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ABSTRACT

Stable or metastable crystal structures of assembled atoms can be predicted by finding the global or local minima of
the energy surface defined on the space of the atomic configurations. Generally, this requires repeated first-principles
energy calculations that are impractical for large systems, such as those containing more than 30 atoms in the unit cell.
Here, we have made significant progress in solving the crystal structure prediction problem with a simple but powerful
machine-learning workflow; using a machine-learning surrogate for first-principles energy calculations, we performed
non-iterative, single-shot screening using a large library of virtually created crystal structures. The present method relies
on two key technical components: transfer learning, which enables a highly accurate energy prediction of pre-relaxed
crystalline states given only a small set of training samples from first-principles calculations, and generative models to
create promising and diverse crystal structures for screening. Here, first-principles calculations were performed only to
generate the training samples, and for the optimization of a dozen or fewer finally narrowed-down crystal structures.
Our shotgun method proved to be computationally less demanding compared to conventional methods, which heavily
rely on iterations of first-principles calculations, and achieved an exceptional prediction accuracy, reaching 92.2% in a
benchmark task involving the prediction of 90 different crystal structures.

Introduction

Predicting the stable or metastable structures of a crystalline system with a given chemical composition is a fundamental
unsolved problem that has been studied for several decades in solid-state physics'-2. In principle, the stable or metastable
crystal structures of assembled atoms or molecules in the solid state can be determined using quantum mechanical
calculations. Crystal structure prediction (CSP) is based on finding the global or local minima of the energy surface
defined on a broad space of atomic configurations, in which the energy can be evaluated by first-principles density
functional theory (DFT) calculations. To solve the CSP problem, we can apply an exploratory algorithm to determine
the crystal structure at the global or local minimum by successively displacing the atomic configurations along the
energy gradient.

To solve this hard problem, a broad array of CSP methods have been developed to date, including brute-force random
search®, simulated annealing®”, the Wang-Landau method®, particle swarm optimization® '°, genetic algorithms? 112,
Bayesian optimization'?, and look ahead based on quadratic approximation (LAQA)'#. More recently, machine learning
interatomic potentials have been attracting increasing attention because they can greatly speed up the optimization
process by bypassing time-consuming ab initio calculations'>~!7. Conventionally, genetic manipulations such as
mutation and crossover are performed to modify a current set of candidate crystal structures, and their DFT energies
are used then as goodness-of-fit scores to prioritize promising candidates for survival in the new generation. This
process is repeated until the energy minima are reached. For example, the pioneering software USPEX implements



a comprehensive set of genetic operations such as the mutation and crossover of crystal objects® 12, while the
CALYPSO code employs a genetic operation called the swarm shift'®. However, such algorithms are time-consuming
because of the need to perform ab initio structural relaxation of the candidate crystals at every step of the optimization
process. CrySPY was developed to increase the computational efficiency by introducing a machine-learning energy
calculator'# based on the Gaussian process regressor'’. The predictive performance is successively improved by
accumulating a training set of candidate crystal structures and their relaxed energies via Bayesian optimization?”. The
surrogate energy predictor efficiently rules out unpromising candidates whose energies are unlikely to reach the minima.
However, most existing methods utilize relaxed energy values to evaluate the goodness-of-fit in the selection process or
to produce instances to train a surrogate model. Therefore, it is necessary to relax all candidate structures at every step
of the sequential search. Such methods are impractical for large systems that contain more than 30—40 atoms in a unit
cell, owing to their enormous computational cost.

To overcome this difficulty, a promising solution is to fully replace ab initio energy calculations with machine-
learning surrogates. Energy prediction models trained using DFT property databases, such as the Materials Project®!-%2,
AFLOW?*24 OQMD?*?%, and GNoME database”’ have been reported to exhibit a quite high prediction accuracy?®-3.
However, models trained on the instances from stable or metastable structures in such a database are inapplicable to the
prediction of unrelaxed energies of varying atomic configurations for a given target system, as discussed in Gibson et al.
(2022)3!. As shown later numerically, such models can predict energy differences between different crystalline systems
but cannot quantitatively discriminate energy differences of distinct conformations for the system of interest. This is the
ability that is required for solving the CSP problem.

In this study, we employed a simple approach to building a predictive model for formation energies. First, a
crystal-graph convolutional neural network (CGCNN)*" was trained using diverse crystals with stable or metastable
state energies from the Materials Project database. Subsequently, for a given chemical composition as the target, the
DFT energies of a few dozen randomly generated unrelaxed structures were calculated by performing single-point
energy calculations, and a transfer learning technique®>3* was applied to fine-tune the pretrained CGCNN to the
target system. Generally, limited data are available for model training, and randomly generated crystal conformations
are distributed in high-energy regions. Models trained on such data that are biased towards high-energy states are
generally not applicable to the extrapolative domain of low-energy states in which optimal or suboptimal conformers
exist. In CSP, a surrogate model must be able to predict the energy of various conformations with high- to low-energy
states corresponding to the pre- and post-relaxed crystal structures, respectively. We demonstrate that the surrogate
model derived using the transfer learning method exhibited sufficiently high prediction accuracy, even in the domain of
low-energy states.

After creating candidate crystal structures, exhaustive virtual screening was performed using the transferred energy
predictor. The narrowed-down candidate crystals were relaxed by performing DFT calculations. Currently, a wide
variety of structure generators can be applied to generate the virtual crystal libraries, e.g., (i) methods based on
element substitution using existing crystal structures as templates>*—, (ii) atomic coordinate generators that take into
account crystallographic topology and symmetry>’-38, (iii) algorithms for reconstructing atomic configurations based
on interatomic distance matrices (contact maps) predicted by machine learning®, and (iv) deep generative models that
mimic crystals synthesized to date***?. In this study, we validated our framework using two sets of virtual libraries
created using methods related to (i) and (ii), i.e., element substitution of template crystal structures and a Wyckoff
position generator for de novo CSP. The search space is narrowed down in the latter by machine-learning prediction
of space groups and Wyckoff letter assignments. Our workflow, which can be regarded as a high-throughput virtual
screening of crystal structures, is perhaps the simplest among existing CSP methods to date. In the entire workflow,
first-principles single-point calculations were performed for, at most, 3,000 structures to create a training set for the
transferred energy predictor and for the structural relaxation of a dozen or fewer narrowed-down candidate crystals in
the final stage. Compared to conventional methods such as USPEX, the present method is approximately two times
or more less computationally demanding. Furthermore, outstanding prediction performance was also experimentally
confirmed; in the prediction of the stable structures of 90 benchmark crystals that were chosen to obtain a set of
materials with diverse space groups, structure types, constituent elements, system sizes, and application domains, we
succeeded in accurately predicting approximately 90% of the benchmark structures.
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Figure 1. Workflow of the shotgun CSP. (a) Virtual screening using machine-learned formation energies. The virtual
library is created using the template-based structure generator and Wyckoff position generator. (b) Construction of the
formation energy predictor based on a CGCNN. The CGCNN trained with the Materials Project database is fine-tuned
to the energy predictor of unrelated candidate crystal structures for a query composition X.
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Figure 2. Two different crystal structure generators are used for the generation of training instances for the fine-tuning
of the energy prediction model and the creation of virtual libraries to be screened. (a) Element substitution of template
crystal structures in the Materials Project. (b) Wyckoff position generator to produce symmetry-restricted atomic
coordinates.

Results

Methods outline

To predict the stable crystal structure formed by the assembled atoms with a given chemical composition X, we
used a machine-learning workflow summarized in Figure 1. This method involves two key technical components:
a high-performance surrogate model for DFT formation energies and two different generative models for candidate
crystal structures.

For the energy calculation, a CGCNN with the same architecture as in the original paper’ was first pretrained from
scratch on a set of 126,210 crystals for which DFT formation energies are available in the Materials Project. We refer to
this model as the global model; it can accurately predict the baseline formation energies of diverse crystal structures
but lacks the ability to discriminate the local energy difference of different atomic conformations for a given target
system. Therefore, the pretrained global model was transformed into a model localized to the target system X. To this
end, we randomly generated, at most, several thousand virtual crystal structures and calculated their formation energies
by performing single-point DFT calculations. The training structures were generated using either the random element
substitution of existing crystals or the Wyckoff position generator, as described below. Using this dataset, we performed
transfer learning to adapt the pretrained global model to a local model applicable to the energy evaluation of different
configurations for X. Here, the output layer was trained from scratch, whereas the pretrained weight parameters in the
other layers were retained and fine-tuned (see the Methods section).

In this study, we developed and tested two algorithms for the generation of virtual crystals.

Method 1—Element substitution: Element substitution of already synthesized or theoretically possible crystals
with the same compositions as X is randomly performed (Figure 2(a)).

Method 2—Wyckoff position generator: For a target composition with the space group given a priori or
predicted, the generator creates symmetry-restricted atomic coordinates randomly from all possible combinations
of Wyckoff positions (Figure 2(b)). Here, we employ a machine learning predictor of Wyckoff label assignments.



The element-substitution method cannot be applied unless a template is available for substitution, limiting its applicabil-
ity. Therefore, we developed the Wyckoff position generator to generate novel structural patterns. As described below,
the space group and Wyckoff letter configuration to constituent atoms are inferred based on machine learning. These
two generators were used to generate training instances in the fine-tuning of CGCNN and the candidate structure in the
high-throughput virtual screening. We used slightly different workflows for these two generators, as described below.

