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Abstract

We propose a linear algebraic method, rooted in the spectral properties of graphs, that can be used to prove
lower bounds in communication complexity. Our proof technique effectively marries spectral bounds with
information-theoretic inequalities. The key insight is the observation that, in specific settings, even when data
sets X and Y are closely correlated and have high mutual information, the owner of X cannot convey a reason-
ably short message that maintains substantial mutual information with Y. In essence, from the perspective of the
owner of Y, any sufficiently brief message m = m(X) would appear nearly indistinguishable from a random
bit sequence.

We employ this argument in several problems of communication complexity. Our main result concerns
cryptographic protocols. We establish a lower bound for communication complexity of multi-party secret key
agreement with unconditional, i.e., information-theoretic security. Specifically, for one-round protocols (simul-
taneous messages model) of secret key agreement with three participants we obtain an asymptotically tight lower
bound. This bound implies optimality of the previously known omniscience communication protocol (this re-
sult applies to a non-interactive secret key agreement with three parties and input data sets with an arbitrary
symmetric information profile).

We consider communication problems in one-shot scenarios when the parties’ inputs are not produced by
any i.i.d. sources, and there are no ergodicity assumptions on the input data. In this setting, we found it natural
to present our results using the framework of Kolmogorov complexity.

Keywords: communication complexity, Kolmogorov complexity, information-theoretic cryptography, multi-
party secret key agreement, expander mixing lemma, information inequalities

1 Introduction

Within computer science, a broad range of communication complexity problems has been studied in recent
decades. In these problems several (two or more) agents solve together some task (compute a function, search
an elements in a set, sample a distribution, and so on) when the input data are distributed among the agents.
In different context we may impose different constraints on the class of admissible protocols (protocols can be
deterministic or randomized, one-way or interactive, with a one shot of simultaneous messages or with several
rounds, etc.). The cost of a communication protocol is the total number of bits that must be exchanged between
participants, typically in the worst-case situation.

In this paper we focus on communication problems with three parties (Alice, Bob, and Charlie), though our
techniques can be extended to bigger number of participants. We deal with the situation when the input data
accessible to Alice, Bob, and Charlie are correlated. In a popular model number-on-forehead, the datasets given
to Alice, Bob, and Charlie have large intersections, which is a very particular form of correlation between the
data. We study a more general setting (more usual in cryptography and information theory) where the input data
sets given to the parties have large mutual information, but it might be impossible to materialize this mutual
information as common chunks of bits shared by several parties.

The principal communication problem under consideration is secret key agreement: Alice, Bob, and Charlie
use the correlation between their input data sets to produce a common secret key. A special feature of this setting
is the implicit presence of another participant in the game, Eve (eavesdropper/adversary). The eavesdropper can
intercept all messages between Alice, Bob, and Charlie, but this should not give Eve any information about the
final result of the protocol — the produced secret key. A secret key agreement (for two or many participants) is
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one of the basic primitives in cryptography; it can serve as a part of more sophisticated protocols (the produced
secret key can be used in a one-time pad encryption or in more complicated cryptographic schemes).

In practice, the most standard and well known method of secret key agreement is the Diffie-Hellman key
exchange [1} 2] and its generalizations, see [3]. The security of this protocol is based on assumptions of com-
putational complexity. In particular, the Diffie-Hellman scheme is secure only if the eavesdropper cannot solve
efficiently the problem of discrete logarithms. Such an assumption looks plausible for most practical applications.
However, theoretical cryptography studies also secret key agreement in information-theoretic settings, where we
impose no restrictions on the computational power of the eavesdropper. Besides a natural theoretical interest, such
a scheme can be useful as a building block in more complex protocols. In particular, a protocol of information-
theoretic secret key agreement (pretty conventional, involving communication and computational tools conceiv-
able in the framework of the classical physics) is an indispensable component of the protocol of quantum key
distribution ([4, 5} 16]).

Example 1. Let us recall that the standard protocols of quantum key distribution (see, e.g., [4]) can be subdivided
into two phases: in the first one, two parties use a quantum communication channel and quantum measurements
to produce on both ends a pair of preliminary results that look like two strongly correlated but not identical
sequences of random bits; in the second phase, the parties use a classical communication channel and purely
classical computations to perform some sanity check and make sure that the quantum communication was not
compromised, and then extract a common secret key from the pair of correlated sequences of bits produced in
the quantum phase. The last part of this scheme is exactly an information-theoretic secret key agreement used in
the setting when the two parties are preliminary given a pair of highly correlated inputs. The size of the shared
secret key produced in the classical phase of the protocol depends on the rate of correlation between the sequences
generated by the parties in the quantum phase.

Besides quantum cryptography, secret-key agreement based on correlated information appears in various cryp-
tographic schemes connected with noisy data (biometric information, observations of an inherently noisy com-
munication channel or other physical phenomenon, see the discussions in [[7, [9]), in the bounded-storage model
([10L 11]), and so on. We refer the reader to the survey [8]] for a more detailed discussion.

In the Diffie-Hellman scheme, the parties may start the protocol from zero, holding initially no secret informa-
tion. In contrast, a secret key agreement with information-theoretic secrecy is impossible if the parties start from
scratch. To produce a key that is secret in information-theoretic sense, the participants of the protocol need to be
given some input data (inaccessible to the eavesdropper). The pieces of input data provided to the parties must be
correlated with each other, and the measure of this correlation determines the optimal size of the common secret
key that can be produced.

So far we were very informal and did not specify the mathematical definitions behind the words secrecy (of
the key) and correlation (between parties’ inputs). Let us describe the settings of information-theoretic secret key
agreement more precisely. This can be done in different mathematical frameworks.

