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EXPLICIT SPECTRAL GAP FOR HECKE CONGRUENCE

COVERS OF ARITHMETIC SCHOTTKY SURFACES

LOUIS SOARES

Abstract. Let Γ be a Schottky subgroup of SL2(Z) and let X = Γ\H2 be
the associated hyperbolic surface. Conditional on the generalized Riemann
hypothesis for quadratic L-functions, we establish a uniform and explicit
spectral gap for the Laplacian on the Hecke congruence covers X0(p) =
Γ0(p)\H2 of X for “almost” all primes p, provided the limit set of Γ is
thick enough.

1. Introduction

1.1. Spectral gaps for congruence covers and main result. For all q ∈
N we denote by X(q) the principal congruence cover of level q of the modular
surface X = SL2(Z)\H2 and we let

λ0(q) = 0 < λ1(q) 6 λ2(q) 6 . . .

be the eigenvalues of the Laplace–Beltrami operator on X(q). In [36], Selberg
famously proved that for all q we have λ1(q) > 3

16
, and he conjectured that

for all q we should have λ1(q) >
1
4
. This remains one of the fundamental open

problems of automorphic forms, although notable progress has been made in
[17, 26, 15, 22, 21], see also the expository articles of Sarnak [33, 34].

In this paper, we consider congruence covers of quotients X = Γ\H2,
where Γ is an infinite-index subgroup of SL2(Z). Such groups, also called
“thin” groups, do not come under the purview of the aforementioned papers.
When Γ is a thin group, the Hausdorff dimension δ of its limit set is smaller
than 1 and X = Γ\H2 is an infinite-area hyperbolic surface. Moreover, the
L2-spectrum of the Laplace–Beltrami operator ∆X on X is rather sparse, see
§2.3 for more details. If δ > 1

2
, there are only finitely many eigenvalues that

all lie within the interval
[
δ(1− δ), 1

4

]
, and the smallest eigenvalue is equal to

λ0 = δ(1 − δ). If δ 6 1
2
there are no eigenvalues at all. Borthwick’s book [1]

is a good reference for the spectral theory of infinite-area hyperbolic surfaces.
We focus on the case δ > 1

2
and we define the multiset

Ω(X)
def
=

{
s ∈

(
1

2
, δ

]
: λ = s(1− s) is an L2-eigenvalue of ∆X

}
,

where each s is repeated according to the multiplicity of λ = s(1 − s) as an
eigenvalue of ∆X . When Γ is a subgroup of SL2(Z) and q ∈ N, we define the
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2 L. SOARES

(principal) congruence subgroup of Γ of level q as usual by

(1) Γ(q)
def
= {γ ∈ Γ : γ ≡ I mod q} ,

and we write X(q) = Γ(q)\H2 for the associated covering.
Building on earlier work of Sarnak–Xue [35] for cocompact arithmetic1

subgroups, Gamburd [11] proved the first analogue of Selberg’s 3
16
-theorem in

the infinite-area setting:

Theorem 1.1 (Gamburd [11]). For every finitely generated subgroup Γ ⊂
SL2(Z) with δ > 5

6
and for every large enough prime p we have

(2) Ω(X(p)) ∩
(
5

6
, δ

]
m
= Ω(X) ∩

(
5

6
, δ

]
,

where for any two multisets A and B we write A
m
= B if and only if the

multiplicities of all elements are the same on both sides.

Theorem 1.1 implies that the second eigenvalue of the Laplace–Beltrami
operator on X(p), if existent, satisfies

λ1(p) > min

{
5

36
, λ1(1)

}
.

Selberg’s 3
16
-theorem and Gamburd’s 5

36
-theorem have been extended as fol-

lows:

Theorem 1.2 (Bourgain–Gamburd–Sarnak [3]). For every finitely generated
subgroup Γ ⊂ SL2(Z) with δ > 1

2
there exists c = c(Γ) > 0 such that for all

square-free q ∈ N we have

(3) Ω(X(q)) ∩ [δ − c, δ]
m
= Ω(X) ∩ [δ − c, δ] .

Analogous statements in terms of resonances when δ 6 1
2
have been estab-

lished by Oh–Winter [29] and Bourgain–Kontorovich–Magee [18], see also [38].
The disadvantage of Theorem 1.2 (as with the results in [29, 18, 38]) is that
it does not provide an explicit gap. Apart from the intrinsic interest of this
problem, explicit spectral gaps have many applications to concrete dynamical
and arithmetic questions, see for instance [23, 4, 24, 14, 9].

