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Abstract

We provide a new information-theoretic generalization error bound that is exactly tight (i.e., match-
ing even the constant) for the canonical quadratic Gaussian (location) problem. Most existing bounds
are order-wise loose in this setting, which has raised concerns about the fundamental capability of
information-theoretic bounds in reasoning the generalization behavior for machine learning. The pro-
posed new bound adopts the individual-sample-based approach proposed by Bu et al., but also has several
key new ingredients. Firstly, instead of applying the change of measure inequality on the loss function,
we apply it to the generalization error function itself; secondly, the bound is derived in a conditional
manner; lastly, a reference distribution is introduced. The combination of these components produces a
KL-divergence-based generalization error bound. We show that although the latter two new ingredients
can help make the bound exactly tight, removing them does not significantly degrade the bound, leading
to an asymptotically tight mutual-information-based bound. We further consider the vector Gaussian
setting, where a direct application of the proposed bound again does not lead to tight bounds except in
special cases. A refined bound is then proposed for decomposable loss functions, leading to a tight bound
for the vector setting.

1 Introduction

Understanding the generalization behavior and bounding the generalization error of learning algorithms are
important subjects of study in machine learning theory. Recently, information-theoretic approaches to bound
generalization errors have drawn considerable attention in both the information theory community and the
machine learning community [TH26]. These bounds can provide intuitions by relating to information-theoretic
quantities, leading to novel reasoning and revealing deep connections to existing results such as the classic
VC-dimension and Rademacher complexity [27]. Information-theoretic bounds can take into account both
data distribution and the dependence between data and algorithm output, which cannot be fully captured
by the conventional complexity-based bounds.

In classic information theory research, the study of complex communication systems usually starts from
the simplest canonical settings. Particularly, the canonical quadratic Gaussian settings have played tremen-
dous roles in the study of both channel coding and source coding [28]. The study of Gaussian channel under
the average power constraint can be traced back to the original paper by Shannon [29] and led to many
subsequent developments in wireless communications [30]. Similarly, the Gaussian source compression under
the quadratic distortion measure has been studied extensively [31,32], which led to many well-used designs
of data compression and quantization methods. The motivation to study the Gaussian settings can perhaps
be explained as follows. Mathematically, the simplicity of the Gaussian settings, the statistic properties
of Gaussian distributions, the optimality of linear estimators, and the connection to information measures
(e.g., differential entropy and entropy power inequality) allow the derivation of precise results and exact
tight bounds, which can serve as a running ramp for more complex settings. Practically, Gaussian noises
and Gaussian sources can be good approximations to random quantities encountered in many applications,
further strengthening the motivation to study Gaussian settings.

In sharp contrast to the classical information theory research, in the study of generalization error bounds,
although various more sophisticated settings such as meta-learning [7[22] and iterative stochastic algorithms
[4,15] have been considered, our understanding of the canonical quadratic Gaussian setting is in fact quite
limited. In this setting, independent Gaussian samples are observed, and the learning algorithm chooses
the sample average as the hypothesis parameter to locate the mean value. The loss function is the squared
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difference between the samples and this hypothesis parameter. It turns out that earlier information-theoretic
bounds are either vacuous [2] or order-wise loose [Q[I0,12,[14]. The only approaches that provide order-wise
tight bounds in this setting either only hold asymptotically [13], or have a loose constant and require a
careful construction of certain auxiliary probability structure [16].

In this work, we provide a new information-theoretic bound that is exactly tight (i.e., matching even the
constant) for the canonical quadratic Gaussian (location) problem. The proposed new bound adopts the
individual-sample-based approach proposed by Bu et al. [9], but also has several key new ingredients. Firstly,
instead of applying the change of measure inequality on the loss function, we apply it to the generalization
error function itself; secondly, the bound is derived in a conditional manner; lastly, a reference distribution,
which bears a certain similarity to the prior distribution in the Bayesian setting, is introduced. The com-
bination of these components produces a general KL-divergence-based generalization error bound. We also
show that although the conditional bounding and the reference distribution can make the bound exactly
tight, removing them does not significantly degrade the bound, which results in a mutual-information-based
bound that is also asymptotically tight in this setting.

In order to further understand the proposed generalization error bound, we consider the vector version
of the Gaussian location problem. The samples here are independent Gaussian vectors, and the algorithm
is again the sample mean, but the loss function is a general squared matrix norm. We show that a direct
application of the proposed bound is no longer tight in this setting except in certain special cases. However,
a refined information-theoretic bound that takes advantage of the decomposability of the matrix norm can
indeed lead to a tight bound.

The rest of the paper is organized as follows. In Section 2l we provide the preliminaries and some relevant
previous results. The new generalization error bound is provided in Section Bl and then applied on the
canonical quadratic Gaussian setting in Section @l The generalized vector setting is considered in Section Bl
Finally, Section [0 concludes the paper, and a few technical proofs are included in the appendix.

2 Preliminaries

2.1 Generalization Error

Denote the data domain as Z, e.g., in the supervised learning setting Z = X x ), where X is the feature
domain and Y is the label set. The parametric hypothesis class is denoted as Hyy = {hw : W € W}, where
W is the parameter space. During training, the learning algorithm has access to a sequence of training
samples Zj,) = (Z1,22,...,Zy), where each Z; is drawn independently from Z following some unknown
probability distribution . The learner can be represented by Py Z which is a kernel (channel) that
(potentially randomly) maps Z™ to W.

The learner wishes to choose a hypothesis w € VW to minimize the following population loss, under a
given loss function £: W x Z — R,

n]’

Le(w) =Ej ¢[t(w, 2)]. (1)
The empirical loss of w is

n

Loy () = = 3 bw, Z0). 2)

i=1

The expected generalization error of the learner Py Zpny 18

gen(§, Pw|z,,) = Ep [Le(W) — Lz, (W)], (3)

where the expectation is taken over the distribution P,z
PW|Zn] and the marginal Pz = &".

