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ABSTRACT
We present an innovative approach to constraining the non-cold dark matter model using a convolutional neural network (CNN).
We perform a suite of hydrodynamic simulations with varying dark matter particle masses and generate mock 21cm radio
intensity maps to trace the dark matter distribution at 𝑧 = 3 in the post-reionization epoch. Our proposed method complements
the traditional power spectrum analysis. We compare the results of the CNN classification between the mock maps with different
dark matter masses with those from the 2D power spectrum of the differential brightness temperature map of 21cm radiation. We
find that the CNN outperforms the power spectrum. Moreover, we investigate the impact of baryonic physics on the dark matter
model constraint, including star formation, self-shielding of HI gas, and UV background model. We find that these effects may
introduce some contamination in the dark matter constraint, but they are insignificant compared to the system noise of the SKA
instruments.
Key words: Cosmology – dark matter – data analysis

1 INTRODUCTION

The ΛCDM model is currently the widely accepted cosmological
model. It assumes that dark matter (DM) is cold, meaning that its
particle mass (𝑚DM) is heavy enough that dark matter particles were
non-relativistic at the time of freeze-out. The ΛCDM model does not
make any concrete assumptions about 𝑚DM, but this parameter is
crucial for determining the correct dark matter model. For example,
sterile neutrino dark matter models predict a range of 𝑚DM ranges
from 1 keV to 1 MeV (Boyarsky et al. 2019), while the weakly in-
teracting massive particle (WIMP) model predicts a range of 𝑚DM
from 10 GeV to 1 TeV (Alvarez et al. 2020).

The dark matter particle mass impacts the distribution of dark
matter in the universe on small scales, allowing us to estimate 𝑚DM
through the analysis of the dark matter distribution. One approach
is to use the power spectrum of Lyman-𝛼 forest, which traces the
dark matter distribution. Previous studies have shown that the dark
matter particle mass must be heavier than O(1) keV (Viel et al.
2013; Garzilli et al. 2021, 2019; Villasenor et al. 2023). However, this
constraint is insufficient to differentiate between different dark matter
models. Therefore, developing new methods capable of extracting
more information from the dark matter distribution is essential.

This paper aims to constrain the mass of dark matter by analyzing
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the matter distribution in the universe using a neural network (NN).
NNs are a machine learning (ML) algorithm used for big-data analy-
sis. They can extract information from labelled data without requiring
humans to decide which data features to use. There are various kinds
of NNs, and here we focus on using Convolutional Neural Networks
(CNN) to extract information from images. For example, CNNs are
commonly used to distinguish between images of dogs and cats or
detect human faces in images with exceptionally high accuracy.

NNs have also proven to be valuable tools in cosmology. Tra-
ditional analytical techniques, such as the two-point correlation of
the matter-density distribution, can only obtain a limited amount of
information from the observed data. In contrast, an ML algorithm
can extract complex information from the data and capture various
essential features. For instance, CNNs have been used to constrain
cosmological parameters in the fields of weak lensing cosmology (Ri-
bli et al. 2019b), simulated convergence maps (Ribli et al. 2019a),
and the large-scale structure (Pan et al. 2020). CNN is also applied
to constrain the mass of dark matter; for example, Rose et al. (2023)
uses CNN to infer the mass of warm dark matter for N-body dark
matter simulations. Other examples include using U-net to detect sig-
nals of the Sunyaev-Zel’dovich effect by first extracting feature and
then applying up-convolution to retain the original image resolution
(Bonjean 2020), distinguishing modified gravity models from the
standard model using CNNs (Peel et al. 2019) and using NNs to re-
construct the initial conditions of the universe from galaxy positions
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and luminosity data (Modi et al. 2018). These previous studies have
shown that NNs often outperform traditional analytical techniques.

Although dark matter cannot be observed directly, many observ-
ables, such as Lyman-𝛼, galaxy clustering, and weak lensing, can
trace its distribution. This work focuses on the intensity mapping
of the 21cm radiation emitted from neutral hydrogen (HI) due to
hyperfine splitting. Numerous ongoing or planned observations for
the 21cm radiation include the Murchison Wide-field Array (MWA)
(Tingay et al. 2013), Canadian Hydrogen Intensity Mapping Ex-
periment (CHIME) (Bandura et al. 2014), Hydrogen Intensity and
Real-time Analysis eXperiment (HIRAX) (Newburgh et al. 2016),
and Square Kilometer Array (SKA) (Santos et al. 2015). These sur-
veys will provide us with the HI distribution, which we can use to
trace the distribution of dark matter.

This work focuses on the HI at 𝑧 = 3, where most of the HI in the
universe is ionized, and only a tiny fraction of residuals lay within
the halo. During the reionization epoch, HI distribution is affected by
ionisation processes, which is highly uncertain due to the complex
astrophysical effects. Therefore, we focus on the post-reionization
epoch, where the HI follows the dark matter halo distribution well.

Carucci et al. (2015) forecasts the constraint on the thermally pro-
duced warm dark matter mass using the HI power spectrum from the
SKA observation data at redshift 𝑧 = 3, 4, and 5, where they con-
sider the HI distribution pasted on dark matter halos in the N-body
simulations. Bauer et al. (2021) also uses the HI power spectrum
of the 21cm intensity mapping, which is modeled based on the N-
body simulation, and assumes the HI halo model, and forecasts the
improvement of the constraints on the axion dark matter mass com-
pared to the limits from the Lyman-𝛼 forest at 𝑧 < 3. Rose et al.
(2024) investigates the CNN to constrain the warm dark matter mass
based on the N-body simulations, and shows the field-level inference
can outperform the power spectrum analysis.

This paper demonstrates the potential of CNNs to constrain the
mass of dark matter particles compared to the traditional two-point
statistics for the data from hydrodynamic simulations. While the
power spectrum of dark matter or HI distribution can only extract
the information of the two-point statistics, CNNs can also utilize
additional information from images of the matter distribution. We
conduct hydrodynamic simulations for CDM and NCDM models
with various dark matter masses. Subsequently, we compare CNN’s
model discrimination ability with that of the power spectrum.

Furthermore, we take into account two practical effects that exist
in observations. Firstly, we use images with varying astrophysical
assumptions, such as the effects of self-shielding of HI gas, star for-
mation, and UV background model. We refer to these assumptions
collectively as the ‘astrophysical model’ in the following. These mod-
els can influence the ionization of HI gas, potentially affecting the
results of our analysis. For instance, a previous study (Villanueva-
Domingo & Villaescusa-Navarro 2021) removed the astrophysical
effects from the 21cm map and used machine learning to create a
map of the underlying matter density field. In contrast, our study uses
the 21cm map with the effects of the astrophysical model and directly
constrains the dark matter particle mass. Secondly, we use images
that include the system noise of SKA observations. This noise can
contaminate the power spectrum calculated from observational data
on small scales, affecting our analysis.

Note that we use the projected 2-dimensional distribution of HI
assuming that we stack the multiple frequency bands instead of its 3-
dimensional distribution. This is because the signal-to-noise ratio of
the single frequency bands is not enough for our assumed dataset. In
other words, the thin slice of the density contrast is mostly dominated
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Figure 1. Examples of the theoretical linear 2D matter power spectra at 𝑧 = 3
calculated by projecting the 3D linear power spectrum along the line of sight
with 50 ℎ−1Mpc width.

by the shot-noise. We ignore the redshift space distortion and the
light-cone effects by the projection.

This paper is structured as follows. In Section 2, we introduce
non-cold dark matter models and discuss the relationship between
the HI distribution and the differential brightness temperature. We
then describe our simulation suite and the construction of our training
and validation datasets. In Section 3, we show the calculation of the
power spectrum, our CNN architecture, and the procedure performed
by our CNN. In Sections 4 and 5, we present and discuss the results
of our CNN analysis and summarize our work.

Throughout this paper, we use the cosmological parameters taken
from Planck 2018 (Planck Collaboration et al. 2020), except for the
dark matter particle’s mass.

2 SIMULATIONS AND INITIAL CONDITIONS

2.1 Non-cold Dark Matter Model

Dark matter has a non-zero mass but interacts with electromagnetic
radiation very weakly, if at all. Consequently, dark matter cannot be
observed directly and can only be detected by its gravitational inter-
actions. The gravity of dark matter influences the structure formation
in the universe, so observing the large-scale structure of the universe
provides information about dark matter.

