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Abstract

Multiphase flows through reservoir rocks are a universal and complex phenomenon. Relative perme-
ability is one of the primary determinants in reservoir performance calculations. Accurate estimation
of the relative permeability is crucial for reservoir management and future production. In this paper,
we propose inferring relative permeability curves from sparse saturation data with an ensemble
Kalman method. We represent these curves through a series of positive increments of relative per-
meability at specified saturation values, which guarantees monotonicity within, and boundedness
between, 0 and 1. The proposed method is validated by the inference performances in two synthetic
benchmarks designed by SPE and a field-scale model developed by Equinor that includes certain
real-field features. The results indicate that the relative permeability curves can be accurately esti-
mated within the saturation intervals having available observations and appropriately extrapolated
to the remaining saturations by virtue of the embedded constraints. The predicted well responses are
comparable to the ground truths, even though they are not included as the observation. The study
demonstrates the feasibility of using ensemble Kalman method to infer relative permeability curves
from saturation data, which can aid in the predictions of multiphase flow and reservoir production.
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1 Introduction

Multiphase flows in porous media occur in a
wide range of engineering applications. In water

treatment, porous materials are used to remove
bacteria and harmful substances from the water
supply [1, 2]; in chemical engineering, packed bed
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reactors are employed to facilitate the heteroge-
neous reactions [3, 4]; and in the mitigation of
global warming, supercritical carbon dioxide is
injected into porous rock formations for geologic
carbon storage [5, 6]. These examples and many
other applications demonstrate the significance of
understanding and modeling the multiphase flows
in porous media for accurate prediction of the
system performance and efficient operation.

Historically, the development of models for
multiphase flow has largely been driven by the
petroleum engineering industry, with the goal of
achieving more efficient oil and gas recovery from
hydrocarbon reservoirs [3]. In petroleum industry,
oil is displaced and driven to the production well-
bore by injecting water or gas in the secondary
EOR (Enhanced Oil Recovery) [7]. In this pro-
cess, the relative permeability plays a crucial role
in determining the motion of multiphase flow, as
it reflects the ability to transmit a particular fluid
in the presence of other immiscible fluids. Inaccu-
rate estimation of the relative permeability may
result in reduced oil production and other prob-
lems [8]. Therefore, it is essential to accurately
determine the relative permeability in order to
minimize uncertainties in reservoir management
and mitigate the impact of inaccurate estimations
on oil production.

Relative permeability curves are usually
obtained through steady- or unsteady-state core
flooding experiments [9–12]. The steady-state
methods have the highest accuracy since the capil-
lary equilibrium is achieved in the measurements,
enabling direct calculation of the effective per-
meability for each phase at a given saturation
using Darcy’s law. However, measurement for
each saturation takes hours or days, making the
steady-state methods inherently time-consuming
and expensive. The unsteady-state measurements
are more prevalent because they do not require
the equilibrium that a set of relative permeabil-
ity curves can be obtained within only a few
hours. But they are less reliable and considered
only as qualitative substitutes of the steady-state
measurements. This is because the relative per-
meability data is obtained at an unsteady state
with changing properties at the estimated satura-
tion, which may lead to very different values from
the tests performed earlier. Due to the complexity
and costs in laboratory measurement, a number

of empirical models have been developed to esti-
mate the relative permeability values [8, 13–18].
Among these, the most well-known is the Corey’s
model in power law relations [13, 14], which is
a theoretical approach developed from the Bur-
dine equations [19]. Other models, such as the
Hornarpour model [8], are more based on real mea-
surements and developed for different reservoir
conditions.

Laboratory measurements of relative perme-
ability curves have a major shortcoming in that
they may not be able to accurately describe the
multiphase flows in field-scale reservoirs [20]. This
is due to the vast disparity in spatial scales
between the core samples in laboratory tests and
industrial reservoirs, as well as their different
reservoir conditions [8, 21]. For a field-scale reser-
voir, history matching the production data is a
typical way for estimating the relative permeabil-
ity curves. Mathematically, calculating parame-
ters (relative permeability) from observation data
(production data) is an inverse problem, which can
be solved with optimization methods. For exam-
ple, Reynolds et al. [22] used the adjoint method to
estimate the three-phase oil relative permeability
curve by analyzing the sensitivity of production
data to parameters defining the relative perme-
ability functions. To derive the curve, they relied
on two sets of two-phase relative permeability
curves (oil-gas and oil-water) based on Stone’s
Model II [18] and represented by power law mod-
els. Similarly, Eydinov et al. [23] estimated the
relative permeability curve with the same method
by history matching the three-phase flow produc-
tion data. However, they represented the relative
permeability curve with the B-splines, which was
much more flexible than the power law models but
required additional constraints for the coefficients
to ensure the monotonicity. They also guaran-
teed the possible convex property of the curve by
constraining its derivatives.