Historically, information-theoretically secure protocols of secret key agreement were introduced in classical
information theory, [24] 25]. In this setting, the input data of the parties are produced by correlated random
variables. In the settings with two parties it is usually assumed that there is a sequence of i.i.d. pairs of random
variables with finite range, (X;,Y;), ¢ = 1,...,n, and Alice and Bob receive the values of (X;...X,) and
(Y7 ...Y,) respectively,

Alice <« (X1X2 .. Xn)7
Bob + ("1Ys...Y,).

Then Alice and Bob run a communication protocol and try to produce a common value (secret key) W asymptot-
ically independent of the franscript (the transcript consist of the messages sent by Alice and Bob to each other).
Ahlswede—Csiszar [24] and Maurer [25]] found a characterization of the optimal size of W in terms of Shannon’s
entropy of the input data. They showed that the optimal size of the secret key is asymptotically equal to the mu-
tual information between Alice’s and Bob’s inputs. A similar characterization of the optimal secret key is known
for multi-party protocols, with k > 3 parties, [22]. The problem of secret key agreement and a related problem
of common randomness generation were extensively studied in the information theory community and also (in
somewhat different settings) in theoretical computer science, see, e.g., [34,135] and the survey [36]].

In this paper we follow the paradigm of building the foundations of cryptography in the framework of algo-
rithmic information theory, as suggested in a general form in [19] and more specifically for secret key agreement
in [14}115]. In this approach, the information-theoretic characteristics of the data are defined not in terms of Shan-
non’s entropy but in terms of Kolmogorov complexity. In this setting, we can talk about properties of individual



inputs, keys, transcripts, and not about probability distributions. We assume that the parties (Alice, Bob, Charlie)
are given as inputs binary strings z, y, z respectively,

Alice — o,
Bob — vy,
Charlie <+ =z,

and that the parties know the complexity profile of these strings, i.e., the optimal compression rate of these inputs
(precisely or at least approximately, see below). The secrecy of the produced key means that this key must be
incompressible, even conditional on the public data including the transcript of the communication protocol. In
other words, the mutual information (in the sense of Kolmogorov complexity) between the key and the messages
sent via the communication channel (the transcript) must be negligibly small. Practically, this property guarantees
that the adversary can crack an encryption scheme based on this key only by the brute-force search, see the
discussion in [[15].

Remark 1. The approach based on Kolmogorov complexity seems more general since we do not need to assume
that inputs have any property of stationarity or ergodicity, we do not fix in advance the probability distribution
of the pairs of inputs, we do not even assume the existence of such a distribution. However, the frameworks of
Shannon and Kolmogorov for the definition of secrecy have similar practical interpretations. Indeed, a distribution
W on {0, 1}™ has a high entropy, i.e., H(W) = n, if and only if with a high probability W returns an n-bit string
with Kolmogorov complexity close to n (a random source with a high entropy typically produces incompress-
ible values). For a more detailed discussion of the connection between Shannon’s and Kolmogorov’s formalism
see [12]. The formal statements in Kolmogorov’s framework are usually stronger than their homologues in Shan-
non’s framework, and theorems from the former theory in most cases formally imply the corresponding results
from the latter theory, see [[14].

A characterization of the optimal size of the secret key in term of Kolmogorov complexity was suggested in
[14]. We begin with the case of two parties, see Theorem [ below. In this theorem, a communication protocol is
randomized (we assume that the parties may use a public source of random bits, which is also accessible to the
eavesdropper). Let z and y stand for inputs of Alice and Bob, r denote the string of bits produced by a public
source of randomness (used by the parties and accessible to the eavesdropper), and ¢ denote the transcript of the
protocol.

Theorem 1 ([14]). (i) For any numbers k,{ € N and €, > 0 there exist a randomized communication protocols
Tk 0,6 Such that on every pair of input strings (x, y) (of length at most n) satisfyingl C(z)Zkand C(z | y) =1,
Alice and Bob with probability 1 — € both obtain a result w = w(zx, y,r) such that

[length of w in bits] = C(x) — C(x | y) — O(8) — o(n) and C(w | (t,r)) > |w| — o(n) (1)

(for n = |z| + |y|), which means that the size of the produced secret key is asymptotically equal to the mutual
information between Alice’s and Bob’s inputs, and the leakage of information on the key to the eavesdropper (who
can access the transcript of the protocol t and public randomness r) is negligibly small.

(ii) The size of the key in (i) is pretty much optimal: no communication protocol can produce a key w longer
than C(z)— C(x | y)+O(8) 4+ o(n) without loosing the property of secrecy C(w | (t,r)) > [length of w in bits] —
o(n) (the size of a secret key cannot be made asymptotically greater than the mutual information between Alice’s
and Bob’s inputs).

Remark 2. In Theorem[I] the values of k and £ are embedded in the communication protocol Tk,¢,e,5.- This means
that the parties in some sense “know” (at least approximately) the values of C(z) and C(z | y). This is similar to
the settings of the classical information theory, where the parties “know” the probability distribution on random
inputs and can use a suitable protocol. The theorem is nontrivial if the approximation rate § = o(n) as n — oo.

Remark 3. The precision in Eq. (I) in Theorem [Tl can be made tighter: there exists a communication protocol
which guarantees

[length of w in bits] = C(z) — C(z | y) — O(d) — O(logn) and C(w | {(t,r)) > Jw| — O(1). )

Here the term C(x) stands for the plain Kolmogorov complexity of = (optimal compression of ), the term C(z | ) stands for conditional

Kolmogorov complexity of x conditional on y (optimal compression of x given advice y), and the notation C(z) 2 k and C(z | y) 2 ¢ means
that |C(z) — k| < dand |C(z | y) — 4] < 4.