This paper considers two types of dark matter: cold dark matter
(CDM) and non-cold dark matter (NCDM). CDM is a heavy particle
that was non-relativistic at the time of freeze-out, resulting in a
negligible velocity dispersion. In contrast, NCDM is a lighter particle
with a significant velocity dispersion.

Dark matter’s velocity dispersion impedes the growth of structure,
particularly on small scales. The velocity dispersion is inversely pro-
portional to the dark matter particle’s mass, 𝑚DM. Consequently, the
damping scale of the matter power spectrum resulting from this ve-
locity dispersion is also ∝ 1/𝑚DM (Boyanovsky & Wu 2011). Fig. 1
shows the linear 2D matter power spectrum at 𝑧 = 3, where the matter
distribution is projected on a 2D plane over a thickness of 50 ℎ−1 Mpc
along the line of sight. We can see the suppression of the amplitude
of the power spectrum by the free streaming of NCDM. We calcu-
late the matter power spectra for both the CDM and NCDM models
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with different particle masses using the Cosmic Linear Anisotropy
Solving System (CLASS) (Lesgourgues 2011). Our NCDM model
considers the sterile neutrino, a fundamental particle added to the
standard model and distinct from active neutrinos (electron, mu, and
tau neutrinos). CLASS uses the energy distribution function of dark
matter based on the widely studied sterile neutrino model (Dodelson
& Widrow 1994) and calculates the time evolution of density pertur-
bations, fluid-velocity divergence, and shear stress in the phase space
using the fluid approximation (Sec 3 of Lesgourgues & Tram 2011).

In this work, in addition to the CDM model, we consider the
NCDM model with particle masses 𝑚DM uniformly sampled in log-
arithmic scale from 1 to 100 keV. We do not consider the case of 100
keV as it is indistinguishable from the CDM model using any of the
methods described in this paper.

2.2 HI Distribution and Differential Brightness Temperature

This work focuses on the HI gas distribution as a tracer of the dark
matter distribution. This subsection demonstrates the relationship
between the HI density and the brightness differential temperature
𝛿𝑇𝑏 , which is the observable quantity. We consider only the epoch
well after reionization, during which most hydrogen has already been
ionized.

𝛿𝑇𝑏 is the difference between the temperatures of the 21cm radia-
tion and the cosmic microwave background, 𝑇𝛾 (Field 1958),

𝛿𝑇𝑏 =
𝑇S − 𝑇𝛾 (𝑧)

1 + 𝑧
(1 − 𝑒−𝜏𝜈0 ), (1)

where 𝜈0 = 1420 MHz is the frequency of 21cm radiation at the rest
frame, 𝑇S is the spin temperature of HI, and 𝑧 is the redshift of the
source of the 21cm radiation. The optical depth of HI can be given
by,

𝜏𝜈0 =
3

32𝜋
ℎ𝑝𝑐

3𝐴10

𝑘B𝑇𝑆𝜈
2
0

𝑛HI
(1 + 𝑧) (𝑑𝑣 ∥/𝑑𝑟 ∥ )

, (2)

where 𝑛HI is the HI number density, and 𝑑𝑣 ∥/𝑑𝑟 ∥ is the velocity
gradient of the HI gas along the line of sight. We replace it with the
𝐻 (𝑧) because the peculiar velocity is small enough compared to the
Hubble expansion (Ando et al. 2021). We can also assume 𝜏 ≪ 1,
and thus we have

𝛿𝑇𝑏 ∼ 3
32𝜋

ℎ𝑝𝑐
3𝐴10

𝑘B𝜈2
0

(
1 −

𝑇𝛾 (𝑧)
𝑇S

)
𝑛HI

(1 + 𝑧)𝐻 (𝑧) . (3)

The spin temperature is (Field 1958)

𝑇−1
S =

𝑇−1
𝛾 + 𝑥𝛼𝑇

−1
𝛼 + 𝑥𝑐𝑇

−1
K

1 + 𝑥𝛼 + 𝑥𝑐
, (4)

where 𝑇𝛼 and 𝑥𝛼 is the temperature of Ly-𝛼 and its coupling coeffi-
cient, and 𝑇K and 𝑥𝑐 is the kinetic gas temperature and its coefficient.
We calculate these values following (Furlanetto et al. 2006; Endo
et al. 2020).

2.3 Implementation to Hydrodynamic Simulation

We perform a series of hydrodynamic simulations for dark matter
models with different particle masses. For the range of 𝑚DM under
consideration, all dark matter particles only interact gravitationally
after the initial condition is generated at redshift 𝑧 = 99. Features
of dark matter models are encoded in the matter power spectrum at
the initial condition. We use the cosmological parameters obtained
by Planck (Planck Collaboration et al. 2020) as Ω𝑚 = 0.311, ΩΛ =

0.689, Ω𝑏 = 0.049, ℎ = 0.677, and ln 1010𝐴𝑠 = 3.047 in the CDM
model. In addition to the standard CDM model, we consider NCDM
(non-CDM) models with six different particle masses logarithmically
sampled from 103 to 104.66 eV. We only consider a single dark matter
component in each case.

The matter power spectrum for the initial condition of the hy-
drodynamic simulation is calculated by CLASS (Lesgourgues 2011),
as shown in Fig. 1. Using these input power spectra, we generate
the initial conditions with 2LPTic (Crocce et al. 2006), followed by
applying glass realization to remove the grid pattern in the particle
distribution. While the value of AUC (introduced in Section 3.3.2)
increases slightly by ∼ O(0.01) with the grid realization, it produces
unrealistic features in the matter distribution for NCDM simulations
(Götz & Sommer-Larsen 2002, 2003).

We use GADGET3-Osaka (Aoyama et al. 2016; Shimizu et al. 2019)
to solve the evolution of the matter distribution. It is a cosmological
smoothed particle hydrodynamics (SPH) code based on GADGET-3
(initially described in Springel 2005), which we modified. Our simu-
lations use a comoving box size of 100 ℎ−1Mpc on a side, with 5123

dark matter and 5123 gas particles. We generate the initial conditions
at 𝑧 = 99 and terminate the simulation at 𝑧 = 3. Throughout this
work, we use the simulation snapshot at 𝑧 = 3. We follow Nagamine
et al. (2021) for the simulation setup except for the initial conditions
generated from the NCDM power spectra. The GADGET3-Osaka in-
cludes models for star formation, supernova feedback, UV radiation
background, and radiative cooling/heating. We also include the self-
shielding effect of HI gas, which is the obstruction of UV radiation
by optically thick HI gas. The cooling is solved by the Grackle chem-
istry and cooling library (Smith et al. 2016). Therefore, we can use
the HI distribution directly from these simulations, and we do not
need to assume any empirical models to predict the HI distribution
from the dark matter halo.

For the Fiducial model, we adopt the star formation model used
in the AGORA project (Kim et al. 2014, 2016), supernova feedback
described in Shimizu et al. (2019), and the uniform UV radiation
background (Haardt & Madau 2012) without the effect of the self-
shielding of HI gas. We conduct seven simulations for the Fiducial
model, CDM nd 6 NCDM.

We examine whether the effects of astrophysical and dark mat-
ter models are distinguishable. For this purpose, we conduct three
additional simulations for CDM with different astrophysical models
where some assumptions differ from the Fiducial model. The Shield
model includes the effect of self-shielding of the HI gas, the NoSF
model ignores the effect of star formation, and the FG09 model adopts
the UV radiation background model of (Faucher-Giguère et al. 2009)
instead of (Haardt & Madau 2012). The details of Fiducial, Shield,
and FG09 models are discussed in Nagamine et al. (2021).

2.4 Training and Test Sets

This subsection describes the procedures for generating the images
from the hydrodynamic simulation used to train, validate, and test
CNN. The scale of the damping of the power spectrum due to the
velocity dispersion of NCDM is 𝑘⊥ ∼ 1 ℎMpc−1 for 103 eV and
𝑘⊥ ∼ 50 ℎMpc−1 for 104.66 eV in 2D Fourier space, where 𝑘⊥ is the
wave number perpendicular to the line-of-sight. Therefore, the image
size should be sufficiently large to include the mode 𝑘⊥ ∼ 1 ℎMpc−1,
and at the same time, it should have sufficient resolution to resolve
𝑘⊥ ∼ 50 ℎMpc−1 mode fluctuations. Our box size and the number
of particles satisfy these requirements.