Another approach is the ensemble-based
method, which has shown promising performances
in recent decades with applications to geo-
science [24–27], turbulent flow modeling [28, 29],
and medical physics [30, 31], among others. It
differs from the adjoint-based method in that
the derivatives are not required but replaced by
covariance matrices computed from the ensem-
ble [32]. This makes it more straightforward and
less labor-intensive to implement, especially for
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complex systems such as the reservoirs. Li et
al. [33] inferred the oil-water permeability curves
by history matching the production data with
the ensemble Kalman filter (EnKF). The curves
were represented with the flexible B-spline model
while the monotonicity was guaranteed by solving
a system of linear equations for the coefficients.
Despite the success in the above works, they were
only tested on simple synthetic examples and not
on realistic reservoirs. Other studies have demon-
strated the applicability of EnKF to inferring
relative permeability curves in real-world reser-
voirs [34–39]. Seiler et al. [38] showed that EnKF
led to improved predictions and fast updating
of the relative permeability curves on a complex
North Sea oil field with the most recent produc-
tion data. The Corey’s model was employed to
represent the relative permeability curves and the
endpoint saturations were also inferred. Chen et
al. [39] applied the similar representation and opti-
mization method to the Brugge field, but they
included additional permeability vectors in the
history matching process to assist the inference.

Most of the studies in this line seek to model
relative permeability curves with a suitable rep-
resentation and infer the curves from field data
using adjoint- or ensemble-based methods. Power
law models contain intrinsic monotonicity but
may lack the complexity required for real-world
fields, while B-spline models are more flexible
but require additional constraints. In this paper,
we introduce a simple and novel representation
for the relative permeability curve and use an
ensemble Kalman method to infer the parameters
therein based on sparse saturation measurements.
The representation has the merits of embedded
monotonicity and boundedness that are physically
required for reservoir simulations. The proposed
method is evaluated in a series of test cases con-
sisting of two synthetic benchmarks and a more
realistic project. Most of the works on inferring
relative permeability curves by history matching
are performed using reservoir production data. In
recent years, the increasing use of permanent sen-
sors and advancements in 4D seismic monitoring
have made it possible to collect a broader range of
data from reservoir fields [27, 40–42], which may
assist in the estimation of relative permeability
curves. In this study, we also investigate the infer-
ence capability by using production data only, and
compare it to that based on sparse satuation data.

The rest of the paper is structured as fol-
lows. The challenges associated with modeling
fluid flows in reservoir rocks and the commonly
used black-oil model are described in Section 2.
The representation of relative permeability curves
and the ensemble-based inference are presented
in Section 3. The case-setup and inferring perfor-
mance of the proposed method for three test cases
are detailed in Section 4. The paper is concluded
in Section 5.

2 Flow in reservoir rocks

The flow of fluids in reservoir rocks is an intricately
complex phenomenon that poses significant chal-
lenges to the oil and gas industry. The multiphase
nature of these flows, combined with the presence
of porous rock formations, dynamic pressure and
temperature gradients, creates a dynamic and con-
stantly evolving system that can be difficult to
model and predict.

At the heart of this complexity is the mix-
ture of oil, gas, and water that comprises the fluid
phase within the reservoir. Each of these fluids
has different physical properties and flow behav-
ior. Specifically, the oil can exist in a variety of
forms, ranging from liquid to gas, with the gas
phase either free or dissolved within the oil phase.
This can lead to a wide range of behaviors, includ-
ing phase segregation, trapping, and mobilization,
which must be accurately modeled in order to
predict reservoir behavior. Additionally, the water
phase, which can exist as either brine or fresh-
water, is also present in varying quantities and
can further complicate the flow behavior of the
fluid mixture. These factors, combined with the
complex geometry and heterogeneity of reservoir
rocks, make accurate modeling of fluid flows in
these environments a significant challenge for the
petroleum engineering community.

In addition to these inherent complexities, the
oil and gas industry must also contend with the
challenges of extracting hydrocarbons from these
complex multiphase flow systems. This requires
sophisticated modeling and simulation techniques,
as well as a deep understanding of the physical
properties of the fluids and the rock formations
within the reservoir. These efforts are further
complicated by the need to balance production
rates against reservoir depletion, with production
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strategies often requiring constant adaptation in
response to changing reservoir conditions.