Theorem[T] can be extended to the multi-party setting, where k > 2 parties are given correlated data and need
to agree on common secret key communicating via a public channel. Let us discuss in more detail the version with
k = 3 participants. We assume now that three parties (Alice, Bob, and Charlie) are involved in the protocol. They
are given inputs x, y, z respectively. We assume that all parties have an access to a common source of random
bits (we denote by r the bits produced by this source) and exchange messages via a public channel (we use the
conventional definition of a multi-party communication protocol with a public source of random bits, see [21]]). It
is assumed that every message sent by any party reaches every other party (and the eavesdropper). In what follows
we consider only triples of inputs (x, y, z) with a “symmetric” complexity profile such that C(z) = C(y) ~ C(z)
and C(z,y) ~ C(z, z) = C(y, 2).

Theorem 2 (symmetric version of [14}, Theorem 5.111). (i) For any profile (k1,k2,k3) € N3 and €,5 > 0 there
exist a randomized communication protocols Ty, 1, ks.e.s for three parties such that on every triple of binary input
strings (x,y, z) (of length at most n) satisfying

C(l‘) é C(y) ; C(Z) é kla C(l‘, y) é C(:Ea Z) é C(ya Z) é k2; C(l‘, Y, Z) é k3 (3)
Alice, Bob, and Charlie can agree with probability 1 — € on a key w = w(x, y, z, 1) such that

[length of w in bits] = I(z:y‘Z)H(z:;‘y)ﬂ(y:z‘z) +I(z:y:z) —O(0) —o(n) 4)

(forn = |a] + ly| + |2]) and
C(w | {t,r)) > |w| — o(n). (5)
(ii) The size of the key in (i) is asymptotically optimal, i.e., no communication protocol can give a key w
asymptotically longer than

%(I(m:y|z)+[(m:z|y)+I(y:z|z))+I(Jc:y:z)+O(6)+o(n) (6)

without loosing the property of secrecy (3).

Remark 4. The general version of [14, Theorem 5.11] applies to a triple of inputs with arbitrary (possibly non-
symmetric) complexity profile. In the general case, the characterization of the optimal size of the secret key is
more involved then (@) and involves piece-wise linear expression involving the terms of the mutual information
for z, y, and z, see [[14]. We discuss only symmetric complexity profiles in order to avoid cumbersome formulas
and focus on the most essential combinatorial ideas behind the proofs.

The known proofs of the positive parts of Theorem [Tl and Theorem 2] (the existence of protocols) are quite
explicit and constructive: we know specific communication protocols that allow to produce a secret key of the op-
timal size. More specifically, the proofs suggested in [[14]] provide a protocol for Theorem[I(i) with communication
complexity

min {C(z [ y),C(y | 2)} + O(6) + O(logn) ©)
and a protocoﬂ for Theorem[2(i) with communication complexity
1
Clz,y,2) — 5(1(36 cyl2)+ L@z |y)+1(y:2]2) —I(x:y:z)+O0(0) + O(logn). (8)

The communication complexity (@) from Theorem [{i) is known to by asymptotically optimal, see [15]. In this
paper we study the communication complexity of the problem from TheoremPl In fact, (8)) is nor optimal for gen-
eral communication protocols; however, we show that this communication complexity is asymptotically optimal
in the class of protocols with simultaneous messages, i.e., in the model where Alice, Bob, and Charlie send their
messages in parallel, receive the messages sent by their vis-a-vis, and compute the result (secret key) without any
further interaction.

Theorem 3 (main result). In the setting of Theorem[2) communication complexity of a protocol with simultaneous
messages (the total number of bits sent by Alice, Bob, and Charlie) for triples of inputs (x,y, z) with a symmetric
complexity profile 3)) cannot be smaller than

C(x,y,z)—%([(x:y|z)—i—I(x:z|y)—|—](y:z|z)) —I(z:y:z)—0O(5) — O(logn). 9)

2The scheme proposed in [14] is the so called omniscience protocol. In this protocol, all parties send simultaneously their messages (random
hash-values of the inputs) so that each of them learns completely the entire triple of inputs (z, y, z) (this explains the term omniscience). The
total length of the sent messages is less than C(x, y, z), so an eavesdropper can learn only a partial information on the inputs. The gap between
the total complexity of C(z, y, z) and the divulged information is used to produce a secret key.




Communication complexity (@) is not optimal for general (multi-round) communication protocols of secret
key agreement, see Proposition[2]

The proof of our main result combines information-theoretic techniques and spectral bounds for graphs (the
expander mixing lemma). Spectral bounds per se are not new in communication complexity (see, e.g., the usage of
Lindsey’s lemma in [27]]). Information-theoretic methods are also pretty common in this area. But the combination
of these two techniques seems to be less standard. The key step of the proof is the observation that in some setting,
when parties hold correlated data sets, for each of them it is hard to send a message that has non-negligible mutual
information with the partners’ data. In other words, a “too short” message sent by Alice would have zero mutual
information with the data (y, z) given to Bob and Charlie. For secret key agreement protocols, this observation
implies that the messages of every party inevitably have to be quite long. A similar argument can be used in
problems that are not connected with cryptography, see Theorem|[6l

The rest of the paper is organized as follows. In Section2] we recall several standard definitions and introduce
the notation. In Section 3] we explain informally the scheme of our argument. In Section ] we prove the main
technical tool of this paper, Theorem[3](which claims that in some setting, it is hard to send a message that has non-
negligible mutual information with the partners’ data). In Section[3] we illustrate the application of our technique
with a simple example that is not related to cryptography. In Section [6] we prove Theorem[3lfor a restricted (“the
most important”) class of complexity profiles; this is the main technical contribution of the paper. In Section[7]we
extend this result and prove Theorem[3]for all (symmetric) complexity profiles. We conclude with a discussion of
limitations of our technique and open problems. Several technical lemmas are deferred to Appendix.