To generate images from a hydrodynamic simulation, we imple-
ment the following procedures (see Fig. 2):

MNRAS 000, 1–14 (2023)
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Figure 2. The procedure for making images from our simulation data.

Figure 3. Example images of the CDM, 21 keV NCDM, and 1 keV NCDM
models from left to right. The upper panels show dark matter images, and the
lower panels show 𝛿𝑇𝑏 images, which are the logarithm of the actual images
for visibility. These images are made from the same region of the simulation
box.

• [STEP 1] We define a 10243 grid in the simulation box and
redistribute the dark matter particles to the nearest grid point or
calculate the HI number density in each grid using the SPH kernel.
The SKA-MID system noise dominates on a smaller scale than the
size of this grid. We compute the SPH kernel following the cubic
spline kernel (Monaghan & Lattanzio 1985) as

𝑊SPH (𝑟, ℎ)

= 𝐴


1 − 2

3

(
𝑟
ℎ/2

)2
+ 3

4

(
𝑟
ℎ/2

)3
(0 < 𝑟 < ℎ

2 )
1
4

(
2 − 𝑟

ℎ/2

)3
( ℎ2 < 𝑟 < ℎ)

0 (ℎ < 𝑟) ,

(5)

where ℎ is the smoothing length for each particle, and 𝑟 is the distance
between the particle and the centre of the cell. The amplitude 𝐴 is

determined so that the sum of 𝑊SPH overall grid becomes unity for
every particle. The HI number density 𝑛HI in a grid whose centre is
located at 𝒙𝑖 is calculated by summing over all particles contributing
to this grid,

𝑛HI (𝒙𝑖) =
∑︁
𝑗

𝑊SPH (𝒙𝑖 − 𝒙 𝑗 |ℎ 𝑗 )𝑛HI, 𝑗 (6)

where 𝑛HI, 𝑗 is the HI number density assigned to the 𝑗-th particle
located at 𝒙 𝑗 . And then, we calculate the 𝛿𝑇𝑏 by Eq. (3).

• [STEP 2] We divide the simulation box into three slices along
the line of sight, with each width being 50 ℎ−1Mpc. Each piece cor-
responds to the region of the simulation box from 0 to 50 ℎ−1Mpc,
from 25 to 75 ℎ−1Mpc, and from 50 to 100 ℎ−1Mpc along the line of
sight. For the test sample, we do not need to increase the number of
samples by augmentations; we exclude the samples projected from
25 to 75 ℎ−1Mpc because they are overlapped with other slices and
not totally independent. The direction of the projection is perpen-
dicular to those for training and validation sets, as illustrated in Fig.
2. We investigate the optimal length of the slice from 50 ℎ−1Mpc
(limited by the number of images for the sufficient training of CNN)
to 0.1 ℎ−1Mpc (determined by the size of the cell in STEP 1) and
find that AUC (introduced in Section 3.3.2) for the classification be-
tween the CDM and 10 keV NCDM model is maximized when we
define the projection depth as 50 ℎ−1Mpc. We have three degrees of
freedom for the line-of-sight direction; these can be considered inde-
pendent realizations. Therefore, we have (2 line-of-sight directions)
× (3 slices) = 6 slices for the training and validation image, and (1
line-of-sight direction) × (2 slices) = 2 slices for the test image. We
use the images generated from the five slices as the training data and
those from the other slice as the validation data for the two line-of-
sight directions. Then, we use the images from the two slices of the
other line of sight direction as the test data.

• [STEP 3] Within each sub-region, the mass density of dark
matter 𝜌DM (𝒙) is integrated along the line of sight and projected
onto the plane perpendicular to the line of sight, i.e., 𝜌DM (𝒏) =∫
𝜌DM (𝒙)𝑑𝑥 where 𝜌DM (𝒏) is the 2D mass density of dark matter at
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the position 𝒏 on the 2D plane. And then, we calculate the 2D density
fluctuation 𝛿DM (𝒏) = (𝜌DM (𝒏)− 𝜌̄DM)/𝜌̄DM for dark matter, where
𝜌̄ is the mean 𝜌DM (𝒏) over the simulation box. For HI, 𝛿𝑇𝑏 is summed
up along with the line of sight, i.e., 𝛿𝑇𝑏 (𝒏) =

∑
los 𝛿𝑇𝑏 (𝒙).

• [STEP 4] In each slice, we cut out 8×8 images. Therefore, the
single image has 1282 pixels, 12.5 ℎ−1Mpc on a side, which is suf-
ficiently larger scale than 𝑘 ∼ 1ℎMpc−1. For data augmentation, we
employ multiple offsets when we subdivide the slices to make train-
ing or validation data. The offsets are Δ = 12.5𝑖/16 ℎ−1Mpc where
𝑖 = 0, 1, · · · , 15 both in the directions parallel or perpendicular to a
side. At the edge of the slice, we apply the periodic boundary condi-
tion. This may increase the number of available images sufficiently
and significantly help our training process converge, although the
shifted images are not totally independent.

In total, we have (8 × 8) (cut out in STEP 4) × (5, 1, or 3 slices in
Step 2) × (162, 162, or 1 (no offset)) = 81,920, 16,384, or 128 images
for each training, validation, or test data for one realization of the
simulation. In addition, in training the CNN, the images are rotated
every 90 degrees and flipped horizontally to generate another differ-
ent set of images. Thus, the number of training data is effectively
81920 × (2 flips) × (4 rotation) = 655, 360; however, in testing our
CNN, test and validation images are not flipped or rotated. The vali-
dation data are only used for evaluating the loss to avoid overfitting
and are not used to optimize the parameters.

The images for training and testing are not entirely independent,
which may affect the results because they are from the same realiza-
tion. To confirm whether the test images from the same realization
used to make training images are valid, we prepare another realiza-
tion for Fiducial CDM and 10 keV NCDM model. Then, we make
128 images from each of these new realizations using the same pro-
cedure above and use them to test our CNN trained by the training
dataset from the original realization. As a result, the AUC for the
images from the new realizations is 0.80, consistent with the result
AUC=0.78 for the test images made from the same realization as the
training images (see also Section 4.1).

The image of dark matter density fluctuation 𝛿 and brightness tem-
perature 𝛿𝑇𝑏 has large dynamic ranges due to the nonlinear evolution
of the structure. For our neural network architecture, it is not easy
to extract feature quantities from such high dynamic range images;
therefore, we apply the transformation

𝑚𝛿 (𝑥) = sinh−1
[
𝛿(𝑥)
𝑏

]
, (7)

𝑚𝑇 (𝑥) = sinh−1
[
𝛿𝑇𝑏 (𝑥)

𝑏

]
, (8)

where 𝑏 is a softening parameter that controls the smooth transition
scale of sinh−1 (𝑥/𝑏) from linear at (𝑥/𝑏) ≪ 1 to logarithm at
(𝑥/𝑏) ≫ 1. We set 𝑏 = 1 for dark matter, where 𝑏 is dimensionless,
and 𝑏 = 1nK for 𝛿𝑇𝑏 . If we set 𝑏 = 1 mK, it becomes more sensitive
to structures in high-density regions with less structure. Then, our
CNN’s performance worsens; the AUC is 0.95 for 𝑏 = 1 nK while
it is 0.78 for 𝑏 = 1 mK. More discussions on how we chose the
softening parameter can be found in Section 4.3.

This transformation is motivated by the magnitude system, Lupti-
tude introduced by the Sloan Digital Sky Survey (Lupton et al. 1999).
This is particularly useful for reducing the dynamic range, including
negative values to which a simple logarithmic scale cannot be ap-
plied. In Fig. 3, we show the examples of the images of DM and 𝛿𝑇𝑏
for the CDM model and two NCDM models.

100 101
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)2 ]
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10 keV
4.6 keV
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Figure 4. The 2D power spectra of the brightness temperature measured
from the simulation with the projection length 50 ℎ−1Mpc for CDM (blue-
solid), 10 keV (orange-dashed), 4.6 keV (green-dotted), and 2.1 keV (red-
dash-dotted) models, respectively.