The generation of crystal structures by replacing the elements in the existing crystals mimics the process by which
humans synthesize new crystalline materials in a laboratory. For a given query composition X, we collected a set of
template crystal structures with the same compositional ratio as that of the X from the Materials Project database. A
candidate structure was created by assigning the constituent elements of the query composition to the atomic coordinates
of a selected template. Elements with the same composition fraction in the template and in the query were substituted.
When one or more elements have the same composition fraction, the assignment cannot be uniquely determined. In
this case, substitution was performed on the most similar element pair with the normalized Euclidean distance of the
58 element descriptors in the XenonPy library®*3~* used as the similarity measure. The element-substituted crystal
structure inherits the atomic coordinates of the template structure. A slight random perturbation was incorporated into
the generated atomic coordinates as an additional refinement step. Considering that multiple crystals in the database
belong to the same prototype structure (for example, 8,005 compounds have the same composition ratio A;B;C,), a
cluster-based template selection procedure was introduced. The objective is to select highly relevant templates with
query composition X while maintaining the diversity of the template structures. We applied DBSCAN?*®* to classify
the templates into clusters in which the chemical compositions were converted into 290-dimensional compositional
descriptors using XenonPy. Then, only the templates belonging to the same cluster as the query X were selected to
narrow down to a set of templates with high compositional similarity (see the Supplementary Information for a brief
explanation of the DBSCAN algorithm). In addition, to eliminate structurally redundant templates, we used pymatgen’s
StructureMatcher module to construct a unique set of templates that did not contain identical prototype structures.
The number of the unique templates is denoted by Kiepp. For virtual library creation, 1,000 structures were generated
from each of the Kiemp selected templates by perturbing the atomic coordinates and lattice constants, resulting in the
1000 X Kremp candidate structures. For the training dataset in the fine-tuning, we used 10 structures generated randomly
for each template using the same procedure. For more details, see the Methods section.

The Wyckoff position generator produces random crystal structures with a prescribed space group for a given
composition. For a given X, the space group of its stable structure is predicted based on machine learning. Furthermore,
the assignment of Wyckoff letters to the constituent atoms is narrowed down efficiently using a predictive model trained
on a given set of crystal structures in the Materials Project database as described later. With this predictive model, we
can randomly generate promising Wyckoff patterns while significantly pruning wasted search space. With Wyckoff site
multiplicity and symmetry restricted, the atomic coordinates and lattice parameters were generated uniformly from
specific intervals. Structures generated with two or more atoms within a certain distance were excluded a posteriori.
Here, a space group predictor was used to estimate the space group of X. The objective is to predict and limit the
space group of the stable crystalline state for a given composition X. We compiled a list of chemical compositions
and the space groups of 33,040 stable crystal structures from the Materials Project database for the training set. Using
this model, the space group of the crystal system for X was narrowed to the top Ksg candidates. In this study, we set
Ksg = 30. Based on this setting, 100 x Ksg training instances and 15,000 x Kgg candidate crystals were generated for
the fine-tuning and virtual screening steps, respectively. For more details, see the Methods section.

The transferred energy prediction model was then used to perform exhaustive virtual screening using each of the two
generators separately. Finally, DFT calculations were performed to optimize the narrowed-down promising structures
that exhibited the lowest predicted energies using the Vienna Ab initio Simulation Package (VASP)*® version 6.1.2,
combined with projector augmented wave (PAW) pseudopotentials*® (see the Methods section for detailed procedures).
The top K lowest-energy structures were subjected to structural relaxation with DFT. In this study, we set K = 10 X Ksg
and K = 5 X Kiemp for the Wyckoff position generation and for the element substitution generation, respectively.
Generally, the top K candidates that reached the lowest energies consisted of significantly similar structures, many of
which converged to the same crystal structure during the structural relaxation phase. To eliminate this redundancy, we
considered structural similarity when selecting the top K candidate structures to maintain high structural diversity (the
Methods section).



Benchmark sets

In this study, the performance of the proposed CSP algorithm was evaluated mainly on two benchmark sets. The first
benchmark set (Dataset I) consists of 40 stable crystals selected based on a literature survey, as listed in Table 1, was
selected based on two criteria: the diversity of space groups, constituent elements, number of atoms, and element
species; and the diversity of applications such as battery and thermoelectric materials. Due to the presence of a certain
bias in the selection of Dataset I, 50 additional stable crystals were randomly selected from the Materials Project
(Table 2) (Dataset II). For Datasets I and II, the number of atoms in the unit cell of the selected crystals ranged from
2 to 104 and 2 to 288, with the mean =+ standard deviation of 23.13 +24.09 and 32.68 +45.41, respectively (see also
the histograms in the Supplementary Information). 30% of the benchmark crystals had more than 30 atoms; due to
the computational complexity and search performance, these structures were expected to be difficult to solve with
conventional heuristic searches based on first-principles calculations in the majority of cases.

As a more challenging benchmark, we randomly selected 30 stable structures for which no template exists from
the Materials Project, designating as Dataset III (Table S1). As shown in Table S1, most of the crystal structures in
Dataset III have a much larger number of atoms in the unit cell than in Dataset I and II (the average atomic number is
66.50 £ 34.40).

Space group prediction

In the virtual screening with the Wyckoff position generator, to narrow down the huge space of possible crystalline states,
we introduced a multiclass discriminator to predict the space group Ysg of a given chemical composition X (Figure
3(a)). To train and test the classifier, we used 33,040 instances of chemical compositions with 213 distinct space groups
of the stable crystalline states compiled from the Materials Project database. The 120 benchmark crystal structures were
removed from the training dataset. The compositional features of X were encoded into the 290-dimensional descriptor
vector using XenonPy33 4343 (see the Methods section), and fully connected neural networks were trained to learn the
mapping from the vectorized compositions to the 213 space groups. Of the total sample set, 80% of the instances were
used for training, and the remainder was used for testing. To statistically evaluate the prediction accuracy, training,
and testing were repeated 100 times independently. The details of the model construction, including hyperparameter
adjustment, are described in the Supplementary Information.

Figure 3(b) shows the change in the recall rate from the top 1 to the top 40 predictions; that is, the change in the
proportion of true labels included in the top Ksg most probable predicted class labels (Ksg = 1,...,40). The recall
rates in the top 1, 10, and 40 predictions were 60.22(+0.87)%, 85.35(40.54)%, and 94.02(+0.43)% on average,
respectively. This result indicates that by narrowing down to the top 40 predicted labels, we can identify the space
groups for 94.02(£0.43)% of the various crystalline systems. Using this model, the 213 space groups were narrowed
down to the top 40 candidates, and for each of the selected candidates, a set of symmetry-restricted crystal structures
was generated using the Wyckoff generator. The top 40 recall rates for different space groups were varied from
0.00(+£0.00)% to 99.22(40.31)% as shown in Figure S1. The variability of the recall rate was partially correlated with
the number of training instances in each space group.

Here, there was concern that the pattern of composition ratios in the dataset is highly biased. In such cases, the
prediction performance would vary significantly from one composition ratio to another. We denote by S the upper bound
on the number of samples with the same composition ratio in the training dataset. To address this concern, we evaluated
the change in the prediction accuracy when the upper limit on the number of samples with the same composition was
varied as S € {10,50,100}, and as shown in Figure S3, it was verified that the prediction performance did not vary
significantly.

Wyckoff pattern prediction

After narrowing down the space groups with machine learning, Wyckoff letters are randomly assigned to each atom to
generate the atomic coordinates. As the number of combinations of atoms and Wyckoff letters increases, the complexity
of de novo CSP grows. For example, in the case of the stable structure with space group /mma (No. 74) for MggBsg,
the multiplicity of Wyckoff letters {a,b,c,d,e, f,g,h,i,j} is {4,4,4,4,4,8,8,8,8,16}. In this case, the number of
possible assignments for the Wyckoff letters exceeds 1,755. If the assignments are incorrect, the CSP fails to predict in
most cases. On the other hand, for the space group la3d (No. 230) of Y24Al409, the multiplicity of Wyckoff letters
{a,b,c,d,e, f,g,h}is {16,16,24,24,32,48 48,96}. Despite the substantial number of atoms in the unit cell, only 27
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possible assignments exist. Successfully narrowing down the space groups and accurately predicting the assignments of
Wyckoff letters is expected to improve the CSP task significantly.

Therefore, we constructed a model to predict the occurrence frequencies of Wyckoff letters for stable structures
based on chemical composition (Figure 4(a)). The model was created for each space group, with the input chemical
composition represented by the 290-dimensional descriptor using XenonPy. The output is the probability distribution of
the occurrence of Wyckoff letters. Using 33,040 instances of the stable structures in the Materials Project, excluding the
120 benchmark crystals (80% for training and 20% for test), we trained a random forest regressor for each space group.

Figure 4(b) summarizes the prediction accuracy for the test set. The discrepancies between the output probability
distribution py, ..., py of the trained model and actual relative frequencies qy,...,qy of M Wyckoff letters were
measured based on the Kullback-Leibler (KL) divergence:

M .
Y gilogZt (1
i=1 Di

The distribution of KL divergence for the test set was found to be highly concentrated around zero in most cases
(Figure 4(b)). This observation indicates that the Wyckoff letters for stable structures are predictable from chemical
composition.

Using the Wyckoff letter occurrence probability for a query composition, we randomly assigned Wyckoff letters
according to the procedure shown in the Methods section. The possible assignments of the Wyckoff letters to elements
are constrained by their multiplicity and query composition ratio. The sampling algorithm is designed to satisfy these
constraints and generally aligns with the predicted probabilities from the random forest regressor.

Figure 4(c) shows the difference in Wyckoff pattern generation with and without employing the Wyckoff letter
predictor, comparing the frequencies of actual and sampled Wyckoff letters for six randomly selected cases. In all cases,
the frequencies of Wyckoff letters generated from the predictor agreed well with the true frequencies. In contrast, the
randomly generated Wyckoff letters deviate significantly from the true frequencies.

Energy prediction

For the global energy prediction model, the CGCNN was trained on 126,210 stable and metastable crystal structures,
with their formation energies retrieved from the Materials Project; the 120 benchmark crystals were excluded from the
training set. To validate the prediction capability and uncertainty of the global model, we randomly extracted 80% of
the overall dataset and created 100 bootstrap sets. The mean absolute error (MAE) with respect to the 25,249 test cases
reached 0.074 eV/atom on average, with a standard deviation of 0.003, which is comparable to that in previous studies,
for example, Xie & Grossman>’. Figure 5(a) shows the prediction results for the 90 benchmark crystals in Datasets I
and II.