The most widely used fluid model for reser-
voir simulations is the black-oil model, which
represents the behavior of oil, gas, and water in
the reservoir by a set of equations. The black-oil
equations are deduced based on mass conservation
for each component, along with Darcy’s law and
initial and boundary conditions for closure. Here
we briefly recall the model equations for mass and
momentum conservation,

∂

∂t
(φrefAα) +∇ · uα + qα = 0,

vα = −Kr, α

µα
K (∇pα − ραg) ,

where φref denotes reference porosity, K is per-
meability of the porous medium, and g is gravita-
tional acceleration. For component α, Aα and qα
denote its accumulation and well outflux density;
Kr, α, µα, and pα denote its relative permeabil-
ity, viscosity, and phase pressure; uα and vα are
its component velocity and phase velocity, which
are related by a shrinkage/expansion factor bα.
Specifically, the accumulation terms and fluxes are
calculated as

Aw = mφbwSw, uw = bwvw,
Ao = mφ (boSo + rogbgSg) , uo = bovo + rogbgvg,
Ag = mφ (bgSg + rgoboSo) , ug = bgvg + rgobovo,

where mφ is pore volume multiplier determined by
pressure; rog and rgo denote the ratio of vaporized
oil to gas in gaseous phase and ratio of dissolved
gas to oil in oleic phase, respectively; Sw, So, and
Sg denote the saturation of water, oil, and gas,
respectively, with the relation of Sw + So + Sg =
1. A complete description of the black-oil model
equations can be found in the literature [43].

As is shown above, relative permeability Kr, α

plays a critical role in determining the phase flux
by Darcy’s law since it describes the fractional flow
of each fluid phase through the porous medium.
Without reliable data on relative permeability,
predictions of fluid behavior can be highly inac-
curate. To address this problem, it is essential
to obtain accurate relative permeability curves,
which serve as a basis for developing reliable
models of petroleum reservoirs and optimizing
production and recovery strategies.

3 Methodology

This work aims to demonstrate a data-driven
framework for inferring relative permeability
curves in reservoir rocks. The inference needs to
represent the relative permeability curves appro-
priately, and incorporate sparse and potentially
noisy measurements in the reservoir.

We propose representing the curve by a col-
lection of control points with increasing relative
permeabilities, and using the ensemble Kalman
method to infer the parameters (denoted as ω)
therein based on the sparse observation data. The
framework for inferring the relative permeabil-
ity curves is presented in Fig. 1. It consists of
three steps: (1) parameter sampling, (2) forward
model propagation, and (3) parameter update
with measurements, which are shown in Figs. 1a–
c, respectively, and will be described in detail
below.

3.1 Relative permeability curve
representation with hard
constraints

Parameterization of relative permeability curves
is a crucial component of the inverse problem.
The curve is in a rather simple form with only
one dimension of saturation. However, it must
satisfy the constraints as follows.

(i) The curve is an increasing function of the
corresponding saturation.

(ii) The curve is bounded, with the lower bound
of relative permeability being zero and the
upper bound being one.

A common method to represent such a simple
function is using a truncated Chebyshev poly-
nomials series [44]. The coefficients of the poly-
nomials are optimized to fit the available data.
However, this representation cannot strictly guar-
antee the constraints throughout the optimization
process. Modifying the coefficients alters the curve
form globally and may induce non-monotonicity at
some intervals, even the monotonicity constraint
is softly imposed through a regularization term in
the cost function (in Fig. 1c). The non-monotonic
curve will cause a quick termination of the reser-
voir simulation and the parameter inference. A
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Fig. 1: Schematic of the ensemble-based inference of relative permeability curve with sparse saturation
data, consisting of three main steps: (a) sample the parameters to determine the increments {∆Kri} for
representing the curve, (b) propagate the represented curves to saturation fields by solving the black-oil
equations, and (c) update the parameters by incorporating the sparse observation data. The observation
data in this study is taken at a specific moment in time, which differs from many similar works that use
time series data.

more generalized, neural-network-based represen-
tation may have a similar difficulty of not being
able to ensure the monotonicity always.

We propose representing relative perme-
ability curves by a set of control points with
increasing relative permeabilities, which is shown
in Fig. 2. Specifically, the curve is regulated
by n + 1 control points with the saturations
S0, S1, . . . , Sn and corresponding relative per-
meabilities Kr0 ,Kr1 , . . . ,Krn . To satisfy the
boundedness constraint, we assign the lower
bound Kr0 = 0 and the upper bound Krn = 1
for S0 = 0 and Sn = 1, respectively. Monotonic
behavoir can be obtained when the increments in
relative permeability between any two adjacent
points are always positive. To this end, we repre-
sent the increments using the natural exponential
functions. For example, for the neighboring sat-
urations Si−1 and Si, we set the increment in
relative permeability ∆Kri = exp(ωi), where ωi
is a parameter to be inferred. However, such a
determined upper bound is essentially the sum of
all increments, i.e., Krn =

∑n
i=1 exp(ωi), which

may surpass the upper bound of one defined
above for the boundedness constraint. Here we
are inspired by the normalization for feature
scaling in machine learning, and normalize the
increments by their sum, capping the maximum
relative permeability (Krn) at one. As such, the
representation embeds both monotonicity and
boundedness to model the relative permeabil-
ity curve and significantly reduces the risk of a
black-oil simulation crash. The control points are
determined as

Kr(Si) =


0, if i = 0,∑i
m=1

exp(ωm)∑n
j=1 exp(ωj)

, if i = 1, . . . , n− 1,

1, if i = n,

where i, j, m denote the indexes of the parameter
or control point. The curve is then character-
ized by these control points and the line segments
connecting adjacent points, and the parameters
ω = [ω1, . . . , ωn] are optimized to accommodate
the observation data.
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Fig. 2: Representation of relative permeability
curves using a set of control points with increas-
ing relative permeabilities. The monotonicity is
guaranteed by the positive increments in relative
permeability (∆Kr) between any two contiguous
points, while the boundedness is ensured by the
starting and ending points.