Assume another distribution Qw,z,,,, where W and Z,, are independent and the marginal )z, is the
same as Pz, Le., QW,Z[TL] = QWQZM = QWPZM. The marginal distribution Qyw can be viewed as a prior

as the joint distribution implied by the kernel

n]



distribution in this casdl. For such Q’s, apparently, we have

gen(€, Qw)z,,) = Eq [Le(W) — Lz, (W)] =0, (4)

where the equality is because Qw,z,, = QwPz,,,.

2.2 Variational Representation of the KL Divergence

The Donsker-Varadhan variational representation of KL divergence for a random scalar-valued random func-
tion F' = f(X) on a random variable X is given by

KL(PI|Q) = sup {AEp[F] ~ InEq[¢*"]}.

AP ()
where equality achieved when AF™* = In 10 +C,
or in the inequality form
AEp[F] < KL(P||Q) + InEgle*], VA eR. (6)

This inequality is sometimes also referred to as the change of measure inequality. P and @ can be the
distributions of the underlying random variable X, or more directly, the distributions of F. In the context
of bounding generalization error, examples are F' = (W, Z) or F = L¢(W) — £(W, Z). We remark here that
in the variational representation (&), the supremum is taken over the functions f, whereas when we apply
the change of measure inequality (@), the function f is usually already fixed, but the distribution @ can be
optimized to make the bound tighter.

The centered cumulant generating function of a random variable F' is

Arg(\) = mEq [¢*F] — AEo|F). (7)
Combining it with the inequality above gives
KL(P||Q) + Aro(X) > AEp[F] — AEg[F], X €R. (8)
Now if we choose F' = f(W, Z), then for any Z = z the conditional version of the above inequality is
KL(Pyy z—:||Qwz=2) + Ap|2=2.Qu 5. (\) = AEp[F|Z = z] = \Eq[F|Z = 2], A€R, (9)

where
Ap|z=2.Quw z.N) = InEqy,,_. [e*|Z = 2] = XEqy,,,_. [FIZ = z]. (10)

We will simply replace Z = z in the condition with Z when the exact conditional value realization is not
specified.
With a positive A, we obtain

EnlF] - BolF] < juf {

KLPIQ)+ Arg)]

\ (11)

where equality is achieved if and only if

dpP
The equality condition can also be interpreted as requiring us to choose d@Q o exp(—AF)dP. When P is the
joint distribution of underlying random variables, and @ is the product distribution of their marginals, then
KL(P||Q) reduces to a mutual information term.

n the Bayesian setting, the distribution P is usually used to denote the prior distribution and @ as the posterior (data
dependent) distribution. This is reversed from ours, which follows the convention in information-theoretic literature.



To be consistent with past results in the literature, we will sometimes use the following definition. The
Legendre dual function on the interval [0, b) for some 0 < b < oo is

A*(x) & sup Mz — A(N)). (13)
AE[0,b)

A()) is convex and A(0) = A’(0) = 0. It can be shown that the inverse dual function is

Al(y) = inf <LM> . (14)

Ae[0,b) A

2.3 The Scalar Quadratic Gaussian Location Problem

In the canonical Gaussian location problem introduced by Bu et al. [9], data samples are Z1, Zs, ..., Z, b
¢ = N(u,0?) and the sample-average algorithm chooses the following hypothesis W = % >, Z;. The loss

function is the quadratic function given as £(w, z;) = (w — 2;)?. Then the expected generalization error is

gen(é? PW|Z[n]) =E n
=1

Z-wp- L3z - W)?]

=E

—
S|

zn: (Zi = w2 - (2 - W)QH

Il
S|

E {22 22427 — Z-)W}
1

-
Il

E(0® +p? — Z} +2(Z;i — )W), (15)

Il
S|

1

-
Il

where Z[n] are n i.i.d. testing samples, independent of everything else, and the expectation is with respect
to distribution PPz~ -, where the joint distribution Pz~ y is induced by the algorithm W = % Z?:l Z;.
It is straightforward to show that the true generalization error is in fact 202 /n.

In this work, we shall in fact consider a slightly more general version of the sample-average algorithm
that W = ", a;Z; + N, where N is a Gaussian noise ~ N(0,0%), independent of Z,), and a;’s are
nonnegative weights such that " | a; = 1. It can be shown that the true generalization error is also 202 /n
(see the Appendix).

2.4 Existing Generalization Error Bounds

Xu and Raginsky, motivated by a previous work by Russo and Zou [I], provided a mutual information (MI)
based bound on the expected generalization error [2]. Assuming ¢(w, Z) is o-sub-Gaussian under ¢ for all
w € W, then the bound is

202
gen(&a PW|Z[H]) < TI (W7 Z[n]) (16)

One issue with this bound is that it can be vacuous, i.e., the mutual information term can be bounded. Indeed,
for the quadratic Gaussian case, it is vacuous when N = 0. Bu et al. [9] noticed that the generalization error
can be written as

genl€. Pviz,) = 1 D B (€0, Z) — (W, Z0)| (1)
= S EIL(W) - (W, 2). (18)

2We call a distribution g-sub-Gaussian if it has a variance proxy of 2.



where Z; are independent testing data samples that are independent of W. The following bound can then
be obtained by bounding each summand

n

> V202T (W Zy), (19)

=1

gen(§, Pw)z,,) < %
assuming Z(VV, Z) is o-sub-Gaussian, where W and Z are independent but have the same marginal distri-
bution as that in Pw,z,,. This bound improves upon the bound in [2], and it is in general not vacuous.
However, for the quadratic Gaussian setting, it leads to an order O(1/y/n) bound, which is order-wise loose.

Steinke and Zakynthinou [I0] introduced a conditional-mutual-information-based generalization error
bound. We will not provide the precise bound here, but it can be shown straightforwardly that their bound
leads to an order O(1) bound, which is order-wise loose. Different improvements on this conditional mutual
information bound have been proposed [TI[I4[I5], however, in the quadratic Gaussian setting, they led to
either O(1) or O(1/4/n) bounds, thus also order-wise loose. Details can be found in [14].