Note that the global model is inapplicable to the energy prediction of different conformations randomly generated
for each X, as shown in Figure 5(c), and clearly failed to discriminate the energies of different conformations randomly
generated for the 90 benchmark crystals. Here, we tested the prediction capability of the global model on the DFT
energies of 100 randomly generated conformations for each of the 90 benchmark queries. It was found that the MAE
decreased to 6.126 eV/atom on average with a standard deviation of 2.010. A similar result was obtained from a global
model trained with approximately 1,021,917 instances of the OQMD database, including the formation energies of both
relaxed and unrelaxed structures.

To overcome this limited predictive ability, the pretrained global model was transferred to a model localized to the
target system of X. For each X, the formation energies of, at most, 3,000 virtual crystals generated as described above
were obtained by DFT single-point energy calculations, and the pretrained global model was fine-tuned to the target
system. As shown in Figure 5(d), transfer learning successfully improved the prediction performance for the formation
energies of the 9,000 additional conformations generated. The MAE reached 0.488 eV/atom on average with a standard
deviation of 0.453, corresponding to a factor of 12.6 improvements compared to the MAE of the pretrained global
energy prediction model.

CSP using the library generator based on element substitution
We used a fine-tuned surrogate energy predictor to sort the generated virtual crystals, narrowed them down to the top 5
structures for each template (as described above), and then performed structural relaxations using DFT. The J relaxed
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cumulative distribution function (ECDF) of KL divergence between the relative occurrence frequencies and predicted
probability distribution of Wyckoff letters for the test set. (c) Histograms show the distributions of relative occurrence
frequencies and predicted probabilities of Wyckoff letters for six randomly selected compounds, with their space group

information shown in parentheses.
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structures with the lowest DFT energies were used as the final set of predicted structures. Figure 7 shows the top 2 (J = 2)
predictions and the true structures. Figure S3 shows the top 2 predicted structures for all of the 90 benchmark crystals.
Tables 1 and 2 summarize the success or failure of the top 10 predictions for all crystal systems in Datasets I and II. The
top 5 prediction accuracies (J = 5) for Datasets I and II were 75.0% and 76.0%, respectively, and the top 10 accuracies
(J = 10) for Datasets I and II were 82.5% and 86.0%, respectively. No significant differences are observed in the
resulting accuracies between the two benchmark sets. Interestingly, no performance degradation was observed due to the
increasing number of atoms in the unit cell. Of the 90 crystals, the five (NaCaAIPHOSF,, K, AggAs|,Sezq, Na, W, 0,4,
Nag Fe (P3,0,,5F;,, and Y,Si,Ir¢) that could not be predicted had no template structures in the Materials Project
with the same composition ratio. Excluding the five cases with no template, the top 10 accuracies for Datasets I and II
reached 84.6% and 93.5%, respectively. In 9 of the 85 cases where there was a template but the prediction failed, none of
the Wyckoff letter patterns of the true structures were included in the template structure set. Elemental substitution-based
structure generation requires a one-to-one correspondence between structure and composition, making it difficult to
predict the structure of compounds for which multiple structures are reported for a given composition. The number of
data for Si0O,, V,0s, and TiO, in the Materials Project is 314, 58, and 42, respectively, and these compounds failed to
be predicted. In summary, crystal systems with template structures that have the same composition ratio can be largely
predicted by substituting the elements in the existing crystals. For example, in the Materials Project, the proportion
of crystals with one or more interchangeable template structures was 98.0%. A similar conclusion was reached in a
previous study>® that proposed a CSP algorithm called CSPML based on elemental substitution using machine learning.
As shown in Tables 1, 2, and S4, the shotgun CSP’s prediction accuracy for Dataset I and II was significantly better
than that of CSPML, which 65.6% for the top 10 candidates.

CSP using the Wyckoff position generator

The top 10 candidate structures with the lowest surrogate energies for each predicted space group were selected for
structural relaxation using DFT. Similar to the results of the template-based method, Figure 7 displays the top 2
predicted and true structures for some selected examples, and Figure S2 shows the top 2 predicted structures for the 90
benchmark crystals. For the top 10 predicted structures, 77.5% and 68.0% of the known stable structures were predicted
for Datasets I and II, respectively. Tables 1 and 2 summarize the success or failure of the top 10 predictions for all
crystal systems in Datasets I and II. A significant decrease in performance was observed compared to the CSP algorithm
using the template structure generator. One reason is the predictive performance of the space group. Considering the
top 30 predictions, approximately 5% of the 90 benchmark crystal structures still have their space groups inaccurately
predicted. This is almost the same level of accuracy as reported above.

A total of 31 and 34 crystals were successfully predicted in Dataset I and II, respectively. Among these successful
predictions, three crystals, Y ,SisIry, KsAg,(AsSe;);, and Na(WO;), with no templates yet were successfully predicted.
For these compounds, the number of atoms in the unit cells within their space group is quite large: 36, 76, and 111.
Nevertheless, for the space group R3 (No. 148) of the stable structure of Na(WO;), (Figure 6(a)), because of the
Wyckoff letters {a,b,d,e} are coordinate-fixed, the number of possible combinations of Wyckoff letters is reduced to
approximately 48 due to its multiplicity restriction. Consequently, the effective dimension of the search space could be
reduced by considering crystal symmetry in the structure generation. This explains why the shogun CSP successfully
predicted the complex stable structure of Na(WO;),.

Conversely, for KsAg,(AsSe;);, which has 76 atoms in its unit cell under space group Pnma (No. 62), as shown
in Figure 6(b), the potential substitution of Wyckoff position ¢ with a or b increases the number of possible Wyckoff
letter combinations to over 300, even when considering multiplicity constraints. Nevertheless, the CSP method proved
successful, largely because the frequencies of Wyckoff letters a and b, as predicted by the Wyckoff letter assignment
predictor, were extremely low. This insight significantly narrowed the extensive search space during the candidate
structure generation phase, exemplifying the impact of strategic considerations in CSP methodologies. The same
improvement was encountered in Y ,SisIr,.

On the other hand, of the 85 crystals for which the space group was correctly identified, 9 and 11 true stable
structures could not be predicted in Datasets I and II, respectively. Furthermore, of the 20 (9 + 11) failure cases, 3 and 3
structures failed to generate true Wyckoff patterns, and 6 and 8 failed to obtain the ground truth, even though the true
Wyckoff patterns were correctly generated in Datasets I and II, respectively. To elucidate the origin of these failures, we
examined the generated structures in detail. Consequently, it was found that the majority of structures that could not be
predicted were characterized by low-symmetry structures with a space group number below 142, particularly below 15,
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Na(WO,) - R3 (No. 148)
Full formula: Na3 W27 081

Wyckoff letter pattern:
* Na-a W-b,c,f O-efff

Wyckoff letters of No. 148

V\z‘t:tlgﬁ Multiplicity Coordinates
f 18 (x,y,2), ...
. 9 (112,0,0), ...
d 9 (112012), .
c 6 (0,0,2), ...
b 3 0,0,172), ...
a 3 (0,0,0), ...

True Prediction

KsAg,(AsSes); - Pnma (No. 62)

Full formula: K20 Ag8 As12 Se36

Wyckoff letter pattern:

+ K-c,d,d Ag-d As-c,c,c Se-c,ccd,d,d

Wyckoff letters of No. 62

wlst’e:t':r,ff Multiplicity Coordinates
d 8 x,y,2), ...
c 4 (x,1/4,z), ...
b 2 (0,0.1/2), ...
a 4 (0,0,0), ...

True Prediction

c TiO, - €2/m (No. 12) Wyckoff letters of No. 12
Full formula: Tig 016 left'::ﬁ Multiplicity Coordinates
Wyckoff letter pattern:

e Ti-i,i Se-iiii J 8 (x¥,2), .-

i 4 (x,0,2), ...

h 4 (0,y,1/2), ...

m' & ] g 4 (0,y,0), ...
_Q=0 . Q=0 f 4 (1/4,1/4,1/2), ...
ﬂm- 2 e | 4 (40
g /"/ g “(i of d 2 (012102), ..

‘ ° c 2 (0,0,1/2), ...

b 2 (0,1/2,0), ...

True Prediction a 2 (0,0,0), ...

Figure 6. Three crystal structures predicted by the Wyckoff position random crystal structure generator: Na(WO;),
(full formula: Na; W, Og,, number of atoms: 111, space group: R3 (No. 148)), KsAg,(AsSe;); (full formula:
K,oAggAs|,Sesq, number of atoms: 76, space group: Pnma (No. 62)) and TiO, (full formula: TigO,4, number of
atoms: 24, space group: C2/m (No. 12)). In the case of NpgWO5),, the number of possible Wyckoff letter
combinations is limited to 48 when the space group is considered. For KsAg,(AsSe;);, despite the number of possible
Wyckoff letter combinations exceeding 300, the Wyckoff letter assignment predictor reduces the search space
considerably and effectively. For the case TigO 4, where the CSP algorithm failed to predict, the high degree of
freedom in the coordinate configurations prevented the generation of promising atomic coordinates despite the
successful Wyckoff letter assignment.



such as orthorhombic, monoclinic, and triclinic structures. Because of their low symmetry, structures belonging to these
space groups have high degrees of freedom in their coordinate configurations. Furthermore, the number of combinations
of Wyckoff patterns with the same multiplicity is greater for lower-symmetry space groups. For instance, space group
C2/m (No. 12) has one coordinate-free Wyckoff letter {j} with multiplicity 8, three coordinate-free Wyckoff letters
{g,h,i} and two coordinate-fixed Wyckoff letters {e, f} with multiplicity 4, and four coordinate-fixed Wyckoff letters
{a,b,c,d} with multiplicity 2. Their possible combinations form the extensive search space of TiO, (full formula:
TigO,4). Despite the successful prediction of the Wyckoff letter configuration Ti : 4i,Ti: 4i,0:4i,0:4i,0:4i,0: 4i
facilitated by the Wyckoff letter predictor, the generation of precise atomic coordinates remains unsuccessful (figure 6
(X

As illustrated in Figure 7, many of the predicted structures that were determined to be failures were metastable
structures that have been reported experimentally. For example, for T10250, the anatase type is the most stable structure
according to first-principles calculations, whereas the predicted structure is the rutile type, which is known to be a
metastable state. The true stable structure of Si;N 45 I'is known to be a hexagonal structure, beta-Si;N,, but the predicted
structure is the willemite-II type, which was reported as a metastable structure by DFT calculations. In many cases,
even the predicted crystal structures that were judged to be failures partially captured the structural features that are
similar to the true structure. For example, the predicted structures of ZrO, and LiP(HO,), did not precisely match the
true structures but differed only slightly in atomic positions, as shown in Figure 7. The energy difference between the
true and predicted structures of these compounds is < 5 meV/atom. Although stable structures are often not predicted
with full accuracy for low-symmetry compounds, metastable structures or partial structural patterns can be predicted
using our method.