Note that the number of control points and
their saturation distribution can be chosen with
flexibility. In this work, we select n ≤ 10 and
distribute the saturations uniformly (i.e., Si =
i/n).

3.2 Ensemble-based inference for
relative permeability curve

With the appropriate representation for relative
permeability curves, we employ the ensemble
Kalman method to infer the parameters ω based
on the saturation data. The ensemble Kalman
method is traditionally known as a data assimi-
lation approach to estimate possible states of a
system (e.g., saturation, pressure, and produc-
tion in a reservoir) as it evolves in time. But
here we infer the parameters that define relative
permeability curves, which is performed uing the
iterative ensemble Kalman method. The proce-
dure is detailed as follows.

(i) Sample the parameters ω based on the initial
prior distributions and represent the curve
with the increments {∆Kri} (Fig. 1a). Each
increment is a function of all the parame-
ters. The initial parameters, ω0, are deter-
mined as ω0

i = 0.1 for i = 1, . . . , n such
that the curve is a straight line connect-
ing (0, 0) and (1, 1). The initial ensemble
is obtained by drawing random samples of
parameters via the formula ωj = ω0 + εj ,

where ε ∼ N (0, 0.52) and j denotes the index
of the sample. Each of the sample ωj cor-
responds to a distinct relative permeability
curve, generating an ensemble of curves for
the reservoir simulation.

(ii) Propagate each relative permeability curve
in the ensemble to saturation fields by solv-
ing the black-oil equations (Fig. 1b). The
predicted observable quantities are obtained
via post-processing from the simulated satu-
ration fields, e.g., extracting oil/gas satura-
tions at some locations in the reservoir.

(iii) Update the parameters ω based on the sta-
tistical analysis of the predicted observable
quantities obtained in step (ii) and the com-
parison with the sparse observation data
(Fig. 1c).

Steps (ii) and (iii) are repeatedly executed until
the convergence criterion is reached.

The cost function used in step (iii) is written
as

J =
∥∥ωl+1

j − ωlj
∥∥2

P
+
∥∥yj −H[ωl+1

j ]
∥∥2

R
, (1)

where ‖ · ‖A denotes the norm weighted by the
covariance matrix A, l is the iteration index, y is
the observation, P is the model error covariance
matrix indicating the parameter uncertainties, R
is the observation error covariance matrix, and
H is the observation operator. The first term in
Eq. (1) is used to regularize the updated param-
eters by penalizing deviations from the values in
the previous iteration. The second term describes
the discrepancy between the observation and the
prediction. The observation data is sparsely sam-
pled from the fields and subjected to the Gaussian
noise ε ∼ N (0,R), while the prediction is obtained
by simulating the reservoir and extracting values
at the observed locations through the operator
H. The parameter-update scheme of the iterative
ensemble Kalman method is written as

ωl+1
j = ωlj + K

(
yj −H[ωlj ]

)
,

with K = Slω(Sld)
> [

Sld(S
l
d)
>

+ R
]−1

,

where K is the Kalman gain matrix, Slω and Sld
are the square-root matrices with respect to the
parameters and data, respectively, at iteration
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step l. The square-root matrices are calculated as

Slω =
1√

Ne − 1

[
ωl1 − ω̄l, . . . ,ωlNe

− ω̄l
]
,

Sld =
1√

Ne − 1

[
H[ωl1]−H[ω̄l], . . . ,H[ωlNe

]−H[ω̄l]
]
,

with ω̄l =
1

Ne

Ne∑
j=1

ωlj ,

where Ne is the sample size.
In comparison to previous works using adjoint-

based methods [22, 23], the ensemble-based
method has the advantages of being derivative-free
and non-intrusive. It does not require the calcula-
tion for gradient of the cost function, and induces
minimal modifications of the source code, making
the implementation straightforward for a realistic
reservoir. In this work, the forward propagation
(Fig. 1b) is performed using the black-oil simula-
tor, Open Porous Media (OPM) Flow [43], and the
parameter update (Fig. 1c) is implemented with
the DAFI code [28], while the complete inference
procedure is carried out in a coupled manner.

