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Abstract

We propose a linear algebraic method, rooted in the spectral properties of graphs, that can be used to prove

lower bounds in communication complexity. Our proof technique effectively marries spectral bounds with

information-theoretic inequalities. The key insight is the observation that, in specific settings, even when data

sets X and Y are closely correlated and have high mutual information, the owner of X cannot convey a reason-

ably short message that maintains substantial mutual information with Y . In essence, from the perspective of the

owner of Y , any sufficiently brief message m = m(X) would appear nearly indistinguishable from a random

bit sequence.

We employ this argument in several problems of communication complexity. Our main result concerns

cryptographic protocols. We establish a lower bound for communication complexity of multi-party secret key

agreement with unconditional, i.e., information-theoretic security. Specifically, for one-round protocols (simul-

taneous messages model) of secret key agreement with three participants we obtain an asymptotically tight lower

bound. This bound implies optimality of the previously known omniscience communication protocol (this re-

sult applies to a non-interactive secret key agreement with three parties and input data sets with an arbitrary

symmetric information profile).

We consider communication problems in one-shot scenarios when the parties’ inputs are not produced by

any i.i.d. sources, and there are no ergodicity assumptions on the input data. In this setting, we found it natural

to present our results using the framework of Kolmogorov complexity.

Keywords: communication complexity, Kolmogorov complexity, information-theoretic cryptography, multi-

party secret key agreement, expander mixing lemma, information inequalities

1 Introduction

Within computer science, a broad range of communication complexity problems has been studied in recent

decades. In these problems several (two or more) agents solve together some task (compute a function, search

an elements in a set, sample a distribution, and so on) when the input data are distributed among the agents.

In different context we may impose different constraints on the class of admissible protocols (protocols can be

deterministic or randomized, one-way or interactive, with a one shot of simultaneous messages or with several

rounds, etc.). The cost of a communication protocol is the total number of bits that must be exchanged between

participants, typically in the worst-case situation.

In this paper we focus on communication problems with three parties (Alice, Bob, and Charlie), though our

techniques can be extended to bigger number of participants. We deal with the situation when the input data

accessible to Alice, Bob, and Charlie are correlated. In a popular model number-on-forehead, the datasets given

to Alice, Bob, and Charlie have large intersections, which is a very particular form of correlation between the

data. We study a more general setting (more usual in cryptography and information theory) where the input data

sets given to the parties have large mutual information, but it might be impossible to materialize this mutual

information as common chunks of bits shared by several parties.

The principal communication problem under consideration is secret key agreement: Alice, Bob, and Charlie

use the correlation between their input data sets to produce a common secret key. A special feature of this setting

is the implicit presence of another participant in the game, Eve (eavesdropper/adversary). The eavesdropper can

intercept all messages between Alice, Bob, and Charlie, but this should not give Eve any information about the

final result of the protocol — the produced secret key. A secret key agreement (for two or many participants) is
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one of the basic primitives in cryptography; it can serve as a part of more sophisticated protocols (the produced

secret key can be used in a one-time pad encryption or in more complicated cryptographic schemes).

In practice, the most standard and well known method of secret key agreement is the Diffie-Hellman key

exchange [1, 2] and its generalizations, see [3]. The security of this protocol is based on assumptions of com-

putational complexity. In particular, the Diffie-Hellman scheme is secure only if the eavesdropper cannot solve

efficiently the problem of discrete logarithms. Such an assumption looks plausible for most practical applications.

However, theoretical cryptography studies also secret key agreement in information-theoretic settings, where we

impose no restrictions on the computational power of the eavesdropper. Besides a natural theoretical interest, such

a scheme can be useful as a building block in more complex protocols. In particular, a protocol of information-

theoretic secret key agreement (pretty conventional, involving communication and computational tools conceiv-

able in the framework of the classical physics) is an indispensable component of the protocol of quantum key

distribution ([4, 5, 6]).

Example 1. Let us recall that the standard protocols of quantum key distribution (see, e.g., [4]) can be subdivided

into two phases: in the first one, two parties use a quantum communication channel and quantum measurements

to produce on both ends a pair of preliminary results that look like two strongly correlated but not identical

sequences of random bits; in the second phase, the parties use a classical communication channel and purely

classical computations to perform some sanity check and make sure that the quantum communication was not

compromised, and then extract a common secret key from the pair of correlated sequences of bits produced in

the quantum phase. The last part of this scheme is exactly an information-theoretic secret key agreement used in

the setting when the two parties are preliminary given a pair of highly correlated inputs. The size of the shared

secret key produced in the classical phase of the protocol depends on the rate of correlation between the sequences

generated by the parties in the quantum phase.

Besides quantum cryptography, secret-key agreement based on correlated information appears in various cryp-

tographic schemes connected with noisy data (biometric information, observations of an inherently noisy com-

munication channel or other physical phenomenon, see the discussions in [7, 9]), in the bounded-storage model

([10, 11]), and so on. We refer the reader to the survey [8] for a more detailed discussion.

In the Diffie-Hellman scheme, the parties may start the protocol from zero, holding initially no secret informa-

tion. In contrast, a secret key agreement with information-theoretic secrecy is impossible if the parties start from

scratch. To produce a key that is secret in information-theoretic sense, the participants of the protocol need to be

given some input data (inaccessible to the eavesdropper). The pieces of input data provided to the parties must be

correlated with each other, and the measure of this correlation determines the optimal size of the common secret

key that can be produced.

So far we were very informal and did not specify the mathematical definitions behind the words secrecy (of

the key) and correlation (between parties’ inputs). Let us describe the settings of information-theoretic secret key

agreement more precisely. This can be done in different mathematical frameworks.

Historically, information-theoretically secure protocols of secret key agreement were introduced in classical

information theory, [24, 25]. In this setting, the input data of the parties are produced by correlated random

variables. In the settings with two parties it is usually assumed that there is a sequence of i.i.d. pairs of random

variables with finite range, (Xi, Yi), i = 1, . . . , n, and Alice and Bob receive the values of (X1 . . . Xn) and

(Y1 . . . Yn) respectively,

Alice ← (X1X2 . . . Xn),
Bob ← (Y1 Y2 . . . Yn ).

Then Alice and Bob run a communication protocol and try to produce a common value (secret key) W asymptot-

ically independent of the transcript (the transcript consist of the messages sent by Alice and Bob to each other).

Ahlswede–Csiszar [24] and Maurer [25] found a characterization of the optimal size of W in terms of Shannon’s

entropy of the input data. They showed that the optimal size of the secret key is asymptotically equal to the mu-

tual information between Alice’s and Bob’s inputs. A similar characterization of the optimal secret key is known

for multi-party protocols, with k ≥ 3 parties, [22]. The problem of secret key agreement and a related problem

of common randomness generation were extensively studied in the information theory community and also (in

somewhat different settings) in theoretical computer science, see, e.g., [34, 35] and the survey [36].

In this paper we follow the paradigm of building the foundations of cryptography in the framework of algo-

rithmic information theory, as suggested in a general form in [19] and more specifically for secret key agreement

in [14, 15]. In this approach, the information-theoretic characteristics of the data are defined not in terms of Shan-

non’s entropy but in terms of Kolmogorov complexity. In this setting, we can talk about properties of individual
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inputs, keys, transcripts, and not about probability distributions. We assume that the parties (Alice, Bob, Charlie)

are given as inputs binary strings x, y, z respectively,

Alice ← x,
Bob ← y,
Charlie ← z,

and that the parties know the complexity profile of these strings, i.e., the optimal compression rate of these inputs

(precisely or at least approximately, see below). The secrecy of the produced key means that this key must be

incompressible, even conditional on the public data including the transcript of the communication protocol. In

other words, the mutual information (in the sense of Kolmogorov complexity) between the key and the messages

sent via the communication channel (the transcript) must be negligibly small. Practically, this property guarantees

that the adversary can crack an encryption scheme based on this key only by the brute-force search, see the

discussion in [15].

Remark 1. The approach based on Kolmogorov complexity seems more general since we do not need to assume

that inputs have any property of stationarity or ergodicity, we do not fix in advance the probability distribution

of the pairs of inputs, we do not even assume the existence of such a distribution. However, the frameworks of

Shannon and Kolmogorov for the definition of secrecy have similar practical interpretations. Indeed, a distribution

W on {0, 1}n has a high entropy, i.e., H(W ) ≈ n, if and only if with a high probability W returns an n-bit string

with Kolmogorov complexity close to n (a random source with a high entropy typically produces incompress-

ible values). For a more detailed discussion of the connection between Shannon’s and Kolmogorov’s formalism

see [12]. The formal statements in Kolmogorov’s framework are usually stronger than their homologues in Shan-

non’s framework, and theorems from the former theory in most cases formally imply the corresponding results

from the latter theory, see [14].

A characterization of the optimal size of the secret key in term of Kolmogorov complexity was suggested in

[14]. We begin with the case of two parties, see Theorem 1 below. In this theorem, a communication protocol is

randomized (we assume that the parties may use a public source of random bits, which is also accessible to the

eavesdropper). Let x and y stand for inputs of Alice and Bob, r denote the string of bits produced by a public

source of randomness (used by the parties and accessible to the eavesdropper), and t denote the transcript of the

protocol.

Theorem 1 ([14]). (i) For any numbers k, ℓ ∈ N and ǫ, δ > 0 there exist a randomized communication protocols

πk,ℓ,ǫ,δ such that on every pair of input strings (x, y) (of length at most n) satisfying1 C(x)
δ
= k and C(x | y) δ

= ℓ,
Alice and Bob with probability 1− ǫ both obtain a result w = w(x, y, r) such that

[length of w in bits] = C(x)− C(x | y)−O(δ) − o(n) and C(w | 〈t, r〉) ≥ |w| − o(n) (1)

(for n = |x| + |y|), which means that the size of the produced secret key is asymptotically equal to the mutual

information between Alice’s and Bob’s inputs, and the leakage of information on the key to the eavesdropper (who

can access the transcript of the protocol t and public randomness r) is negligibly small.

(ii) The size of the key in (i) is pretty much optimal: no communication protocol can produce a key w longer

than C(x)−C(x | y)+O(δ)+o(n) without loosing the property of secrecy C(w | 〈t, r〉) ≥ [length of w in bits]−
o(n) (the size of a secret key cannot be made asymptotically greater than the mutual information between Alice’s

and Bob’s inputs).

Remark 2. In Theorem 1, the values of k and ℓ are embedded in the communication protocol πk,ℓ,ǫ,δ. This means

that the parties in some sense “know” (at least approximately) the values of C(x) and C(x | y). This is similar to

the settings of the classical information theory, where the parties “know” the probability distribution on random

inputs and can use a suitable protocol. The theorem is nontrivial if the approximation rate δ = o(n) as n→∞.

Remark 3. The precision in Eq. (1) in Theorem 1 can be made tighter: there exists a communication protocol

which guarantees

[length of w in bits] = C(x)− C(x | y)−O(δ) −O(log n) and C(w | 〈t, r〉) ≥ |w| −O(1). (2)

1Here the term C(x) stands for the plain Kolmogorov complexity of x (optimal compression of x), the term C(x | y) stands for conditional

Kolmogorov complexity of x conditional on y (optimal compression of x given advice y), and the notation C(x)
δ
= k and C(x | y)

δ
= ℓ means

that |C(x)− k| ≤ δ and |C(x | y) − ℓ| ≤ δ.
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Theorem 1 can be extended to the multi-party setting, where k > 2 parties are given correlated data and need

to agree on common secret key communicating via a public channel. Let us discuss in more detail the version with

k = 3 participants. We assume now that three parties (Alice, Bob, and Charlie) are involved in the protocol. They

are given inputs x, y, z respectively. We assume that all parties have an access to a common source of random

bits (we denote by r the bits produced by this source) and exchange messages via a public channel (we use the

conventional definition of a multi-party communication protocol with a public source of random bits, see [21]). It

is assumed that every message sent by any party reaches every other party (and the eavesdropper). In what follows

we consider only triples of inputs (x, y, z) with a “symmetric” complexity profile such that C(x) ≈ C(y) ≈ C(z)
and C(x, y) ≈ C(x, z) ≈ C(y, z).