2 Preliminaries and Notation

2.1 General notation.

For a binary string « we denote its length |z|. For a finite set S we denote its cardinality #5S.

In what follows we manipulate with equalities and inequalities for Kolmogorov complexity. Since many
of them hold up to a logarithmic term, we use the notation AZB, A<'$B, and A>!¢ B for |A — B| =
O(logn), A < B + O(logn), and B < A + O(logn) respectively, where n is clear from the context (n is
usually the length of the strings involved in the inequality).

F, denotes the field of g elements (usually ¢ = 2™). A k-dimensional vector over F is a k-tuple (z1,...,zx) €
IF’q“. We say that two vectors (x1,...,2%) and (y1,...,yx) in IF"qc are orthogonal to each other if z1y; + ... +
2ryr = 0 (the addition and multiplication are computed in the field IF;). A vector is called self-orthogonal if it
is orthogonal to itself. In a k-dimensional space over the field of characteristic 2 there are 2! self-orthogonal
vectors (x1, . .., 2) and they form a linear subspace of co-dimension 1 (a vector is self-orthogonal iff 21 + ...+
z, = 0). A direction in F’; is an equivalence class of non-zero vectors over I, that are proportional to each other
(adirection can be understood as a point in the projective space of dimension k —1). Two directions are orthogonal
to each other if every vector in the first one is orthogonal to every vector in the second one.

C(«) stands for Kolmogorov complexity of x (the length of the shortest programl] producing z) and Clz | y)
(the length of the shortest program producing x given input y) stands for Kolmogorov complexity of x given
y. Respectively, I(z : y) and I(z : y | z) denote the mutual information between = and y and the conditional
information between z and y given z. We use the notation I(z : y : 2) :=I(z : y) — I(z : y | 2). For a tuple
of strings (z1, . . ., x,,) its complexity profile is the vector consisting of the complexity values C(x;,, ..., x;, ) (for
all 2" — 1 sub-tuples 1 <141 < ... <15 < n).

Kolmogorov complexity can be relativized: C®(z) and C®(z | y) stand for Kolmogorov complexity of z
(conditional on y) assuming that the universal decompressor can access oracle O. If the oracle is a finite string s,
then CO(z) = C(x | 5) + O(1).

For more detail on the basic facts about Kolmogorov complexity see Appendix. A comprehensive introduction
in the theory of Kolmogorov complexity can be found in [[13] and [[16].

2.2 Communication complexity.

We use the conventional notion of a communication protocol for two or three parties, see for detailed definitions
[21]]. We discuss deterministic protocols and randomized protocols with a public source of random bits (see

3In an optimal programming language, see Appendix for more detail.



Appendix for more detail).

In general, a communication protocol may consist of several rounds, when each next message of every party
depends on the previously sent messages. In the simultaneously messages model there is no interaction: all parties
send in parallel their messages that depend only on their own input data (and the random bits), and then compute
the final result.

We usually denote the inputs of Alice, Bob, and Charlie as x, ¥, and z respectively (number-in-hand model). A
deterministic communication protocol for inputs x, y, z € {0, 1}" returns aresult w = w(x, y, z). In arandomized
protocol the result depends also on the public source of random bits 7, and w = w(x,y, z,7). The sequence
of messages sent by the parties to each other while following the steps of the protocol is called a transcript
t = t(z,y, z) of the communication (t = t(x, y, 2, r) for randomized protocols). Communication complexity of a
protocol is the maximal length of its transcript (measured in bits), i.e., nax [t(z,y,z,1)|

A communication protocol computing a function F' (z,y, z) returns a correct result if w(z, y, z, 1) = F(x,y, 2).
For a secret key agreement protocol, the definition of a correct result w is subtler: we need that (i) w is of the
required size and (ii) it is almost incompressible even given the transcript of the communication ¢ and the public
random bits . For a more detailed discussion of this setting we refer the reader to [14].

We will assume that the communication protocol has a “uniform” description. More technically, we assume
that for n-bit inputs (the full description of such a protocol) has an efficient description of size O(log n). For such
a protocol we do not loose much security even if the description of the protocol is available to the eavesdropper.
Thus, we cannot “cheat” by embedding in the structure of the protocol any secret information hidden from the
adversary.

If the length of inputs is equal to n, we may assume w.l.0.g. that the used string of public random bits r is of
length O(n). (Using longer sources of random bits may only slightly affect the probability of an erroneous result.
For protocols computing a function, O(logn) bits is enough due to the Newman’s theorem, [26]; in secret key
agreement protocols we may need O(n) random bits, see [L5]]). This is crucial for our setting: we may assume
that the terms O(log C(r)) involved in inequalities for Kolmogorov complexity match in order of magnitude the
terms O(log(C(z) + C(y) + C(z))), where x, y, z are the input data.