Recently, Calderón–Magee [6] improved Theorem 1.1 when Γ is an arith-
metic Schottky group. Schottky groups stand out, among other Fuchsian
groups, by their simple geometric construction, which we recall in §2.6.

Theorem 1.3 (Calderón–Magee [6]). For every Schottky group Γ ⊂ SL2(Z)
with δ > 4

5
and for every η > 0 there exists a constant C = C(Γ, η) > 0 such

that for all q ∈ N whose prime divisors are all greater than C, we have

(4) Ω(X(q)) ∩
[
δ

6
+

2

3
+ η, δ

]
m
= Ω(X) ∩

[
δ

6
+

2

3
+ η, δ

]
.

1We refer to [35] for the precise definition of “arithmetic” in this context
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In this paper we pursue a similar goal as in [6]. We wish to establish
explicit spectral gaps that go beyond Gamburd’s 5

36
-result. We are interested

in “Hecke” congruence subgroups of Γ:

Γ0(q)
def
=

{
γ =

(
a b
c d

)
∈ Γ : c ≡ 0 mod q

}
.

We write X0(q) = Γ0(q)\H2 for the associated cover of X . Our main result is
the following:

Theorem 1.4 (Main theorem). Let Γ ⊂ SL2(Z) be a Schottky group with
δ > 3

4
. Assume the generalized Riemann hypothesis for quadratic L-functions.

Then for any fixed η > 0 there exists a density one subset P of primes such
that for every p ∈ P we have

(5) Ω(X0(p)) ∩
[
5

6
δ + η, δ

]
m
= Ω(X) ∩

[
5

6
δ + η, δ

]
.

More precisely, for every ǫ > 0, the number of primes p not satisfying (5) and

not exceeding x is at most Oǫ(x
1− 3

δ
η+ǫ).

Clearly, since Γ(q) ⊂ Γ0(q) any eigenvalue of X0(q) is also an eigenvalue of
X(q). Thus, assuming that Γ is a Schottky group, the conclusion of Theorem
1.3 also holds for X0(p). Note, however, that δ < 1 implies

5

6
δ <

δ

6
+

2

3
<

5

6
,

so our spectral gap (5) is larger than in Theorem 1.3 which in turn is larger
than in Theorem 1.1.

By “quadratic” L-functions we mean the L-functions L(s, χd) associated
to the Kronecker symbol χd(·) =

(
d
·

)
. The generalized Riemann hypothesis

(henceforth abbreviated to GRH) for the Dirichlet character χ is the assertion
that if s ∈ C satisfies L(s, χ) = 0 and if s is a not a negative integer, then
s has real part 1

2
. In fact, our proof only requires GRH for the characters χd

with d ≡ 0 or 1 mod 4.
It would be interesting to see if the methods of this work yield interesting

and new results for similar families of lattices in SL2(R).

1.2. Thick arithmetic Schottky groups. At this point the reader may
wonder whether Schottky subgroups of SL2(Z) with δ > 3

4
actually exist.

Since this is not completely obvious we provide some explicit examples. In
fact, we can construct a sequence of Schottky groups (Γm)m∈N such that δm =
δ(Γm) → 1 as m → ∞ in the the following way:

Γm
def
= 〈g±1 , . . . , g±m〉 ⊂ SL2(Z), gk =

(
4k 16k2 − 1
1 4k

)
.

It is not hard to verify that gk maps the exterior of the disk Bk = {z ∈ C :
|z + 4k| < 1} to the interior of B−k = {z ∈ C : |z − 4k| < 1}. Clearly,
the disks B1, . . . , Bm, B−1, . . . , B−m are centered on the real line and have
mutually disjoint closures, so Γm is a Schottky group in the sense of the
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definition in §2.6. Moreover, Fm = H2 r (B1 ∪ · · · ∪ Bm ∪ B−1 ∪ · · · ∪ B−m)
provides a fundamental domain for Γm\H2. To see that δm → 1, we borrow
an argument from Gamburd at the end of his paper [11]. The base eigenvalue
of Γm\H2 equals λ0(Γm) = δm(1 − δm). On the other hand, the variational
characterization of the base eigenvalue says that

λ0(Γm) = inf
u∈L2(Fm)
∇u∈L2(Fm)

∫
Fm

|∇u|2dµ∫
Fm

u2dµ
, dµ =

dxdy

y2
.