3 METHOD

3.1 Power Spectrum

In many cases of cosmological inference, the clustering analysis is
mainly quantified through the two-point statistics such as power spec-
trum or correlation function in the literature because of the great suc-
cess of the linear perturbation theory and inflation model to predict
the Gaussian initial density field. However, the nonlinear gravita-
tional evolution of the structure carries additional information than
two-point statistics. In this section, we revisit the basic methodology
of the power spectrum-based analysis. Note that, unlike the parame-
ter inferences in which we compare the data with the prediction, here
we focus on the classification problem: whether we can distinguish
the power spectra of NCDM from the Fiducial power spectrum of
CDM. For this purpose, we use the 2D power spectrum measured
from test images generated in Section 2.4. In general, 3D power spec-
tra of the 21 cm signals are used for cosmological analysis. However,
our purpose is to compare CNN for the 2D images from the 21cm
signals and the two-point statistics. Therefore, here we consider the
2D power spectrum of the images for CNN usage. Two dimensional
Fourier counterpart 𝐴̃(𝒌⊥) of a physical quantity 𝐴(𝒏) defined on a
two dimensional position 𝒏 is written as

𝐴̃(𝒌⊥) =
∫

exp (−𝑖𝒌⊥ · 𝒏)𝐴(𝒏)𝑑2𝑛. (9)

And then, using the simulation, the power spectrum for the projected
field along the line of sight for dark matter is

𝑃DM (𝑘⊥,𝑖) [(ℎ−1Mpc)2] = 1
𝐿2

1
𝑁𝑘⊥,𝑖

∑︁
𝑗

𝛿DM (𝒌⊥, 𝑗 )𝛿∗DM (𝒌⊥, 𝑗 ),

(10)

and the one for the 𝛿𝑇𝑏 is

𝑃𝛿Tb (𝑘⊥,𝑖) [mK2 (ℎ−1Mpc)2] = 1
𝐿2

1
𝑁𝑘⊥,𝑖

∑︁
𝑗

˜𝛿𝑇𝑏 (𝒌⊥, 𝑗 ) ˜𝛿𝑇𝑏
∗ (𝒌⊥, 𝑗 ),

(11)

where 𝛿DM and ˜𝛿𝑇𝑏 are two dimensional Fourier counterparts of
𝛿DM and 𝛿𝑇𝑏 respectively, 𝑘⊥,𝑖 = |𝒌⊥,𝑖 | is the absolute value of
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the wave number of the center of the 𝑖-th bin, 𝒌⊥, 𝑗 is the wave
number satisfies 𝑘⊥,𝑖 ≤ |𝒌⊥, 𝑗 | < 𝑘⊥,𝑖+1, 𝑁𝑘⊥,𝑖 is the number of
the modes in 𝑖-th 𝑘⊥ bin, and 𝐿 is the size of image and is 12.5
ℎ−1Mpc. The factor 1/𝐿2 is due to the finite integration interval
in the Fourier transform (𝐿 → 2𝜋 if the image size is infinite). The
minimum and maximum wavenumbers are automatically determined
by the size and resolution of the images from which we measure
the spectrum. They are 𝑘⊥,min = 2𝜋/12.5 ℎMpc−1 and 𝑘⊥,max =

2𝜋/(12.5/128) ℎMpc−1, respectively. We change the number of 𝑘⊥-
bins from 1 to 20, and find that four is optimal in terms of the
classification performance of the power spectrum. Figure 4 shows
the 2D power spectra of 𝛿𝑇𝑏 . Unlike the dark matter power spectrum,
we see the overall suppression of the amplitude for the lighter mass
of dark matter models. This can be explained as follows. In the
NCDM models, small halos are suppressed to form due to the free
streaming of dark matter (see Appendix A). Therefore, the halo bias
effectively gets a higher value than the CDM case. In addition, in the
post-reionization epoch, most of the HI resides only within the halo;
thus, the HI bias also becomes higher. However, we have to consider
the overall amplitude suppression of the HI power spectrum because
𝑃𝛿𝑇𝑏 is proportional to the square of the HI density, and the NCDM
model suppresses the total HI abundance due to the smaller number
of dark matter halos. Therefore, the NCDM models suppress the 𝛿𝑇𝑏
power spectrum even above the scales of free streaming. Note that
Carucci et al. (2015) assumes that the HI abundance is unchanged for
different dark matter models, and thus, the behaviour of the power
spectrum is different, i.e., the 𝛿𝑇𝑏 power spectrum for NCDM is
amplified in the previous work due to the HI bias as mentioned above
while our power spectrum is suppressed. In Carucci et al. (2015), the
HI is pasted on the dark matter halo based on a model, and the total HI
abundance is normalized by the value from the observations. On the
other hand, in our simulation, the HI abundance is fixed at the initial
condition by Ω𝑚, baryon fraction, and hydrogen fraction. Then, its
evolution is affected by the NCDM model as we mentioned above.
Therefore, we consider the HI abundance is one of the information
for the NCDM model and do not fix the HI abundance. Our power
spectra are also amplified for the NCDM model when we normalize
the power spectra by the HI abundance.

The covariance matrix of the power spectrum can be measured
from test images of the CDM simulation,

𝐶𝑚𝑛 =
1

𝑁img

∑︁
𝑙

(
𝑃𝑙 (𝑘⊥,𝑚) − 𝑃̄(𝑘⊥,𝑚)

) (
𝑃𝑙 (𝑘⊥,𝑛) − 𝑃̄(𝑘⊥,𝑛)

)
,

(12)

where the subscript 𝑙 is the label of the test images, 𝑁img (= 128)
is the number of the test images from CDM simulation data, and
𝑃̄(𝑘⊥) =

∑
𝑙 𝑃𝑙 (𝑘⊥)/𝑁img is the mean of the power spectra of the

CDM test image.

3.2 Convolutional Neural Network

In this section, we describe our CNN model. In our model, we apply
convolution layers with 3 × 3 kernels for deep multiple layers to
extract characteristics over various scales from images. We use the
publicly available platform PyTorch(Paszke et al. 2019) to construct
our model. We follow the previous work (Ribli et al. 2019b) for the
architecture of the neural network, except that we skip the first two
Average Pooling layers in (Ribli et al. 2019b) because the size of
the input image is different. The architecture is summarized in Table
1. The total number of trainable parameters in this architecture is
∼ 8× 106; therefore, 105 images are required to avoid both over- and

Layer Output map size

1 Input 128 × 128 × 1
2 3 × 3 convolution 126 × 126 × 32
3 3 × 3 convolution 124 × 124 × 32
4 3 × 3 convolution 122 × 122 × 64
5 3 × 3 convolution 120 × 120 × 64
6 3 × 3 convolution 118 × 118 × 128
7 1 × 1 convolution 118 × 118 × 64
8 3 × 3 convolution 116 × 116 × 128
9 2 × 2 AveragePooling 58 × 58 × 128
10 3 × 3 convolution 56 × 56 × 256
11 1 × 1 convolution 56 × 56 × 128
12 3 × 3 convolution 54 × 54 × 256
13 2 × 2 AveragePooling 27 × 27 × 256
14 3 × 3 convolution 25 × 25 × 512
15 1 × 1 convolution 25 × 25 × 256
16 3 × 3 convolution 23 × 23 × 512
17 2 × 2 AveragePooling 12 × 12 × 512
18 3 × 3 convolution 10 × 10 × 512
19 1 × 1 convolution 10 × 10 × 256
20 3 × 3 convolution 8 × 8 × 512
21 1 × 1 convolution 8 × 8 × 256
22 3 × 3 convolution 6 × 6 × 512
23 GlobalAveragePooling 1 × 1 × 512
24 FullyConnected 2

Table 1. Our CNN architecture. The second column shows the type of layer,
and the third column shows the size of the output from the layer ((height ×
width × channel) of the feature map). The total number of trainable parameters
is 8,328,610.

under-fitting of the data (Han et al. 2015). Consequently, we prepare
6 × 105 images for each simulation.

We try to find the optimal number of layers, summarized in Table 1.
If we halve the number of layers by skipping all of the 4th, 5th, 6th,
12th, 16th, and 22nd layers in Table 1, the losses, computed by
Eq. (15), gets 10 times larger and the validation accuracy is ∼ 0.5,
which means the model prediction is random and not able to classify
the inputs. This is because this model is too simple. Conversely,
if we double the number of layers by repeating each convolution
layer twice with zero padding to keep the size of the feature map
unchanged, the loss does not decrease during the optimization. This
is because the number of trainable parameters is too large compared
to the size of our training dataset and the vanishing gradients may
occur (He et al. 2016). Again, we observe that the validation accuracy
fluctuates around 0.5.