Zhou et al. [T6] proposed a chaining technique to tighten the generalization error bound, and showed that
with a specially constructed chain in the quadratic Gaussian setting, the bound in [9] can be tightened to
the order O(1/n), but with a loose constant factor. In a more recent work [I3], Wu et al. proposed a new
bound assuming the function r(W, Z) = {(W, Z) — {(w*, Z) is o2-sub-Gaussian, where w* is the optimal
solution of the true risk. For the quadratic Gaussian setting, this bound is asymptotically optimald, but
not optimal for finite n. Moreover, the function (W, Z) relies on the optimal solution w*. A more detailed
summary of the quadratic Gaussian location setting can be found in [33].

3 A New Information-Theoretic Generalization Error Bound

The new information-theoretic generalization error bound is summarized in the following theorem.

Theorem 1. Let F; = Le(W) —((W, Z;), then we have

L(Pw|z,

1O . K
gen(f, PW|Z[n]) < ﬁ EEPZi }1\2%

QW) +Ar,z.0i, (A)]
A

1 — . .

for any Q%/V,Zi =Q4 Pz, i=1,2,...,n, i.e., a distribution Q" where W is independent of Z;.

The reference distribution @ can in fact be optimized, which would provide the tightest bound for a fixed
learning algorithm. This bears certain resemblance to those used in [34] which considers the computation of
tight generalization bound using the PAC-Bayesian approach.

Proof. We start from (I8]), and consider each summand on the right-hand side

En, [Le(W) = €W, Z0)) = Ep,, [y, (Le(W) = €W, 2] )]

KL(Po2,]|Qi) + A 17 0r ()
<Ep,, |t Wz W)\ Fi|Z:,Qi, T+ By <(L5(W) oW, 2 Zi>
KL(Pyw 2, 1Qi) + Ay 2,01 (O
=Ep,, |inf Bz, QW; 70 ) , (21)

where the first equality is by the tower rule, the inequality is by (@), and the second equality is due to ([IT).
Summing over 4 gives the bound stated in the theorem. O

3The bound is only asymptotically optimal, (in fact, only asymptotically valid) since one of the inequalities is replaced by
an approximation that only holds in an asymptotic manner to yield the bound. Strictly speaking, their bound can be stated as
follows: for any e > 0, for sufficiently large n, the generalization error < 2(1 + €)o2/n in this quadratic Gaussian setting.



As will be shown in the next section, this bound is exactly tight for the quadratic Gaussian setting, and
therefore, it can be viewed as a tight bound in the sense that it cannot be strictly improved in a uniform
manner, either in terms of the constant or in the scaling. This bound can be loosened in several ways, which
are stated in the following corollaries.

Corollary 1. Let F; = Le(W) — {(W, Z;), then we have

KL(Pw 2, Q) + A, g, (A)}

A

1~
gen(§7 PW\Z[n]) < - Z inf E

171
< inf |- E
%%LZ

for any Q%/V,Zl QwPz,i=1,2,...

The first inequality is obtained by exchanging expectation and infimum, and the second is obtained by
exchanging summation and infimum.

Corollary 2. Let F; = Le(W) — {(W, Z;), then we have

KL(Pyw |z,

. , (22

1 s [KL(Poyy2, Qi) + Ap, i (M)
< ? W
gen(&, Pwiz,)) < E inf ln z; A
" [KL(Pw iz Qi) + Ar,qi, (V)
<
i [n 2 E X -

for any QZWZ =QiyPz,i=12,....n

The first inequality is obtained by exchanging expectation and summation, and the second by exchanging
infimum and expectation. The second bounds in Corollaries[I] and Rlare the same, while the first bounds are
not directly comparable.

Notice that when Qjy, , = Pw®Pg,, i.e., the product of the marginals of Py, z,, we have E[KL(Py |z, [ Q)] =
I(W; Z;). This leads to the following corollary.

Corollary 3. Let F; = Le(W) — {(W, Z;), then we have

1 & W Z;) + EAp, py (A
Sﬁzinfp )+ Fpu]

I(W, Zl) + AF._prZV ()\)

1
JERC —
—nZgJ 3 ]

G b p, LW Z)) (24)

gen(f, PW|Z[n] )

I
S|
\'M: Il

where the second inequality is due to the concavity of the In(-) function.

By exchanging the infimum and the summation, we straightforwardly obtain further that

inf l; 5 {I(W;Zi) +AIEAFi,pW(A)]]

gen(, Pw)z,,) < inf
i=1

[% Z": {I(W; Zi) + /;Fi.,PWPZi ()\)}

< inf
A>0

(25)

The second bound in ([24)) is in fact quite similar to the main theorem in [9]. However, there is a major
difference even when we assume the reference distribution @ is the same as the product of the marginals in
P: the function F' we choose to bound is different.

When the function F' is conditional oz,-sub-Gaussian with respect to the distribution Qw, we have as a
consequence Ap, i A < U2QZ¢ A2. The following corollary is then immediate.



Corollary 4. Let F; = Le(W) — €W, Z;). If F; is conditional oq. -sub-Gaussian for each Z; = z; with
respective to QY then

1 — }
gen(é.a PW\Z[n]) < E Z ]E\/KL(PWIZz ||Q7f/[/)O.2QZZ
=1
1 & -
< 13 B [KUBa @R, ] (26)
=1

for any Qi such that W is independent of Z; fori=1,2,...,n.

4 The Canonical Quadratic Gaussian Setting Revisited

With the new generalization error bounds derived in the previous section, we are now ready to revisit the
canonical quadratic Gaussian (location) setting.

4.1 Exactly Tight Bounds for the Quadratic Gaussian Setting

The expected generalization error of interest in the quadratic Gaussian setting is

n

1
gen(¢, Pwyz,,) =E - ZE [0 +u? = Z2 +2(Zi — W)W |Zi] | - (27)

i=1
For any fixed i, define
Fi=fz,(W) £ 0%+ p* = Z} +2(Z; — pW. (28)

Note the conditional distribution

W|Zi£/\/ u—i—ai(Zi—u),Za?az-i-U%V . (29)
J#i

We will choose the reference distribution @} as

WY N 7 Za?az +0% |, (30)
J#i
which is indeed independent of Z;.