4 Results

We demonstrate the feasibility of the proposed
method for inferring relative permeability curves
through a series of test cases. The first two test
cases, SPE 1 and SPE 3 benchmarks, are designed
by the Society of Petroleum Engineers (SPE)
as synthetic projects for evaluating and bench-
marking various simulators or algorithms. These
benchmark projects have become widely recog-
nized within the petroleum engineering commu-
nity as important tools for testing and improving
the accuracy and efficiency of reservoir simulators.
The third test case, Drogon, is a field-scale model
that closely resembles certain features of a real
field model, making it significantly more complex
than the synthetic benchmarks described above.

For all test cases, we aim to infer the gas
relative permeability curves from the sparse oil
saturation data, while assuming the other rela-
tive permeability curves to be known. The inferred
gas relative permeability curves are known as the
ensemble mean curves after convergence, and are
evaluated by comparing with the corresponding
ground truths, which are provided in the OPM
flow examples and assessed by the agreements
with the commercial simulator ECLIPSE [43]. In
addition, the predicted saturation fields and well

responses based on the inferred ensemble mean
curves are compared to their equivalents obtained
by using the true curves. Details of the case set-up
and results are presented below.

4.1 SPE 1 benchmark

The first case, SPE 1, is a benchmark project
for three dimensional black-oil simulation. It has
two suggested examples with different conditions:
(1) constant saturation pressure and (2) varying
saturation pressure for different gas saturations.
Here we choose the second example to perform the
inference since it was used to verify and validate
the OPM Flow simulator [43]. The computational
domain and well locations of this example are
shown in Fig. 3. Specifically, the reservoir has the
domain size of 10000 ft × 10000 ft × 100 ft, with
thickness of 20 ft, 30 ft and 50 ft for each layer
respectively. The domain is spatially discretized
into 10× 10× 3 cells for the numerical simulation.
The first well (bottom left in Fig. 3) injects gas at
a rate of 100 MMscf/day from the top layer, while
the other (top right) produces oil from the bottom
layer. More details about SPE 1 benchmark can
be found in the literature [43, 45]. The reservoir
is initially undersaturated with the gas saturation
Sg = 0 over the whole domain. The reservoir is
simulated over a period of ten years from Jan.
2015 to Dec. 2024. We use the oil saturations at
50 cells in late third year (Nov. 2017) as the obser-
vation data to infer the gas relative permeability
curve. Note that no data from the last seven years
is used for the inference; instead, the states of the
reservoir over this period are predicted with the
inferred gas relative permeability curve.

The inferred gas relative permeability curve is
in good agreement with the ground truth, which is
shown in Fig. 4a. Despite the initial guess having
a completely different form, all samples converge
to the inferred curve, which is nearly identical to
the ground truth. These curves end at Sg = 0.88
because of the existence of connate water, the sat-
uration of which is Swc = 0.12. Good performance
in the inference of gas relative permeability curve
can also be seen from the evolution of gas satu-
ration in the first layer of the reservoir, which is
shown in Fig. 4b. We can observe a similar dif-
fusion process from the injection corner to the
opposite for both the prediction (middle row) and
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Fig. 3: Computational domain and well locations
of the SPE 1 benchmark. The domain length in
z direction is magnified 35 times for clarity. Two
wells are located at the opposite corners for gas
injection and oil production.

ground truth (top row). The predicted gas satu-
ration fields are quite close to the ground truths
for four different years, with only minor deviations
(bottom row).

The capability of the method is further demon-
strated by the consistency for the important
reservoir quantities (well responses), which is pre-
sented in Fig. 5. It should be noted that none of
these quantities are used as observation data in
the inference of the relative permeability curve.
Specifically, we evaluate the predictions for the
time histories of four quantities by comparing
them with the corresponding ground truths, i.e.,
(1) injection bottom hole pressure, (2) producer
bottom hole pressure, (3) gas-oil ratio, and (4)
oil production rate. The four predictions based
on the inferred curve exhibit comparable trends
to the ground truths. As a baseline for compari-
son, the initial guess, a line connecting (0, 0) and
(1, 1), produces drastically different predictions.
There are still discrepancies for the predicted gas-
oil ratio and oil production rate after about 2500
days, which is due to the overestimate of gas rel-
ative permeability in the saturation interval [0.5,
0.7] shown in Fig. 4a. The overestimate implies
a greater ability to transmit gas in the presence
of oil, leading to a simulation result with larger
gas saturation and smaller oil saturation. Such an
overestimate is consistent with that in the gas-oil
ratio and the underestimate in the oil production
rate (bottom row, Fig. 5).

The discrepancy between the inferred and true
gas relative permeability curves can be explained

by the data distribution shown in upper panel of
Fig. 4a. We plot the probability density functions
(PDFs) of gas saturations over the entire reservoir
for three consecutive time periods (years 1–3, 4–
6, and 7–10), while only the observation data in
the first period is used for the inference. The data
distribution of gas saturation in the first period is
also presented by the gradient background in the
bottom panel, where the darker background indi-
cates the interval with a lower density of data. The
curve is well estimated in the interval [0, 0.5] with
a lighter background, while showing tiny devia-
tions in the interval [0.5, 0.7] due to the paucity
of observation data. Because of a lack of observa-
tion data, it is impossible to infer the curve within
the interval [0.5, 0.88]. However, it happens to fit
the ground truth because the portion of the curve
that can be inferred covers a bulk of the relative
permeability range from 0 to roughly 0.75, making
the remaining piece of the curve well approxi-
mated with the constraints of monotonicity and
boundedness.