Now, we explain the detailed procedures in each layer. In general,
𝑛𝑥 × 𝑛𝑦 convolution kernel translates the 𝑁𝑥 × 𝑁𝑦 input image into
(𝑁𝑥 − (𝑛𝑥 − 𝑠𝑥)) × (𝑁𝑦 − (𝑛𝑦 − 𝑠𝑦)) image, when the stride is 𝑠𝑥 × 𝑠𝑦
and no-padding is applied. In our analysis, we always fix 𝑠𝑥 = 𝑠𝑦 = 1.
The number of output feature maps depends on the number of kernels
in the current layers, which, in our analysis, can vary from 1 to 512.
The kernel values are initially set randomly, but they are subject to be
optimized during the training process. After each convolution layer,
we add a batch-normalization layer to normalize the distribution of
the input feature map, which increases the training efficiency (Ioffe
& Szegedy 2015). Also, after every convolution layer, we apply an
activation function of ReLU (Agarap 2018).

In the 𝑛𝑥 × 𝑛𝑦 AveragePooling layer, when we set the stride to be
the same as 𝑛𝑥 and 𝑛𝑦 , then 𝑁𝑥 × 𝑁𝑦 input image is converted into
an (𝑁𝑥/𝑛𝑥) × (𝑁𝑦/𝑛𝑦) image. In these layers, the information in the
input image is compressed and simplified. In the GlobalAveragePool-
ing layer, the values of all pixels in each input map are averaged. We
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find that the combination of the GlobalAveragePooling and the single
FullyConnected layers shows better performance than the multiple
FullyConnected layers. Finally, the FullyConnected layer adopts the
softmax activation function as the final output of the model, which is
the probabilities of the input image being CDM or NCDM models,
respectively.

Now, we can express the outputs of the input and predicted classes,

𝒑𝑖 (M) = {𝑝𝑖 (CDM|M), 𝑝𝑖 (NCDM|M)}, (13)

where 𝑝𝑖 (𝑘 |M) is the probability predicted by our CNN that the 𝑖-th
input image is 𝑘 (= CDM or NCDM) model and M means the true
dark matter model for the 𝑖-th input. This is converted from the output
of the last FullyConnected layer 𝒚(M) = {𝑦𝑖 (𝑘 |M), 𝑦𝑖 (𝑘 |M)} by the
softmax function;

𝑝𝑖 (𝑘 |M) = exp (𝑦𝑖 (𝑘 |M))
exp (𝑦𝑖 (CDM|M)) + exp (𝑦𝑖 (NCDM|M)) . (14)

For loss function, we adopt a typical cross-entropy

𝐸𝑖 (𝒘) = −
∑︁
𝑘

𝑝𝑖 (𝑘 |M) ln (𝑝𝑖 (𝑘 |M)). (15)

In this equation, the ground truth 𝑝𝑖 takes 1 for correct class (𝑘 = M)
and 0 otherwise (𝑘 ≠ M), and prediction 𝑝𝑖 takes continuous values
between 0 and 1. The output 𝑝𝑖 is an implicit function of 𝒘, which
is subject to be optimized.

For optimization purposes, we use the AMSGRAD(Reddi et al.
2019), and take the learning rate as 10−5. The updates of the train-
able parameters are computed based on the averaged value of the loss
function 𝐸̄ over the mini-batch sample, which is randomly drawn
from the training dataset. We take eight mini-batch samples to facil-
itate a better training convergence. The validation sample generated
as Section 2.4 evaluates the training. The convergence condition is
that the validation loss averaged over the latest five epochs converges
to 1%.

3.3 Evaluation of Classification

In the following, we consider the binary model classification between
the images from the CDM and NCDM models. In this subsection,
we introduce the Kolmogorov-Smirnov (KS) test, used to evaluate
the classification results by CNN and power spectrum. In addition,
for image classification, we also use AUC to quantify the goodness
of the prediction model.

3.3.1 Kolmogolov-Smirnov Test

The KS test evaluates whether the underlying distribution functions
for two distinct finite samples are the same (Kolmogorov 1933;
Smirnov 1939). Our analysis uses the KS test to discriminate the
images or power spectra of CDM and NCDM models.

We use the distributions of the 𝜒2 values of the power spectra and
the outputs from our CNN. For the 𝑖-th test image of dark matter
model M, we calculate the 𝜒2 value of the power spectrum as

𝜒2
PS,𝑖 (M) = 𝚫𝑃𝑖 (𝑘⊥ |M)C−1𝚫𝑃𝑖 (𝑘⊥ |M), (16)

where 𝚫𝑃𝑖 (𝑘⊥ |M) = 𝑃𝑖 (𝑘⊥ |M) − 𝑃̄(𝑘⊥ |CDM) is the power spec-
trum difference of the 𝑖-th input image of the dark matter model M
defined by Eq. (10) or Eq. (11), 𝑃̄(𝑘⊥) is the power spectrum aver-
aged over the CDM images and C−1 is the inverse of the covariance
matrix defined in Eq. (12). For the case of image classification, we

have defined the discriminator that quantifies the difference between
two dark matter models,

𝜒2
CNN,𝑖

(M) = (𝑦𝑖 (M) − 𝑦̄(CDM))2

1
𝑁

∑︁
𝑗

(
𝑦 𝑗 (CDM) − 𝑦̄(CDM)

)2 , (17)

where 𝑦𝑖 (𝑀) is the prediction of CNN that the 𝑖-th input image of
dark matter model M to be the NCDM model, where 𝑀 is either
CDM or NCDM. 𝑦̄(CDM) is the average of 𝑦𝑖 (CDM) over the CDM
test images and the denominator of the right-hand side of Eq.(17) is
the variance of the CNN outputs for CDM input images.

Then, we conduct the KS test for the distribution of 𝜒2
𝑖
(CDM)

and 𝜒2
𝑖
(NCDM) with stats.ks_2samp method in SciPy (Virta-

nen et al. 2020). The null hypothesis of our test is that there is no
significant difference between the distribution of the 𝜒2 for the CDM
images and the NCDM images. This work uses the significance level
of 𝑝-value = 0.01 (∼ 2.6𝜎).

We note that the KS test employed here only tells us whether or
not there is a significant difference between the images of the two
models. Thus, it cannot quantify whether the output model is correct.
To further quantify this, we will introduce AUC in the next section.

3.3.2 AUC

The area under the Receiver Operating Characteristic (ROC) curve
is used to quantify the ability of the CNN model to correctly predict
the dark matter model.

The output of the CNN is the probability of the input image being
the NCDM model. For binary classification, we need to define a spe-
cific threshold 𝑡 such that the CNN can recognize the input image as
the NCDM model if 𝑝𝑖 > 𝑡. Therefore, we can explicitly consider the
four different cases: (1) True Positive (TP) if 𝑝𝑖 (NCDM|NCDM) ≥ 𝑡,
(2) True Negative (TN) if 𝑝𝑖 (NCDM|CDM) < 𝑡, (3) False Posi-
tive (FP) if 𝑝𝑖 (NCDM|CDM) ≥ 𝑡 and (4) False Negative (FN) if
𝑝𝑖 (NCDM|NCDM) < 𝑡, where all four quantities are a function of
𝑡.

The ROC curve can now be defined as the collection of points at
which parameter 𝑡 continuously changes from 0 to 1. More specifi-
cally, it can be expressed in a parametric manner,

ROC : 𝑥(𝑡) = FP
TN + FP

, 𝑦(𝑡) = TP
TP + FN

, (18)

where 𝑥 represents the fraction of misclassified images as the NCDM
model out of all CDM test images, and 𝑦 represents the fraction of
correctly classified images as the NCDM model given all NCDM
inputs. Therefore, the area under the curve (AUC) approaches unity
when the classification is efficient and complete.

4 RESULTS

In this section, we show the dark matter model classification results
between CDM and NCDM whose particle mass is 𝑚DM by using
image-based CNN and compare it with the 2D power spectrum-
based classification. In Section 4.1, we show the results for dark
matter density field images and compare them with the 2D power
spectrum classification. We further extend the same analysis to the
𝛿𝑇𝑏 field, which is the indirect probe of dark matter but a direct
observable. In Section 4.2, we explore how the results are affected
by the nuisance effects caused by the astrophysical feedback. Finally,
in Section 4.3, we also consider the SKA-MID instruments’ system
noise, which can weaken the constraints.
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Figure 5. AUC as a function of 𝑚DM for dark matter images (blue solid) and
𝛿𝑇𝑏 images (orange dashed). The dashed horizontal line represents the case
of random classification. We see CNN-𝛿𝑇𝑏 shows comparable performance
to CNN-DM.