2.3 Reminder of the spectral graph technique.

Let G = (L U R, E) be a bi-regular bipartite graph where each vertex in L has degree Dy, each vertex in R has
degree Dp, and each edge e € E connects a vertex from L with a vertex from R (observe that #F = #L- Dy, =
0 A
AT 0
of dimension (#L) x (#R) (Azy = 1 if and only if there is an edge between the z-th vertex in L and the y-th
vertex in R). Let Ay > Ao > ... > Ay be the eigenvalues of M, where N = #L + #R is the total number of
vertices. Since M is symmetric, all A; are real numbers. It is well known that for a bipartite graph the spectrum is
symmetric, i.e., \; = —An—_;+1 foreach ¢, and \y = —Axy = /D Dp (see, e.g., [L7]). The graphs with a large
spectral gap (the gap between the first and the second eigenvalues) have the property of good mixing, see [20].

#R - Dg). The adjacency matrix of such a graph is a zero-one matrix M = ( ) where A is a matrix

Lemma 1 (Expander Mixing Lemma for bipartite graphs, see [17]). Let G = (L U R, E) be a regular bipartite
graph where each vertex in L has degree Dy, and each vertex in R has degree Dg. Then for each A C L and

B C R we have ’E(A, B) - %’ < MoV#HA - #B, where \s is the second largest eigenvalue of the
adjacency matrix of G and E(A, B) is the number of edges between A and B.

We apply LemmalTl for the case % > Aov/#A - #B, as shown in the corollary below.

Corollary 1. Let G = (L U R, E) be a graph from Lemmalllwith the second eigenvalue \z. Then for A C L and
2
B C R such that #A - #B > (%) we have

(10)

BB =0 (PEEER)

#R

To apply the expander mixing lemma, we need a graph with a large spectral gap. In particular, we use the
following well know lemma.



Lemma 2 (see [37]). Let G = (L U R, E) be a graph where L consists of all lines in a projective plane over a
finite field ¥, R consists of all points in this plane, and E consists of all incident pairs (line, point). In this graph
A1 = 0O(q) and Xy = O(,/q).

In the next section we discuss spectral properties of graphs with a more complicated structure.

3 Main technical tools and the scheme of the proof

In this section we sketch the proof of our main result (Theorem[3). In this sketch we ignore technical difficulties
that can be resolved with standard techniques or ad hoc tricks, and focus on the main ideas used in the proof.
3.1. Setting the parameters. Let us assume that § = O(logn), i.e., all parties of the protocol “know” the
complexity profile of the triple of inputs (x,y, z) up to an additive logarithmic terml. This assumption does not
affects significantly the argument, but it helps to avoid minor technical details and makes the explanation more
transparent. To simplify the notation, in this section we discuss only triples of inputs with the profile

Cle) = Cly) £ C(z) L kn, Cla,y) = Ol 2) = Oy, 2) £(2k — Dn,

11
C(;C,:%z)l:g(gk—?,)n (4o
which is equivalent to
Clz|y,2)2Cy | z,2) £ C(z | 2,y) £(k - 2)n,
g lg
I(x-yIZ)—I(w-Zly) Iy:z|z)En, I(z:y:2)20
see Fig.[[l(b). In this setting, Theorem[2] gives the optimal size of a secret key
x Y
x Y
Z
(a) Complexity profile for Examples2land B (b) Complexity profile for Proposition I}
lg lg lg l_g . l_g
Clz|y)=n,Cly | z)=n,1(z:y)=n. Cle|y,z)=(k=2)n,I(z:y)=n
I(z:yz)Z2n,1(z: y : 2) =0.
Figure 1: Diagrams with complexity profiles for Examples and Proposition[dl
1 lg
§(I(x:y |2)+1(z:z|y)+1(y:2]2) +1(z:y:2)=15n. (12)

Our aim is to bound communication complexity for inputs with this complexity profile:

Theorem 4 (special case of Theorem B). In the setting of Theorem[2] communication complexity of a protocol
with simultaneous messages (the total number of bits sent by Alice, Bob, and Charlie) for some triples of inputs
(z,y, z) with complexity profile (TT) cannot be smaller than (3k — 4.5)n, which matches Eq. ().

4 A logarithmic error term is, in some sense, the finest meaningful precision for Kolmogorov complexity. All our arguments can be repeated
mutatis mutandis for any coarser precision d such that logn < d(n) < n.



3.2. Preliminary consideration: the need for hard inputs. The optimal size of the secret key in Theorem [I]
and Theorem [2] depends only on the complexity profile of (z,y, z) and not on the combinatorial structure of
the input. The situation with communication complexity (the number of bits sent by the parties) is different: it
may vary significantly for different tuples of inputs with the same complexity profile. When we talk about the
communication complexity of a protocol, we mean the worst-case complexity, i.e., the maximal number of sent
bits among all admissible inputs. To prove a lower bound for the worst-case communication complexity, we
need to provide a triple of inputs for which the parties have to send long messages. We provide a class of inputs
that are guaranteed to be “hard” (for all valid protocol, for most triples of inputs from this class, communication
complexity is high).

3.3. First step of the argument: conditional on Charlie’s message, the mutual information between Alice’s
and Bob’s inputs must increase. We begin with an observation that might seem to have nothing to do with
communication complexity. We recall the lower bound for the size of the secret key (that applies to protocols with
any communication complexity). In [14] (see Theorem[I(ii)) it is shown that two parties, Alice and Bob, can agree
on secret key of complexity k only if the mutual information between Alice’s input  and Bob’s input y is greater
than k. The proof of this statement can be easily adapted to the following slightly more general setting:

Lemma 3. Assume that there is a publicly available information s (accessible to Alice, Bob, and the eavesdrop-
per), and besides this information Alice is given a private input x and Bob is given a private input y. Then, by
communication via a public channel accessible to the eavesdropper, Alice and Bob cannot agree on a secret key
of complexity greater than I (x : y | s).

