o(1)
)

∫ x1/3.29

x1/10.92

∫ ( x
t1

)1/2

x1/3.29

∫ x
t1t2

2

(t1t2t3 − 2)γ−1

(log t1)(log t2)(log t3)
dt3dt2dt1

= γ
(

1 + o(1)
)

∫ 1
3.29

1
10.92

dα1

α1

∫

1−α1
2

1
3.29

dα2

α2

∫ 1−α1−α2

log 2
log x

(xα1+α2+α3 − 2)γ−1

α3
· xα1+α2+α3dα3

= γ
(

1 + o(1)
)

∫ 1
3.29

1
10.92

dα1

α1

∫

1−α1
2

1
3.29

dα2

α2

∫ 1−α1−α2

log 2
log x

x(α1+α2+α3)γ

α3

dα3. (6.28)

For the innermost integral in (6.28), we have
∫ 1−α1−α2

log 2
log x

x(α1+α2+α3)γ

α3

dα3 =
1

γ log x

∫ 1−α1−α2

log 2
log x

1

α3

dx(α1+α2+α3)γ

=
1

γ log x

(

xγ

1− α1 − α2
+O

(

xγ

log x

))

=
1

1− α1 − α2
·

xγ

γ log x
(1 + o(1)). (6.29)

From (6.26), (6.27), (6.28) and (6.29), we obtain

X =
xγ(1 + o(1))

log x

∫ 1
3.29

1
10.92

dα1

α1

∫

1−α1
2

1
3.29

dα2

α2(1− α1 − α2)
. (6.30)

Combining (6.17), (6.25), (6.30), we derive that

S2 6
4S

ξ

(

∫ 1
3.29

1
10.92

dα1

α1

∫
1−α1

2

1
3.29

dα2

α2(1− α1 − α2)

)

·
xγ

log2 x
(1 + o(1)). (6.31)
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6.2.4. Upper Bound Estimate for S3. By the definition of ̺3(a), we have

S3 =
∑

a∈A

(a,P (x1/10.92))=1
(a,2)=1

∑

a=p1p2p3
x1/3.296p1<p2<p3

1

=
∑

x1/3.296p1<x1/3

∑

p1<p2<(x/p1)1/2

∑

p=p1p2p3−2
p2<p36x/(p1p2)

p1p2p3=[k1/γ ]

1.

Define

E
∗ =

{

e : e = p1p2, x
1/3.29 6 p1 < p2 < (x/p1)

1/2
}

,

L
∗ =

{

ℓ : ℓ = ep− 2, e ∈ E
∗, ep 6 x

}

,

B
∗ =

{

ℓ : ℓ ∈ L
∗, ℓ+ 2 = [k1/γ ] for some k ∈ N

+
}

.

Obviously, we have

∣

∣E
∗
∣

∣ 6
∑

x1/3.296p1<x1/3

(

x

p1

)1/2

≪
x2/3

log x
< x2/3.

In addition, for e ∈ E ∗, one has
{

e = p1p2 > p21 > x0.607,

e = p1p2 < p1(x/p1)
1/2 = x1/2p

1/2
1 < x2/3.

Similar to the illustration in (6.16), it is easy to see that the number of the elements in L ∗,
which are not exceeding x0.607, is less than x2/3. Accordingly, we obtain

S3 6 S(B∗,P, x0.607) +O(x2/3)

6 S(B∗,P, z) +O(x2/3) (6.32)

holds for z 6 x0.607. Let B∗
d =

{

ℓ : ℓ ∈ B∗, ℓ ≡ 0 (mod d)
}

. Then it is easy to see that

∣

∣B
∗
d

∣

∣ =
1

ϕ(d)
X ∗ + R

∗(1)
d + R

∗(2)
d ,

where

X ∗ =
∑

ℓ∈L ∗

(

(ℓ+ 3)γ − (ℓ+ 2)γ
)

,

R
∗(1)
d =

∑

ℓ∈L ∗

ℓ≡0 (mod d)

(

(ℓ+ 3)γ − (ℓ+ 2)γ
)

−
1

ϕ(d)

∑

ℓ∈L ∗

(

(ℓ+ 3)γ − (ℓ+ 2)γ
)

, (6.33)

R
∗(2)
d =

∑

ℓ∈L ∗

ℓ≡0 (mod d)

(

ψ
(

− (ℓ+ 3)γ
)

− ψ
(

− (ℓ+ 2)γ
)

)

. (6.34)