Remark. In the reference distribution Q%,V z,» W and Z; are independent, and the marginal distribution
iW is not the same as that marginalized from Py, z,,,. More specifically, the latter is in fact

Py ~ N <M,Za§02 —|—UJ2V> ,

i=1
which can be compared with (30).
With these conditional distributions, we can derive that (see the appendix)

1

KL(Pyw 2. ||Qi = KL(Pyw2.||Qi) = a2(Z; — 1)? :
(Pw )z QW|Zi) (Pwz1Qw) = i ( 1) 22#1‘0‘?‘724'2“12\77
J#i



Therefore

} 1
E[KL(Py2,||Qi)] = a0 ;
[KL(Py |z, ||Qw)] = ajo 22#1,04?02—1-2012\,’
E[Ag, g, (V] = 22207 [ 3020 + 0% | - (32)

J#i

Applying the first bound in Corollary [Il we obtain

IN

gen(§7 PW\Z[n])

KL(Pw 7 |Qw) + Ar, qi, (/\)]
A

Qw)l +E[Ar, o1, ()\)]]
)

E[KL(Py |z,

where the last equality is by choosing the minimizer A} as

A= i
L 23,0507 + 203

Therefore, the first bound in Corollary [l leads to a tight generalization error bound for this setting.

Remark. Recall the equality condition in ([[2)). With the given Pyy|z, and QYy, we have that

dP  20;(Z; — )W — o?(Z; — n)? — 2uai(Z; — p)
In— = 55 5 . (35)
dQ 2Ej7éio¢ja +20%

With (28)), it is seen that the condition given in (I2) is indeed satisfied, with

_ @i h= — a%(Zl - M)2 + 2/14041'(21' - /1’) (36)
23540507 + 203 2304 0507 +20%

A

This choice of A is in fact exactly the optimizing solution in ([34]). Conversely, the distribution @ we chose can
be viewed as obtained through the condition (I2)) (or equivalently d@Q o exp(—Af)dP), with the parameter
A chosen to maintain the independence between W and Z; as required in Theorem [

In contrast to the tight bound derived from the first bound in Corollary [l the second bound in Corollary
[@ and the first bound in Corollary 2] are not tight for general assignments of «;’s, due to the fact that the
optimal A} is index-dependent. In the extreme case, consider setting oy =1 and a; = 0 for i = 2,3,...,n.
Then the second bound in Corollary [ gives

o2 N 2( 2 2 2 2. 2 12
1 ﬂ+2(n 1)o? (02 + 0%) N> + 20%0% A

gen(¢, Piv|z,,) = — inf 3

207 [2(n—1) (0?2 +0%)+ 0% (37)
S on 20%; ’

which is of order O(1/y/n). However, when «; = 1/n, this dependence disappears and the loosened bounds
also become tight. Indeed, consider the second bound in Corollary [l for this case, we have

L (BKL(Py) 2, 1Q4)] + E[A g, g (A
gen(€7PW|Z[n]):%i2% [Zz_l( [ ( W|Z1|C§\W)] [ F’LvQW( )])

- 202

n

: (38)



where the last step is obtained by choosing

A= .
23,0502 4205 2(n—1)0? + 2n0o%

Remark. The additive noise N in the algorithm W = >""" | @;Z; + N makes it a randomized algorithm,
but it does not cause any essential difference in our bound. We included the noise here mostly to enlarge the
set of problems that the proposed generalization error bound is tight. In other words, the proposed bound
is not only tight for one particular algorithm of a; = 1/n and 0% = 0, but also a class of algorithms with
different «;’s and o%;.

4.2 Looseness of Mutual Information Based Bounds

One remaining question in the quadratic Gaussian setting is whether we can obtain tight or asymptotically
tight generalization error bounds using mutual-information-based bounds. To understand this issue, we
consider the bounds in Corollary Bl assuming the coefficients a;; = 1/n for i = 1,2,...,n. Note that in this
case, the choice of the reference distribution Q% is fixed as the marginal of Pyy.

The various terms we need when applying Corollary[3in this setting can be shown to be (see the appendix)

1 n
(W Z;) = 510gn— 1
204 (n —1)

1 2\2%
) —\g2 _ = _ — o2
AFi’Q;V,Zi ()\) = )\O' 2 log |:1 2 ( " )\O' ):| .

With these quantities, it follows that the first bound in Corollary [3] is

0.2
gen(&a PW|Z[H]) < 2T\/(log n i 1) (TL - 1) (40)

. s ol s . . . . 202
The bound is of order O(1/n); in fact, it is asymptotically optimal in the sense that it approaches =2-.

Therefore, the first mutual-information-based bound in Corollary Bldoes not lose the tightness in a significant
manner compared to the KL-based bound of those in Corollaries [Tl and
The second bound in Corollary Bl has the form

1 n 1 2)\204
<o?+ inf |—=log—— — — — — Ao2
gen(¢, Pyyz,,) <o +ir;% [2/\ logn_1 ) log [1 2( - Ao )” , (41)

for any § € (0,1/2], and any € > 0, by choosing A = 1/(2n°0?), it can be seen that for sufficiently large n,

we have gen(&, Pyy| Z[n]) <(l+¢) 112{’,25 Therefore, the bound can be also viewed as asymptotically optimal.

Similarly, we can apply the bounds in (28). Since in this case, the optimal choice of A does not depend
on the index-7, they are also asymptotically optimal. It should be noted that when the weight coefficients
«;’s are not chosen to be uniform, then the optimal A becomes dependent on the index ¢, and the bounds in
[@3) will be looser, in a similar manner as that for the KL-based bounds.