We also evaluated the predictive performance of our method in quite challenging scenarios using Dataset III,
resulting in a notably low accuracy of 6.7% (see Table S1 in the Supplementary Information). Despite this low accuracy,
it is worth mentioning that the rather complex crystal structures of Alg(Pb;0,); and Mg, (B 4Ir,y could be accurately
predicted. However, predicting crystal structures for more complex systems will require additional computational
resources and enhanced methodologies.

Comparison with USPEX

The CSP tasks for Datasets I and II were conducted using USPEX, applying the calculation conditions outlined in the
Methods section, with the assumption that the ground-truth space groups are known. The USPEX calculations were
executed on the SQUID supercomputer system at Osaka University, which has two Intel Xeon Platinum 8368 CPUs
with 76 cores running at 2.40 GHz at each node?. Each crystal calculation was allocated to one node, with the number
of MPI cores set to 38 when the number of calculated atoms was less than 38, and set to 76 otherwise.

By using the settings described in the USPEX calculation inputs section in the Supplementary Information, only
tasks involving small unit cell systems (containing approximately 20 atoms in the primitive unit cell) were successfully
completed, with 13 and 12 finalized for Datasets I and II, respectively, within the allocated computing resources. For
these completed tasks, the USPEX demonstrated a high prediction accuracy, achieving 76.9% and 75.0% for Datasets I
and II, respectively. The median number of structural relaxation calculations performed was 167, with computations
taking 37.7 hours on the designated supercomputer system. In comparison, our method utilizing the Wyckoft position
generator for the same set of 25 benchmarks yielded an accuracy of 84.6% and 83.3% for Datasets I and II, respectively
(Table S5). The median number of structural relaxation calculations performed was 172, with computations taking
21.4 hours. Note that while USPEX was conducted with the given true space group, our method searched for all 30
space groups. The enhancement in both accuracy and time efficiency stemmed from conducting structural relaxation
exclusively on promising candidate structures with lower energy, guided by the machine learning energy predictor.
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Table 1. Performance of the CSP algorithm with element substitution and Wyckoff position random crystal structure
generators for the 40 crystals comprising Dataset I. The top 10 virtual structures with the lowest DFT energies from the
two generators were proposed as the final candidate, respectively. The Number of atoms column shows the number of
atoms in the primitive cell. The symbols of the v" and x indicate success and failure, respectively. The — denotes no
template for element substitution or unfinished searching tasks. Additionally, in the Wyckoff position generation
column, the symbols on either side of the slash within parentheses indicate whether the Wyckoff pattern was
successfully generated and whether the space group prediction was successful, respectively, and in the element
substitution column, the symbols in parentheses indicate whether a similar template structure (7 < 0.2) was found.

Composition | Number of atoms Space group Wy;fsigg{s):mn sulf)lsetliltls:;:)n
C 4 R3m v VIV v (V)
Si 2 Fd3m v V1Y) v (V)
GaAs 2 F43m vV IV) v (V)
7ZnO 4 P63mc vV VIY) v (V)
BN 4 P63 /mmc v VIV v (V)
LiCoO, 16 R3m v V1Y) v (V)
Bi,Te, 5 R3m v VIV v (V)
Ba(FeAs), 5 14 /mmm vV VIV v (V)
Sio, 6 142d v VIV X (V)
VO, 6 P4, /mnm v VIV v (V)
La,CuO, 7 14 /mmm x (V' IV) v (V)
LiPF 8 R3 v (IV) v (V)
Al O, 10 R3c v V1Y) v (V)
SrTiO, 10 I4/mcem vV IY) v (V)
CaCO;, 10 R3c v V1Y) v (V)
TiO, 12 C2/m X (X /1Y) X (V)
710, 12 P2i/c v V1Y) v (V)
ZrTes 12 Cmcem v vV IV) v (V)
V,05 14 Pmmn vV IY) X (X)
Si;N, 14 P63/m v VIV v (V)
Fe,0, 14 Fd3m v VIV v (V)
Mn(FeO,), 14 Fd3m V1Y) v (V)
ZnSb 16 Pbca v VIV v (V)
CoSb, 16 Im3 v VIV v (V)
LiBF, 18 P3,21 v VIV v (V)
Y,Co,, 19 R3m v VIV v (V)
GeH, 20 P2,2,2; v VIV v (V)
CsPbl, 20 Pnma x (X 1Y) v (V)

NaCaAIPHO,F, 24 P2y /m X (X /1Y) —

LiFePO, 28 Pnma v V1Y) v (V)
Cu;,Sb,S,; 29 I43m v VIV v (V)
MgB, 32 Imma X IV) X (X)
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Table 1 continued

Composition | Number of atoms Space group Wy;:;‘:g:gz‘;mn suI;:)ls?iItl:;:li:)n

Li,PS, 32 Pnma vV IY) X (%)
Cd;As, 80 14y /acd v IV v (V)
Li TisO,, 42 C2/c vV VIV v (V)
Ba,CaSi,(BO;), 46 I42m X (X /1Y) X (X)
AggGeS, 60 Pna2, x (V1Y) v (V)
Nd,Fe,,B 68 P4y /mnm X (X /1Y) v (V)
Y;AlL;0,, 80 la3d v V1Y) v (V)
Ca; ,MnSb,, 104 14, /acd x (W IV) v (V)

Overall 31/40=775%  33/40 =82.5%

Table 2. Performance of the CSP algorithm with element substitution and Wyckoff position random crystal structure
generators for the 40 crystals comprising Dataset II. The top 10 virtual structures with the lowest DFT energies from
the two generators were proposed as the final candidate, respectively. The Number of atoms column shows the number
of atoms in the primitive cell. The symbols of the v" and x indicate success and failure, respectively. The — denotes no
template for element substitution or unfinished searching tasks. Additionally, in the Wyckoff position generation
column, the symbols on either side of the slash within parentheses indicate whether the Wyckoff pattern was
successfully generated and whether the space group prediction was successful, respectively, and in the element
substitution column, the symbols in parentheses indicate whether a similar template structure (7 < 0.2) was found.

Composition | Number of atoms Space group Wygtzgggzﬁmn suElj)lsiIiItls::li:)n
CsCl 2 Fm3m vV IV) v (V)
MnAl 2 P4 /mmm vV 1Y) v (V)
HoHSe 3 P6m2 VI IY) v (V)
ErCdRh, 4 Fm3m v V1Y) v (V)
Eu,MgTI 4 Fm3m V1Y) v (V)
Pm, Nilr 4 Fm3m vV VIY) v (V)
VP, 4 14 /mmm v VIV v (V)
Gd(SiOs), 5 14 /mmm v VIV v (V)
LaAl;Au 5 I4mm vV IV) v (V)
U,SbN, 5 14 /mmm v VIV v (V)
MnGa(CuSe,), 8 14 VIV v (V)
SmZnPd 9 P62m vV IV) v (V)
Sn(TePd,), 9 I4mm X (X [ %) v (V)
VsS, 9 I4/m vV VIV v (V)
Cs;InF, 10 Fm3m v V1Y) v (V)
Eu(CuSb), 10 P4 /nmm v V1Y) v (V)
Rb,TIAgCl, 10 Fm3m v V1Y) v (V)
Ca;Ni;B, 12 R3m v VIV v (V)
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Table 2 continued

Composition | Number of atoms Space group Wygcz?g:&s:;mn sulf)ls?il:s:li:)n
DyPO, 12 14 /amd vV 1Y) v (V)
LaSilr 12 P23 vV VIY) v (V)
SmVO, 12 14 /amd vV vV IVY) v (V)

VCl, 12 P1 X (V1Y) v (V)
YbP; 12 P2y/m X (V' I1V) v (V)
Eu(Al,Cu), 13 I4/mmm v VIV v (V)
Zr,0 15 R3 x (X 1 x) X (X)
K,Ni;S, 18 Fddd vV VIY) v (V)
Sr(Cl03), 18 Fdd2 v 1Y) v (V)
LiSm,IrOy 20 P2 /c X (V1Y) v (V)
Pr,ZnPtO, 20 P2y /c x (V' IV) v (V)
Sc,Mn,,P; 21 P6 v vV IV) v (V)
LaSi,Nig 24 141/amd vV IY) v (V)
CeCusSn 28 Pnma v vV IvV) v (V)
LiP(HO,), 32 Pna?2, X (V1Y) v (X)
Mg,Si,H,0O, 36 P63cm X (X [ X) X (X)
Y, SisIry 36 P63 /mmc vV IY) —
Na(WO;)y 37 R3 v V1Y) —
SmgNi,As, 5 39 P6 (VIV) v (V)
BaCaGaF, 40 P2/c X (V1Y) v (V)
Tm,,;Sn,, 42 I4/mmm vV VIV v (V)
AlH,(ClO,), 44 R3¢ X (X [ X) v (V)
K,ZrSi,0, 48 P2i/c vV IY) v (X)
Ba;Ta,NiO, 60 P3ml vV IY) X (X)
LiZr,(PO,), 72 P2 /c X (X /1V) v (V)
KsAg,(AsSe,), 76 Pnma v Iv) —
Be,Ru, 80 Im3 X (X 1Y) v (V)
Cu;Pg(S,Cl), 80 Pnma X (X /1V) v (V)
Al,CoO, 84 P3ml X (X [ X) v (V)
LigV;P30,9 92 Pl X (V' IV) v (%)
ReBi;Oq4 96 P23 v vV IY) v (V)
NasFeP,(0,F), 288 Pbca X (X /1V) -
Overall 34/50 =68.0%  43/50 = 86.0%