Additionally, we employ production data as
the observation to infer the relative permeability
curve in SPE 1, as has been the common practice
in many previous works. The results show clear
ill-posedness for the inference due to the use of
production data only. More details can be found
in Appendix A.

4.2 SPE 3 benchmark

The second case, SPE 3, is a benchmark intro-
duced for studying gas cycling of retrograde con-
densate reservoirs. Gas condensate reservoirs refer
to natural gas systems that exist in reservoirs with
initial temperatures ranging from the critical tem-
perature to the cricondentherm. In this case, the
initial reservoir pressure is above the dew-point
pressure, resulting in a single-phase gas system
within the reservoir. The computational domain
and well locations are shown in Fig. 6. The grid
has a dimension of 9 × 9 × 4 and each cell mea-
sures 293.3 ft×293.3 ft in the horizontal direction.
The thickness of each layer is 30 ft for the first two
layers and 50 ft for the last two layers. The gas
injector is positioned in the top corner of the cell
grid at cell column (1, 1) and perforates the top
two layers of cells, while the producer is located in
the bottom corner of the cell grid at cell column
(7, 7) and perforates the bottom two layers of cells.
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Fig. 4: Evaluation of the inferred relative permeability curve in the SPE 1 benchmark: (a) comparison
of the inferred curve and the corresponding ground truth, along with the probability density functions
(PDFs) of the gas saturations for different time periods, and (b) comparison of the predicted gas saturation
fields at four distinct years based on the inferred and true relative permeability curves. The gradient
background in (a) corresponds to the PDF for the first period, with the darker color representing a lower
density of saturation data. The vertical line Sg = 0.5 represents the upper limit of the observation data,
while the Sg = 0.88 indicates the connate water saturation is 0.12.
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Fig. 5: Comparison of the predicted well responses and the ground truths for the SPE 1 benchmark. Four
quantities are selected for the comparison: (1) injection bottom hole pressure, (2) producer bottom hole
pressure, (3) gas-oil ratio, and (4) oil production rate. The predictions and ground truths are obtained
based on the inferred and true relative permeability curves, respectively, while the baselines are obtained
using the initial guess of a straight line between (0, 0) and (1, 1).
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The reservoir is initially filled with gas and water
with almost no oil, and the connate water satura-
tion Swc = 0.16 is assumed to be known here. The
gas reservoir is simulated over a 14-year period
from Jan. 2016 to Dec. 2029. The gas injection
rate in the reservoir is 5700 Mscf/day for the first
four years, followed by a reduction to 3700 Mscf/-
day for the next five years, and finally, no injection
during the last five years. More details of the case
set-up can be found in the literature [43, 46]. We
use the oil saturations at 50 cells in the late sec-
ond year as the observation data to infer the gas
relative permeability curve, while predicting the
states of the reservoir over the next 12 years.

Fig. 6: Computational domain and well locations
of the SPE 3 benchmark. The domain length in
z direction is magnified 5 times for clarity. The
injector perforates the top two layers and producer
perforates the bottom two layers, and they are
located in the cell columns of (1, 1) and (7, 7),
respectively.

The inferred gas relative permeability curve
is close to the ground truth, which is shown in
Fig. 7a. The sample curves diverge from the ini-
tial guess and converge to the inferred relative
permeability curve after a few iterations. The
performance is further presented by the minor
differences (bottom row) between the predicted
saturations (middle row) in the third layer of
the reservoir and the corresponding ground truths
(top row) for four different years, as is shown
in Fig. 7b. Similarly, the time series of the pre-
dicted well responses are nearly identical to those
obtained from the true curve, as illustrated in
Fig. 8, which demonstrates the validity of this
method. Nonetheless, the baselines of the well
responses obtained from the initial guess also

present similarity to the ground truths, indicat-
ing that the well responses are insensitive to the
variation of relative permeability curve in this
case. Such a result corresponds to our findings in
the Appendix A that incorporating saturation as
observation data can help lessen the ill-posedness
for inferring the relative permeability curves.

The discrepancy between the inferred relative
permeability curve and the ground truth can be
explained by the data distributions in the upper
panel of Fig. 7a. The gas saturation data for the
first two years are spread within the interval [0.47,
0.84], meaning that the relative permeability curve
cannot be inferred within the interval [0, 0.47]
due to the lack of observation data. This is also
reflected by the clear variance of the sample curves
in the same range. Despite the existence of satura-
tion data in the range [0.47, 0.65], the probability
density is too low to estimate the curve accurately,
as illustrated by the dark background. The major-
ity of the saturation data is distributed within
the interval [0.65, 0.84], allowing for a reliable
estimation within this range.