Moreover, one can follow the same process of Lemma 6.3 and Lemma 6.4 to establish that
∑

d6xξ

(d,2)=1

∣

∣

∣
R

∗(i)
d

∣

∣

∣
≪

xγ

(log x)A
, i = 1, 2. (6.35)

Now, we describe the quantity X ∗ with explicit coefficient and definite magnitude. We write

X ∗ =
∑

ℓ∈L ∗

γℓγ−1 +
∑

ℓ∈L ∗

(

(ℓ+ 3)γ − (ℓ+ 2)γ − γℓγ−1
)

. (6.36)
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For the second term in (6.36), one has

∑

ℓ∈L ∗

(

(ℓ+ 3)γ − (ℓ+ 2)γ − γℓγ−1
)

≪
∑

ℓ∈L ∗

ℓγ−2

≪
∑

x1/3.296p1<p2<(x/p1)1/2

p3<x/(p1p2)

(p1p2p3 − 2)γ−2 ≪
∑

x1/3.296p1<p2<(x/p1)1/2

(p1p2)
γ−2

∑

p3<x/(p1p2)

pγ−2
3

≪

(

∑

x1/3.296p6x

pγ−2

)2

≪

(

∑

x1/3.296m6x

mγ−2

)2

≪ x2(γ−1)/3.29 = o(1). (6.37)

For the first term in (6.36), we have
∑

ℓ∈L ∗

γℓγ−1 = γ
∑

e∈E ∗

∑

p3<x/e

(ep3 − 2)γ−1

= γ
∑

x1/3.296p1<x1/3

∑

p1<p2<(x/p1)1/2

∑

2<p3<x/(p1p2)

(p1p2p3 − 2)γ−1

= γ
(

1 + o(1)
)

∫ x1/3

x1/3.29

∫ ( x
t1

)1/2

t1

∫ x
t1t2

2

(t1t2t3 − 2)γ−1

(log t1)(log t2)(log t3)
dt3dt2dt1

= γ
(

1 + o(1)
)

∫ 1
3

1
3.29

dα1

α1

∫
1−α1

2

α1

dα2

α2

∫ 1−α1−α2

log 2
log x

(xα1+α2+α3 − 2)γ−1

α3
· xα1+α2+α3dα3

= γ
(

1 + o(1)
)

∫ 1
3

1
3.29

dα1

α1

∫

1−α1
2

α1

dα2

α2

∫ 1−α1−α2

log 2
log x

x(α1+α2+α3)γ

α3

dα3

=
xγ(1 + o(1))

log x

∫ 1
3

1
3.29

dα1

α1

∫
1−α1

2

α1

dα2

α2(1− α1 − α2)
, (6.38)

which combined with (6.37) gives

X ∗ =
xγ(1 + o(1))

log x

∫ 1
3

1
3.29

dα1

α1

∫

1−α1
2

α1

dα2

α2(1− α1 − α2)
. (6.39)

Taking z = xξ/3 in (6.32), it follows from (6.4), (6.35) and (6.39) that

S3 6 S(B∗,P, xξ/3) +O(x2/3) 6 X ∗V (xξ/3)F (3)(1 + o(1))

6
4S

ξ

(

∫ 1
3

1
3.29

dα1

α1

∫

1−α1
2

α1

dα2

α2(1− α1 − α2)

)

·
xγ

log2 x
(1 + o(1)). (6.40)

6.2.5. Proof of Theorem 1.3. It follows from (6.10), (6.11), (6.15), (6.31) and (6.40) that
∣

∣

{

a : a ∈ A , a = P2

}
∣

∣

>
Sxγ(1 + o(1))

log2 x

{

4

ξ

(

log(10.92ξ − 1) +

∫ 10.92ξ−1

3

dt1
t1

∫ t1−1

2

log(t2 − 1)

t2
dt2

)

− 2

(

∫ 1
3.29

ξ− 3
10.92

dα

α(ξ − α)
+

∫ ξ− 3
10.92

1
10.92

1

α(ξ − α)

(

1 +

∫ 10.92(ξ−α)−1

2

log(β − 1)

β
dβ

)

dα

)

−
2

ξ

(

∫ 1
3.29

1
10.92

dα1

α1

∫

1−α1
2

1
3.29

dα2

α2(1− α1 − α2)

)

−
4

ξ

(

∫ 1
3

1
3.29

dα1

α1

∫

1−α1
2

α1

dα2

α2(1− α1 − α2)

)}

.
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By simple numerical calculations, it is easy to see that, for

1−
0.03208

238 + 17
< γ < 1,

there holds ξ > 0.47284 and the number in the above brackets {·} is > 0.000109508, which
completes the proof of Theorem 1.3.
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