From the discussion on both the KL-based bound and the mutual-information-based bounds, it appears
that the order-wise looseness of the existing bounds mainly stems from the choice of the function to apply
the change of measure inequality, i.e., (W, Z;) or (W, Z) — £(W, Z;). Tt is seen that the second quality is
intuitively more centered, and therefore, the variance proxy is considerably lower than the former, assuming
that they are both sub-Gaussian. In the canonical Gaussian setting, this difference is critical to make the
information-theoretic bounds tight or asymptotically tight, and we expect the same effect will manifest in
other problem settings, though without the ground truth and the statistical models, this conjecture is difficult
to verify precisely.



5 Extension: The Vector Quadratic Gaussian Location Problem

Let us consider the vector version of the quadratic Gaussian location problem. Let the data samples be

Z1, 49y, i & = N, Y), ie., each Z; is a d-dimensional random Gaussian vector. The sample-

average algorlthm again chooses the following hypothesis W = >~"" | @;Z; + N, where «;’s are nonnegative
weights such that >I"  a; =1, and N is a Gaussian noise vector ~ N'(0,0%1I). Instead of considering the
standard mean squared error, 1et us consider a more general quadratic distortion measure ||z||%= 2T Ax,
based on a symmetric positive definite matrix A, for which we have

n

gen(¢, Pyyz,,) =E |[(Z - W)TA(Z -W) - 1 > (2 —-W)TAZ - W)

n-
=1
1 n
=~ > [T(AE + ") ~ E (2] AZi = 2(Z; - )" AW)] . (42)
i=1
It can be shown that the generalization error of this setting is TYSIAE)

One would expect that the result on the scalar setting could be generalized to this setting to obtain tight
bounds, however, we shall illustrate the critical condition (2] is in fact rather stringent. To obtain tight
results in this setting, one has to apply the bound in a different manner and the tightness is dependent on
the decomposability of the loss function.

5.1 Generalization Error Bounds via Theorem [
Let us follow the footsteps of the scalar case, and define
F; = Te(AS + pp)) — (27 AZ; — 2(Z; — )T AW) . (43)

The conditional distribution is

WIZ SN it ai(Zi — ), Y a2 + 031 | . (44)
J#i

We will choose the reference distribution Q7 as

WRHN (1Y a2 +031], (45)
J#i
which is independent of Z;.
With these conditional distributions, we can derive (see appendix) that

—1

2
i @
KL( ) = 5 (Zi — )" ZO‘?E + 031 (Zi — ) (46)
J#i
Argy, W) =20(Z — )" A | Y a0 + o1 | AZ: - ) (47)
J#i

Therefore
—1

2
. o
BIKL(Pwz Q)] = S Tr | [ Yats+od1)| =
J#i

ElAp g (V] =2XTr A > a5 +03I| A . (48)
J#i

10



At this point, it is clear that the bounds can not be further simplified under general choices of a;’s, A,
and o%;. Next, we consider three special cases:

e 0% =0and A =1I: In this case, we have

__dai E[Ap g (V)] =20 [ 3 a2 | Tr[=?). (49)

E[KL( »
2 Zﬁéz v J#i

w)l =

Applying the first bound in Corollary [Il we obtain
2
gen(€, Pz,,) < /A T7] (50)

As a reference, the true generalization error in this setting is in fact %Tr[E], i.e., the bound is loose
using this bounding approach.

e 0% =0and A=X"": In this case, we have

dog 2 2
51 ElAp o, (N =2d3 [ Y a7 ]. (51)

E[KL( o 2 3
22595 v i

Wl =

Applying the first bound in Corollary [Il we obtain

gen(§, Pwz,,,) <

= (52)

For this case, the true generalization error is indeed fact %d, i.e., the bound is tight using this bounding
approach. This setting is however a trivial setting, where the loss function essentially decomposes the
vector into i.i.d. components.

e A=1, and ¥ = ¢%I: In this case, we have

da?o 9 9
E[KL( )] = ST +202 D ElAp, g, W] =20 | Y afo® +03 | do®. (53)
v J#i
Applying the first bound in Corollary [Il we obtain
2
gen(§7 PW\Z[n]) < Ed0-2' (54‘)

The true generalization error in this setting is indeed the same, i.e., the bound is also tight for this
special case.

It is seen that in general the bounds derived from the proposed bounds given in Theorem [I] are not tight,
but can yield tight bounds for certain special cases.

Remark. Recall the equality condition in (I2). With the given Pyy|z, and QZ'W, we have that

-1
dP
In—=—W-p-ai(Zi—w)" [ Y afS+o}T| (W —p—ai(Z—n)
4@ J#i
-1
+ (W — )T ZQ?Z—FU?\,I (W — )
J#i
-1
=20;(Z; — )" | DS+ 03I (W —p). (55)
J#i

11



With (28], it is seen that the condition given in (I2)) can be satisfied when
~1
daiS+oRI| x4, (56)
i

which indeed holds for the latter two cases discussed above. However, this relation does not hold under
general ¥, 0%, and A choices, and bounds derived from Theorem [ will in general be loose.

5.2 Generalization Error Bounds via Loss Function Decomposition

Recall the loss function in general has the form £ : W x Z — R. We call a loss function decomposable when
there exist functions ¢; : W x Z = R, 7 =1,2,...,d, and functions ¢; : W = W,, j =1,2,...,d such that

d

Uw,2) =D €5(¢5(w), 2), (57)

j=1

for any (w, z) € W x Z. Clearly, the loss function we have adopted for the vector Gaussian location problem
satisfies this condition with

Ci(w, Z;) = Nj(W = Z)T U U (W — Zy)
= (VNUSW = /U Z)T (VU W = N UT Z3), (58)

where UDU? is the eigenvalue decomposition of A4, A; is the j-th diagonal item of D, U; is the j-th column
of U, and ¢; = /N;UJW.
For decomposable loss functions, we have the following generalization of Theorem [l

Theorem 2. Let F; j = L ¢(¢p;(W)) — £;(¢;(W), Z;), then we have

¢ KLy, o120, w) + AFi,jzi,Q;V(A)]

in

n d
1
gen(é? PW|Z[n]) < ﬁ Z Z ]Epzi

P A>0 A
n d
1 *—1 7
= n Z Z ]EPZ,L [AFi,j|Zi,Q"L,V (I<L(P)¢>J(W)|Z7L ”Q@(W)))} ) (59)
i=1 j=1

for Q;j(W) 7, = Q;j(W)PZ“ 1 =1,2,...,n, that is induced by any QZWZ =QiPz,i=12,....n, ie, a
distribution Q' where W is independent of Z;.