Theorem 2 (symmetric version of [14, Theorem 5.11]). (i) For any profile (k1, k2, k3) ∈ N
3 and ǫ, δ > 0 there

exist a randomized communication protocols πk1,k2,k3,ǫ,δ for three parties such that on every triple of binary input

strings (x, y, z) (of length at most n) satisfying

C(x)
δ
=C(y)

δ
=C(z)

δ
= k1, C(x, y)

δ
=C(x, z)

δ
=C(y, z)

δ
= k2, C(x, y, z)

δ
= k3 (3)

Alice, Bob, and Charlie can agree with probability 1− ǫ on a key w = w(x, y, z, r) such that

[length of w in bits] = I(x:y|z)+I(x:z|y)+I(y:z|z)
2 + I(x : y : z) −O(δ) − o(n) (4)

(for n = |x|+ |y|+ |z|) and

C(w | 〈t, r〉) ≥ |w| − o(n). (5)

(ii) The size of the key in (i) is asymptotically optimal, i.e., no communication protocol can give a key w
asymptotically longer than

1

2
(I(x : y | z) + I(x : z | y) + I(y : z | z)) + I(x : y : z) +O(δ) + o(n) (6)

without loosing the property of secrecy (5).

Remark 4. The general version of [14, Theorem 5.11] applies to a triple of inputs with arbitrary (possibly non-

symmetric) complexity profile. In the general case, the characterization of the optimal size of the secret key is

more involved then (4) and involves piece-wise linear expression involving the terms of the mutual information

for x, y, and z, see [14]. We discuss only symmetric complexity profiles in order to avoid cumbersome formulas

and focus on the most essential combinatorial ideas behind the proofs.

The known proofs of the positive parts of Theorem 1 and Theorem 2 (the existence of protocols) are quite

explicit and constructive: we know specific communication protocols that allow to produce a secret key of the op-

timal size. More specifically, the proofs suggested in [14] provide a protocol for Theorem 1(i) with communication

complexity

min {C(x | y),C(y | x)} +O(δ) +O(log n) (7)

and a protocol2 for Theorem 2(i) with communication complexity

C(x, y, z)− 1

2

(

I(x : y | z) + I(x : z | y) + I(y : z | z)
)

− I(x : y : z) +O(δ) +O(log n). (8)

The communication complexity (7) from Theorem 1(i) is known to by asymptotically optimal, see [15]. In this

paper we study the communication complexity of the problem from Theorem 2. In fact, (8) is not optimal for gen-

eral communication protocols; however, we show that this communication complexity is asymptotically optimal

in the class of protocols with simultaneous messages, i.e., in the model where Alice, Bob, and Charlie send their

messages in parallel, receive the messages sent by their vis-a-vis, and compute the result (secret key) without any

further interaction.

Theorem 3 (main result). In the setting of Theorem 2, communication complexity of a protocol with simultaneous

messages (the total number of bits sent by Alice, Bob, and Charlie) for triples of inputs (x, y, z) with a symmetric

complexity profile (3)) cannot be smaller than

C(x, y, z)− 1

2

(

I(x : y | z) + I(x : z | y) + I(y : z | z)
)

− I(x : y : z)−O(δ)−O(log n). (9)

2The scheme proposed in [14] is the so called omniscience protocol. In this protocol, all parties send simultaneously their messages (random

hash-values of the inputs) so that each of them learns completely the entire triple of inputs (x, y, z) (this explains the term omniscience). The

total length of the sent messages is less than C(x, y, z), so an eavesdropper can learn only a partial information on the inputs. The gap between

the total complexity of C(x, y, z) and the divulged information is used to produce a secret key.
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Communication complexity (9) is not optimal for general (multi-round) communication protocols of secret

key agreement, see Proposition 2.

The proof of our main result combines information-theoretic techniques and spectral bounds for graphs (the

expander mixing lemma). Spectral bounds per se are not new in communication complexity (see, e.g., the usage of

Lindsey’s lemma in [27]). Information-theoretic methods are also pretty common in this area. But the combination

of these two techniques seems to be less standard. The key step of the proof is the observation that in some setting,

when parties hold correlated data sets, for each of them it is hard to send a message that has non-negligible mutual

information with the partners’ data. In other words, a “too short” message sent by Alice would have zero mutual

information with the data (y, z) given to Bob and Charlie. For secret key agreement protocols, this observation

implies that the messages of every party inevitably have to be quite long. A similar argument can be used in

problems that are not connected with cryptography, see Theorem 6.

The rest of the paper is organized as follows. In Section 2 we recall several standard definitions and introduce

the notation. In Section 3 we explain informally the scheme of our argument. In Section 4 we prove the main

technical tool of this paper, Theorem 5 (which claims that in some setting, it is hard to send a message that has non-

negligible mutual information with the partners’ data). In Section 5 we illustrate the application of our technique

with a simple example that is not related to cryptography. In Section 6 we prove Theorem 3 for a restricted (“the

most important”) class of complexity profiles; this is the main technical contribution of the paper. In Section 7 we

extend this result and prove Theorem 3 for all (symmetric) complexity profiles. We conclude with a discussion of

limitations of our technique and open problems. Several technical lemmas are deferred to Appendix.

2 Preliminaries and Notation

2.1 General notation.

For a binary string x we denote its length |x|. For a finite set S we denote its cardinality #S.

In what follows we manipulate with equalities and inequalities for Kolmogorov complexity. Since many

of them hold up to a logarithmic term, we use the notation A
lg

=B, A≤lg B, and A≥lg B for |A − B| =
O(log n), A ≤ B + O(log n), and B ≤ A + O(log n) respectively, where n is clear from the context (n is

usually the length of the strings involved in the inequality).

Fq denotes the field of q elements (usually q = 2n). A k-dimensional vector overFq is a k-tuple (x1, . . . , xk) ∈
F
k
q . We say that two vectors (x1, . . . , xk) and (y1, . . . , yk) in F

k
q are orthogonal to each other if x1y1 + . . . +

xkyk = 0 (the addition and multiplication are computed in the field Fq). A vector is called self-orthogonal if it

is orthogonal to itself. In a k-dimensional space over the field of characteristic 2 there are 2k−1 self-orthogonal

vectors (x1, . . . , xk) and they form a linear subspace of co-dimension 1 (a vector is self-orthogonal iff x1 + . . .+
xk = 0). A direction in F

k
q is an equivalence class of non-zero vectors over Fq that are proportional to each other

(a direction can be understood as a point in the projective space of dimension k−1). Two directions are orthogonal

to each other if every vector in the first one is orthogonal to every vector in the second one.

C(x) stands for Kolmogorov complexity of x (the length of the shortest program3 producing x) and C(x | y)
(the length of the shortest program producing x given input y) stands for Kolmogorov complexity of x given

y. Respectively, I(x : y) and I(x : y | z) denote the mutual information between x and y and the conditional

information between x and y given z. We use the notation I(x : y : z) := I(x : y) − I(x : y | z). For a tuple

of strings (x1, . . . , xn) its complexity profile is the vector consisting of the complexity values C(xi1 , . . . , xis) (for

all 2n − 1 sub-tuples 1 ≤ i1 < . . . < is ≤ n).

Kolmogorov complexity can be relativized: CO(x) and CO(x | y) stand for Kolmogorov complexity of x
(conditional on y) assuming that the universal decompressor can access oracle O. If the oracle is a finite string s,

then CO(x) = C(x | s) +O(1).
For more detail on the basic facts about Kolmogorov complexity see Appendix. A comprehensive introduction

in the theory of Kolmogorov complexity can be found in [13] and [16].

2.2 Communication complexity.

We use the conventional notion of a communication protocol for two or three parties, see for detailed definitions

[21]. We discuss deterministic protocols and randomized protocols with a public source of random bits (see

3In an optimal programming language, see Appendix for more detail.
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Appendix for more detail).

In general, a communication protocol may consist of several rounds, when each next message of every party

depends on the previously sent messages. In the simultaneously messages model there is no interaction: all parties

send in parallel their messages that depend only on their own input data (and the random bits), and then compute

the final result.

We usually denote the inputs of Alice, Bob, and Charlie as x, y, and z respectively (number-in-hand model). A

deterministic communication protocol for inputs x, y, z ∈ {0, 1}n returns a result w = w(x, y, z). In a randomized

protocol the result depends also on the public source of random bits r, and w = w(x, y, z, r). The sequence

of messages sent by the parties to each other while following the steps of the protocol is called a transcript

t = t(x, y, z) of the communication (t = t(x, y, z, r) for randomized protocols). Communication complexity of a

protocol is the maximal length of its transcript (measured in bits), i.e., max
x,y,z,r

|t(x, y, z, r)|.
A communication protocol computing a functionF (x, y, z) returns a correct result if w(x, y, z, r) = F (x, y, z).

For a secret key agreement protocol, the definition of a correct result w is subtler: we need that (i) w is of the

required size and (ii) it is almost incompressible even given the transcript of the communication t and the public

random bits r. For a more detailed discussion of this setting we refer the reader to [14].

We will assume that the communication protocol has a “uniform” description. More technically, we assume

that for n-bit inputs (the full description of such a protocol) has an efficient description of size O(log n). For such

a protocol we do not loose much security even if the description of the protocol is available to the eavesdropper.

Thus, we cannot “cheat” by embedding in the structure of the protocol any secret information hidden from the

adversary.

If the length of inputs is equal to n, we may assume w.l.o.g. that the used string of public random bits r is of

length O(n). (Using longer sources of random bits may only slightly affect the probability of an erroneous result.

For protocols computing a function, O(log n) bits is enough due to the Newman’s theorem, [26]; in secret key

agreement protocols we may need O(n) random bits, see [15]). This is crucial for our setting: we may assume

that the terms O(log C(r)) involved in inequalities for Kolmogorov complexity match in order of magnitude the

terms O(log(C(x) + C(y) + C(z))), where x, y, z are the input data.

2.3 Reminder of the spectral graph technique.

Let G = (L ∪ R,E) be a bi-regular bipartite graph where each vertex in L has degree DL, each vertex in R has

degree DR, and each edge e ∈ E connects a vertex from L with a vertex from R (observe that #E = #L ·DL =

#R ·DR). The adjacency matrix of such a graph is a zero-one matrix M =

(

0 A
A⊤ 0

)

where A is a matrix

of dimension (#L) × (#R) (Axy = 1 if and only if there is an edge between the x-th vertex in L and the y-th

vertex in R). Let λ1 ≥ λ2 ≥ . . . ≥ λN be the eigenvalues of M , where N = #L + #R is the total number of

vertices. Since M is symmetric, all λi are real numbers. It is well known that for a bipartite graph the spectrum is

symmetric, i.e., λi = −λN−i+1 for each i, and λ1 = −λN =
√
DLDR (see, e.g., [17]). The graphs with a large

spectral gap (the gap between the first and the second eigenvalues) have the property of good mixing, see [20].