4.1 Comparison between dark matter and 𝛿𝑇𝑏 image

For latter convenience, we first define the acronyms X-Y, denoting
the observable Y is classified by the method X, where X is either
CNN or PS, and Y is either DM or 𝛿𝑇𝑏 . E.g., CNN-𝛿𝑇𝑏 stands for
the image-based classification using the 𝛿𝑇𝑏 map.

First, we compare the results of CNN-DM and CNN-𝛿𝑇𝑏 . In Fig.
5, we see that for both dark matter and 𝛿𝑇𝑏 images, AUCs are greater
than 0.95 at mass ranges of 𝑚DM ≤ 10 keV. The AUC of CNN-𝛿𝑇𝑏
is comparable to the one of CNN-DM, so 𝛿𝑇𝑏 is the valid tracer of
the dark matter distribution for our CNN.

Next, we compare the discrimination power between CNN and
PS for dark matter or 𝛿𝑇𝑏 using the KS test. Figure 6 shows the
𝑝-value of the KS test for classifying dark matter data on the left
panel and 𝛿𝑇𝑏 data on the right panel. We see that our CNN shows
better performance than the 2D power spectrum for both dark matter
and 𝛿𝑇𝑏 data. For example, 𝑝-value of CNN-DM and CNN-𝛿𝑇𝑏 at
𝑚DM = 4.6 keV is less than 0.001 and can reject the null hypothesis
with high significance while the 𝑝-value of PS-DM and PS-𝛿𝑇𝑏 is of
the order of 0.1.

Now, we compare the results of CNN-DM and CNN-𝛿𝑇𝑏 . They
show similar performance for the KS test. Both of them can classify
the images for 𝑚DM ≤ 10 keV with high significance (𝑝-value <

0.001, and lose the classification ability for more massive dark matter
(e.g. the 𝑝-values of CNN-DM and CNN-𝛿𝑇𝑏 are = 0.37 and > 0.99
at 𝑚DM = 21 keV).

4.2 Effect of Astrophysical Model

In this subsection, we investigate the effect of the different astrophys-
ical models on the classification. To quantify the effect, we replace
the CDM test images with the images generated from the simulations
of different astrophysical models, i.e., the Fiducial model is replaced
with one of FG09, Shield, or NoSF models. In the following, we only
consider the analysis of 𝛿𝑇𝑏 images.

Fig. 7 shows the 𝑝-values of the KS test for different astrophysical
models for PS-𝛿𝑇𝑏 (left) and CNN-𝛿𝑇𝑏 (right). For PS-𝛿𝑇𝑏 , the 𝑝-
value < 0.01 for 𝑚DM ≤ 2.1 keV independent of the astrophysical
models. For 𝑚DM ≥ 4.6 keV, 𝑝-value is more than 0.1 , so the
2D power spectrum cannot distinguish different dark matter models,

Model 2.1 keV 4.6 keV 10 keV 21 keV

Fiducial 1.00 1.00 0.96 0.58
Shield 1.00 1.00 0.96 0.58
NoSF 1.00 1.00 0.95 0.51
FG09 1.00 0.5 0.28 0.02

Table 2. The AUC values for different astrophysical models and dark matter
mass models. Note that the CNN has been trained assuming the Fiducial
model. The constraints are not affected very much by assuming different
models in the cases of the Shield and NoSF models. Still, we find the FG09
model will be a serious systematic on the classification.

and the difference, according to the astrophysical models, is not
significant in our power spectrum analysis.

Next, the right panel of Fig. 7 shows the 𝑝-value for CNN-𝛿𝑇𝑏 .
We see that for 𝑚DM ≤ 4.6 keV, CNN can discriminate the dark
matter models regardless of the astrophysical models. The 𝑝-values
for Fiducial, Shield, and NoSF are comparable, but those for FG09
show a different behavior. The 𝑝-values for the FG09 models are
< 0.001 except for 𝑚DM = 4.6 keV. However, in Table 2, we see that
our CNN cannot correctly classify the images for FG09 for 𝑚DM >

4.6 keV. We conclude that the KS test is not valid for the evaluation
of our results of the classification between the FG09 model and for
𝑚DM > 4.6 keV NCDM models. Therefore, the results indicate that
the astrophysical effects of inhomogeneous UV background partly
mimics the difference in the density maps between CDM and NCDM.
Conversely, for the mass ranges of𝑚DM < 2.1 keV, we do not observe
the astrophysical effect spoils the classification, and thus, we can
conclude that the classification for 𝑚DM < 2.1 keV is robust against
the astrophysical models at least within the models we consider in
our simulation.

In what follows, we will discuss the effect of astrophysical mod-
els on CNN analysis. We quantify the impact using the AUC and
confusion matrix. The confusion matrix is defined as

©­­­­«
TP

TP + FN
FN

TP + FN

FP
TN + FP

TN
TN + FP

ª®®®®¬
, (19)

where TP, FN, TN, and FP are evaluated at threshold 𝑡 = 0.5. The
upper left and right elements are the rate of the correct and incorrect
classification for the NCDM test images and lower left and right
elements are the correct and incorrect classification rates for the
CDM test images, respectively.

Figure 8 show the confusion matrix. The left, middle, and right
columns correspond to the classification for 𝑚DM = 4.6, 10, and
21 keV, respectively, and each row from top to bottom corresponds
to the Fiducial, Shield, NoSF, and FG09 model in Fig. 8. We see
that there are little differences among the Fiducial, Shield, and NoSF
models in the confusion matrix and AUC. However, all the CDM
images for the FG09 model are misclassified as NCDM (the lower
left element) regardless of the dark matter mass. Accordingly, the
AUC value decreases drastically. This is mainly because the FG09
model has more HI gas than others, affecting the global clustering
pattern (Faucher-Giguère et al. 2009).

We try to understand how discrimination robustness depends on
the assumed astrophysical models. First, we consider that the power
spectrum conveys most of the information. Thus, we look into the dif-
ferences in the HI power spectrum in different astrophysical models
in comparison with the different dark matter masses. Fig. 9 shows the
fractional difference of 𝑃𝛿𝑇𝑏 (𝑘⊥) for different astrophysical models
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Figure 6. The comparison of the dark matter model classifications is evaluated by the 𝑝-value of the KS test. The horizontal axis is the mass of NCDM, and the
vertical axis is the 𝑝-value for PS-DM (orange dashed) and CNN-DM (blue solid) in the left panel, and for PS-𝛿𝑇𝑏 (orange dashed) and CNN-𝛿𝑇𝑏 (blue solid)
in the right panel. We see that CNN has a significantly better 𝑝-value than the 2D power spectrum for both the classification of dark matter and 𝛿𝑇𝑏 images.
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Figure 7. The 𝑝-values of the KS test are shown, including the results for the various astrophysical models. The horizontal axis is the NCDM mass, and the
vertical axis shows the 𝑝-value for the binary classification by PS-𝛿𝑇𝑏 (left panel) or CNN-𝛿𝑇𝑏 (right panel) between the NCDM and the CDM assumed the
Fiducial (blue solid), NoSF (orange dashed), Shield (green dotted), and FG09 (red square plot) model. For the FG09 model, 𝑝-value significantly differs from
Fiducial model. The distribution of the output for FG09 model and NCDM model is different statistically, but CNN cannot classify the images correctly, as we
can see in Fig. 8 and Table. 2.

or NCDM models with different masses, compared to the Fiducial
CDM power spectrum. This figure’s shaded region in dark grey (inner
shaded region) represents the 1𝜎 statistical error due to the cosmic
variance. As shown in this figure, the power spectra for NCDM
models are suppressed compared to the Fiducial-CDM model, while
the power spectra for other astrophysical models are enhanced. This
partly explains that the dark matter mass can be correctly classified
even if we assume different astrophysical models because the effect
on the amplitude of the power spectrum is opposite. However, we also
see that the FG09 model also shows the power enhancement, which
is supposed to be distinguishable from the dark matter mass model.
Therefore, the power spectrum does not fully explain our results.

In Appendix A, we further explore why the CDM images are mis-
classified as NCDM when assuming the wrong astrophysical models.