Discussion

This paper presents a machine-learning workflow for the efficient prediction of stable crystal structures with no iterative
calculations. The essence of the proposed method is the shotgun-type virtual screening of crystal structures, in which a
surrogate model that predicts DFT energy is simply used to screen a large number of virtual crystal structures, and
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Figure 7. Examples of crystal structures predicted by the proposed CSP algorithm (depicted with VESTA? version
3.5.8). For each method (using the Wyckoff position generator or randomized element substitution), the predicted
structures with the two lowest DFT energies are shown with the true stable structures.



the efficiently narrowed-down candidate structures are then relaxed by DFT calculations to predict the stable crystal
structures. The technical components that play key roles in this workflow are the surrogate model for energy prediction
and the crystal structure generators. To train the surrogate model for DFT energy calculations, transfer learning of
the pretrained CGCNN was performed to decrease the number of training samples generated with DFT single-point
calculations. To create virtual libraries of candidate crystal structures, a generator based on elemental substitutions
in template crystals and a generator based on random combinations of Wyckoff positions were developed and tested.
Of the 90 known crystal structures (Dataset I and II) with a wide range of chemical compositions, symmetries, and
structure types, the workflows using the generator based on element substitution and the Wyckoff position generator
predicted 84.4% and 74.4% of the true structures, respectively. For the 25 USPEX tested benchmarks, our Wyckoff
position generator-based approach outperformed the prediction accuracy of USPEX by around 10%, which is the
most widely used crystal structure prediction software that showed a prediction accuracy of 76.0%. Existing recursive
algorithms that iterate over DFT calculations have not been thoroughly and comprehensively evaluated in terms of their
prediction performance owing to their exceedingly high computational cost. To the best of our knowledge, our method
is the simplest crystal structure prediction algorithm currently available. One of the contributions of this study is that
this simple approach can efficiently solve many crystal structures that cannot be predicted using conventional methods,
such as lower-symmetry structures and huge unit cell systems.

The comparison of the element-substitution-based generator and the Wyckoff position generator showed that the
prediction performance of the former was significantly better than that of the latter. Given a known template structure,
the element-substitution-based generator was shown to be able to predict the stable structure with almost perfect
accuracy, and approximately 98.0% of stable or metastable crystals in the Materials Project are known to have a
counterpart that can act as a template structure. Therefore, it is estimated that many crystal systems can be predicted
using element-substitution-based crystal-structure predictions. By contrast, while, in principle, virtual screening based
on the Wyckoff position generator can predict new crystal structures, its prediction accuracy in benchmarking was
not very high. The bottlenecks of this approach are the prediction accuracy of the space group and the limited ability
of the Wyckoff position generator. With the current workflow, the upper bound of the accuracy of the top 40 space
group predictors was approximately 94%. Even if the space group can be appropriately identified, the number of
possible combinations of Wyckoff positions becomes too large for large systems with a large number of atoms, making
it significantly difficult to generate true structures.

Methods

Template-based structure generation by elemental substitution
The calculation procedure is as follows:

1. Extract a template structure with the same composition ratio as the query composition X from 33,040 stable
structures in the Materials Project database

2. Replace elements in the template with elements that have the same number of atoms in X. If the substitution
target is not uniquely determined, substitute the element with the smallest Euclidean distance in XenonPy’s
58-dimensional element descriptors.

3. Convert the chemical compositions of the template structures to the 290-dimensional descriptors in XenonPy,
and apply DBSCAN clustering to group the template structures

4. Extract template sets that belong to the same group as X. Furthermore, using the StructureMatcher module of
pymatgen, remove structurally redundant templates to obtain a unique template set (the number of templates is

Ktemp)~
5. Estimate the lattice constant using a model that predicts the volume from the composition X.

6. Add perturbations to the atomic coordinates of each template following the uniform distribution U (—0.05,0.05).

7. Add perturbations to the volume of the unit cell of each template following the uniform distribution U (—0.1,0.1).

Wyckoff position generator
The calculation procedure is as follows:
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1. Predict the space group and the probabilities of Wyckoff letters of the query composition X = Xgl XCZ2 - XZ;
under each predicted space group.

2. Extract the set W = {(I;,m;)|i = 1,..., j} of Wyckoff letters /; and multiplicity m; for a predicted space group.

3. Randomly sample an element ¢ from composition X and a possible Wyckoff letter / with the predicted probability
p of composition X from set W, then assign [ to ¢ with its multiplicity m.

4. Remove the assigned atoms from composition X and define the remaining composition as new X.

5. Remove the used Wyckoff letter / from the set W if the Wyckoff position is exclusive and re-normalize the
probability of remaining Wyckoff letters.

pi=pi/ Y. pi

6. Do 3-5 until all atoms are assigned.

7. Determine the fractional coordinate of atomic sites to which the same Wyckoff letter is assigned. If the Wyckoff
position coordinate (x,y,z) of the atomic sites are allowed to vary, each coordinate position is sampled from a
uniform distribution U (0, 1).

8. Estimate the lattice constant using a model that predicts the volume from the composition X. Add perturbations
to the volume of the unit cell of each template following the uniform distribution U (—0.1,0.1).

Fine-tuning of CGCNN

To obtain a CGCNN localized to the energy prediction of a specific system with composition X, the pretrained global
CGCNN model from Xie & Grossman” was fine-tuned on a randomly generated conformations and their formation
energies from each CSP algorithm. We generated 100 training crystal structures for each candidate space group given
by the space group predictor in the Wyckoff position generation approach or 10 training crystal structures for each
selected template in the element substitution approach. The pretrained model was copied to the target model, except for
the output layer. Subsequently, a new output layer was added to the target model, and its parameters were randomly
initialized. We then trained the target model on the target dataset. The hyperparameters learning rate and gradients
clipping value were optimized by performing a grid search with range {0.01,0.008,0.006,0.004,0.002}, respectively,
with the early stopping of the MAE of the validation set. The number of epochs was fixed to 350.

DFT calculation

All DFT calculations were performed using the Vienna Ab initio Simulation Package (VASP, version 6.1.2)3* with
projector-augmented wave pseudopotentials*’. The exchange-correlation functional was considered using the Perdew—
Burke—Ernzerhof formulation®> of the generalized gradient approximation. The Brillouin zone integration for the unit
cells was automatically determined using the I'-centered Monkhorst—Pack mesh function implemented in the VASP
code. Single-point calculations (also called self-consistent field calculations) were performed on unrelaxed crystal
structures that were virtually created to produce a training set for fine-tuning the pretrained CGCNN. The geometry of
the final selected candidate structure was locally optimized by performing DFT calculations. We used the MPStaticSet
and MPRelaxSet presets implemented in pymatgen®®, with significant modifications to generate the inputs for all VASP
calculations (See VASP calculation inputs section in the Supplementary Information).

Structural similarity

To calculate the similarity between two structures i and j, we encoded the given structures into a vector-type structural
descriptor with their local coordination information (site fingerprint) from all sites®’. Then, the structure similarity
T was calculated as the Euclidean distance between the crystal structure descriptors. Note that the criterion contains
no elemental composition information and gets insensitivity for the low-symmetry structures. The calculations were
performed by Matminer>®, which is an open-source toolkit for materials data mining, with the same configuration as the
Materials Project officially used. We visually inspected the difference between structures for different 7. In this study,
structures with dissimilarity 7 < 0.2 were treated as similar structures.
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USPEX calculation

The USPEX calculations were performed using the official UPSEX package (version 10.5)°°. We specified the cal-
culation parameters calculationMethod, calculationMethod, and calculationMethod as “USPEX”,
“300”, and “enthalpy”, respectively, to perform the crystal structure prediction task for bulk crystal using the evolutionary
algorithm (EA). The EA-related parameters were specified according to official recommendations®. For example,
the number of structures in each generation was set to 2 x N rounded to the nearest ten, where N is the number of
atoms. The calculation was terminated if the best structure did not change over M generations, where M = round N to
the nearest ten (See the USPEX calculation inputs section in the Supplementary Information). Structural relaxation
was executed automatically using the VASP (version 6.1.2) package combined with the projector-augmented wave
pseudopotentials. The VASP calculation settings were the same as those described in the DFT calculation section.

Compositional descriptor
The chemical formula is X = Xcl1 Xcz2 X 5( where X denotes a chemical element and ¢y, is its composition ratio. Each
element of the descriptor vector of length 290 takes the following form:

(Pg,ﬂ(X):g(cla'"7CK7n(X1)""7n(XK))' 2

The scalar quantity 1(X*) on the right-hand side represents a feature value of the element X*, such as the atomic weight,
electronegativity, and polarizability. Using function g, the element features 1(X"'),...,n(XX) with compositions
c!,...,cK are converted into compositional features. For g, we use five different summary statistics: weighted mean,
weighted variance, weighted sum, max-pooling, and min-pooling as given by

1 K
ave S)=—=%—— k Sk7
Pave,n (S) Ziilckk;c n(s")
LN ko ck 2
¢var,n(S) =K % ZC (77(5 )_(pave,n(s)) s
Yie1 ¢t iz

‘Pmax,n (S) = maX{n(S1)7 EEER) n(SK)}7
¢min,n (S) = min{n(sl)7 ) n(SK)}

We used 58 distinct elemental features implemented in XenonPy. The full list of the 58 features is given in Liu et
al.*, including the atomic number, covalent radius, van der Waals radius, electronegativity, thermal conductivity, band
gap, polarizability, boiling point, melting point. In summary, composition X is characterized by a 290-dimensional
descriptor vector (= 58 x 5).
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Benchmark datasets

Dataset I consists of 40 stable crystal structures selected based on the diversity of the number of atoms in the unit cells,
space groups, etc. Dataset II consists of 50 stable materials randomly selected from the Materials Project database.
The chemical compositions and space groups are listed in Tables 1 and 2 in the main text. The crystal structures are
visualized in Figure S5. Figure S1 shows histograms of the number of atoms in the crystal structures of Datasets I and
II. The ranges of the number of atoms in Datasets I and II are [2, 104] and [2, 288], respectively. The average number
of atoms = standard deviation is 23.13 +-24.09 and 32.68 +-45.41, for Datasets I and II, respectively. In addition, as
Dataset I1I, 30 stable structures for which no template exists were randomly selected from the Materials Project. As
shown in Table S1, most of the crystal structures in Dataset III have a much larger number of atoms in the unit cell than
in Dataset I and II, distributed in the rage [22, 152] with the average atomic number of 66.50 + 34.40.
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I 1 Dataset Il
201
I= I
S 151 I
o
O
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Number of atoms

Figure S1. Histograms of the number of atoms in unit cells in Datasets I, IT and III.