Lemma 1 (Expander Mixing Lemma for bipartite graphs, see [17]). Let G = (L ∪ R,E) be a regular bipartite

graph where each vertex in L has degree DL and each vertex in R has degree DR. Then for each A ⊆ L and

B ⊆ R we have

∣

∣

∣
E(A,B)− DL·#A·#B

#R

∣

∣

∣
≤ λ2

√
#A ·#B, where λ2 is the second largest eigenvalue of the

adjacency matrix of G and E(A,B) is the number of edges between A and B.

We apply Lemma 1 for the case
DL·#A·#B

#R
≥ λ2

√
#A ·#B, as shown in the corollary below.

Corollary 1. Let G = (L∪R,E) be a graph from Lemma 1 with the second eigenvalue λ2. Then for A ⊆ L and

B ⊆ R such that #A ·#B ≥
(

λ2#R
DL

)2

we have

E(A,B) = O

(

DL ·#A ·#B

#R

)

. (10)

To apply the expander mixing lemma, we need a graph with a large spectral gap. In particular, we use the

following well know lemma.
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Lemma 2 (see [37]). Let G = (L ∪ R,E) be a graph where L consists of all lines in a projective plane over a

finite field Fq, R consists of all points in this plane, and E consists of all incident pairs (line, point). In this graph

λ1 = Θ(q) and λ2 = O(
√
q).

In the next section we discuss spectral properties of graphs with a more complicated structure.

3 Main technical tools and the scheme of the proof

In this section we sketch the proof of our main result (Theorem 3). In this sketch we ignore technical difficulties

that can be resolved with standard techniques or ad hoc tricks, and focus on the main ideas used in the proof.

3.1. Setting the parameters. Let us assume that δ = O(log n), i.e., all parties of the protocol “know” the

complexity profile of the triple of inputs (x, y, z) up to an additive logarithmic term4. This assumption does not

affects significantly the argument, but it helps to avoid minor technical details and makes the explanation more

transparent. To simplify the notation, in this section we discuss only triples of inputs with the profile

C(x)
lg

=C(y)
lg

=C(z)
lg

= kn, C(x, y)
lg

=C(x, z)
lg

=C(y, z)
lg

=(2k − 1)n,

C(x, y, z)
lg

=(3k − 3)n
(11)

which is equivalent to

C(x | y, z) lg

=C(y | x, z) lg

=C(z | x, y) lg

=(k − 2)n,

I(x : y | z) lg

= I(x : z | y) lg

= I(y : z | x) lg

=n, I(x : y : z)
lg

=0

see Fig. 1 (b). In this setting, Theorem 2 gives the optimal size of a secret key

n nn

x y

(a) Complexity profile for Examples 2 and 3:

C(x | y)
lg
=n, C(y | x)

lg
=n, I(x : y)

lg
=n.

(k − 2)n (k − 2)n

(k − 2)n

0

n

n n

x y

z

(b) Complexity profile for Proposition 1:

C(x | y, z)
lg
=(k − 2)n, I(x : y)

lg
=n,

I(x : yz)
lg
=2n, I(x : y : z)

lg
=0.

Figure 1: Diagrams with complexity profiles for Examples 2-3 and Proposition 1.

1

2

(

I(x : y | z) + I(x : z | y) + I(y : z | x)
)

+ I(x : y : z)
lg

=1.5n. (12)

Our aim is to bound communication complexity for inputs with this complexity profile:

Theorem 4 (special case of Theorem 3). In the setting of Theorem 2, communication complexity of a protocol

with simultaneous messages (the total number of bits sent by Alice, Bob, and Charlie) for some triples of inputs

(x, y, z) with complexity profile (11) cannot be smaller than (3k − 4.5)n, which matches Eq. (9).

4A logarithmic error term is, in some sense, the finest meaningful precision for Kolmogorov complexity. All our arguments can be repeated

mutatis mutandis for any coarser precision δ such that logn ≪ δ(n) ≪ n.
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3.2. Preliminary consideration: the need for hard inputs. The optimal size of the secret key in Theorem 1

and Theorem 2 depends only on the complexity profile of (x, y, z) and not on the combinatorial structure of

the input. The situation with communication complexity (the number of bits sent by the parties) is different: it

may vary significantly for different tuples of inputs with the same complexity profile. When we talk about the

communication complexity of a protocol, we mean the worst-case complexity, i.e., the maximal number of sent

bits among all admissible inputs. To prove a lower bound for the worst-case communication complexity, we

need to provide a triple of inputs for which the parties have to send long messages. We provide a class of inputs

that are guaranteed to be “hard” (for all valid protocol, for most triples of inputs from this class, communication

complexity is high).

3.3. First step of the argument: conditional on Charlie’s message, the mutual information between Alice’s

and Bob’s inputs must increase. We begin with an observation that might seem to have nothing to do with

communication complexity. We recall the lower bound for the size of the secret key (that applies to protocols with

any communication complexity). In [14] (see Theorem 1(ii)) it is shown that two parties, Alice and Bob, can agree

on secret key of complexity k only if the mutual information between Alice’s input x and Bob’s input y is greater

than k. The proof of this statement can be easily adapted to the following slightly more general setting:

Lemma 3. Assume that there is a publicly available information s (accessible to Alice, Bob, and the eavesdrop-

per), and besides this information Alice is given a private input x and Bob is given a private input y. Then, by

communication via a public channel accessible to the eavesdropper, Alice and Bob cannot agree on a secret key

of complexity greater than I(x : y | s).

We apply this proposition to a protocol with three parties. Let tC denote the concatenation of the messages sent

by Charlie. This is a piece of publicly available information (accessible to Alice, Bob, and the eavesdropper). Due

to Lemma 3, Alice and Bob cannot agree on a secret key with Kolmogorov complexity greater than I(x : y | tC)
(at this point we ignore whether Charlie can learn the same key or not). Hence, in the settings (11), a secret

key of size (12) can be produced only if I(x : y | tC)≥lg 1.5n. Observe that in the setting (11) the mutual

information between x and y is equal to n. This means that the mutual information between Alice’s and Bob’s

inputs conditional on Charlie’s message, i.e., I(x : y | tC), is bigger than the unconditional mutual information

between Alice’s and Bob’s inputs, i.e., I(x : y). A pretty standard information-theoretic argument implies that the

gap between I(x : y) and I(x : y | tC) is not greater than the mutual information between 〈x, y〉 and tC , and we

conclude that I(x, y : tC)≥lg n/2. In other words, Charlie must send a message tC that has≥ n/2 bits of mutual

information with the pair of inputs of Alice and Bob. A similar argument implies that Alice must send a message

tA such that I(y, z : tA)≥lg n/2 and Bob must send a message tB such that I(x, z : tB)≥lg n/2.

This part of the argument is based on Lemma 3, which re-employs an argument from [14] in a pretty direct

way. So at this stage we need no substantially new ideas.

3.4. Second step of the argument: it may be difficult for Alice to send a message increasing the mutual

information between Bob’s and Charlie’s inputs. We have shown above that in the setting (11) Alice, Bob, and

Charlie can agree on a secret key of optimal size only if each of them sends a messages that contains≥lg n/2 bits

of mutual information with the inputs of two other parties

We are going to show that this may require sending very long messages (much longer than n/2 bits). This part

of the argument is the main technical contribution of our paper. To explain this idea, we make a digression and

discuss a similar problem in simpler settings.

Digression: how to say something that the interlocutor already knows. Let us consider randomized communica-

tion protocols with two participants playing non-symmetric roles. We call the participants Speaker and Listener

and assume that Speaker holds an input string a and Listener holds another input string b. This is a one-way

protocol: Speaker sends a message to Listener in one round, without any feedback. The aim of Speaker is to send

to Listener a message that is not completely unpredictable from the point of view of Listener. More precisely,

Speaker’s message must have positive (and non-negligible) mutual information with Listener’s input b. We start

with a simple example when the task of Speaker is trivial.

Example 2. Let Speaker is given a string a = uv and Listener is given a string b = uw, where u, v, and w are

independent incompressible strings of length n, i.e., C(uvw)
lg

=C(u) + C(v) + C(w)
lg

=3n. Observe that

C(a)
lg

=2n, C(b)
lg

=2n, I(a : b)
lg

=n (13)

(see the diagram in Fig. 1 (a)). In this setting, if Speaker wants to communicate a message of length n with a high

mutual information with Listener’s y, she may send a part of u, which is know to both participants of the protocol.
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On the other hand, if Speaker wants to communicate a message with a low mutual information with Listener’s b,
this is also possible: Speaker may send a part of v, which is know to Speaker but not to the Listener.

Let us proceed with a less trivial example.

Example 3. Now we consider a pair (a, b) with the same complexity profile as in Example 2 but with a different

combinatorial structure. Let a be a line in the projective plane over the finite field F2n and b be a point in the

same projective plane incident to a, and the pair (a, b) have the maximal possible complexity (among all incident

pairs (line, point) in the plane). For these a and b we have the same complexity profile (13). Indeed, we need two

elements of the field (2n bits of information) to specify a line or a point, but we need only one element of the field

(n bits of information) to specify a point when a line is known. However, the combinatorial properties of this pair

are very different from the properties of the pair in Example 2.

If Speaker is given a and Listener is given b as above, then Speaker cannot send a reasonably short message

having non-negligible mutual information with Listener’s input b. In fact, if Speaker wants to send to Listener a

message m = m(a) having δ bits of mutual information with b, then the size of m must be at least n + δ. In

particular, if the message m is shorter than n, then it cannot contain any information on b. We prove this statement

in Section 4.

Example 3 is an instance of a much more general phenomenon. Let us have a bipartite graphG = (VL, VR, E),
where the set of vertices is VL ∪ VR and the set of edges is E ⊂ VL × VR. We assume that the graph is bi-regular,

i.e., all vertices in VL have the same degree DL and all vertices in VR have the same degree DR (we always

assume that DL ≥ DR). We say that G is a spectral expander5 if the second eigenvalue of its adjacency matrix

λ2 = O(
√
DL). Let (x, y) ∈ E be a “typical” edge of this graph (in the sense that its Kolmogorov complexity is

close to the maximum possible value), and let x and y be the inputs given to Alice and Bob respectively. Then we

have a property similar to Example 2: if Alice wants to send a message having δ bits of mutual information with

Bob’s data y, she must send a message of size at least logDR + δ. We prove this fact using the Expander Mixing

Lemma. (Example 3 corresponds to the graph G = (VL, VR, E) where VL consists of all lines in the plane, VR

consists of all points in the plane, and E is the set of all pairs of incident lines and points; it is known that this

graph is a spectral expander.) [End of Digression.]

Now we generalize the observations from the Digression above and explain the main idea of the proof of

Theorem 4. To explain the principal construction, we introduce the notion of a tri-expander hypergraph, which

extends the conventional definition of a bipartite expander.

Definition 1. Let G = (V1, V2, V3, H) be a hypergraph where

• the set of vertices consists of three disjoint parts V1, V2, V3 of the same cardinality

• the set of hyperedges is a set H ⊂ V1 × V2 × V3.

We consider three bipartite graphsG1, G2, G3 associated with hypergraphG: eachGi is a bipartite graph (Vi, Vj×
Vℓ, Ei) (here j = i + 1 mod 3 and ℓ = i + 2 mod 3), where (x, 〈y, z〉) ∈ Ei if and only if the triple {x, y, z}
corresponds to a hyperedge in H . The hypergraph is called tri-expander if the graphs G1, G2, G3 are bi-regular

spectral expanders.