We omit its proof since it is almost identical to that of Theorem[Il It should be noted that the variational
representation inequality is applied on the marginalized distribution Py 1)z, and Q;j(w), however since

Qf;bj(W) is induced by @, we have AFi,j\Zi,Qé,V()‘) = AFi,j|Zi-,QZ)(W)()\)' We provide the following corollary
in order to tackle the vector Gaussian setting. A corollary similar to Corollary [2] can also be written, but it
is omitted here for conciseness.

Corollary 5. Let F; j = Lj ¢(¢;(W)) — £;(¢;(W), Z;), then we have

1
P < — inf E
gen(é.a W\Z[n]) = n ZZ m

KL(Py, (w)|z: ||Qf¢,j(w)) + AR Qi (/\)]

Lt Ld x>0 A
=1 5=1
n d i
< - J i j i, &y
ST A SN
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Equipped with the new bounds above, let us revisit the vector setting. This time, let us define
Fiy =X Te(U;Uf (B + pu®)) = X (280,07 Zi = 2(Z; — )" U U W) (61)

The conditional distribution Py )z, is given as

Po,oniz. = P syrwiz, =N | VAU i+ ai/ AU )N > a3UTSU; + Mo | (62)
J#i

. . . . 1/ . 1/
We will choose the reference distribution @ 6, (W) = Q AW as

VNUTW SN VAU 1,00 03U SU; + Ao | (63)
J#i

The divergence term KL(P¢j(W)\Zi||Q;j(W)) is therefore

2 Te(U;UT (Z; - p)(Z — )]

) - ' 64
(\/_U W‘ZHQ\/_U ) 2(Zj7éio‘?UjTEUj+UJQV) "

By substituting A = U;U7T in (@), we can obtain that

Mgy, (V) =200(Z — )" UUT | Y25+ oR T | U;US (Zi — )

J#i
= 2\2)\? Z Q2UTSU; + o3y | To[U;UT (Zi — p)(Zi — )7 (65)
J#i
Therefore
of Tr[U; U]y

E[KL(Py, (w2, Qw))] =
' o) 2 (30,4 03U SU; + 03,

E[Ap, g (V] =200 [ Y a2UTSU; + o} | TY[U;U] 5. (66)
J#i
Applying the first bound in Corollary Bl we obtain

18 KL(Py, )+ Mg g (V)
gen(§, Py z,,) < = o ;;»0 b\ f 1
zlzn:zdzzax Tr[U;U]'s] = zzd: [U,U]5]
nz 1 5=1 ’ " j=1
2 d 2
=T S NUUTS| = =~ Tr[A¥], (67)
j=1

which is indeed the true generalization error.

Remark: Though loss functions may not be decomposable in general, for the vector Gaussian location
problem, decomposability can indeed be utilized to yield a tight information-theoretic generalization bound,
as shown above. In a sense, decomposition allows us to utilize the probability distribution of a random
variable after further processing, and by the data-processing inequality of KL divergence [35], such processing
will reduce the KL divergence and potentially yield tighter bounds.
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6 Conclusion

We studied the information-theoretic generalization error bounds, and in particular, focused on the quadratic
Gaussian setting. The proposed new bound is shown to be exactly tight for this setting. The most important
change from the previous work appears to be the function that we choose to bound, however, the additional
introduction of a reference distribution, and the conditional application of the change of measure inequality
also contribute to the tightness of the bound. A generalized vector version of the problem is further studied,
which inspired a new and refined generalization error bound that relies on the decomposability of the loss
functions.

Though we have focused on the quadratic Gaussian setting exclusively in this work, the technique can
be applied to the study of noisy and iterative algorithms such as stochastic gradient Langevin dynamics
(SGLD), as previously studied in [4OLITLT5]. The key difference from the previous result is that due to the
application of the change of measure inequality, our bound relies on the cumulant generating function of a
different quantity, or a different sub-Gaussian variance proxy, that likely has a lower value, and therefore
the resultant bound is also potentially tighter in that setting. However, due to the more complex statistical
dependence induced by the algorithm, it is not clear whether this can drive order-wise gains, and we leave
this to a future study.

Gaussian models have had many successes in machine learning research, particularly in the context of
Gaussian process [36] and the recent development of Gaussian diffusion models [6LB7H40]. Therefore, we
believe studying the Gaussian settings in the context of machine learning is indeed well-motivated, and will
lead to important engineering insights in the future.

A Generalization Error for the Quadratic Gaussian Case

We can write as follows to derive the exact generalization error for the canonical quadratic Gaussian setting
without utilizing the information-theoretical bounds as follows:

gen(é.a PW\Z[n]) =E (Z - W)2 -

S|

zn:(zi - W)?

= %ZE(UQ +p? = 27+ 2(Z; — )W)
i=1

= %ZE (Zi—p) | Y a;Zj+ N
. =

2 n n
ZEZE (Zi—p) [ D_as(Z =)+ N
i=1 j=1

S B ((Zi~ (2, - )

i=1 j=1
2N LB (7] = 2
_EZZ;OQE (2 = )] ==—. (68)

This gives the exact generalization error for this setting.

B Computing AFi’QiW‘Z_()\) = Ap, i, (A): The Scalar Gaussian Case

First, notice that
EQ@V‘Zi [Fi] = IEQiW‘Zi (0 +p? = Z2) + 2(Z; — W |Zi]
= (0% +u* = Z8) + 2u(Zi — ), (69)
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since under QW |Z;, W and Z; are independent, and W has mean p. Then we can write

Eqi, ..