Energy predictions

We have employed transfer learning to fine-tune the crystal graph convolutional neural network (CGCNN) model, which
was introduced by Xie et al.” for the prediction of formation energies of virtually generated crystal structures. The
CGCNN model was first pre-trained on a substantial dataset comprising 126,210 crystal structures extracted from the
Materials Project database. The 120 benchmark crystal structures were deliberately excluded from the training data. For
a given composition, single-point DFT calculations were performed on 1,000 generated virtual structures to evaluate
their energies. The energies were then used to fine-tune the composition-specific model by transfer learning.

All these calculations were executed on the supercomputer Al Bridging Cloud Infrastructure (ABCI)? utilizing 20
cores of an Intel Xeon Gold 6148 CPU per job. Table S2 provides a comprehensive summary of the computational cost
associated with single-point DFT calculations for the 40 cases in Dataset I, showing the average, standard deviation,
minimum, 25th, 50th, 75th percentiles, and maximum of computational time measured in seconds. In most cases, for
example, composition with less than 30 atoms in the unit cell, calculations were finished in less than 2 minutes. Other
compositions with large unit cells, such as Y;Al;O,, and Ca;,MnSb, |, need more than 30 minutes to run.



Table S1. Performance of the CSP algorithm with Wyckoff position random crystal structure generators for 30
randomly selected stable crystals from the Materials Project for which no template exists that comprise Dataset III. The
top 10 virtual structures with the lowest DFT energies were proposed as the final candidate. The v" and x symbols
indicate success and failure, respectively. In the Wyckoff position generation column, the symbols on either side of the
slash within parentheses indicate whether the Wyckoff pattern was successfully generated and whether the space group
prediction was successful, respectively.

Composition Number of atoms Space group Wyckoff p?sition
generation
Ba;SigN,O, 22 P3 X (X [ %)
Ho,,Te;S, 27 Pl X (X 1Y)
Ti;;AlyCog 30 R3m X (X /1Y)
K,,LiMn, O 32 142m X (X 1Y)
BaSrMn, Al,PbO,, 34 P1 X (X 1Y)
RbNa,Li;,TifO6 36 I4/m X (X [ %)
B,((Pb,0,), 37 P1 X (X 1Y)
Nb,,Br;F 3 42 P1 X (X 1Y)
Na,PuH,0O, 42 Pl X (X 1Y)
RbLa,C4N,CIO, 44 P63/m X (X 1Y)
Mg, (Bl g 45 I43m v vV IV)
LiMn,;Al,(HO,), 48 P1 X (X 1Y)
Nag Al SicCO,, 48 R3 X (X [ x)
Sr,6Vg05 55 P1 X (X /1)
Nd,,Zn,;Sn, 60 Pm X (X 1Y)
H3S0,, 62 Ce X (X /V)
Cs,o(Mo,Ny), 62 R3c X (X 1Y)
La;;Al,(Si3N;); 63 F43m X (X [ x)
Ba, Vs (PO), 70 Cm X (X [ %)
Ba, Li,Bi,0,, 74 Pmc2,y X (X 1Y)
BigAsAuCl, 76 P2 /c X (X 1Y)
BagNb,S,, 78 P2i/c X (X 1Y)
KBagZn,(GaO;), 78 P1 X (x /%)
Al,Si;Hg(NOy), 100 P2, X (X /V)
H,5S,N;0, 104 P2/c X (X ] x)
KNa;Al,,H,,(SO;)q 104 P2/m X (X [ x)
ErgAly, Crg 106 P31m X (X /1Y)
K;Fe;P,H,0 116 Pnna X (X 1Y)
Ta,P,S, 148 P4,2,2 X (X [ %)
Alg(Pb;0,), 152 Pa3 v V1Y)

Overall 2/30=6.7%

Space group predictor

Using 33,040 stable crystal structures obtained from the Materials Project database and their space groups, we
constructed a fully connected neural network model that classifies any composition into one of the 212 space groups.
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All samples of the 120 benchmark crystal structures were removed from the dataset. The split ratios of the training
and test sets were 80% and 20%, respectively. 5-fold cross-validation was looped with the training set to identify the
hyperparameter pairs with the highest average prediction accuracy. Using the validation set, the hyperparameters of
the models were selected by Bayesian optimization using the Optuna Python library (the number of trials was set to
200)* from the candidate set, the number of layers = {2,3,4}, the dropout ratio = {0,0.1,0.2}, and the number of
neurons for each layer was set to N X k. Here, N denotes the number of neurons in the previous layer. k = 0.8 ~ 0.95
is the hyperparameter. Finally, we calculated the predictive performance on the test set of the neural network trained
using the hyperparameters selected by optuna. Random data partitioning was repeated 100 times independently to
examine the mean and variance of prediction accuracy. The top 10 precision, recall, and F; scores are 0.8535(20.0053),
0.8535(+0.0054), and 0.8535(+0.0054), respectively. Figure S2 shows the recall rate versus the number of training
data points for each space group. The top 10 recall rates varied widely from 0.0000(£0.0000) to 0.9922(+0.0031)
among the different space groups. The variability of the recall rates was partially correlated with the number of training
instances in each space group.

Here, there is a concern that if there is a significant bias in the pattern of composition ratios in the dataset, the
prediction performance on the test instances having many identical composition ratios in the training set tends to be
higher. We denote by S the upper bound on the number of samples with the same composition ratio in the training
dataset. To address our concern, we evaluated the sensitivity in the prediction accuracy of the trained models when the
upper bound on the number of samples, S € {10,50, 100}, was varied. As shown in Figure S3, it was confirmed that the
prediction performance did not vary significantly.

Prediction of unit cell volumes

Using 33,040 stable crystal structures from the Materials Project database and their cell volumes, we constructed a
fully connected neural network model for the prediction of the unit cell volume for any composition. All samples of
the 120 benchmark crystal structures were removed from the dataset. The split ratios of the training and test sets were
80% and 20%, respectively. 5-fold cross-validation was performed with the training set to identify the hyperparameter
pairs with the highest average prediction accuracy. Using the validation set, the hyperparameters of the models were
selected by Bayesian optimization using the Optuna Python library (the number of trials was set to 200) from the
candidate set, number of layers = {2,3,4}, dropout ratio = {0,0.1,0.2}, and the number of neurons in each layer was
set to N x k. Here, N denotes the number of neurons in the previous layer. k¥ = 0.8 ~ 0.95 is the hyperparameter.
Finally, we calculate the predictive performance of the test set of the MLP model trained on the training set using the
hyperparameters selected by Optuna. The mean absolute error (MAE), root mean square error (RMSE), and R? of
the predictions for the test set were 53.048 (£3.177) eV, 90.362 (£6.007) eV, and 0.973 (£0.004) eV, respectively.
Performance metrics were averaged over 100 bootstrap sets.

VASP calculation inputs

In the DFT calculation workflow, the generation of VASP “INCAR” files was executed through a Python script,
leveraging the MPStaticSet and MPRelaxSet presets from pymatgen®, with modifications to suit our specific research
needs. The script is used to iterate through a dataset of structures, implementing a series of relaxation steps, each
uniquely parameterized to optimize the computational process and the accuracy of results.

Step 1: Initial Relaxation

— Utilizes MPRelaxSet with lower accuracy for coarse relaxation.
— Modified parameters include:

* ALGO=Fast for quick electronic minimization.

#* EDIFF=1e-2, EDIFFG=1e-1 for looser convergence criteria.

* ISIF=4 torelax ion positions, cell shape, and volume.

* PREC=LOW and POTIM=0.02, NSW=90 for ionic relaxation settings.

Step 2: Intermediate Relaxation



— Continues with MPRelaxSet for further relaxation.

— Parameters include EDIFF=1e-3, EDIFFG=1e-2 for tighter convergence, and IBRION=1 for conjugate
gradient algorithm.

— PREC=Normal and POTIM=0. 3 set for moderate accuracy.
Step 3: Further Relaxation

— Utilizes MPRelaxSet to balance accuracy and computational efficiency.

— Includes IBRION=2, ISIF=3, and SIGMA=0. 1 for consistent relaxation and electronic convergence.
Step 4: Pre-static Calculation

— Employing MPRelaxSet with a focus on higher accuracy.

— Key parameters include EDIFF=1e-4, EDIFFG=1e-3 for tight convergence and PREC=Accurate for
enhanced precision.

Step 5: Static Calculation

— Uses MPStaticSet for final static computations.

— Parameters such as ALGO=Fast, EDIFF=1e-4 for electronic minimization, and IBRION=-1, ISMEAR=-5
tailored for static calculations.

— PREC=Accurate, SIGMA=0.05, and NSW=0 ensure high precision and no ionic relaxation.

It is important to note that for all calculations, we use a consistent plane-wave cutoff energy ENCUT=520 eV.
This parameter choice ensures sufficient accuracy across all types of calculations, from initial relaxation to final static
analysis, and is a crucial factor in achieving reliable and consistent results in our simulations.

The configuration of these VASP settings is strategically designed to ensure the stability and applicability of the
structure optimization process, while also considering computational efficiency. For simpler compounds like carbon (C)
and silicon (Si), comprising fewer atoms, we optimized computational speed by strategically adjusting parameters such
as “NELM”, “NSW”, and “EDIFF”. These adjustments facilitate a faster calculation process without compromising the
integrity and reliability of the simulation results.