Remark 5. The definition of a tri-expander and an application of the expander mixing lemma to the associated bi-

partite graphs (see below) seems to be similar but not literally equivalent to the definition of the second eigenvalue

for 3-uniform hypergraph and the hypergraph generalization of the expander mixing lemma in [18].

We show that the communication is costly for a triple of inputs (x, y, z) that is a hyperedge in a tri-expander.

To this end, we combine the idea from paragraph 3.3 with an argument similar to the observation sketched in

the Digression: each party must send a message having non-negligible mutual information with two other inputs

(an information-theoretic argument) but this is only possible when each of the messages is very long (due to the

spectral bound and the expander mixing lemma).

3.5. Construction of a tri-expander. To conclude the proof of the main result it remains to show that there exists

a tri-expander with suitable parameters:

Proposition 1. For all integer numbers k ≥ 0 and n ≥ 1 there exists a tri-expander G = (V1, V2, V3, H) such

that

5We use the term expander without assuming that the degree of a graph is constant.
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• #V1 = #V2 = #V3 = Θ(2kn),

• for all i 6= j, for every x ∈ Vi there exists Θ(2(k−1)n) vertices y ∈ Vj such that x and y are adjacent in the

hypergraph,

• #H = Θ(2kn · 2(k−1)n · 2(k−2)n).

Proof. We construct such a tri-expander explicitly. We fix the finite field F2n with q = 2n elements, the (k + 2)-
dimensional space L over this field, and the subspace Lso ⊂ L that consists of self-orthogonal vectors. Observe

that #Lso = #L/q = qk+1 (a subspace of co-dimension 1 in L). Let V denote the space of all directions in Lso
except for the direction (1, . . . , 1) (which is self-orthogonal for even k). Observe that #V = Θ(qk).

We let V1 = V2 = V3 = V and define H as the set of all triple (x, y, z) ∈ V 3 such that x, y, z are distinct and

pairwise orthogonal directions in Lso.

For every vector x ∈ Lso, the condition of being orthogonal to x determines inLso a subspace of co-dimension

1; this subspace consists of qk vectors (including x itself as it is self-orthogonal) and, respectively, (qk−1)/(q−1)
directions (again, including the direction collinear with x). If we have two non-collinear vectors x, y ∈ Lso, then

the condition of being orthogonal to x and y determines in Lso a subspace of co-dimension 2; this subspace

consists of qk−1 vectors (including x and y), which corresponds to (qk−1 − 1)/(q − 1) = Θ(qk−2) directions

(once again, including the directions collinear with x and with y).

Thus, we have Θ(qk) individual vertices, Θ(qk · qk−1) pairs of adjacent vertices, and Θ(qk · qk−1 · qk−2)
adjacent triples (hyperedges). It remains to compute the eigenvalues of the associated bipartite graphs.

Lemma 4. The hypergraph G = (V1, V2, V3, H) defined above is a tri-expander.

(This fact might be known, but for lack of a reference we give a proof in Appendix B.) In the proof we use rich

symmetries of this hypergraph. To guarantee these symmetries, we have imposed the restrictions that may seem

artificial: the characteristic of the field is 2, we take into consideration only self-orthogonal vectors, the direction

(1, . . . , 1) is excluded from V .

Remark 6. A standard counting shows that for most hyperedges (x, y, z) in the graph from Proposition 1 we have

C(x)
lg

= logΘ(qk)
lg

= kn, C(x, y)
lg

= logΘ(qk · qk−1)
lg

=(2k − 1)n,

C(x, y, z)
lg

= logΘ(qk · qk−1 · qk−2)
lg

=(3k − 2)n, and we get the profile (11).

4 When it is hard to say anything that the interlocutor already knows

n′

b

0

β
α 0

a b

m

n′

a − α

nab − β

Figure 2: The profile in Theorem 5.

In this section we explain our main technical tool. We

consider randomized communication protocols with

two participants, Speaker and Listener. We assume

that Speaker holds an input string a and Listener holds

another input string b; we assume also that the com-

plexity profile of the pairs (a, b) is known to all par-

ties. The aim of Speaker in this protocol is to send to

Listener a message that has non-negligible mutual in-

formation with Listener’s input b, as we discussed in

Section 3.

Theorem 5. Let G = (VL, VR, E) be a bipartite spec-

tral expander such that N = #VL, M = #VR, and

(DL, DR) are the degrees of the edges in VL and VR

respectively. Let (a, b) ∈ E be a “typical” edge in the graph, i.e., C(a, b)
lg

= log#E, and C(m | a) lg

=0. Then

I(m : b)≤lg max{0,C(m)− C(a | b)}. In particular, if the length of m is less than C(a | b), then I(m : b)
lg

=0.

Remark 7. The statement of Theorem 5 remain valid if we relativize all terms of Kolmogorov complexity in this

statement conditional on a string r such that I(r : (a, b))
lg

=0. In what follows we present the proof without r. But

every step of this argument trivially relativizes conditional on r assuming that C(a, b | r) lg

=C(a, b)
lg

= log#E,

we only need to add routinely the random bit string r to the condition of all terms with Kolmogorov complexity

appearing in the proof.
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Proof of Theorem 5. We denote na := logN , nb = logM , n′
a = logDR, n′

b = logDL, and nab := na − n′
a.

Using this notation, we have

C(a)
lg

=na, C(b)
lg

=nb,C(a | b) lg

=n′
a, C(b)

lg

=nb, C(b | a) lg

=n′
b, I(a : b)

lg

=nab.

Since Speaker computes the message m given the input data a, we have C(m | a) lg

=0. We denote α := I(m : a |
b) and β := I(m : a : b). It is easy to verify that C(m) = α+ β. The complexity profile for the triple (a, b,m) is

shown in Fig. 2.

Case 1. Assume that C(m) ≤ n′
a − 2 · const · logn for some const > 0 (a constant to be specified later). In this

case, to prove the theorem, we need to show that I(m : y)
lg

=0. In our notation this is equivalent to β
lg

=0. More

technically, we are going to show that

β ≤ const · logn. (14)

For the sake of contradiction we assume that (14) is false. It is enough to consider the case when β is somewhat

large but not too large, i.e., just slightly above the threshold (14). Indeed, any communication protocol violating

(14) can be converted in a different protocols with the same or a smaller value of α and with β = const · logn+
O(1). To this end, we observe that by discarding a few last bits of Speaker’s message m we make the protocol

only simpler. So, we may replace the initial message m with the shortest prefix of the initial message that still

violates (14). Thus, in what follows, we assume w.l.o.g. that

const · logn < β ≤ const · logn+O(1).

Let us define A := {a′ : C(a′ | m) ≤ C(a | m)} and B := {b′ : C(b′ | m) ≤ C(b | m)}. We use the following

standard claim:

Claim. #A = 2C(a|m)±O(logn) = 2na−α−β±O(logn) and #B = 2C(b|m)±O(logn) = 2nb−β±O(logn) (see, e.g.

[14, Claim 4.7]).

From the claim we obtain #A ·#B = 2na−α−β+nb−β±O(logn) = 2na+nb−C(m)−β±O(logn). Since C(m) ≤
n′
a − 2 · const logn and β < const logn+O(1), we conclude

na + nb − C(m)− βn±O(log n) ≥ na + nb − (n′
a − 2 · const · logn)− const · logn−O(log n)

≥ nab + nb + const · logn−O(log n) ≥ nab + nb.

(To get the last inequality, we should choose the value of const in (14) so that const · logn majorizes the term

O(log n) in the inequality above.) Thus, #A ·#B ≥ 2nab+nb = M2

DL
.

With the Expander Mixing Lemma (Corollary 1) we obtain

E(A,B) = O

(

DL ·#A ·#B

M

)

= O

(

#A ·#B

M/DL

)

.

Now observe that given m and the numbers C(a | m) and C(b | m) we can enumerate the sets A and B and,

therefore, we can describe (a, b) by the index of this edge in the list of all edges between A and B. The size of

such an index is logE(A,B). Hence,

C(a, b | m)≤lg logE(A,B) ≤lg (na + nb − C(m)− β)− (nb − n′
b)

= na + n′
b − C(m)− β = C(a, b)− C(m)− β,

and C(a, b)≤lg C(m)+C(a, b | m)≤lg C(a, b)− β. The terms O(log n) hidden in the notation≤lg and
lg

= in this

inequality do not depend on β. Thus, we get a contradiction if the constant in (14) is chosen large enough.

Case 2. Now we assume that C(m) = n′
a + δ for an arbitrary δ. Denote by m′ the prefix of m of length

(n′
a−const logn) and by m′′ the suffix of m of length (δ+const logn). We know from Case 1 that I(m′ : b)

lg

=0.

It remains to apply the chain rule,

I(m : b)
lg

=I(m′ : b) + I(m′′ : b | m′)
lg

= I(m′′ : b | m′)≤lg |m′′| lg= δ.

and the theorem is proven.

From this theorem we obtain immediately the following corollary.
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Corollary 2. Let G = (VL, VR, E) be a bipartite spectral expander such that N = #VL, M = #VR, and

(DL, DR) are the degrees of the edges in VL and VR respectively.

(a) We assume that Speaker and Listener are given, respectively, a and b that are ends of a typical edge

(a, b) ∈ E in the graph. We consider a one-round communication protocol where Speaker sends to Listener a

message m = m(a). Then I(m : b)≤lg max{0,C(m) − C(a | b)}. In particular, if the length of m is less than

C(a | b), then I(m : b)
lg

=0.

(b) A similar statement is true if Speaker and Listener are given instead of a and b some inputs a′ and b′ such

that C(a′ | a) lg

=0 and C(b′ | b) lg

=0 (e.g., if Speaker is given a function of a vertex a ∈ VL and Listener is given a

function of a vertex b ∈ VR).

5 Protocols with simultaneous messages : a warm-up example

In this section we use Theorem 5 from the previous section to prove a lower bound for communication complexity

of the following problem. Alice and Bob hold, respectively, lines a and b in a plane (intersecting at one point

c). They send to Charlie (in parallel, without interacting with each other) some messages so that Charlie can

reconstruct the intersection point. We argue that the trivial protocol (where Alice and Bob send the full information

on their lines) is essentially optimal.

Theorem 6. Let Alice and Bob be given lines in the projective plane over the finite field F2n (we denote them a
and b respectively), and it is known that the lines intersect at point c. Another participant of the protocol Charlie

has no input information. Alice and Bob (without a communication with each other) send to Charlie messages mA

and mB so that Charlie can find c, see Fig. 3. For every communication protocol for this problem, for some a, b
we have |mA|+ |mB | ≥lg 4n, which means essentially that in the worst case Alice and Bob must send to Charlie

all their data (for a typical pair of lines we have C(a) + C(b)
lg

=4n).

Alice
a

Bob

b

Charlie c =?

mA = mA(a, public random bits)

mB = mB(b, public random bits)

Figure 3: Alice holding a and Bob holding b send simultaneous messages to Charlie, who computes c.

In the setting of Theorem 6, the inputs of Alice and Bob contain n bits of the mutual information with c, so

an easy lower bound for the communication complexity is n + n = 2n, see Fig. 4. However, due to the spectral

properties of graphs implicitly present in this construction, the true communication complexity of this problem is

twice bigger.

Sketch of the proof. In this sketch we ignore the public randomness and explain the argument for deterministic

protocols. A generalization for protocols with public randomness is pretty straightforward, see the full proof

below.

