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A remark on decay rates of odd partitions: An application of

spectral asymptotics of the Neumann–Poincaré operators ∗
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May 4, 2023

Abstract

We introduce a theorem currently proved unique by the asymptotic behaviors of
eigenvalues of a compact operator. Specifically, a problem of partitions is considered
and the Neumann–Poincaré operator is employed as the compact linear operator.
Then a theorem is proved by the spectrum of the Neumann–Poincaré operator.

Even though the proposed problem below looks artificial, our result in the parti-
tions seems to be proven or relieved unique by the spectral theory of the Neumann–
Poincaré operators:

Odd partitions of the unit interval [0, 1] are considered, that is, we divide the unit
interval [0, 1] into 2N +1 disjoint non-zero intervals LN,k (k = 1, . . . , 2N +1) and the

sum of corresponding lengths
∑2N+1

k=1
|LN,k| = 1 for each N ∈ N≥0.

Thus we obtain a countable set of real numbers P = {|LN,k| ; k = 1, 2, . . . , 2N +
1, N ∈ N≥0} by odd partitions of the unit interval. One can enumerate the set P in
decreasing order. Then the non-increasing sequence is given as

a1 = |L0,1| = 1 > a2 ≥ a3 ≥ . . . > 0.

We show that for any C ≥ 1

2
there exist odd partitions of the unit interval such that

aj ∼ Cj−1/2 as j → ∞.

Here the coefficient C = 1/2 corresponds to the optimal decay.
We prove this fact by a fundamental property of Riemann zeta function and by

eigenvalue asymptotics for some compact linear operators known as the Neumann–
Poincaré operators.
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1 Introduction and Results

In spite of the fact that many sophiscated results have been done in spectral theory of
compact operators, their applications in number theory often seem weaker than those in
specific fields.

As a typical example, the well-known Gauss circle problem, which is the problem of
determining how many integer lattice points N(r) there are in a circle centered at the
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origin and with radius r > 0, it should be N(r) = πr2 + O(r1/2+ǫ). Then the estimate
0 < ǫ ≤ 1/2 is proven by eigenvalue asymptotics of Lapace operator, whereas the improved
estimate 0 < ǫ ≤ 27/208 is proven in analytic number theory [5, 6, 8]. Thus spectral theory
of linear operators has brought about fortuitous results. However, when spectrtal theory
is applied to mathematical problems of different fields, the obtained results seem often
weaker than those in specific fields.

Our purpose here is to present an application which seems to be currently proven
unique by spectral theory. This is shown by the behavior of partitions. To be more precise,
we divide the unit interval [0, 1] into 2N + 1 non–zero length subintervals, then finely
divided intervals seem to appear. We call such partitions “Odd Partitions”. Denoting odd
partitions as LN,k (k = 1. . . . , 2N +1) for each N ∈ N≥0, one can enumerate the contably
infinitely many real numbers {|LN,k| ; k = 1, 2, . . . , 2N+1, N ∈ N≥0} in decreasing order.
Here | · | denotes the Lebesgue measure (Length). Thus such procedure allows us to give
the non-increasing sequence:

1 = |L0,1| = a1 > a2 ≥ a3 ≥ . . . > 0. (1.1)

For instance, equi-partitions of the unit interval yield a diagram: The first partitioning
yields 3 intervals, whose length is 1/3. Similarly, a non-increasing sequence is produced.

1

1/3 1/3 1/3

1/5 1/5 1/5 1/5 1/5

1/7 1/7 1/7 1/7 1/7 1/7 1/7

...
...

...

In this figure, each column shows a partition of the unit interval, that is, the sum of each
column equals one. Thus we obtain the enumerated sequence in decreasing order:

1, 1/3, 1/3, 1/3, 1/5, 1/5, 1/5, 1/5, 1/5, 1/7, 1/7, 1/7, 1/7, 1/7, 1/7, 1/7, . . . (1.2)

After the N -th procedure, the diagram of partitions always consists of N2 numbers. One
can easily find in (1.2) that the j = N2-th number aj is 1/(2N − 1) ∼ 1

2j
−1/2 for large j.

It is strongly expected that the optimal deacy rate is attained by such equi-partitions.
In fact, we have the desirable decay rates:

Theorem 1.1 (Main Theorem). For all C ≥ 1
2 , there exist odd partitions of the unit

interval such that

aj ∼ Cj−1/2 as j → ∞.

We here emphasize that C = 1
2 is the minimum coefficient, namely, lim inf

j→∞
j1/2aj ≥ 1/2

for arbitrary odd partitions.

To prove this, we recall unconditional sums which are convenient here:

Proposition 1.2. For odd partitions, we define the infinite sum τ(p) by

τ(p) :=
∑

N∈N≥0

k=1,2,...,2N+1

|LN,k|
p (p > 2). (1.3)

Then τ(p) ≥ (1 − 21−p)ζ(p − 1) (p > 2) where ζ(p) denotes Riemann zeta function. The

equality holds only for the case of equi-partitions.
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We remark that Proposition 1.2 holds true even in the case that the sum (1.3) diverges
to ∞.

Proof of Proposition 1.2. Since the sum (1.3) consists only of positive values, the sum is
unconditional and independent of rearrangements.