4.3 Effect of System Noise

In this subsection, we consider the system noise, particularly assum-
ing the SKA-MID survey, which can observe the 21cm line emission
at 0 < 𝑧 < 3.

In practice, we should further consider the foreground contamina-
tion, such as the Galactic synchrotron emission, the Galactic free-free
emission, and the radio emissions from extragalactic sources. These
signals are much brighter than the cosmological HI signal. To re-
move this contamination, various methods are proposed, such as
the principal component analysis (Spinelli et al. 2022), generalised
morphological component analysis (Carucci et al. 2020), and Gaus-
sian Process Regression (Soares et al. 2022; Chen et al. 2023). The
foreground removal is still an open issue and will require further
optimizations. In this work, however, as the most optimistic case, we
assume the foreground contamination is completely removed, and
let us focus on the potential ability of the CNN applied to the 21cm
intensity mapping analysis.
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Figure 8. This figure shows the confusion matrix. Each column corresponds to the NCDM mass 𝑚DM = 4.6, 10, and 21 keV from left to right, and each row
corresponds to the astrophysical model: Fiducial, Shield, NoSF, and FG09 from top to bottom. Except for the FG09 model, the confusion matrix is almost the
same as for the Fiducial model. On the other hand, in the case of the FG09 model, the CDM test images are classified into NCDM incorrectly, regardless of the
mass of NCDM.

Let us first begin with generating the mock realization of the
simulated noise map. To generate the mock data, including the system
temperature noise, we first generate the 3-dimensional map of the
random Gaussian white noise spectrum as a simplistic assumption.
The size of the noise map is 100 ℎ−1Mpc on a side and we define
the 10243 grid. The fluctuation of the noise in this map follows the

Gaussian distribution of N(0,
√
𝑃noise). Then, we add this noise map

to the simulation box after STEP 1 in Section 2.4. Finally, we generate
images following the same procedures in Section 2.4 except for the
transformation by Eq. (8). For the 𝛿𝑇𝑏 images with the noise, we
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apply the transformation in the unit of mK instead of nK,

𝑚obs
𝑇 = sinh−1

[
𝛿𝑇𝑏 (𝑥) + noise

𝑏

]
, (20)

where we set 𝑏 = 1[mK]. As mentioned in the previous section,
we empirically find that the structure at diffuse low-density region
has significant information for classifying the dark matter model.
Therefore, in the noise-free case, 𝑏 = 1[nK] works pretty well.
However, such low-density regions are highly obscured by the system
temperature noise since the typical amplitude of the noise, in our case,
is of order mK. Therefore, we need to focus on the higher density
regions where the brightness temperature, 𝛿𝑇𝑏 > 1[mK].

In practice, we find that when 𝑏 = 1mK, the CNN can classify the 1
keV NCDM from the CDM model more efficiently than in the case of
𝑏 = 1[nK]. For instance, AUC is 0.78 for mK, whereas it decreases to
0.67 for nK case. We note that the choice of the softening parameter
𝑏 is still suboptimal, and we can further optimize it; however, we
keep 𝑏 = 1 mK here, and do not delve deeper into its exploration for
simplicity.

The power spectrum of this Gaussian noise 𝑃noise (𝒌⊥) is written
as (Villaescusa-Navarro et al. 2015; Geil et al. 2011; Wolz et al.
2017; McQuinn et al. 2006; Bull et al. 2015)

𝑃noise (𝒌⊥) =
𝑇2

sys
2𝐵𝑡0

𝐷2Δ𝐷

𝑛b (𝑘⊥𝐷/2𝜋, 𝜈)

(
𝜆2

𝐴e

)2
, (21)

where the sensitivity 𝐴e/𝑇sys is ∼ 2.3 at 𝑧 ∼ 3 (Dewdney et al. 2016),
𝑡0 is the total integration time, 𝐷 ∼ 4400 ℎ−1Mpc is the comoving
distance to the source at 𝑧 = 3.0, 𝜆 = 𝑐(1 + 𝑧)/𝜈0 is the observed
wavelength. 𝐵 is the bandwidth of the observation and is related to
the depth Δ𝐷 for the observation as

Δ𝐷 ∼ 𝑐(1 + 𝑧)2𝐵

𝜈0𝐻 (𝑧) . (22)

𝑛𝑏 (𝑈, 𝜈) is the number density of the baseline, and we use the pub-
lished data1.

Note that Eq. (21) only depends on 𝑘⊥, but this noise power
spectrum is the 3-dimensional power spectrum, of which the unit is
mK2 (Mpc/ℎ)3. Therefore, the noise fluctuations follow the Gaussian
distribution of N(0,

√
𝑃noise) for the direction perpendicular to the

line of sight, and are uncorrelated with each other along the line of
sight.

We use images, including the noise, to train and test our CNN. We
assume the integration time 𝑡0 =500 hours and hours 1,000 following
(Villaescusa-Navarro et al. 2015), and in addition, we assume 𝑡0 =

5,000 hours to test the effect of integration time in Eq. (21), where
𝑡0 = 1, 000 is often quoted in the literature (e.g., Villaescusa-Navarro
et al. 2015; Crocce et al. 2006; Pritchard et al. 2015). Figure 10 shows
the 2D power spectra for the 𝛿𝑇𝑏 signal and noise. The solid line
shows the 𝑃𝛿𝑇𝑏 (𝑘⊥) for the Fiducial CDM model, and the outer,
middle, and lower shaded regions represent the regions under the
noise power spectra with 𝑡0 = 500, 1000, and 5000 hours, respec-
tively. These spectra are calculated for the simulation, and the 2D
random Gaussian map is generated by projecting the 3D noise map.
Fig. 9 shows the relative difference of the 2D power spectrum for
different dark matter masses and astrophysical models compared to
the error budget, cosmic variance and system temperature noise. We
clearly see that the discrimination of the dark matter model becomes
challenging in the presence of the system noise. Fig. 11 shows a

1 https://www.skao.int/en/ska-subarrays
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Figure 12. Difference in 𝑝-values of the KS test due to the observation time 𝑡0 =500 (blue dotted), 1,000 (orange solid), and 5,000 (green dashed) hours for
the power spectrum (left panel) and our CNN (right panel). For the same integration time, CNN performs better than the 2D power spectrum. For example, our
CNN can distinguish dark matter models for 𝑚DM = 1 keV with 𝑡0 = 500 hours and 𝑚DM = 2.1 keV with 𝑡0 = 5, 000 hours with 𝑝-value < 0.01 while the 2D
power spectrum cannot distinguish dark matter models 𝑚DM = 1 keV even with 𝑡0 = 5, 000 hours.

example of the image including the noise with the signal-only and
noise-only image.

As we can see in Fig. 12, the PS analysis can distinguish dark matter
models for 𝑚DM = 1 keV if we have enough integration time, 𝑡0 =

5, 000 hours at more than 2𝜎, but for observation time 𝑡0 = 1, 000
hours, we cannot discriminate the dark matter model of 𝑚DM = 1
keV from the CDM. Even with the noise, the CNN analysis is again
superior to the PS analysis. We see that the CNN can distinguish
dark matter models for 𝑚DM = 1 keV even if the integration time is
𝑡0 = 500 hours and for𝑚DM = 2.1 keV NCDM with 𝑡0 = 5, 000 hours.
Although the system noise in 𝛿𝑇𝑏 images degrades the performance
of both PS and CNN analyses, CNN still provides better performance
than the 2D power spectrum. The information on the dark matter
particle mass for 𝑚DM = 1 keV cannot be captured by the power
spectrum with 𝑡0 = 1, 000 hours, hidden below the system noise of
SKA-MID, and the CNN can successfully extract it.

In addition, we discuss the effect of the different astrophysical
models under the existence of the system noise of SKA. The clas-
sification with our CNN for 𝑚DM > 4.6 keV is largely affected by
the FG09 model as shown in Fig. 7. However, with the observa-
tion time 𝑡0 = 1, 000 hours, the system noise hides the signals for
𝑚DM ≥ 2.1 keV as shown in Fig. 12. Therefore, the difference in
the astrophysical model should not be seriously considered given the
observational errors in the era of SKA, but it must be the most serious
systematic effect in future higher sensitivity observations.