Let (a, b) be a pair of lines in a projective plane over F2n intersecting at a point c, such that C(a, b)
lg

=C(a) +

C(b)
lg

=4n (which is the case for most pairs of lines in the plane). Observe that I(a : c)
lg

=n and I(b : c)
lg

=n. It
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n n

0

0

0

n n

a b

c

Figure 4: Complexity profile for two lines (a and b) and their intersection point c in the plane over F2n .

follows that for the messages mA = mA(a) and mB = mB(b) we have I(mA : c)≤lg n and I(mB : c)≤lg n.

Using standard information theoretic inequalities, one can show that Alice’s message mA and Bob’s message mB

determine the point c uniquely only if I(mA : c)
lg

=n and I(mB : c)
lg

=n. Thus, Alice and Bob must send messages

with large enough information on c.
The graph of possible pairs (a, c) and the graph of possible pairs (b, c) (the configurations (line, point)) is the

same as in Example 3. Hence, we can apply Theorem 5 (Alice and Bob play the roles of Speaker, and Charlie plays

the role of Listener) and conclude that I(mA : c)≤lg max{0,C(mA)−n} and I(mB : c)≤lg max{0,C(mB)−n}.
In particular, I(mA : c)

lg

=n and I(mB : c)
lg

=n only if Kolmogorov complexities of mA and mB are both at least

2n. Thus, the total communication complexity is ≥lg 2n+ 2n = 4n.

In what follows we present the full proof of Theorem 6. The reader can skip it and proceed to the proof of the

main result in the next section.

Full proof of Proof of Theorem 6. Let (a, b) be a pair of lines in a projective plane over F2n such that

C(a, b)
lg

=C(a) + C(b)
lg

=4n

(which is the case for most pairs of lines in the plane), and let c be the point of intersection of these lines, see

Fig. 4.

Denote by r the string of random bits from the public source of randomness (accessible to Alice, Bob, Charlie,

and to the eavesdropper). We assume r and the inputs (a, b) are independent, i.e., I(r : a, b)
lg

=0 (this is the case

with an overwhelming probability). For such a string r all terms with Kolmogorov complexities involving a, b, c
do not change if we add r in the condition:

C(a, b, c | r) lg

=C(a, b, c)
lg

=C(a, b), C(a, c | r) lg

=C(a, c), C(b, c | r) = C(b, c),
C(a | r) = C(a), C(b | r) = C(b), C(c | r) = C(c).

This implies

C(a | c, r) lg

=C(a, c | r) − C(c | r) lg

=C(a, c)− C(c)
lg

=C(a | c),

and, similarly, C(b | c, r) lg

=C(b | c) and C(a, b | c, r) lg

=C(a, b | c).
Observe that the graph of possible pairs (a, c) and the graph of possible pairs (b, c) (the configurations

(line, point) on the projective plane) is the same as in Example 3. Hence, we can apply Theorem 5 (Alice and

Bob play the roles of Speaker, and Charlie plays the role of Listener; all terms are relativized conditional on r, see

Remark 7) and conclude that

I(mA : c | r)≤lg max{0,C(mA | r) − n} and I(mB : c | r)≤lg max{0,C(mB | r) − n}. (15)

In particular, I(mA : c | r)≥lg n and I(mB : c | r)≥lg n only if Kolmogorov complexities of mA and mB are

both at least 2n.

It is easy to verify that I(a : c | r) lg

=I(a : c)
lg

=n and I(b : c | r) lg

=I(b : c)
lg

=n. Since mA and mB are

computed from (a, r) and (b, r) respectively, we conclude that

I(mA : c | r)≤lg n and I(mB : c | r)≤lg n. (16)
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We need to show that these two inequalities turn into equalities. Indeed, by construction,

I(a : b | c, r) lg

= C(a | c, r) + C(b | c, r) − C(a, b | c, r)
lg

= C(a | c) + C(b | c)− C(a, b | c)
≤lg n+ n− C(a, b | c) [we need n+O(1) bits to specify a line given a point]

≤lg 2n− (C(a, b)− C(c))

≤lg 2n− 4n+ 2n
lg

=0. [we need 2n+O(1) bits to specify a point in the plane]

As C(mA | a, r) lg

=0 and C(mB | b, r) lg

=0, we have (see Lemma 7(iii))

I(mA : mB | c, r)≤lg I(a : b | c, r) lg

=0.

Therefore, I(mA : mB : c | r) lg

= I(mA : mB | r) − I(mA : mB | c, r)≥lg 0, and

I(mAmB : c | r) lg

=I(mA : c | r) + I(mB : c | r)− I(mA : mB : c | r)≤lg I(mA : c | r) + I(mB : c | r).

On the other hand, since Charlie can compute c given the messages (mA,mB) and the string of random bits r, we

have

I(mAmB : c | r) lg

=C(c | r) − C(c | mAmB, r)
lg

=2n− 0≥lg 2n,

and, therefore,

I(mA : c | r) + I(mB : c | r) lg

=2n.

Keeping in mind (16), we conclude that I(mA : c | r) lg

=n and I(mB : c | r) lg

=n. Due to (15), this is possible

only of C(mA)≥lg C(mA | r)≥lg 2n and C(mB)≥lg C(mB | r)≥lg 2n. This means that the total length of the

sent messages is at least 2n+ 2n = 4n bits.

6 Secret key agreement: a lower bound for the most crucial profile

In this section we prove a lower bound for communication complexity of secret key agreement with three parties.

Let us recall the setting. We assume that Alice, Bob, and Charlie are given inputs x, y, z respectively with the

complexity profile (11). as shown in Fig. 1(b). This is a pretty “generic” complexity profile; by choosing k, we

control the gap between the complexities of x, y, z and the mutual informations shared by the inputs.

We consider communication protocols with public randomness. Denote by r the string of random bits acces-

sible for all the parties (including the eavesdropper). We assume that Alice, Bob, and Charlie broadcast simulta-

neously messages mA = mA(x, r), mB = mA(y, r), mC = mA(z, r) over a public communication channel.

Then each of them computes the final result

keyAlice(x, r,mB,mC), keyBob(y, r,mA,mC), keyCharlie(z, r,mA,mB).

We say that a protocol is successful if keyAlice = keyBob = keyCharlie = w (i.e., the parties agree on a common

key w) and C(w | 〈mA,mB,mC , r〉) lg

= |w| (i.e., the eavesdropper gets no information on this key).

Theorem 2 claims that for any ǫ > 0 there exists a protocol that is successful with probability (1− ǫ), and the

size of the key is equal to (6), which gives for the profile (11) the value 1.5n. Moreover, this value of the key is

optimal (up to an additive term O(log n)).
It was shown in [14] that a secret key of this size can be obtained in an omniscience protocol. In this protocol,

the parties broadcast messages so that each of them learns completely the entire triple of inputs (x, y, z). The

total length of the broadcasted messages bits is less than C(x, y, z), so an eavesdropper can learn only a partial

information on the inputs. More specifically, communication complexity of the omniscience protocol is (8), which

is (3k− 4.5)n for a triple satisfying (11). The gap between C(x, y, z)
lg

=(3k− 3)n and the amount of the divulged

information is used to produce the secret key of size 1.5n.

The omniscience protocol used in [14] provides an upper bound on the communication complexity of secret

key agreement. In what follows we prove the matching lower bound (for protocols with simultaneous messages)

and show that (3k− 4.5)n is the optimal communication complexity for a protocol of secret key agreement proto-

cols with simultaneous messages for inputs satisfying (11). The proof follows the scheme sketched in Section 3.

The first ingredient of this proof is Lemma 3 (see p. 7).
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Sketch of proof of Lemma 3. This lemma is a relativized version of [14, Theorem 4.2], where s is used as an

oracle. One can follow the argument from [14] step by step, substituting s as a supplementary condition in each

term of Kolmogorov complexity appearing in the proof.

Corollary 3. Consider a communication protocol with three parties where Alice is given x, Bob is given y,

and Charlie is given z. Denote by mC the concatenation of all messages broadcasted by Charlie during the

communication. If the parties agree on a secret key w on which the eavesdropper gets no information (even given

access to the messages sent by all parties), then C(w)≤lg I(x : y | r,mC).

Proof. We apply Lemma 3 substituting mC instead of the public information s.

Now we are ready to prove our main result.

Theorem 4 rephrased. Let Alice, Bob, and Charlie be given x, y, and z respectively such that (x, y, z) is

a hyperedge of the hypergraph G = (V1, V2, V3, H) from Proposition 1 (the pairwise disjoint self-orthogonal

directions in a (k+2)-dimensional vector space over F2n). We consider non-interactive communication protocols

where Alice, Bob, and Charlie send messages mA, mB , and mC respectively and produce a secret key w with the

optimal complexityC(w)
lg

=1.5n. Then C(mA)≥lg(k−1.5)n, C(mB)≥lg(k−1.5)n, C(mC)≥lg(k−1.5)n, and

the communication complexity of the protocol is at least (3k−4.5)n−O(logn), which matches the communication

complexity of the omniscience protocol.

Proof. To simplify the notation, we ignore the bits r provided by the public source of randomness and explain

the proof for deterministic protocols. Our argument trivially relativizes given any instance of random bits r
independent of (x, y) (which is true with a probability close to 1), cf. the full proof of Theorem 6.

From Corollary 3 we know that the size of the key (in our case 1.5n) cannot be greater than I(x : y | mC). By

the construction of the tri-expander, I(x : y)
lg

=n. Therefore, the difference between I(x : y) and I(x : y | mC) is

at least 0.5n.

Lemma 5. For all binary strings x, y, z it holds I(x : y | s)− I(x : y)≤lg I(s : xy).

(See the proof of the lemma in Appendix C.) We combine Corollary 3 with Lemma 5 and obtain I(mC :
xy)≥lg 0.5n.

Now we apply Theorem 5 to the bipartite graph G3 associated with the tri-expander G (see p. 9); here Charlie

plays the role of Speaker, and Alice and Bob together play the role of Listener. Since I(mC : xy)≥lg 0.5n, we

obtain C(mC)≥lg C(z | x, y) + 0.5n
lg

=(k − 1.5)kn. A similar argument applies to C(mA) and C(mB), and we

are done.

7 Secret key agreement: a lower bound for all symmetric profiles

Proof of Theorem 3. If the complexity profile of (x, y, z) is symmetric then it can be specified by a triple of

parameters α, β, γ,

{

C(x | y, z) lg

=C(y | x, z) lg

=C(z | x, y) lg

=α,

I(x : y | z) lg

=I(x : z | y) lg

=I(y : z | x) lg

= β, I(x : y : z)
lg

= γ.
(17)

In Theorem 4 we proved that communication complexity (8) of the omniscience protocol is optimal in case α =
(k−2)n, β = n, and γ = 0. We reduce the problem with arbitrary α, β, γ to the special case settled in Theorem 4.

We split this reduction into three steps, as shown in the following lemma.