We apply this proposition to a protocol with three parties. Let ¢ denote the concatenation of the messages sent
by Charlie. This is a piece of publicly available information (accessible to Alice, Bob, and the eavesdropper). Due
to Lemma[3] Alice and Bob cannot agree on a secret key with Kolmogorov complexity greater than I(x : y | t¢)
(at this point we ignore whether Charlie can learn the same key or not). Hence, in the settings (II), a secret
key of size (I2) can be produced only if I(z : y | tc)>' 1.5n. Observe that in the setting (1) the mutual
information between z and y is equal to n. This means that the mutual information between Alice’s and Bob’s
inputs conditional on Charlie’s message, i.e., I(x : y | t¢), is bigger than the unconditional mutual information
between Alice’s and Bob’s inputs, i.e., I(z : y). A pretty standard information-theoretic argument implies that the
gap between I(x : y) and I(x : y | t¢) is not greater than the mutual information between (z, y) and t¢, and we
conclude that I(z,y : t¢) >'8 n/2. In other words, Charlie must send a message t¢ that has > n/2 bits of mutual
information with the pair of inputs of Alice and Bob. A similar argument implies that Alice must send a message
ta such that I(y, z : t4) >'8 n/2 and Bob must send a message ¢ such that I(x, z : tg) >'®n/2.

This part of the argument is based on Lemma [3 which re-employs an argument from [14] in a pretty direct
way. So at this stage we need no substantially new ideas.

3.4. Second step of the argument: it may be difficult for Alice to send a message increasing the mutual
information between Bob’s and Charlie’s inputs. We have shown above that in the setting (I1) Alice, Bob, and
Charlie can agree on a secret key of optimal size only if each of them sends a messages that contains >'¢ 1 /2 bits
of mutual information with the inputs of two other parties

We are going to show that this may require sending very long messages (much longer than n /2 bits). This part
of the argument is the main technical contribution of our paper. To explain this idea, we make a digression and
discuss a similar problem in simpler settings.

Digression: how to say something that the interlocutor already knows. Let us consider randomized communica-
tion protocols with two participants playing non-symmetric roles. We call the participants Speaker and Listener
and assume that Speaker holds an input string @ and Listener holds another input string b. This is a one-way
protocol: Speaker sends a message to Listener in one round, without any feedback. The aim of Speaker is to send
to Listener a message that is not completely unpredictable from the point of view of Listener. More precisely,
Speaker’s message must have positive (and non-negligible) mutual information with Listener’s input b. We start
with a simple example when the task of Speaker is trivial.

Example 2. Let Speaker is given a string ¢ = uv and Listener is given a string b = uw, where u, v, and w are
independent incompressible strings of length 7, i.e., C(uvw) = C(u) + C(v) + C(w) = 3n. Observe that

C(a)£2n, C(b)=2n, I(a: b)=n (13)

(see the diagram in Fig.[T] (a)). In this setting, if Speaker wants to communicate a message of length n with a high
mutual information with Listener’s y, she may send a part of u, which is know to both participants of the protocol.



On the other hand, if Speaker wants to communicate a message with a low mutual information with Listener’s b,
this is also possible: Speaker may send a part of v, which is know to Speaker but not to the Listener.

Let us proceed with a less trivial example.

Example 3. Now we consider a pair (a, b) with the same complexity profile as in Example 2lbut with a different
combinatorial structure. Let a be a line in the projective plane over the finite field Fo~» and b be a point in the
same projective plane incident to a, and the pair (a, b) have the maximal possible complexity (among all incident
pairs (line, point) in the plane). For these a and b we have the same complexity profile (I3). Indeed, we need two
elements of the field (2n bits of information) to specify a line or a point, but we need only one element of the field
(n bits of information) to specify a point when a line is known. However, the combinatorial properties of this pair
are very different from the properties of the pair in Example 2l

If Speaker is given a and Listener is given b as above, then Speaker cannot send a reasonably short message
having non-negligible mutual information with Listener’s input b. In fact, if Speaker wants to send to Listener a
message m = m(a) having ¢ bits of mutual information with b, then the size of m must be at least n + J. In
particular, if the message m is shorter than n, then it cannot contain any information on b. We prove this statement
in Section 4l

Example[3lis an instance of a much more general phenomenon. Let us have a bipartite graph G = (Vr,, Vg, E),
where the set of vertices is V7, U Vr and the set of edges is I C Vr, x V. We assume that the graph is bi-regular,
i.e., all vertices in V7, have the same degree Dj, and all vertices in Vi have the same degree Dy (we always
assume that Dy, > Dp). We say that G is a spectral expanderﬁ if the second eigenvalue of its adjacency matrix
X2 = O(v/Dy). Let (z,y) € E be a “typical” edge of this graph (in the sense that its Kolmogorov complexity is
close to the maximum possible value), and let x and y be the inputs given to Alice and Bob respectively. Then we
have a property similar to Example[2} if Alice wants to send a message having § bits of mutual information with
Bob’s data y, she must send a message of size at least log D + . We prove this fact using the Expander Mixing
Lemma. (Example [3] corresponds to the graph G = (V,, Vg, E') where V7, consists of all lines in the plane, Vg
consists of all points in the plane, and F is the set of all pairs of incident lines and points; it is known that this
graph is a spectral expander.) [End of Digression.]

Now we generalize the observations from the Digression above and explain the main idea of the proof of
Theorem[dl To explain the principal construction, we introduce the notion of a tri-expander hypergraph, which
extends the conventional definition of a bipartite expander.

Definition 1. Let G = (V4, V2, V3, H) be a hypergraph where
* the set of vertices consists of three disjoint parts V1, Va, V3 of the same cardinality
* the set of hyperedgesisaset H C V1 x Va x V3.