USPEX calculation inputs

In this study, we developed a Python script for the systematic generation of input files for USPEX calculations,
adhering closely to the official guidelines. A template file, meticulously prepared, serves as the foundation for this
process. It encompasses placeholders representing essential parameters for USPEX calculations, including aspects of
the evolutionary algorithm, population settings, and variation operators.

For each specific composition and its corresponding ground-truth structure, the script performs a detailed extraction
of elemental types and quantities, along with space group information. These extracted values are then meticulously
substituted for the respective placeholders in the template, namely atomType, numSpecies, and symmetries.

The parameter populationSize is meticulously calculated by aggregating the quantities of each constituent
element within a structure and rounding this sum to the nearest ten. This calculation is subject to an upper limit of 60,
a constraint implemented to maintain computational efficiency. Parallelly, the stopCrit parameter is derived in a
congruent manner, employing the total atom count, rounded up to the nearest ten, to define the termination criterion for
the evolutionary exploration.

Furthermore, the fracAtomsMut parameter is judiciously set to 0.20 for compositions comprising a single
element, reflecting a higher mutation rate apt for systems of lesser complexity. Conversely, for compositions featuring
multiple elements, this parameter is reduced to 0.10, acknowledging the intricate complexity and potential variations in
the energy landscape of such systems.

Lastly, the keepBe st HM parameter is calculated as 15% of the populationSize, and this value is then rounded
to the nearest whole number. This approach is strategically designed to strike a balance between preserving the most



promising structures from the current generation and fostering the exploration of novel configurations in ensuing
generations.

This methodical and rigorous parameterization process ensures that each generated “INPUT.txt” file is exquisitely
tailored to the unique attributes of each individual structure, thereby optimizing the efficacy and precision of the
evolutionary algorithm within USPEX. To exemplify this process, we present the “INPUT.txt” file for the composition
Ags,Ge,S,, as a demonstrative case.

s s sfe sfe she sk sk sk sk sk sk skoskoskoskokekeok kot kool

TYPE OF RUN AND SYSTEM
sk skeoske s sk sk skeosk s ke sk skeosk skt sk skosk sk sk skosk skk skok
USPEX : calculationMethod

300 : calculationType

1 : AutoFrac

% optType
1
% EndOptType

% atomType
AgGe S
% EndAtomType

% numSpecies
32424
9% EndNumSpecies

% symmetries
33
9% EndSymmetries

sk sk sk sk skeoskoskeoskokokokokok

POPULATION

sk sk sk sk sk sk sk skoskoskokokok

60 : populationSize
60 : initialPopSize
100 : numGenerations
0.00 : reoptOld

0.60 : bestFrac

9 : keepBestHM

60 : stopCrit

sk sk sk sk sk sk sk sk sk skoskoskokokokokokokokokokokok

VARIATION OPERATORS
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DBSCAN clustering

DBSCAN is a clustering method that forms clusters based on the density of data points. The procedures can be
summarized as follows:

1. Definition of e-neighborhood: Define the e-neighborhood for each data point using a given distance threshold €
as a parameter. This neighborhood is the set of other data points that are within a distance of € from a given data
point.

2. Identification of core points: If the e-neighborhood of a data point contains at least N, (another parameter)
data points, that data point is considered a core point.

3. Direct density reachability: Data point i is considered directly density-reachable from data point j if there is a
chain of continuous core points from i to j. This indicates that the core points are densely connected, implying
they belong to the same cluster.

4. Cluster formation: If core points are directly density-reachable, they belong to the same cluster. Consequently,
the entire dataset is divided into several clusters.

5. Identification of noise points: Data points that are not directly density-reachable from core points are considered
noise points. These points do not belong to any cluster and are isolated.

A key advantage of DBSCAN is that it does not require the number of clusters to be specified beforehand. It can
detect clusters of arbitrary shapes and identify outliers (noise points). However, selecting appropriate values for € and
Nmin can be challenging, particularly in datasets with varying densities. In this study, we set € =9 and Ny, = 10.

Details of the CSPML model

We describe the training details and model architecture of the CSPML model®. We utilized the same compositional
descriptor as explained in the Methods section. As a training set, we used a dataset consisting of 126,210 crystals from
the Materials Project, identical to the one used for training the global energy predictor in the shotgun CSP.

The dataset exhibited a significant bias towards specific composition ratios. To handle this bias, we trained and
evaluated the CSPML model in a manner slightly different from the previous paper®. First, we excluded all crystals
with the chemical compositions listed in Datasets I and II. Then, we extracted all stable structures (defined as energy
above hull = 0) from the remaining data, resulting in 33,064 stable structures, each with a unique chemical composition.
These stable structures were randomly divided into training, validation, and test datasets in approximately a 6:2:2
ratio. Due to the significant bias in the dataset towards certain composition ratios—for instance, there are 3,892
compositions with a 2:1:1 ratio out of 33,064 compositions—an upper limit was set at 1% of the data size (e.g., 100 if
the data size is 10,000) to be included in the dataset. Specifically, data with composition ratios exceeding this limit
underwent down-sampling. This down-sampling process was applied to each training, validation, and test dataset.



Finally, the following procedures were conducted; For each composition ratio with two or more compositions, stable
crystal structures with that composition ratio were selected from the dataset, and the structural dissimilarity of all pairs
of those crystal structures was calculated using the methods described in the Methods section. Pairs with a structural
dissimilarity smaller than 0.3 were considered to have similar stable structures and were divided into two groups: pairs
with a dissimilarity smaller than 0.3 (similar pairs) and pairs with a dissimilarity of 0.3 or greater (dissimilar pairs).
Since similar pairs are generally fewer relative to the total number of pairs, down-sampling was performed until the
number of dissimilar pairs equaled the number of similar pairs. If the number of similar pairs exceeded the number of
dissimilar pairs, all dissimilar pairs were selected.

To construct an model ensemble, we repeated the aforementioned procedure five times independently using different
random seeds, resulting in five distinct sets of training, validation, and test data. The number of data points for each
set, respectively, is {83,460, 8,862,9,242}, {76,860, 8,390,8,414}, {79,842,8,684,8,396}, {84,472,8,357,8,461},
and {79,016,8,739,9, 124}. While the number of similar pairs and dissimilar pairs should ideally be approximately
1:1 due to down-sampling, in practice, the number of similar pairs is only slightly higher than the number of dissimilar
pairs due to certain cases where the former exceeds the latter. For instance, in the training data of the first dataset, there
were 42,875 similar pairs and 40,585 dissimilar pairs. Similar and dissimilar pairs were labeled as 1 and 0, respectively.
Since chemical composition is represented by the 290-dimensional descriptor vector as described above, for each
composition pair, 290-dimensional composition pair descriptors were created by taking the absolute difference between
the paired composition descriptors.

The architecture of the model utilized for mapping the 290-dimensional chemical composition pair descriptors to a
binary classification of structural similarity is depicted in Figure S4. This model adopts a forward and fully connected
neural network architecture, comprising densely connected layers (Dense), rectified linear units (ReLU), dropout layers
(Dropout), batch normalization layers (Batch norm), and softmax function as the final activation function for binary
classification (Softmax). The network consists of one or more repeating structures with a dropout layer and an output
layer without dropout. All intermediate layers have an identical number of units.

The hyperparameters of the models were selected using Bayesian optimization with the Optuna Python library,
employing the validation set (with 50 trials). The hyperparameter search space includes the number of layers €
{2,3,4}, dropout rate € {0,0.1,0.2}, the number of neurons in each layer € {200,400, 600, 800, 1000}, the batch size
€ {1024,2048}, and the patience for early stopping € {50,75,100}. Each model was trained until the validation error
converged (with a patience hyperparameter varying from 50 to 100 epochs) or until reaching 1,000 epochs. The Adam
optimizer (8; = 0.9, B, = 0.999) was employed for back-propagating gradients. The training was performed using the
TensorFlow-macOS v2.9.0 library, with TensorFlow-metal v0.5.1 plug-in utilized for GPU calculations (Apple M1
Max, GPU 32 cores).

To reduce computational costs, Bayesian optimization of hyperparameters was performed using only the first
training and validation dataset. The obtained hyperparameters were then applied to train the models on all five training
and validation datasets. The hyperparameters obtained by Bayesian optimization were: number of layers = 3, dropout
rate = 0.2, number of neurons in each layer = 400, batch size = 1,024, and patience = 50.

Performance metrics such as mean average precision (MAP), mean accuracy (MACC), average precision (AP), and
accuracy (ACC) with respect to the test sets are presented in Table S3. MAP and MACC were calculated by averaging
the AP and ACC calculated for each composition ratio. The performance metrics were averaged over the five trials,
with the numbers in parentheses representing the standard deviations. These results demonstrate that the models can
accurately predict structural similarity from chemical composition pairs with identical composition ratios.

The ensemble of the five models, denoted as fi,..., f5, was leveraged to generate the predicted class label. The
probability of being classified into similar pairs is determined by (|9 (C;) — ¢(C;)|) = %22:1 f(|¢(Ci) —(Cj)|). For
the set of candidate templates, all 33,064 stable structures were utilized. Utilizing these models and the candidate
templates, crystal structure prediction was conducted on the 90 query compositions listed in Datasets I II. The
crystal structure prediction procedure aligns with the description in the Methods section of the previous paper®. The
computational environment for DFT calculations, which optimize the proposed structure through elemental replacement,
remained consistent with the details outlined in the main paper.

Up to the top 10 structures were predicted for each query composition. However, this method could not propose
any templates for eight out of 90 query compositions: NaCaAIPHOsF,, KsAg,(AsSe;);, Na(WO3)y, Lig V5P 0,4, and
Mg,Si,H,Oq4. None of the candidates shared the same composition ratio in the pool of 33,064 candidates. Additionally,



for MgB,, Ba,CaSi,(BO,),, and Y ,SisIry, none of the candidates exhibited class probabilities greater than 0.5. The
results of the crystal structure prediction are summarized in Table XX of the main paper. The data and code utilized to
train this CSPML model are available on GitHub?, enabling the reproduction of all aforementioned results.
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Table S2. Computational time measured in seconds for single-point DFT calculations of Dataset L.