Lemma 6. If communication complexity (8) is optimal (in the worst case) for some triples of inputs (x, y, z) with

complexity profile (3) then

• (a) for every positive δ ≤ n, communication of the omniscience protocol is also optimal (also in the worst

case) for some triples of inputs (x′, y′, z′) with complexity profile

{

C(x′ | y′, z′) lg

=C(y′ | x′, z′)
lg

=C(z′ | x′, y′)
lg

=α− δ,

I(x′ : y′ | z′) lg

=I(x′ : z′ | y′) lg

=I(y′ : z′ | x′)
lg

= β, I(′x : y′ : z)
lg

= γ,
(18)
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• (b) for every positive δ, communication of the omniscience protocol is also optimal for some triples of inputs

(x′, y′, z′) with complexity profile
{

C(x′ | y′, z′) lg

=C(y′ | x′, z′)
lg

=C(z′ | x′, y′)
lg

=α,

I(x′ : y′ | z′) lg

=I(x′ : z′ | y′) lg

=I(y′ : z′ | x′)
lg

=β, I(x′ : y′ : z)
lg

= γ + δ.
(19)

Let us consider the special case α
lg

=(k − 2)n, β
lg

=n, γ
lg

=0 (as in Theorem 4). Then

• (c) for every positive δ ≤ β/2, communication of the omniscience protocol is also optimal for some triples

of inputs (x′, y′, z′) with complexity profile
{

C(x′ | y′, z′) lg

=C(y′ | x′, z′)
lg

=C(z′ | x′, y′)
lg

=α,

I(x′ : y′ | z′) lg

=I(x′ : z′ | y′) lg

= I(y′ : z′ | x′)
lg

=β + δ, I(′x : y′ : z)
lg

=−3δ;
(20)

In Lemma 6 we show that the existence of a “too efficient” protocol for (19), (20), (18) would imply a “too

efficient protocol” for (11), which is impossible due to Theorem 4. The proof is based on repeated application of

Muchnik’s theorem on conditional descriptions ([30]), which basically claims that for all strings a, b1, . . . , bℓ and

for every number m ≤ C(a) there exists a “digital fingerprint” of a of length m that looks maximally random

conditional on each bj . Technically, this means that for some a′ we have

C(a′)
lg

=m, C(a′ | a) lg

=0, and C(a′ | bj) = min{C(a′ | bj),m} for j = 1, . . . , ℓ.

The proof of this lemma uses mostly techniques of Kolmogorov complexity that are not specific for communica-

tion problems, see Appendix E.

It is not hard to verify that starting with a triple (x, y, z) from Theorem 4 and then applying the reductions

from Lemma 6, we can obtain any realizable profiles (3). Indeed, we begin with a triple of pairwise orthogonal

directions (x, y, z) with α = (k − 2)n, β = n, γ = 0 for a suitable n and k, then apply Lemma 6 (b) or

Lemma 6 (c) to get a triple (x′, y′, z′) with a suitable I(x′ : y′ : z′) (case (b) serves to make the triple mutual

information positive, and case (c) is needed if we want to make it negative), and further apply Lemma 6 (a) to trim

the value of α.

Thus, Theorem 4 implies optimality of (8) not only for triples with a pretty specific complexity profile but for

triples of inputs (x, y, z) with arbitrary symmetric complexity profile (3).

8 Upper bound for interactive protocols

In this section we show that the communication complexity (8) is not optimal for multi-round protocols where the

parties can actually interact with each other.

Proposition 2. In the setting of Theorem 4 there is a multi-round communication protocol (not a simultaneous

messages protocol) with communication complexity (2k − 2.5)n+ O(log n), where the parties agree on a secret

key of the optimal size 1.5n−O(log n).

Sketch of proof of Proposition 2. We adapt the omniscience protocol from [14]. In what follows we assume that

random hash-functions are chosen with the public source of randomness (e.g., one may assume that random

hashing is the multiplication by a randomly chosen matrix).

In the first round, Alice and Bob send messages mA = mA(x, r) and mB = mB(y, r) (random hash-values

of x and y), each of length (k − 1.5)n + O(logn) such that Charlie given (mA,mB, z) can reconstruct the pair

(x, y). Then Charlie sends a message mC that is another random hash-value of (x, y) of length 0.5n+O(log n).
With a high probability (for a randomly chosen hash-function), the values mB and mC are enough for Alice to

reconstruct y, and the values mA and mC are enough for Bob to reconstruct x. Thus, at the end of communication,

with high probability each party knows (x, y). At the same time, the adversary learns from the communication at

most |mA|+ |mB|+ |mC | = (2k − 2.5)n+O(log n) bits of information.

Now each party applies to (x, y) another (independently chosen) random hash function and obtains a hash-

value w = hash(x, y) of length

C(x, y)− |mA| − |mB| − |mC | −O(log n) = 1.5n−O(log n).

With a high probability the obtained w is incompressible conditional on the data accessible to the eavesdropper

(the messages of the parties and the public random bits).
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Remark 8. In the omniscience protocol, we may define random hashing as random linear mappings, i.e., each

hash-values can be computed as the product over F2 of a bit vector by a randomly chosen binary matrix of the ap-

propriate dimension. These matrices can be made publicly known: we can obtain these random matrices from the

public source of random bits, and this does not reveal any information about the secret key to the adversary. Using

more sophisticated constructions of hash-functions, we could reduce the number of used random bits (although

this improvement is not necessary to prove Theorem 2 in the model with a public source of randomness).

9 Conclusion and open problems

We proved that the standard omniscience protocol provides the optimal worst-case communication complexity of

the problem of secret key agreement (with three parties) in the class of protocols with simultaneous messages.

A general open problem is to study the limits of our approach. In particular, for the class of multi-round com-

munication protocols, the value (8) is no longer the optimal communication complexity of secret key agreement

(Theorem 2). Our technique implies some lower bounds for communication complexity of interactive protocols,

but it does not match the known upper bounds. Thus, a natural open problem is to settle the communication

complexity of multi-party secret key agreement for multi-round protocols. It would be also interesting to extend

our results to the communication model with private sources of randomness. Another open problem is to get rid

of Lemma 6 and find a more direct proof of Theorem 3 with a more flexible construction of a tri-expander.
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A Preliminaries: Kolmogorov complexity in some more detail

Let M be a Turing Machine with two input tapes and one output tape. We say that p is a program that prints

a string x given y (a description of x conditional on y) if M prints x on the pair of inputs (p, y). Kolmogorov

complexity of x conditional on y relative to M is defined as

CM (x | y) = min{|p| : M(p, y) = x}.

The invariance theorem (see [29]) claims that there exists an optimal Turing machine U such that for every other

Turing machine V there is a number cV such that for all x and y

CU (x | y) ≤ CV (x | y) + cV .

Thus, the algorithmic complexity of x relative to U is minimal up to an additive constant. In the rest of the paper

we fix an optimal machine U , omit the subscript U and define Kolmogorov complexity of x conditional on y as

C(x | y) := CU (x | y).

Kolmogorov complexity C(x) of a string x (without a condition) is defined as the Kolmogorov complexity of x
conditional on the empty string. We fix an arbitrary computable bijection between binary strings and all finite

tuples of binary strings and define Kolmogorov complexity of a tuple 〈x1, . . . , xk〉 as Kolmogorov complexity of

the code of this tuple. For brevity we denote this complexity by C(x1, . . . , xk). Similarly, we can fix a bijection

between binary strings and elements of finite fields, polynomials over finite fields, directions in vector spaces over

finite fields, etc., and talk about Kolmogorov complexities of these objects (implying Kolmogorov complexity of

their codes). We use the conventional notation

I(x : y) := C(x) + C(y)− C(x, y) and I(x : y | z) := C(x | z) + C(y | z)− C(x, y | z)

(mutual information and conditional mutual information for a pair) and

I(x : y : z) := I(x : y)− I(x : y | z)

(the triple mutual information). The Kolmogorov–Levin theorem, [28], claims that for all x, y

C(x, y)
lg

=C(x | y) + C(y).
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C(x|y, z) C(y|x, z)

C(z|x, y)

I(x : y : z)

I(x : y|z)

I(x : z|y) I(y : z|x)

x y

z

Figure 5: Complexity profile for a triple x, y, z. On this diagram it is easy to observe several standard equations:

• C(x) lg

=C(x | y, z) + I(x : y | z) + I(x : z | y) + I(x : y : z)

• C(x, y) lg

=C(x | y, z) + C(y | x, z) + I(x : y | z) + I(x : z | y) + I(y : z | x) + I(x : y : z)

• C(x | y) lg

=C(x | y, z) + I(x : z | y)
• I(x : y)

lg

=I(x : y | z) + I(x : y : z)

• I(x : yz)
lg

= I(x : y | z) + I(x : z | y) + I(x : y : z)
and so on; all these equations are valid up to O(log(|x| + |y|+ |z|)).

Using the Kolmogorov–Levin theorem it is not hard to show that

I(x : y : z)
lg

=C(x) + C(y) + C(z)− C(x, y)− C(x, z)− C(y, z) + C(x, y, z)

and, therefore,

I(x : y : z)
lg

= I(x : z)− I(x : z | y) lg

=I(y : z)− I(y : z | x).
These relations can be observed on a Venn-like diagram, see Fig. 5.

A string x is said to be (almost) incompressible given y if C(x | y)≥lg |x|, and x and y are said to be

independent, if I(x : y)
lg

=0. For every n, the majority of binary strings of length n are almost incompressible; the

vast majority of pairs of strings x and y of length n are independent.

For a pair of strings (x, y) we call by its complexity profile the triple of numbers (C(x),C(y),C(x, y)). Due

to the Kolmogorov–Levin theorem, the complexity profile of a pair is determined (up to additive error terms

O(log(|x|+ |y|))) by the triple of numbers (C(x | y),C(y | x), I(x : y)). Indeed,

C(x)
lg

=C(x | y) + I(x : y), C(y)
lg

=C(y | x) + I(x : y), C(x, y)
lg

=C(x | y) + C(y | x) + I(x : y).

Similarly, for a triple of strings (x, y, z) we define its complexity profile as the vector with 7 components

(C(x),C(y),C(z),C(x, y),C(x, z),C(y, z),C(x, y, z)).

This profile can be equivalently specified (again, up to additive logarithmic error terms) by the numbers

C(x | y, z),C(y | x, z),C(z | x, y), I(x : y | z), I(x : z | y), I(y : z | x), I(x : y : z),

see Fig. 5.

In general, for an n-tuple of string (x1, . . . , xn), its complexity profile is the vector that consists of 2n − 1
components C(xi1 , . . . , xis) for all non-empty tuples 1 ≤ i1 < . . . < is ≤ n. In Fig. 1 we show diagrams

illustrating the complexity profiles for Examples 2-3 and Proposition 1

For a survey of the basic properties of Kolmogorov complexity we refer the reader to the introductory chapters

in [13] and [16].
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B Bound of the spectral gap for the tri-expander

In the proof of Lemma 4 we use the fact that the bipartite graphs associated with the hypergraph from Proposi-

tion 1 are highly symmetric, and these symmetries simplify the computation of the eigenvalues. To guarantee this

property, we have imposed restrictions that may seem artificial: the characteristic of the field is 2, we take into

consideration only self-orthogonal vectors, and the direction (1, . . . , 1) is not included in the set V .

Proof of Lemma 4. By construction, the graphs G1, G2, G3 are isomorphic. So we only need to compute the

eigenvalues of G1. Let us begin with the case when k is an odd number, and the vector (1, 1, . . . , 1) is not

self-orthogonal.

In the bipartite graph G1 = (L,R,E) the left part of vertices L coincides with the space of all self-orthogonal

directions V , the right part R consists of pairs of self-orthogonal directions (y, z) that are mutually orthogonal and

y 6= z, and the set of hyperedges H consists of the triples (x, y, z) of self-orthogonal directions that are pairwise

distinct and mutually orthogonal.

To compute#L, we count the number of directions in Lso. To this end, we divide the total number of non-zero

vectors in the (k + 1)-dimensional space Lso by the number of vectors in each equivalence class (the number of

non-zero elements in the field), which gives #L = Θ(2kn).
For each y 6= (1, . . . , 1), the space of vectors z ∈ Lso that are orthogonal to y is a subspace of co-dimension

1 in Lso. To count the number of directions in this subspace, we need again divide the total number of non-zero

vectors by the number of non-zero elements in the field. We obtain that #R = Θ(2kn) ·Θ(2(k−1)n).
To find DR, we count the number of directions in Lso that are orthogonal to two directions y, z (that cannot

coincide with (1, . . . , 1)), i.e., the directions in a subspace of co-dimension 2, which gives DR = Θ(2(k−2)n).
Similarly, we obtain DL = Θ(2(k−1)n) ·Θ(2(k−2)n).