We consider three bipartite graphs G1, G2, G5 associated with hypergraph G: each G, is a bipartite graph (V;, V; x
Vi, E;) (here j =i+ 1 mod 3and ¢ =i+ 2 mod 3), where (z, (y, z)) € E; if and only if the triple {z,y, z}
corresponds to a hyperedge in H. The hypergraph is called tri-expander if the graphs G, G2, G3 are bi-regular
spectral expanders.

Remark 5. The definition of a tri-expander and an application of the expander mixing lemma to the associated bi-
partite graphs (see below) seems to be similar but not literally equivalent to the definition of the second eigenvalue
for 3-uniform hypergraph and the hypergraph generalization of the expander mixing lemma in [18].

We show that the communication is costly for a triple of inputs (z, y, z) that is a hyperedge in a tri-expander.
To this end, we combine the idea from paragraph 3.3 with an argument similar to the observation sketched in
the Digression: each party must send a message having non-negligible mutual information with two other inputs
(an information-theoretic argument) but this is only possible when each of the messages is very long (due to the
spectral bound and the expander mixing lemma).

3.5. Construction of a tri-expander. To conclude the proof of the main result it remains to show that there exists
a tri-expander with suitable parameters:

Proposition 1. For all integer numbers k > 0 and n > 1 there exists a tri-expander G = (V1, Va2, V3, H) such
that

SWe use the term expander without assuming that the degree of a graph is constant.



© #Vi = #Vo = #V5 = 0(2M),

e forallv #+ 3, for every x € V; there exists - vertices Yy € V; such that x and y are adajacent in the
Ii#j V; th ists ©(2(k—1n j V; such th d dj in th
hypergraph,

. #H —_ @(2kn . 2(1{271)’!74 . 2(k72)n)

Proof. We construct such a tri-expander explicitly. We fix the finite field Fo» with ¢ = 2™ elements, the (k + 2)-
dimensional space £ over this field, and the subspace L5, C L that consists of self-orthogonal vectors. Observe
that # L, = #L/q = ¢"*! (a subspace of co-dimension 1 in £). Let V denote the space of all directions in L,
except for the direction (1,. .., 1) (which is self-orthogonal for even k). Observe that #V = ©(q").

We let Vi = Vo = V3 = V and define H as the set of all triple (x,y, 2) € V3 such that z, y, z are distinct and
pairwise orthogonal directions in Ly,.

For every vector z € L;,, the condition of being orthogonal to x determines in L, a subspace of co-dimension
1; this subspace consists of ¢* vectors (including x itself as it is self-orthogonal) and, respectively, (¢* —1)/(g—1)
directions (again, including the direction collinear with x). If we have two non-collinear vectors x,y € Ls,, then
the condition of being orthogonal to = and y determines in L, a subspace of co-dimension 2; this subspace
consists of ¢"~1 vectors (including = and y), which corresponds to (¢*~1 — 1)/(¢ — 1) = ©(¢g*~2) directions
(once again, including the directions collinear with x and with ).

Thus, we have ©(¢") individual vertices, ©(q* - ¢*~1) pairs of adjacent vertices, and ©(q* - ¢*~1 - ¢"=2)
adjacent triples (hyperedges). It remains to compute the eigenvalues of the associated bipartite graphs.

Lemma 4. The hypergraph G = (V1,Va, Vs, H) defined above is a tri-expander.

(This fact might be known, but for lack of a reference we give a proof in Appendix[Bl) In the proof we use rich
symmetries of this hypergraph. To guarantee these symmetries, we have imposed the restrictions that may seem
artificial: the characteristic of the field is 2, we take into consideration only self-orthogonal vectors, the direction
(1,...,1) is excluded from V. O

Remark 6. A standard counting shows that for most hyperedges (z, y, z) in the graph from Proposition[Ilwe have
C(x) £1og O(¢*) £ kn, C(x,y) £logO(¢" - ¢"~1) £(2k — 1)n,
C(z,y,2) ZlogO(q" - ¢*1 - ¢*=2) £(3k — 2)n, and we get the profile (TI).

4 When it is hard to say anything that the interlocutor already knows

In this section we explain our main technical tool. We
consider randomized communication protocols with
two participants, Speaker and Listener. We assume
that Speaker holds an input string a and Listener holds
another input string b; we assume also that the com-

T —of 2\ Y
plexity profile of the pairs (a, b) is known to all par- v
ties. The aim of Speaker in this protocol is to send to

Nab \_ B
\

Listener a message that has non-negligible mutual in-

formation with Listener’s input b, as we discussed in

Section[3 -

Theorem 5. Let G = (V,, Vg, E) be a bipartite spec- Figure 2: The profile in Theorem[3]

tral expander such that N = #Vi, M = #Vg, and
(Dy,, DR) are the degrees of the edges in Vi, and Vi

respectively. Let (a,b) € E be a “typical” edge in the graph, i.e., C(a,b) = log #E, and C(m | a)=0. Then
I(m : b) <'$ max{0, C(m) — C(a | b)}. In particular, if the length of m is less than C(a | b), then I(m : b) = 0.

Remark 7. The statement of Theorem [3 remain valid if we relativize all terms of Kolmogorov complexity in this
statement conditional on a string 7 such that I(r : (a, b)) = 0. In what follows we present the proof without . But
every step of this argument trivially relativizes conditional on r assuming that C(a,b | ) = C(a,b) £ log #E,
we only need to add routinely the random bit string r to the condition of all terms with Kolmogorov complexity
appearing in the proof.