— explA(0? + 4 = ZD)Eq, , [exp (2N(Zi — )W)|Z)

exp [No? + p? — Z2) + 2M(Z; — W | Z;]

= exp[No? + p? — Z2)]) exp[2A\u(Z; — )] exp | 2M\%(Z Z 2ot + o3 ||, (70)
J#i

where the second equality is by the moment generating function of Gaussian random variable W distributed
according to QY. It follows then

ARy, (\) =hEq [exp(\F})] — AE[F;] = 2)\*(Z Za o’ +o3 |. (71)
JF#i
C Computing Ar g, , (A) = Afr, p,p, (A): The Scalar Gaussian Case
First, notice that Ep,, p, [Fi] = 0. Then

Epy Py, exp (Ao + p° — Z7) + 2M(Z; — )W)
=E [Elexp (A(0® + p* — Z7) + 2\ (Z; — n)W) | Z4]]
=E [exp(M(0? + 1 — Z7)) - exp(2X(Z; — p)u + 20 (Z; — p)?0® /)| Zi] (72)

where the first equality is by the tower rule, and the second step is by using the moment generating function
of the Gaussian random variable W. Rearranging the terms gives

Epy Py, exp (A(0? + pi* — Z2) + 2N Z; — p)W)
2 2
= exp(Ao?)E exp {<2)\na - /\) (Z; — ,LL)Q]

= exp(Ao?) (1 —9 (%2”2 - A) 02) o : (73)

n

where the last equality is by the moment generating function of the x? random variable of degree one. Taking
the logarithm on the right-hand side gives the expression for Ar, py, p, (M)

D Computing AE,QiW'Z_()\) = Ap, i, (A): The Vector Gaussian Case

Similar to the scalar case, notice that

iz [F}] = L (Tr(A(S + pu)) — (21 AZ; — 2(Z; — )" AW) | Z4]

= (Tr(AZ + pp™)) — ZFAZ) +2(Z; — )T Ap. (74)
We can then write the exponential term in AFuQ@V‘Z, (A)
Eqi, . eXD INT(AE + ™)) = N (ZFAZ; — 2(Z; — )" AW) | Z4)
= expATr(A(E + pu’)) = AZT AZ]Eq; . [exp (2A(Z; — )" AW) | Z;]
= expATr(A(E + up”)) = ANZ] AZ] exp [2A(Z; — )" Ap]

cexp |203(Z; — )T A Z(a?E) +oX1 | AT(Z; — ) (75)
J#i
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where the second equality follows standard manipulation of Gaussian integration. It follows then

AR Qi (\) = mEQ{y z, [exp(AF)] — AE[F;] = 2X*(Z; — )" A | Y (a3%) + o} T | AT(Z; — p).  (76)

J#i

References

1]

2]

[7]

8]

[9]

[12]

[13]

[14]

[15]

[16]

D. Russo and J. Zou, “Controlling bias in adaptive data analysis using information theory,” in Artificial
Intelligence and Statistics, 2016, pp. 1232-1240.

A. Xu and M. Raginsky, “Information-theoretic analysis of generalization capability of learning algo-
rithms,” in Advances in Neural Information Processing Systems, 2017, pp. 2524-2533.

A. Asadi, E. Abbe, and S. Verdd, “Chaining mutual information and tightening generalization bounds,”
in Advances in Neural Information Processing Systems, 2018, pp. 7234-7243.

A. Pensia, V. Jog, and P.-L. Loh, “Generalization error bounds for noisy, iterative algorithms,” in 2018
IEEE International Symposium on Information Theory (ISIT), Jun. 2018, pp. 546-550.

I. Issa, A. R. Esposito, and M. Gastpar, “Strengthened information-theoretic bounds on the general-
ization error,” in 2019 IEEE International Symposium on Information Theory (ISIT), Jul. 2019, pp.
582-586.

J. Negrea, M. Haghifam, G. K. Dziugaite, A. Khisti, and D. M. Roy, “Information-theoretic generaliza-
tion bounds for SGLD via data-dependent estimates,” in Advances in Neural Information Processing
Systems, 2019, pp. 11 015-11025.

S. T. Jose and O. Simeone, “Information-theoretic generalization bounds for meta-learning and appli-
cations,” Entropy, vol. 23, no. 1, p. 126, 2021.

X. Wu, J. H. Manton, U. Aickelin, and J. Zhu, “Information-theoretic analysis for transfer learning,”
in 2020 IEEE International Symposium on Information Theory (ISIT), Jun. 2020, pp. 2819-2824.

Y. Bu, S. Zou, and V. V. Veeravalli, “Tightening mutual information based bounds on generalization
error,” IEEE Journal on Selected Areas in Information Theory, vol. 1, no. 1, pp. 121-130, 2020.

T. Steinke and L. Zakynthinou, “Reasoning about generalization via conditional mutual information,”
in Conference on Learning Theory. PMLR, 2020, pp. 3437-3452.

M. Haghifam, J. Negrea, A. Khisti, D. M. Roy, and G. K. Dziugaite, “Sharpened generalization bounds
based on conditional mutual information and an application to noisy, iterative algorithms,” in Advances
in Neural Information Processing Systems, vol. 33, 2020, pp. 9925-9935.

F. Hellstrom and G. Durisi, “Generalization bounds via information density and conditional information
density,” IEEE Journal on Selected Areas in Information Theory, vol. 1, no. 3, pp. 824-839, 2020.

X. Wu, J. H. Manton, U. Aickelin, and J. Zhu, “Fast rate generalization error bounds: Variations on a
theme,” arXiv preprint larXiw:2205.03131, 2022.

R. Zhou, C. Tian, and T. Liu, “Individually conditional individual mutual information bound on gen-
eralization error,” IEEE Transactions on Information Theory, vol. 68, no. 5, pp. 3304-3316, 2022.