4.3 Drogon case

The proposed method is further evaluated in a
more complex case called Drogon, which is shown
in Fig. 9a. It is the successor to the Reek Field [47],
both of which are developed by Equinor. Accord-
ing to the conceptual description [48], the Drogon
reservoir is located in the Volantis Group, which
comprises three formations: Valysar, Therys, and
Volon, as depicted in Figs. 9b-d, respectively.
Specifically, the Valysar formation is a fluvial sys-
tem with channel bodies and its lower boundary
is dominated by a continuous coal; the Therys
formation is a shoreline system grading from
shoreface facies to offshore facies, with calcite
cemented strings; and the Volon formation is a
braided fluvial system with the presence of calcites
intervals. The Drogon reservoir has an approxi-
mate domain size of 12000 ft×15000 ft×450 ft and
is spatially discretized into 46×73×31 cells, with
70972 active cells. The complexity of the reservoir
is also reflected by the presence of 12 saturation
table regions (SATNUMs) with different relative
permeability curves for each, as opposed to the
above synthetic cases (SPE 1 and SPE 3) where
the relative permeability curves keep identical over
the entire fields. Two wells (A5 and A6) near the
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Fig. 7: Evaluation of the inferred relative permeability curve in the SPE 3 benchmark: (a) comparison
of the inferred gas relative permeability curve and the ground truth, along with the PDFs of the gas
saturation for different time periods, and (b) comparison of the predicted gas saturation fields at four
distinct years based on the inferred and true curves. The gradient background in (a) corresponds to the
PDF for the first two years, with the darker color representing a lower density of the saturation data. The
vertical line Sg = 0.47 represents the lower limit of the observation data, while the Sg = 0.84 indicates
the connate water saturation is 0.16.
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Fig. 8: Comparison of the predicted well responses and the ground truths for the SPE 3 benchmark.
Four quantities are selected for the comparison: (1) injector bottom hole pressure, (2) producer bottom
hole pressure, (3) oil saturation of cell (7, 7, 4), and (4) oil production rate. The predictions and ground
truths are obtained from the inferred and true curves, while the baselines are provided by the initial guess
of a straight line between (0, 0) and (1, 1).
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oil-water contact inject water with a maximum
injection rate of 8000 SM3/day, while the other
four wells (A1–A4) throughout the oil-containing
area produce oil with a maximum production rate
of 4000 SM3/day.

(a)

(b) (c) (d)

Valysar Therys Volon

Fig. 9: Graphical description of the Drogon case:
(a) computational domain and well locations, and
(b), (c), and (d) for three designed formations
therein. The domain length in z direction is mag-
nified 10 times for clarity. A1, A2, A3 and A4 are
oil producers, whereas A5 and A6 inject water.

The Drogon reservoir is simulated over a
period of two and a half years from Jan. 2018
to Jul. 2020. The injectors, A5 and A6, are
opened on May 2018 and Nov. 2018, respectively,
and are briefly shut down for three times during
this period; the producers, A1–A4, are opened in
sequence. During the simulation, the majority of
saturation changes are confined to a single region
(SATNUM 1), while the remaining regions (SAT-
NUMs 2-12) exhibit little changes. Here we intend
to infer the gas relative permeability curve in
SATNUM 1, given that others curves are already
known. We use the oil saturations at 85 cells in
the last month (Jul. 2020) as the observation data
to perform the inference, with the cells picked to
have the largest saturation changes.

The inferred gas relative permeability curve
has a comparable form to the corresponding
ground truth despite some deviation for high sat-
urations, which is illustrated in Fig. 10a. To be
specific, the relative permeability curve is accu-
rately estimated within the saturation interval [0,
0.6], but overestimated within the interval [0.6,

1]. The performance is reasonable given that the
gas saturation values in most of the cells are less
than 0.6, as shown in the PDF plot in the upper
panel, where the data distribution is skewed with
the majority of values concentrated near zero. The
inference performance is further explained by the
gradient background: The relative permeability
curve is correctly inferred throughout the inter-
val with a light background, but deviates within
the interval having a darker background, for which
much fewer observation data are available.