10



Proof of Theorem[5] We denote n, := log N, ny = log M, n!, = log Dg, nj, = log Dy, and ngp := ne — n,.
Using this notation, we have

C(a) £ng, C(b)£ny,Cla | b)£n, C(b)Zny, Cb|a)Zn;, I(a: b)=ng.

a’

Since Speaker computes the message m given the input data a, we have C(m | a) = 0. We denote a := I(m : a |
b) and 8 :=1I(m : a : b). It is easy to verify that C(m) = a + 8. The complexity profile for the triple (a, b, m) is
shown in Fig.

Case 1. Assume that C(m) < n/, — 2 - const - logn for some const > 0 (a constant to be specified later). In this

case, to prove the theorem, we need to show that I(m : y) £ 0. In our notation this is equivalent to (8 =£(. More
technically, we are going to show that
B < const - log n. (14)

For the sake of contradiction we assume that (I4)) is false. It is enough to consider the case when 3 is somewhat
large but not too large, i.e., just slightly above the threshold (I4)). Indeed, any communication protocol violating
(14} can be converted in a different protocols with the same or a smaller value of o and with 8 = const - logn +
O(1). To this end, we observe that by discarding a few last bits of Speaker’s message m we make the protocol
only simpler. So, we may replace the initial message m with the shortest prefix of the initial message that still
violates (I4). Thus, in what follows, we assume w.l.0.g. that

const - logn < B < const - logn + O(1).

Letus define A :={a’ : C(a' | m) < C(a|m)}and B:={b : C¥' | m) < C(b| m)}. We use the following
standard claim:
Claim. #A = 9C(alm)£0(logn) — 9na—a—p+0(logn) 47 #B = 9C(blm)+O0(logn) — 9ny—pB+O0(logn) (see, e.g.
[14, Claim 4.7]).

From the claim we obtain #A - #B = 2na—a=f+n—=f+0(ogn) — gnatn,—=C(m)=F+0(ogn) Since C(m) <
n!, — 2 - constlogn and 5 < constlogn + O(1), we conclude

ng + 1y — C(m) — Bn £+ O(log n) Ng +np — (n, — 2 - const - logn) — const - logn — O(logn)

>
> ngp+ np + const - logn — O(logn) > ngp + np.

(To get the last inequality, we should choose the value of const in (I4) so that const - log n majorizes the term
O(log n) in the inequality above.) Thus, # A - #B > 2"t = %—[z.
With the Expander Mixing Lemma (Corollary[T)) we obtain

DL-#A-#B) :O(#A-#B)

E(A,B)=0 ( o T7D;

Now observe that given m and the numbers C(a | m) and C(b | m) we can enumerate the sets A and B and,
therefore, we can describe (a, b) by the index of this edge in the list of all edges between A and B. The size of
such an index is log F(A, B). Hence,

Cla,b|m)<'8log E(A,B) < (n,+mn,—C(m)—B)— (ny —n})
- na+ngfc(m)7ﬂ:C(aab)7C(m)7ﬂa

and C(a, b) <'8 C(m) + C(a, b | m) <'€ C(a, b) — 3. The terms O(log 1) hidden in the notation <'& and £ in this
inequality do not depend on 3. Thus, we get a contradiction if the constant in (I4) is chosen large enough.
Case 2. Now we assume that C(m) = n/, + ¢ for an arbitrary 6. Denote by m/' the prefix of m of length

(n!, — constlog n) and by m”” the suffix of m of length (6 + const log 7). We know from Case 1 that I(m/ : b) = 0.
It remains to apply the chain rule,

I(m: D) ZI(m/ :b) +I(m” :b | m') ZI(m” : b | m') <'® |m"| £56.
and the theorem is proven. |

From this theorem we obtain immediately the following corollary.
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Corollary 2. Let G = (V1,, Vg, E) be a bipartite spectral expander such that N = #Vi, M = #Vg, and
(Dy,, DR) are the degrees of the edges in Vi, and Vi respectively.

(a) We assume that Speaker and Listener are given, respectively, a and b that are ends of a typical edge
(a,b) € E in the graph. We consider a one-round communication protocol where Speaker sends to Listener a
message m = m(a). Then I(m : b) <'®® max{0,C(m) — C(a | b)}. In particular, if the length of m is less than
C(a | b), then I(m : b) =0.

(b) A similar statement is true if Speaker and Listener are given instead of a and b some inputs o’ and b’ such
that C(a' | a) £ 0 and C(V' | b) £0 (e.g., if Speaker is given a function of a vertex a € Vi, and Listener is given a
Sfunction of a vertex b € V).

5 Protocols with simultaneous messages : a warm-up example

In this section we use Theorem[3]from the previous section to prove a lower bound for communication complexity
of the following problem. Alice and Bob hold, respectively, lines a and b in a plane (intersecting at one point
c). They send to Charlie (in parallel, without interacting with each other) some messages so that Charlie can
reconstruct the intersection point. We argue that the trivial protocol (where Alice and Bob send the full information
on their lines) is essentially optimal.

Theorem 6. Let Alice and Bob be given lines in the projective plane over the finite field Forn (we denote them a
and b respectively), and it is known that the lines intersect at point c. Another participant of the protocol Charlie
has no input information. Alice and Bob (without a communication with each other) send to Charlie messages m 4
and mp so that Charlie can find c, see Fig.[3l For every communication protocol for this problem, for some a,b
we have |m 4| + |mp| >'¢ 4n, which means essentially that in the worst case Alice and Bob must send to Charlie

all their data (for a typical pair of lines we have C(a) 4+ C(b) = 4n).

Alice

m4 = mu(a, public random bits)

Charlie

mp = mg(b, public random bits)

Figure 3: A