Finally, we consider the effect of the survey area on our results.
Our test images covered a (100 ℎ−1Mpc)2 area across three redshift
slices, corresponding to about 5 deg2 of sky at redshift 𝑧 = 3. To
investigate the impact of the survey area, we derive the 𝑝-values
of the KS test for a limited number of test samples. Specifically,
we test the effect of using test images from half of the simulation
volume, corresponding to a survey area of 2.5 square degrees. As the
survey area increases, the 𝑝-values decrease for the classification for
𝑚DM ≤ 4.6 keV dark matter models. This suggests that increasing
the survey area could improve the accuracy of our dark matter mass
constraints.

5 SUMMARY

In summary, this paper explores the use of CNN to distinguish be-
tween different models of dark matter based on images and 2D power
spectra of 21cm brightness temperature distribution. We have shown
that the CNN can better distinguish between different dark matter
particle masses than the 2D power spectrum. We conduct a suite of
hydrodynamic simulations with different dark matter particle masses
and generate the images of dark matter distribution and 𝛿𝑇𝑏 map.
In addition, we perform three additional simulations for the CDM
model, where the astrophysical models such as self-shielding of HI
gas, star formation, and UV background are different from the Fidu-
cial simulation, following Nagamine et al. (2021). We also injected
the system noise from upcoming SKA-MID observation into the 𝛿𝑇𝑏
images to investigate the effect of noise.

Firstly, we compare the analysis of dark matter images and 𝛿𝑇𝑏
images assuming the Fiducial astrophysical model. Our results indi-
cate that the direct observable 𝛿𝑇𝑏 map can constrain the dark matter
mass and has comparable classification power to the dark matter
image. We then compare the performance of our CNN and the 2D
power spectrum, finding that our CNN can distinguish dark matter
models for 𝑚DM ≤ 10 keV, while the 2D power spectrum is only
able to distinguish models for 𝑚DM ≤ 2.1 keV. Therefore, we con-
firm that the CNN can extract the information not encoded in the 2D
power spectrum, which is expected due to the nonlinear evolution of
dark matter, which scrambles the Gaussian information at the initial
condition, and the nonlinear relation between dark matter and neutral
hydrogen.

Secondly, we explore how different astrophysical models affect the
analysis using power spectrum and CNN. To do so, we replace the
CDM test images for the Fiducial astrophysical model with those
for other astrophysical models. We find that the power spectrum
analysis can distinguish the dark matter models for 𝑚DM ≤ 2.1,keV
from CDM, regardless of the astrophysical model assumed. The
CNN analysis can distinguish dark matter models of 𝑚DM ≤ 10 keV
independent of the assumed astrophysical models except for the FG09
model. For the FG09 model, the classification for 𝑚DM ≥ 2.1 keV
model is highly disturbed.

Thirdly, we investigate the impact of system temperature noise
assuming the SKA-MID observation for the 𝛿𝑇𝑏 map on our clas-
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sification analysis. We find that the noise significantly degrades the
classification performance, but our CNN can still distinguish the
NCDM model with 𝑚DM < 1 keV from the CDM model with an
integration time of 𝑡0 = 500 hours. With more integration time of
𝑡0 = 5000 hours, this limit can be extended to 𝑚DM < 2.1 keV.

Finally, we also investigate the effect of the survey area on our
analysis. Our simulations correspond to a survey area of 5 deg2 at
𝑧 = 3, but by scaling the number of test images, we find the probability
that the 𝑝-values for the classification for the 𝑚DM ≤ 4.6 keV dark
matter model can be improved.

Our work demonstrates that CNNs have the potential to more ef-
fectively constrain the dark matter particle mass than the 2D power
spectrum using the 𝛿𝑇𝑏 map, which can be observed by radio ob-
servation like SKA. However, practical observations come with their
challenges, such as foreground contamination and the optimal red-
shift for constraining the dark matter mass. In addition, we can obtain
the 3D map of the 21cm and can measure the 3D power spectrum
such as a delay power spectrum (Parsons et al. 2012). We can use
multiple images from various frequencies as inputs of CNN. The in-
formation of the 3D 21cm map probably improves the constraints of
the dark matter mass. We plan to address these challenges in future
work.
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Model 𝜇 [ℎ−1kpc] 𝜎 [ℎ−1kpc] Total Number

Fiducial 66.2 28.2 270,931
Shield 66.2 28.2 270,930
NoSF 66.2 28.2 271,092
FG09 66.2 28.2 270,936

46 keV 66.2 28.2 269,283
21 keV 66.2 28.5 264,444
10 keV 66.2 28.5 245,598
4.6 keV 65.2 31.9 196,314
2.1 keV 61.9 34.6 126,987
1 keV 59.9 36.7 54,755

Table A1. Radial size of dark matter halos and the number of halos for dif-
ferent astrophysical and dark matter models. The first four rows are the CDM
with different astrophysical models, and the latter six rows are the NCDM
models. The second and third column shows the mean (𝜇) and standard de-
viation (𝜎) of the virial radius of the halo, and the last column shows the
total number of the halo in the simulation box. Different astrophysical or dark
matter models do not significantly affect the halo size. However, the number
of halos for the light dark matter models has decreased.
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APPENDIX A: PROPERTY OF HI HALO

As discussed in Fig. 7, many of the FG09 CDM test images is mis-
classified to the NCDM model. In this appendix, we try to address
how this confusion happens by focusing on the fundamental quanti-
ties of halos. We identify the dark matter halo using the ROCKSTAR
code (Behroozi et al. 2013) and define the HI halo as the group of
the HI gas particles within the virial radius of the dark matter halo.

Table A1 shows the size of the halo, which is defined as the
virial radius of the dark matter halo and the total number of halos
in the simulation box for each astrophysical and dark matter model.
We always fix the dark matter model to CDM for the variant run
of the astrophysical model, and for the NCDM run, we apply the

Fiducial astrophysical model. We see no significant relation between
the number of halos and the assumption of the astrophysical models.
In contrast, the total number of halos is smaller when the dark matter
mass is smaller, especially for 𝑚DM ≤ 4.6 keV. This is because the
light dark matter prevents the small-scale clustering due to its velocity
dispersion (see Section 2.1), and halos are not formed. On the other
hand, the size of the halos is not affected by either the astrophysical
models or the dark matter models.

In Fig. A1 and Fig. A2, the panels show the HI mass function
in comparison with the Fiducial CDM model. These two figures
show the mass function of the astrophysical and NCDM models,
respectively. We see that the number of halos of 𝑀HI > 109𝑀⊙/ℎ
increases in the NoSF and FG09 model compared to the Fiducial
model and the halos of 𝑀HI ∼ 108 ℎ−1𝑀⊙ decrease for 𝑚DM ≤
10 keV NCDM models. However, these features do not explain the
confusion of the model classification because there are no similarities
between the HI halo mass function for the NCDM model and variant
astrophysical models.

Then, we will see if the halo profile looks similar between the
NCDM and variant astrophysical models. In Fig. A3, the panels
show the stacked HI density profile of the halo. To compute the
stacked HI density profile, we average the HI mass within the dark
matter virial radius over the lowest 3000 halos within each mass bin
from 105 to 109ℎ−1𝑀⊙ . The Fiducial (blue solid) and Shield (green
dashed) runs have relatively similar profiles. In addition, NoSF (red
dashed) and 10 keV NCDM (orange dash-dot) have similar profiles
except for halos with 𝑀HI > 106 ℎ−1𝑀⊙ . However, NoSF model has
little effect on the classification in Section 4.2. For FG09 model, its
profiles (purple dashed) deviate from Fiducial, especially for massive
halos (𝑀HI > 108 ℎ−1𝑀⊙), but they are also different from 10 keV
NCDM profile. Our CNN classification is probably based not only
on features that resemble NCDM but also on features that are not
CDM-like.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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Figure A1. Halo HI mass function (i.e., the comoving number density of halos as a function of their mass) for Fiducial (blue) and other astrophysical models
(orange) in the top panels and the ratio of them in the bottom panels.
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Figure A2. Halo HI mass function for Fiducial (blue) and other NCDM models (orange) in the top panels and the ratio of them in the bottom panels.
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Figure A3. Stacked HI density profile as a function of halo-centric radius. We use up to the 3000th halo counted from the lower end in each mass bin of
log (𝑀HI [ℎ−1𝑀⊙ ] ) ≥ 5, 6, 7, 8 and 9 for stacking. Each line corresponds to Fiducial (blue solid), Shield (green dashed), NoSF (red dashed), FG09 (purple
dashed), and 10 keV NCDM (orange dash-dot). The lower limit of abscissa corresponds to the pixel size of the images we use.
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