B. Rodriguez-Galvez, G. Bassi, R. Thobaben, and M. Skoglund, “On random subset generalization error
bounds and the stochastic gradient Langevin dynamics algorithm,” in Proc. 2020 IEEE Information
Theory Workshop (ITW), Apr. 2021, pp. 1-5.

R. Zhou, C. Tian, and T. Liu, “Stochastic chaining and strengthened information-theoretic general-
ization bounds,” in 2019 IEEE International Symposium on Information Theory (ISIT), 2022, pp.
690-695.

16


http://arxiv.org/abs/2205.03131

[17]

G. Aminian, Y. Bu, L. Toni, M. Rodrigues, and G. Wornell, “An exact characterization of the general-
ization error for the Gibbs algorithm,” in Advances in Neural Information Processing Systems, vol. 34,
2021, pp. 8106-8118.

L. P. Barnes, A. Dytso, and H. V. Poor, “Improved information-theoretic generalization bounds for
distributed, federated, and iterative learning,” Entropy, vol. 24, no. 9, p. 1178, 2022.

G. Aminian, Y. Bu, G. Wornell, and M. Rodrigues, “Tighter expected generalization error bounds via
convexity of information measures,” arXiv preprint larXiv:2202.12150, 2022.

M. Haghifam, S. Moran, D. M. Roy, and G. K. Dziugiate, “Understanding generalization via leave-one-
out conditional mutual information,” in 2022 IEEE International Symposium on Information Theory
(ISIT), Jul. 2022, pp. 2487-2492.

H. Hafez-Kolahi, Z. Golgooni, S. Kasaei, and M. Soleymani, “Conditioning and processing: Techniques
to improve information-theoretic generalization bounds,” Advances in Neural Information Processing
Systems, vol. 33, 2020.

F. Hellstrom and G. Durisi, “Evaluated CMI bounds for meta learning: Tightness and expressiveness,”
arXiw preprint larXw:2210.00511), 2022.

M. Haghifam, B. Rodriguez-Galvez, R. Thobaben, M. Skoglund, D. M. Roy, and G. K. Dziugaite,
“Limitations of information-theoretic generalization bounds for gradient descent methods in stochastic
convex optimization,” in International Conference on Algorithmic Learning Theory. PMLR, 2023, pp.
663-706.

H. Wang, R. Gao, and F. P. Calmon, “Generalization bounds for noisy iterative algorithms using
properties of additive noise channels,” J. Mach. Learn. Res., vol. 24, pp. 26-1, 2023.

Z. Wang and Y. Mao, “Tighter information-theoretic generalization bounds from supersamples,” arXiv
preprint arXw:2302.02432, 2023.

——, “On the generalization of models trained with SGD: Information-theoretic bounds and implica-
tions,” arXiv preprint larXiw:2110.03128, 2021.

S. Shalev-Shwartz and S. Ben-David, Understanding machine learning: From theory to algorithms.
Cambridge university press, 2014.

T. M. Cover and J. A. Thomas, Elements of Information Theory, 1st ed. New York: Wiley, 1991.

C. E. Shannon, “A mathematical theory of communication,” Bell System Technical Journal, vol. 27,
pp. 379-423, 623656, Jul. Oct. 1948.

D. Tse and P. Viswanath, Fundamentals of wireless communication. Cambridge university press, 2005.
T. Berger, “Rate-distortion theory,” Wiley Encyclopedia of Telecommunications, 2003.
R. M. Gray, Source coding theory. Springer Science & Business Media, 1989, vol. 83.

F. Hellstrom, G. Durisi, B. Guedj, and M. Raginsky, “Generalization bounds: Perspectives from infor-
mation theory and PAC-Bayes,” arXiv preprint |arXivw:2309.04381), 2023.

G. K. Dziugaite and D. M. Roy, “Computing nonvacuous generalization bounds for deep (stochastic)
neural networks with many more parameters than training data,” in Proceedings of the Conference on
Uncertainty in Artificial Intelligence, 2017.

Y. Wu, “Information-theoretic methods for high-dimensional statistics,” 2019.

C. K. Williams and C. E. Rasmussen, Gaussian processes for machine learning. MIT press Cambridge,
MA, 2006, vol. 2, no. 3.

17


http://arxiv.org/abs/2202.12150
http://arxiv.org/abs/2210.06511
http://arxiv.org/abs/2302.02432
http://arxiv.org/abs/2110.03128
http://arxiv.org/abs/2309.04381

[37] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep unsupervised learning using
nonequilibrium thermodynamics,” in International Conference on Machine Learning. PMLR, 2015,
PP 2256-2265.

[38] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Advances in Neural Informa-
tion Processing Systems, vol. 33, pp. 6840-6851, 2020.

[39] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, “Score-based generative
modeling through stochastic differential equations,” arXiv preprint|arXiw:2011.13456, 2020.

[40] P. Dhariwal and A. Nichol, “Diffusion models beat GANs on image synthesis,” Advances in Neural
Information Processing Systems, vol. 34, pp. 8780-8794, 2021.

18


http://arxiv.org/abs/2011.13456

	Introduction
	Preliminaries
	Generalization Error
	Variational Representation of the KL Divergence
	The Scalar Quadratic Gaussian Location Problem
	Existing Generalization Error Bounds

	A New Information-Theoretic Generalization Error Bound
	The Canonical Quadratic Gaussian Setting Revisited
	Exactly Tight Bounds for the Quadratic Gaussian Setting
	Looseness of Mutual Information Based Bounds

	Extension: The Vector Quadratic Gaussian Location Problem
	Generalization Error Bounds via Theorem 1
	Generalization Error Bounds via Loss Function Decomposition

	Conclusion
	Generalization Error for the Quadratic Gaussian Case
	Computing _F_i,Q^i_W|Z_i()=_F_i,Q^i_W(): The Scalar Gaussian Case
	Computing _F_i,Q_W,Z_i()=_F_i,P_WP_Z_i(): The Scalar Gaussian Case
	Computing _F_i,Q^i_W|Z_i()=_F_i,Q^i_W(): The Vector Gaussian Case