Observe that #H = #L ·DL = #R ·DR = Θ(2kn) ·Θ(2(k−1)n) ·Θ(2(k−2)n).

Now we can compute the eigenvalues. We denote M =

(

0 A
A⊤ 0

)

the adjacency matrix of the graph. We

estimate the eigenvalues of A · A⊤, which is the matrix of paths of length 2 in the graph, starting and finishing in

L. Starting at some x ∈ L, we can go to some (y, z) ∈ R and then either come back to the same x, or to end up

in a different x′ ∈ L. For a fixed x, the number of paths

x→ (y, z)→ x

is equal to DL (any (y, z) matching x serves as the middle point of the path). For x 6= x′, the number of paths

x→ (y, z)→ x′

is equal to the number of mutually orthogonal pairs (y, z) that are both orthogonal to x and x′, and all four

directions x, x′, y, z are distinct. This is similar to the computation of DL but the co-dimensions are incremented:

we have Θ(2(k−2)n) ·Θ(2(k−3)n) such pairs.

We denote by I the identity matrix and by J the matrix of all ones. Those matrices are both symmetric. We

get

A ·A⊤ = DL · I +Θ(2(k−2)n · 2(k−3)n) · (J − I)
= Θ(2(k−1)n · 2(k−2)n) · I +Θ(2(k−2)n · 2(k−3)n) · J.

Observe that I and J have a common basis of eigenvectors. Indeed, for the matrix I all vectors in the space are

eigenvectors (and the only eigenvalue is 1 with multiplicity #L). The eigenvalues of J are the number #L (of

multiplicity 1) and 0 (of multiplicity #L− 1). Therefore, the eigenvectors of A · A⊤ are

λ1 = Θ(2(k−2)n · 2(k−3)n) ·#L = Θ(2kn · 2(k−2)n · 2(k−3)n) = Θ(2(3k−5)n)

λ2 = . . . = λ#L = Θ(2(k−1)n · 2(k−2)n) = Θ(2(2k−3)n) = Θ(DL).

(Observe that λ1 can be found directly as DL ·DR.) The eigenvalues of M are the square roots of those of A ·A⊤.

If k is even, the computation is similar, but on each step we should subtract from the set of self-orthogonal

directions the vectors collinear with (1, . . . , 1).
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C Useful information inequalities

Proof of Lemma 5. We need to prove that

I(x : y | s)≤lg I(x : y) + I(s : xy). (21)

Observe that

I(x : y)
lg

=I(x : y | s) + I(x : y : s)

and

I(s : xy)
lg

= I(s : x) + I(s : y)− I(x : y : s).

Therefore, (21) rewrites to

I(x : y | s)≤lg I(x : y | s) + I(x : y : s) + I(s : x) + I(s : y)− I(x : y : s).

This inequality is always true since the terms I(s : x) and I(s : y) are non-negative.

Lemma 7. For all x, y, x′, y′, r
(i) I(x′ : y | z)≤lg I(x : y | z) + C(x′ | x).
(ii) I(x′ : y′ | z)≤lg I(x : y | z) + C(x′ | x) + C(y′ | y).
(iii) I(x′ : y′ | z, r)≤lg I(x : y | z, r) + C(x′ | x, r) + C(y′ | y, r).

Proof. To prove (i), we observe that by the chain rule for the mutual information

I(x, x′ : y | z) lg

=I(x : y | z) + I(x′ : y | x, z) lg

=I(x′ : y | z) + I(x : y | x′, z).

Therefore,

I(x′ : y | z) lg

= I(x : y | z) + I(x′ : y | x, z)− I(x : y|x′, z)
≤lg I(x : y | z) + I(x′ : y | x, z)
≤lg I(x : y | z) + C(x′ | x, z)
≤lg I(x : y | z) + C(x′ | x).

To prove (ii) we apply the same argument twice (at first we replace x′ by x and then replace y′ by y),

I(x′ : y′ | z)≤lg I(x : y′ | z) + C(x′ | x)≤lg I(x : y | z) + C(x′ | x) + C(y′ | y).

The proof of (iii) is a “relativized” version of the proof of (ii); we only need to add r to the condition in all term

of Kolmogorov complexity in the argument.

D Lemma on relativization

Kolmogorov complexity can be relativized: for any oracle O, we may define Kolmogorov complexity CO(x),
CO(x | y) in terms of a universal decompressor that can accessO. In case whenO is represented by a finite string

s, the relativization has a simple meaning: CO(x) = C(x | s) +O(1) and CO(x | y) = C(x | y, s). Having fixed

an oracle, we can pose the problem of secret key agreement in terms of the relativized Kolmogorov complexity.

The lower bounds on communication complexity of secret key agreement that we have discussed followed a

pretty constructive scheme: we defined a set of input data sets H such that

• most triples (x, y, z) ∈ H have complexity profile close to the required parameters, and

• we show that any secret key agreement that succeeds on most (x, y, z) ∈ H must have large communication

complexity.

This type of argument easily relativizes. Indeed, we can show that an oracle contains negligible information on

most (x, y, z) ∈ H ; therefore, the relativization does not change significantly the complexity profile for most

triples in H . It follows that a successful secret key agreement scheme for triples from H in the sense of the

relativized Kolmogorov complexity can be used as a secret key agreement scheme in the sense of the standard

(non-relativized) Kolmogorov complexity. Thus, if we had a lower bound on the communication complexity of a

successful protocol in the non-relativized setting, substantially the same bound applies to the relativized version
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of the problem. In other words, relativization cannot make the problem of secret key agreement easier (cannot

reduce communication complexity).

However, this argument does not imply that relativization cannot make the communication complexity of

the problem harder. Indeed, the relativization conditional on an oracle O can provide us with completely new

tuples (x, y, z) with the required complexity profile. These new input data sets may have unusual combinatorial

properties, and a priori they might require a longer communication to agree on a secret key. In what follows

we show that this is not the case: for a fixed complexity profile, relativization cannot increase communication

complexity of secret key agreement.

In this section we use the technique of “clones” that was developed in [38, 39, 40]. We need to recall several

definitions. For a tuple (x1, . . . , xn), its complexity profile is the vector of 2n − 1 values of Kolmogorov com-

plexities C(xi1 , . . . , xik) for all 1 ≤ i1 < . . . ik ≤ n; the extended complexity profile includes (besides the same

2n−1 values of unconditional complexities) the vector of conditional complexities C(xi1 , . . . , xik | xj1 , . . . , xjs)
for all disjoint sets of indices 1 ≤ i1 < . . . ik ≤ n and 1 ≤ j1 < . . . js ≤ n.

For a tuple (x1, . . . , xn), the set of its clones denoted Clone(x1, . . . , xn) is defined as the set of all (x′
1, . . . , x

′
n)

such that the extended complexity profile of (x′
1, . . . , x

′
n) is component-wise not greater than the extended com-

plexity profile of (x1, . . . , xn). It is known (see [39, 40]) that

• substantiality: log (#Clone(x1, . . . , xn))
lg

=C(x1, . . . , xn), and

• uniformity: if the set of all indices is split into two parts,

{1, . . . , n} = {i1, . . . , ik} ⊔ {j1, . . . , js},

then for every set of strings x′
j1
, . . . , x′

js
, there are at most 2C(xi1

,...,xik
|xj1

,...,xjs )+1 tuples x′
i1
, . . . , x′

ik
such

that the n-tuple combined of x′
j1
, . . . , x′

js
and x′

i1
, . . . , x′

ik
belongs to Clone(x1, . . . , xn).

Similarly, we can define the extended complexity profile and the set of clones using Kolmogorov complexity

relativized conditional on an oracle. For the relativized clones we have the same properties of substantiality and

uniformity.

Lemma 8. Let π be a communication protocol of secret key agreement for three participants (with inputs of

length n), with public randomness (m = O(n) public random bits). Assume that there exists an oracle O and a

complexity profile p̄ ∈ N
7 such that for some triple of inputs (x, y, z) with

(CO(x),CO(y),CO(z),CO(x, y),CO(x, z),CO(y, z),CO(x, y, z)) = p̄

the protocol π fails (with a probability at least 1/2) to obtain a common secret key. The secrecy failure means

that given oracleO, Kolmogorov complexity of the key conditional on the transcript transcriptπ(x, y, z, r) and the

string r sampled by the public source of random bits is below some threshold ℓ,

C(produced key | r, transcriptπ(x, y, z, r)) < ℓ.

Then there exists a triple of inputs (x′, y′, z′) whose non-relativized complexity profile

C(x′),C(y′),C(z′),C(x′, y′),C(x′, z′),C(y′, z′),C(x′, y′, z′)

is component-wise O(log n)-close to p̄, and the protocol π fails (also with a probability at least 1/2) to obtain a

common secret key (here the secrecy is understood without relativization, with a threshold ℓ′ = ℓ+ O(logn)).

Proof. We begin the proof with some notation. Let (x, y, z) be a triple of inputs from the statement of the theorem.

We denote by q̄ = q̄(x, y, z) the extended complexity profile of this triple. For each triple of inputs (x, y, z) and

for each m-bit string r we denote by

transcriptπ(x, y, z, r)

the transcript of the protocol applied to these inputs with public random bits r and by

resultπ(x, y, z, r)

the key produced by the parties (if the parties fail to agree on a common key, we let w be the empty word).

If π fails (in the sense of the relativized Kolmogorov complexity) on some triple of inputs (x, y, z) ∈ {0, 1}n×
{0, 1}n × {0, 1}n, it means that for a half of all bit strings r ∈ {0, 1}m, when the protocol is applied to these

inputs,
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(i) either Alice, Bob, and Charlie fail to agree on a common key,

(ii) or they do agree on one and the same key but this key is not secret, i.e., its relativized complexity is below

the threshold, CO(resultπ(x, y, z, r) | transcriptπ(x, y, z, r), r) < ℓ.

We denote by F ⊂ {0, 1}n × {0, 1}n × {0, 1}n the set of all triples of inputs (x, y, z) on which π fails,

and F ′ := F ∩ Clone(q̄), i.e., the set of all failure inputs that have extended complexity profile component-wise

below q̄.

We say that a tuple of strings

(x, y, z, r, transcriptπ(x, y, z, r), resultπ(x, y, z, r)) (22)

is a positive certificate for (x, y, z) if all three parties agree on the same key and

CO(resultπ(x, y, z, r) | r, transcriptπ(x, y, z, r)) ≥ ℓ.

Otherwise, this tuple is called a negative certificate for (x, y, z). By definition, π fails on (x, y, z) if for a half of

all bit strings r ∈ {0, 1}m, the tuple (22) is a negative certificate.

We say that w is compatible with (r, t), if there exists at least one negative certificate (x, y, z, r, t, w). Observe

that for each r and t there are less than 2ℓ strings w such that

CO(w | r, t) < ℓ.

Therefore, for each (r, t) there are less than 2ℓ strings w compatible with (r, t).
We know that F ′ is not empty (by the condition of the lemma, at least one triple (x, y, z) causes a failure of

π). Observe that

• F ′ inherits the property of uniformity from Clone(x, y, z),

• we can enumerate the set F ′ given access to O,

• since (x, y, z) can be specified by its ordinal number in this enumeration,

CO(x, y, z)≤lg log#F ′

or, equivalently, #F ′ ≥ 2C
O(x,y,z)−O(logn).