Despite some discrepancy between the inferred
and true curves, the predicted reservoir states are
comparable to the corresponding ground truths,
which is demonstrated in Figs. 10b and 11. In
Fig. 10b, the predicted gas saturations (middle
row) at 225 (15×15) cells for four separate months
are quite close to the ground truths (top row)
obtained from the true curve, despite differences
(bottom row) at very few locations. Note that
the 225 cells are not confined to a certain layer,
but are instead selected to have the most pro-
nounced saturation changes among all 70972 cells.
Similarly, as shown in Fig. 11, the predicted well
responses exhibit comparable trends to those of
the corresponding ground truths but differs from
the baselines, particularly for the gas-oil ratio (top
row). Specifically, we compare the predicted gas-
oil ratio and oil production rate with the ground
truths and baselines for the producers A1 and A2.
The predictions are in good agreement with the
ground truths, while the baselines display overes-
timates over a long time period. The overestimate
is a result of the greater gas transmission abil-
ity implied in the initial guess, which has larger
relative permeabilities in the saturation interval
[0, 0.8] than those of the true curve. The oil pro-
duction rate (bottom row) again demonstrates its
insensitivity to the gas relative permeability curve,
necessitating the use of saturation data to regular-
ize the ill-posedness that can be induced by history
matching the production data alone.

5 Conclusion

This paper demonstrates an ensemble-based
framework for inferring the relative permeability
curves from sparse saturation data. In regards to
representing relative permeability curves, this sug-
gested paradigm differs from the previous works.
The inherent monotonicity and boundedness of
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Fig. 10: Evaluation of the inferred relative permeability curve in the Drogon case: (a) comparison of the
inferred curve and the ground truth, along with the PDFs of the gas saturation data for different time
periods, and (b) comparison of the predicted gas saturation fields at four distinct months based on the
inferred and true curves. The gradient background in (a) corresponds to the PDF for the entire time
period, with the darker color representing a lower density of data.
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Fig. 11: Comparison of the predicted well responses and the ground truths for the Drogon case. Four
quantities are selected for the comparison in two injectors: (1) A1 gas-oil ratio, (2) A2 gas-oil ratio, (3)
A1 oil production rate, and (4) A2 oil production rate. The predictions and ground truths are obtained
from the inferred and true curves, while the baselines are provided by the initial guess of a straight line
between (0, 0) and (1, 1).
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the representation eliminates the need to impose
extra constraints during the optimization proce-
dure. In addition, we try using sparse saturation
data as the observation, which differs from com-
monly used production data and can be obtained
via seismic monitoring. We find that incorporating
the saturation data helps lessen the ill-posedness
of inferring the curves when compared to the use
of production data only.

The capability of the framework is proved on
two synthetic benchmarks and a field-scale case
with certain real-field features. All of these tests
demonstrate that the proposed method is capable
of inferring the relative permeability curves, and
the third case demonstrates its potential for use
in real fields. The relative permeability curves can
be accurately estimated for saturations with avail-
able data, while the embedded constraints ensure
extrapolating to other saturations appropriately.
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Appendix A Inference with
production data

In this paper, we conduct two more numerical
experiments with SPE 1 benchmark to highlight
the ill-posedness induced by using production data
only, as is the norm in many research of this
nature.

In both experiments, the inferred gas relative
permeability curve diverges significantly from the
ground truth. The first experiment is designed for
a fair comparison with that described in Sec. 4.1.
We infer the relative permeability curve using the
oil production rate in the first three years (Jan.
2015 to Dec. 2017) as the observation data. The
inference result is shown in Fig. A1a. The sam-
ple curves do not converge after iterations and
their mean is nearly equal to the initial guess.
Consequently, the predicted gas saturation fields
and well responses are significantly different from
the corresponding ground truths, as shown in
Figs. A1b and c, respectively. The performance is
expected because the initial guess can yield the
same oil production rate for the first three years,
rendering the inference by definition ill-posed.

In contrast to the first experiment, the second
experiment infers the relative permeability curve
using a 10-year time series of oil production rate
as the observation. The ill-posedness is reduced by
using data in a longer time period. Nonetheless,
the inferred relative permeability curve still differs
from the true curve (Fig. A2a), although the pre-
dicted oil production rates are consistent with the
ground truths (Fig. A2c). The predicted gas sat-
uration fields and the other three well responses
are significantly different from the corresponding
ground truths, as illustrated in Figs. A2b and c,
respectively.

From the above results, we can observe that
the relative permeability curve may not be
uniquely determined by the time series of pro-
duction data alone. With sparse saturation data,
the ill-posedness can be regularized and the esti-
mation of relative permeability curve can be
significantly improved.
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(c) Well response comparison

Fig. A1: Evaluation of the inferred relative permeability curve in SPE 1 benchmark: (a) comparison
of the inferred curve with the ground truth, (b) comparison of the simulated gas saturation fields at
four distinct years based on the inferred and true curves, and (c) comparison of the time series of well
responses over 10 years based on the baseline, inferred and true curves. Here, the oil production rate time
series for the first three years are used as the observation data.
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(c) Well response comparison

Fig. A2: Evaluation of the inferred relative permeability curve in SPE 1 benchmark: (a) comparison of
the inferred curve with the ground truth, (b) comparison of the simulated gas saturation fields at four
distinct years based on the inferred and true curves, and (c) comparison of the time series of well responses
over 10 years based on the baseline, inferred, and true curves. Here, the oil production rate time series
for all 10 years are used as the observation data.
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