Number

Standard

Composition Average . . Minimum 25% 50% 75% Maximum
of atoms deviation
C 4 14 5 5 11 13 15 39
Si 2 5 1 4 4 5 6 8
GaAs 2 10 1 7 9 10 10 15
Zn0O 4 12 6 7 9 11 13 39
BN 4 10 3 6 8 9 11 26
LiCoO, 16 17 7 9 12 14 19 46
Bi, Te, 5 16 4 11 14 15 17 37
Ba(FeAs), 5 18 5 12 16 17 20 40
Sio, 6 207 133 90 118 162 243 749
Vo, 6 33 16 12 22 30 42 103
La,CuO, 7 51 27 26 36 41 48 154
LiPF 8 17 6 9 12 15 20 39
AlL,O4 10 12 4 6 10 12 14 27
SrTiO, 10 33 14 11 24 31 41 76
CaCO;, 10 26 12 12 20 23 28 80
TiO, 12 29 15 11 20 27 34 128
710, 12 32 11 9 25 31 36 81
ZrTes 12 48 24 15 37 41 51 140
V,0s 14 45 18 24 33 40 52 133
SizNy 14 20 6 10 17 19 22 41
Fe;0, 14 75 35 14 50 69 90 173
Mn(FeO,), 14 59 29 28 40 50 64 180
ZnSb 16 45 14 7 39 45 51 86
CoSb, 16 42 27 11 31 38 49 185
LiBF, 18 66 31 25 39 57 81 102
Y,COy, 19 187 22 177 181 183 206 212
GeH, 20 33 10 20 27 31 37 87
CsPbl, 20 130 73 37 99 124 157 339
NaCaAIPHOsF, 24 124 33 92 101 123 145 198
LiFePO, 28 164 89 66 105 130 197 615
Cu,Sb,S,; 29 134 26 107 126 128 131 201
MgB, 32 38 12 9 35 39 45 59
Li;PS, 32 151 74 75 100 126 169 405
Cd;As, 80 216 31 191 199 208 217 288
Li,TisO,, 42 375 206 153 228 318 434 1077
Ba,CaSi,(BO,), 46 249 69 131 210 245 272 439
AgeGeSg 60 489 36 453 461 466 517 544
Nd,Fe ,B 68 1026 178 678 823 911 1223 1785
Y;ALO, 80 1489 233 998 1221 1366 1467 26438
Ca;,MnSb,, 104 1912 591 1005 1451 1859 2103 3424
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Figure S4. Schematic view of the architecture of a conventional MLP model for CSPML.

Table S3. Prediction performance of CSPML test dataset.

MAP MACC AP ACC
0.941 (£0.007) 0.890 (£0.007) 0.913 (£0.009) 0.864 (£0.011)
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Table S4. Prediction performance of CSPML for the 90 crystals comprising Dataset I and II. The top 10 virtual
structures were proposed as the final candidate. The Number of atoms column shows the number of atoms in the
primitive cell. The symbols of the v" and X indicate success and failure, respectively. The — denotes no template for
element substitution. Additionally, the symbols in parentheses indicate whether a similar template structure (7 < 0.2)
was found.

Composition | Number of atoms Space group sul;:)ls‘ililtll‘::lif)n
C 4 R3m X (V)
Si 2 Fd3m v (V)
GaAs 2 F43m v (V)
ZnO 4 P63mc X (V)
BN 4 P63 /mmc v (V)
LiCoO, 16 R3m v (V)
Bi, Te, 5 R3m x (V')
Ba(FeAs), 5 14 /mmm v (V)
SiO, 6 1424 v (V)
VO, 6 P4, /mnm v (V)
La,CuO, 7 14 /mmm v (V)
LiPF, 8 R3 %
ALO, 10 R3c %)
StTiO, 10 I4/mem x (V')
CaCO, 10 R3c v (V)
TiO, 12 C2/m X (V)
7:0, 12 P2, /c %
ZrTes 12 Cmcm v (V)
V,0; 14 Pmmn —
Si;N, 14 P63/m X (V)
Fe,0, 14 Fd3m v (V)
Mn(FeO,), 14 Fd3m v (V)
ZnSb 16 Pbca X (V)
CoSb, 16 Im3 v (V)
LiBF, 18 P3:21 X (V)
Y,Co, 19 R3m v (V)
GeH, 20 P21212; X (V)
CsPbl, 20 Pnma v (V)
NaCaAIPHO,F, 24 P2y/m —
LiFePO, 28 Pnma v (V)
Cu;,Sb,S,; 29 143m v (V)
MgB, 32 Imma —
Li,PS, 32 Pnma x (V)
Cd;As, 80 14, /acd X (V)
Li,TisO,, 42 c2/c %)
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Table S4 continued

Composition | Number of atoms Space group suI;:)ls?iItll(;:li:)n
Ba,CaSi,(BO,), 46 I142m —
Ag;GeS, 60 Pna2; v (V)
Nd,Fe,,B 68 P4, /mnm x (V')
Y,ALO,, 80 1a3d -
Ca,;,MnSb, 104 14y /acd v (V)
CsCl 2 Fm3m v (V)
MnAl 2 P4 [mmm v (V)
HoHSe 3 P6m2 v (V)
ErCdRh, 4 Fm3m v (V)
Eu,MgTI 4 Fm3m v (V)
Pm, Nilr 4 Fm3m v (V)
VP, 4 14 /mmm v (V)
Gd(SiOs), 5 14 /mmm v (V)
LaAl;Au 5 14mm v (V)
U,SbN, 5 I4/mmm v (V)
MnGa(CuSe,), 8 14 v (V)
SmZnPd 9 P62m v (V)
Sn(TePd,), 9 I4mm v (V)
VsS, 9 4/m %)
Cs;InF 10 Fm3m v (V)
Eu(CuSb), 10 P4 /nmm v (V)
Rb, TIAgCl, 10 Fm3m v (V)
Ca;Ni;B, 12 R3m v (V)
DyPO, 12 14, /amd v (V)
LaSilr 12 P23 v (V)
SmVO, 12 14, /amd v (V)
VCl, 12 Pl %
YbP, 12 P21 /m v (V)
Eu(Al,Cu), 13 14 /mmm v (V)
Zr,0 15 R3 X (V)
K,Ni,S, 18 Fddd v (V)
S1(ClO5), 18 Fdd2 v (V)
LiSm,IrOg 20 P2y/c v (V)
Pr,ZnPtOg 20 P2 /c v (V)
Sc,Mn,P; 21 P6 v (V)
LaSi,Ni, 24 14,/amd v (V)
CeCusSn 28 Pnma v (V)
LiP(HO,), 32 Pna2, _
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Table S4 continued

Composition | Number of atoms Space group suI;:)ls?iItls:li:)n
Mg,Si,H,Oq 36 P63cm —

Y, SisIry 36 P63 /mmc —
Na(WO5;), 37 R3 —
SmgNi,As, 5 39 P6 v (V)

BaCaGaF, 40 P2/c v (V)
Tm;,Sn,, 42 14 /mmm —
AlH,,(ClO,), 44 R3c v (V)
K,ZrSi, 0, 48 P2 /c x (V')
Ba,Ta,NiO, 60 P3ml v (V)
LiZr,(PO,), 72 P2 /c v (V)
K5Ag,(AsSe;), 76 Pnma -
Be,,Ru; 80 Im3 -
Cu;Pg(S,Cl), 80 Pnma v (V)
Al,CoO, 84 P3ml x (V')
LigV;P30,9 92 P1 -
ReBi;Oq4 96 P23 x (V')
NasFeP,(0,F), 288 Pbca X (V')
Overall 59/50 = 86.0%
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Table S5. Performance of the CSP algorithm with Wyckoff position random crystal structure generators and USPEX
for the 25 crystals from Dataset I and II. The top 10 virtual structures with the lowest DFT energies were proposed as
the final candidates for the Wyckoff position random crystal structure generation. The Number of atoms column shows
the number of atoms in the primitive cell. The symbols of the v" and x indicate success and failure, respectively.
Additionally, in the Wyckoff position generation column, the symbols on either side of the slash within parentheses
indicate whether the Wyckoff pattern was successfully generated and whether the space group prediction was
successful, respectively

Composition | Number of atoms Space group Dataset Wygcz(l):‘f.:t(i)(s)ll:wn USPEX
C 4 R3m I vV IY) v
GaAs 2 F43m 1 v 1Y) v
Zn0O 4 P63mc I vV IV) v
BN 4 P63 /mmc | v VIY) v
LiCoO, 16 R3m | vV IY) v
Bi, Te, 5 R3m I v (V1Y) X
Ba(FeAs), 5 14 /mmm | v VIY) v
La,CuO, 7 14/ mmm I X (1Y) v
Al,O4 10 R3c I vV VIY) v
S1TiO, 10 14/mem I vV VIV X
CaCO;, 10 R3c I v V1Y) v
Fe;0, 14 Fd3m I v V1Y) v
CoSb, 16 Im3 I v V1Y) v
CsPbl, 20 Pnma I X (X /1Y) X
MnAl 2 P4 /mmm II vV IY) v
HoHSe 3 Pom2 1 VW IV) v
ErCdRh, 4 Fm3m II v vV IvV) v
Eu,MgTI 4 Fm3m 11 IV v
Pm, Nilr 4 Fm3m I VIV x
LaAl;Au 5 I4mm I v V1Y) v
Ca;Ni;B, 12 R3m I v 1Y) v
LaSilr 12 P23 I v V1Y) v
SmVO, 12 141 /amd I vV IY) v
Zr,0 15 R3 I X (X [ %) v
LiSm,IrOq 20 P2y/c II x (V' I1V) X
Ba;Ta,NiO, 60 P3ml I v 1Y) X
Overall 21/25=284.0% 19/25="76.0%
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Visualization of solved structures
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Figure S5. 120 stable structures solved by the crystal stiiture prediction algorithm (depicted with VESTA! version
3.5.8). For each prediction algorithm, the structures with the two lowest DFT energies are shown.
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