Now define a combinatorial structure that looks “similar” to the triple of sets

(F ′, positive certificates for F ′, negative certificates for F ′), (23)

but the oracle O is not involved in the definition. Having fixed an arbitrary set of tuples G ⊂ {0, 1}n× {0, 1}n×
{0, 1}n and the protocol π, we can compute the set S(G) of all tuples (22) for every (x, y, z) ∈ G. We consider

possible splits of S into two classes, S = S+ ⊔ S− and say that (r, t) is G-compatible with w, if there is at least

one tuple (x, y, z, r, t, w) ∈ S− (for some (x, y, z) ∈ G). Such a split is valid if

(a) for each (x, y, z) ∈ G and for a half of r ∈ {0, 1}m, the tuple

(x, y, z, r, transcriptπ(x, y, z, r), resultπ(x, y, z, r))

belongs to S−, and

(b) for each (r, t) there are less than 2ℓ strings w that is G-compatible with (r, t).

We say that a valid split (G,S+, S−) is similar to the original triple (23) if

• a variant of substantiality: log#G≥lg CO(x, y, z),

• a variant of uniformity: the cardinalities of sections and projections of G are not greater than the exponent

of the corresponding complexity term in q̄ (similarly to the property of uniformity of F ′ ⊂ CloneO(x, y, z)
as formulated above).
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Obviously, triples of sets satisfying the definition of similarity exist, e.g., the original set F ′ with its positive and

negative certificates is similar to itself. Let (G0, S0
+, S

0
−) be the very first (e.g., in the lexicographical order) triple

of sets respecting the presented requirements.

Although we cannot enumerate the elements of F ′ without access to the oracle O, the sets (G0, S0
+, S

0
−) can

be found algorithmicaly given only the protocol π and the components of the extended vector q̄. Observe that

for most triples (x′, y′, z′) ∈ G0, the extended complexity profile (non-relativized one) is O(log n)-close to q̄.

Condition (b) above implies that for each w that is G0-compatible with (r, t) we have C(w | r, t)≤lg ℓ (once

again, this Kolmogorov complexity term is not relativized).

Thus, most (x′, y′, z′) ∈ G0 have the required (non-relativized) complexity profile, and by the construction of

triples similar to (23), our protocol π fails on these triples with a probability > 1/2. This observation concludes

the proof.

Remark 9. If a communication protocol leaks minor information on the key to the adversary,

C(key | transcript, public randomness) = |key| − δ,

we can improve the secrecy by taking a random hash key′ = hash(key, public random bits) such that the new key′

is δ +O(1) shorter than original key but

C(key′ | transcript, public randomness) = |key′| −O(1),

see [14]. Thus, if we can agree on a mildly secure key of an asymptotically optimal size, we can also agree on a

strongly secure key of approximately the same size.

Remark 10. Lemma 8 can be understood in the counter-positive way: if Alice, Bob, and Charlie can efficiently

agree on a secret key for triples of inputs (x, y, z) with some specific complexity profile (in the sense of the

standard non-relativized Kolmogorov complexity), they can do the same in the sense of Kolmogorov complexity

relativized conditional on oracle O. In other words, relativization changes the set of inputs with a specified

complexity profile but it does not make the problem of secret key agreement more difficult.

E Proof of Lemma 6

Let us recall Muchnik’s theorem on conditional descriptions and its version proven by Bauwens and Zimand.

Theorem 7. (a) [30] For every string a and for all strings b1, . . . , bℓ and for every number m ≤ C(a) there exists

a “digital fingerprint” of a of length m that looks maximally random conditional on each bj . Technically, this

means that for some ã we have

C(ã)
lg

=m, C(ã | a) lg

=0, and C(ã | bj) = min{C(a | bj),m} for j = 1, . . . , ℓ.

(b) [31, 32] (see also the Single Source Compression Theorem in [14]) Moreover, such a “fingerprint” can be

constructed pretty explicitly: given the length of string a, the numbers C(a | bj), and m, one can construct an

algorithm Code such that the conditions from (a) are valid for the vast majority of strings ã = Code(a, r), where

the probability is taken over the choice of a string r of length O(log(|a|+ |b1|+ . . .+ |bℓ|)).

Proof of Lemma 6. Proof of (a). We apply Theorem 7 for ℓ = 1, with a = x and b1 = 〈y, z〉, and m = δ and

obtain a string x̃ such that

C(x̃)
lg

= δ, C(x̃ | x) lg

=0, C(x̃ | y, z) lg

= δ.

In a similar way (applying again Theorem 7) we obtain ỹ and z̃ such that

C(ỹ)
lg

= δ, C(ỹ | y) lg

=0, C(ỹ | x, z) lg

= δ and C(z̃)
lg

= δ, C(z̃ | z) lg

=0, C(z̃ | x, y) lg

= δ.

A routine check shows that the triple (x, y, z) conditional on 〈x̃, ỹ, z̃〉 has complexity profile (18).

Let π′ be a communication protocol for the profile (18). Given (x, y, z), Alice, Bob, and Charlie can do

as follows: each of them computes a fingerprint x̃, ỹ, z̃ for x, y, and z respectively, and broadcast them. Then

they proceed with a protocol π′ applied to (x, y, z) and the complexity profile (18) (for Kolmogorov complexity

relativized conditional on x̃, ỹ, z̃). If the protocol succeeds, they obtain a secret key w that is incompressible given

the public random bits and the full transcript of the combined protocol, which consists of the transcript of π′, the
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public random bits, and the broadcasted strings x̃, ỹ, z̃. Thus, we obtain a communication protocol for the original

(x, y, z), whose communication complexity is equal to the communication complexity of π′ increased by 3δ bits

(the total length of x̃, ỹ, z̃ broadcasted at the first stage).

We know the optimal communication complexity of secret key agreement for the original (x, y, z) due to

Theorem 4. Therefore, communication complexity of π′ (for the relativized complexity profile) cannot be better

than (8), which is in our case 3α + 3
2β − 3δ (the optimal communication complexity for (x, y, z) decreased by

3δ). It remains to use Lemma 8 and conclude that the communication complexity of secret key agreement for

(x′, y′, z′) having the non-relativized complexity profile (18) cannot be better than 3α+ 3
2β − 3δ.

Proof of (b). Let v be a string of δ bits such that I(x, y, z : v)
lg

=0, and

x′ = 〈x, v〉, y′ = 〈y, v〉, z′ = 〈z, v〉. (24)

It is easy to verify that complexity profile of (x′, y′, z′) matches (19). From Theorem 2 it follows that the optimal

size of a secret key that three parties can agree on when given x′, y′, z′ as inputs is

1
2 (I(x

′ : y′ | z′) + I(x′ : z′ | y′) + I(y′ : z′ | z′)) + I(x′ : y′ : z′)
lg

= 3
2β + γ + δ

lg

= 1
2 (I(x : y | z) + I(x : z | y) + I(y : z | z)) + I(x : y : z) + δ.

(25)

(i.e., the size of the key for the triple of inputs (x, y, z) plus δ). Our aim is to show that such a protocol requires

communication complexity at least

C(x′, y′, z′)− 1

2

(

I(x′ : y′ | z′) + I(x′ : z′ | y′) + I(y′ : z′ | z′)
)

− I(x′ : y′ : z′) = 3α+
3

2
β.

Assume for the sake of contradiction that there is protocolπ that achieves the goal with communication complexity

3α+ 3
2β − ǫ. In what follows we construct a protocol π′ that allows to construct an optimal size secret key with

the same communication complexity for the original inputs (x, y, z).
In the new protocol Alice, Bob, and Charlie take from the (common) public source of random bits a string of

δ bits v and define x′, y′, z′ as in (24). With an overwhelming probability we have I(x, y, z : v)
lg

=0, so we have

(19). Then Alice, Bob, and Charlie proceed as in protocol π and find a common key w of size (25). As π is a

valid protocol of secret key agreement, the key w has zero mutual information with the transcript t of the protocol.

However, we loose the conditional of secrecy when v is public (which is in our case a part of the public source of

random bits accessible to the attacker). However, we may restore the secrecy by reducing the size of the key. We

apply Theorem 7 and construct w′ = Code(w, r′) (where r′ is a string of public random bits of logarithmic size)

such that

C(w′) =
3

2
β + γ, I(w′ : v, t)

lg

=0

with a high probability (over the choice of r′). The produced w′ can be taken as a secret key. The new protocol

has communication complexity 3α + 3
2β − ǫ (the same as π), and we get a contradiction with Theorem 4 unless

ǫ
lg

=0.

Proof of (c). Let (x, y, z) be a hyperedge of tri-expander, as in the proof of Theorem 4. We will transform this

triple in a different triple of inputs (x′, y′, z′) using the following trick suggested by Alexander Shen, [33]. We

apply Theorem 7 with ℓ = 3 for a = x, b1 = y, b2 = z, b3 = 〈y, z〉 and m = C(x)− δ, and obtain an x′ such that

C(x′) = C(x)− δ, C(x′ | x) lg

=0, C(x′ | y) lg

=C(x | y), C(x′ | z) lg

=C(x | z), C(x′ | y, z) lg

=C(x | y, z).

In a similar way, we obtain y′ and z′ such that

C(y′) = C(y)− δ, C(y′ | y) lg

=0, C(y′ | x) lg

=C(y | x), C(y′ | z) lg

=C(y | z), C(y′ | x, z) lg

=C(y | x, z)

and

C(z′) = C(z)− δ, C(z′ | z) lg

=0, C(z′ | x) lg

=C(z | x), C(z′ | y) lg

=C(z | y), C(z′ | x, y) lg

=C(z | x, y).

It is not hard to verify that the triple (x′, y′, z′) has complexity profile (20), see Fig. 6.

From Theorem 2 it follows that the optimal size of a secret key that three parties can agree on when given

x′, y′, z′ as inputs is

1

2
(I(x′ : y′ | z′) + I(x′ : z′ | y′) + I(y′ : z′ | z′)) + I(x′ : y′ : z′)

lg

=
3β

2
− 3δ

2
.
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lg
=C(y|x′, z)

lg
=C(z|x′, y)
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lg
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lg
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lg
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lg
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lg
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lg
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lg
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lg
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lg
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lg
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Figure 6: Complexity profile for Muchnik’s fingerprints of x, y, z.

This means (see Corollary 3) that Charlie must send a message mC such that

I(x′ : y′ | mC)≥lg 3β

2
− 3δ

2
.

Observe that I(x′ : y′)
lg

= β− 2δ. Therefore, the mutual information between mC and (x′, y′) must be greater than

the difference between I(x′ : y′ | mC) and I(x′ : y′),

I(mC : x′, y′)≥lg

(

3β

2
− 3δ

2

)

− (β − 2δ)
lg

=
β

2
+

δ

2

(as in the proof of Theorem 4). If (x′, y′, z′) are obtained from a hyperedge of a tri-expander, then we can apply

Corollary 2 and conclude that

C(mC)≥lg C(z′ | x′y′) +
β

2
+

δ

2
= α+

β

2
+

δ

2
.

A similar argument gives

C(mA) ≥ α+
β

2
+

δ

2
and C(mB) ≥ α+

β

2
+

δ

2
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for the messages sent by Alice and Bob respectively. By summing up these bounds we conclude that the total

length of all messages must be at least

3α+
3β

2
+

3δ

2
,

which is exactly the communication complexity of the omniscience protocol.
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