It follows by Hölder’s inequality (e.g. [13]) that

1 = |LN,1|+ |LN,2|+ · · ·+ |LN,2N+1|

≤ (1 + 1 + · · ·+ 1)1/q · (|LN,1|
p + |LN,2|

p + · · ·+ |LN,2N+1|
p)1/p

≤ (2N + 1)
p−1

p · (|LN,1|
p + |LN,2|

p + · · ·+ |LN,2N+1|
p)1/p

where p, q ∈ [1,∞] with 1/p + 1/q = 1. Thus

|LN,1|
p + |LN,2|

p + · · · + |LN,2N+1|
p ≥ (2N + 1)(1−p) for p ≥ 1 (1.4)

and so
τ(p) ≥

∑

N∈N≥0

(2N + 1)(1−p) = (1− 21−p)ζ(p− 1) for p > 2. (1.5)

The equality holds only for the case of equi-partitions
(i.e. |LN,1| = |LN,2| = · · · = |LN,2N+1| = 1/(2N + 1) for all N ∈ N).

Proof of Theorem 1.1. Firstly we show that 1
2 is the minimum coefficient.

Assume C < 1
2 , then

∞∑

j=1

|aj|
p �

∫ ∞

1
C2pj−p/2 dj =

2C2p

p− 2
for p > 2. (1.6)

We notice that 2C2p < 1/2 for p = 2 + ε with small ε > 0.
On the other hand, it follows from Proposition 1.2 that the sum of the p–th power

equi-partitions is

∞∑

j=1

|aj |
p = τ(p) ≥ (1− 21−p)ζ(p− 1) for p > 2. (1.7)

We then recall the property of Riemann zeta function ζ(x) (See e.g. [3]):

lim
p→2+0

(
ζ(p− 1)−

1

p− 2

)
= γ (1.8)

where γ is Euler’s constant. So we have

lim
p→2+0

((
1− 21−p

)
ζ(p− 1)−

1

2(p − 2)

)
= C (1.9)

for some constant C(= 1
2(log 2 + γ)). Thus it follows from (1.7) that

lim
p→2+0




∞∑

j=1

|aj |
p −

1

2(p − 1)


 ≥ lim

p→2+0

((
1− 21−p

)
ζ(p− 1)−

1

2(p − 1)

)
= C
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whereas from (1.6)

lim
p→2+0

∞∑

j=1

|aj |
p −

1

2(p− 1)
= −∞.

This is a contradiction as desired.
To prove the existence of suitable partitions satisfying aj ∼ Cj−1/2 for C ≥ 1/2, we

use the spectral properties of the Neumann–Poincaré (NP) operator, which is known as
boundary integral operartors, defined on boundaries of a region in R

3 (See e.g. [2] and
references therein for details). The NP operators on L2(∂Ω) are compact if ∂Ω is in C1,α,
that is, the corresponding non-zero spectrum consists of eigenvalues only. We emphasize
that corresponding eigenvalues on prolate ellipsoids ∂Ω satisfy all properties of lengths for
odd partitions of the interval [0, 1/2] (See [1, 9, 12]):

M1,1

M2,1 M2,2 M2,3

M3,1 M3,2 M3,3 M3,4 M3,5

...
...

...

Here each column shows a partition of [0, 1/2] and each column consists of an odd num-
ber of non-zero subintervals. The sum

∑2N+1
k=1 |MN,k| = 1/2 for each N ∈ N≥0. These

astonishing facts are not elementary but the results are available here. Furthermore, it is
recently proven [10, 11] that NP eigenvalues satisfy the so-called Wely’s law, namely,

aj ∼ C̃j−1/2

for C̃ ≥ 1/4. Here the coefficient C̃ is explicitly calculated by using the Willmore energy
W (∂Ω) and the Euler characteristic χ(∂Ω) of the bouncary surface ∂Ω. It follows that the
coefficient C̃ can take arbitrary real values larger than 1/4 (See [10, 11] for the details).
As a result, there exist odd partitions of a half interval [0, 1/2] such that the enumerated
sequence satisfies

aj ∼ C̃j−1/2

for all C̃ ≥ 1/4. When we consider the interval [0, 1] instead of the half interval [0, 1/2],
automatically C = 2C̃ ≥ 1/2.

2 Discussions

We proved the decay rates on odd partitions of the unit interval. Theorem 1.1 is proven by
a fundamental property of Riemann zeta function and by the spectral theory of Neumann–
Poincaré operators. If the partitions are permitted to have zero–length sets, this fact is
proved in an elementary manner. Can one give an elementary proof of Theorem 1.1 as it
is? To the best of my knowledge, we don’t know alternative proofs other than spectral
theory.

The partitions of the unit interval have been considered for a number of years from
various viewpoints (See e.g. [4, 7]). For more general partitions, can one prove the
existence of decay sequence for suitable orders?
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The difference sequence of Farey sequence, for instance, is the partitions of the unit
interval [7]:

1

1/2 1/2

1/3 1/6 1/6 1/3

1/4 1/12 1/6 1/6 1/12 1/4

1/5 1/20 1/12 1/15 1/10 1/15 1/12 1/20 1/5

...
...

...

Thus the enumerated decreasing sequence {aj} is denoted as

1, 1/2, 1/2, 1/3, 1/3, 1/4, 1/4, 1/5, 1/5, 1/6, 1/6, 1/6, 1/6, 1/6, 1/6, . . . (2.1)

and its corresponding behavior seems aj ∼ Cj−1/3, since it is known that the N -th column
consists of N2 numbers asymptotically. The decreasing order j−1/3 depends on the number
of partitions. For general partions of the unit interval, can one prove the analogous results
to Theorem 1.1? The minimum decay can be easily guessed and it should be given by
equi-partitions.
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