Similarly to [11] our fundamental domain Fm is an exterior of mutually disjoint
Euclidean disks of radius one and centered on the real line. Therefore, we
can use suitable test-functions u on Fm similar to those in [11] to show that
λ0(Γm) → 0. From this we conclude that δm → 1.

1.3. Outline of proof. We now sketch the proof of our main Theorem 1.4.
The methods in the papers mentioned at beginning of the introduction [36,
17, 26, 15, 22, 21] do not easily generalize to thin groups and rather new tools
are required here. Our proof uses some of the same basic ingredients as in
[28, 6, 37] which we specialize to our setting. Eigenvalues for the Laplacian on
X are also eigenvalues for the Laplacian on any finite-degree cover X ′, such as
X ′ = X0(p). This is a direct consequence of the Venkov–Zograf formula (20).
We call an eigenvalue for X0(p) “new” if it occurs with greater multiplicity
than in X . Let λ0

p be the induced representation of the identity on Γ0(p) to Γ
minus the identity on Γ:

λ0
p

def
= IndΓ

Γ0(p)
(1Γ0(p))⊖ 1Γ.

New eigenvalues λ = s(1−s) correspond to zeros s of the twisted Selberg zeta
function ZΓ(s, λ

0
p) in the interval

[
1
2
, δ
]
. Our goal is to estimate the number of

these zeros in [σ, δ] for any 1
2
< σ < δ. To that effect, we recall the Fredholm

determinant identity

(6) ZΓ(s, λ
0
p) = det(1− Ls,λ0

p
),

where for any representation ρ of Γ, the operator Ls,ρ is the so-called ρ-twisted
transfer operator, defined in terms of the Schottky data used in the geometric
construction of Γ, see §2.8. In order to produce explicit estimates, we use
the refined transfer operators Lτ,s,λ0

p
, see §2.9. This type of operators was

introduced by Dyatlov–Zworski [8] and can be seen as “accelerated” versions
of the standard transfer operator Ls,λ0

p
, where the acceleration is governed by

a (small) “resolution” parameter τ > 0. One of the key observations of [8] is
that 1-eigenfunctions of Ls,λ0

p
are also 1-eigenfunctions of Lτ,s,λ0

p
. This implies

that zeros of (6) are also zeros of the refined zeta function

(7) ζτ (s, λ
0
p)

def
= det

(
1− L2

τ,s,λ0
p

)
.

The key point is choosing the parameter τ that yields the best upper bound
for our final estimate. Using Jensen’s formula from complex analysis, we
can estimate the number Np(σ) of zeros of (7) in the interval [σ, δ] in terms
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of the Hilbert–Schmidt norm ‖Lτ,s,λ0
p
‖HS with s ≈ σ. Estimating this norm

for an individual p seems quite difficult. However, it turns out that we can
non-trivially estimate the sum

(8)
∑

x/2<p6x
p prime

‖Lτ,s,λ0
p
‖2HS,

which is the main novelty in this paper. Thanks to an explicit formula for
the Hilbert–Schmidt norm (Lemma 2.4), the task of estimating (8) reduces to
estimating sums of characters of the representation λ0

p

(9)
∑

x/2<p6x
p prime

tr(λ0
p(γ))

for fixed γ ∈ Γ. We prove that unless γ ∈ Γ equals ±I modulo p, then

tr(λ0
p(γ)) =

(
tr(γ)2 − 4

p

)
,

where
(

·
p

)
is the Kronecker symbol modulo p. Hence, we need to understand

the asymptotic behaviour of

(10)
∑

x/2<p6x
p prime

(
d

p

)

as x → ∞ for fixed d. It is here where we invoke GRH. If d is an integer with
d = 0, 1, 2 mod 4, then χd(n) =

(
d
n

)
is a Dirichlet character of conductor at

most 4|d|. Hence, assuming GRH, we obtain that for all such d, the modulus
of (10) is bounded from above by Oǫ(x

1/2+ǫdǫ). Inserting this bound into (8)
and using some rather well-known distortion estimates for Schottky groups,
we obtain that for all τ ≫ x−2 and s ≈ σ,

(11)
∑

x/2<p6x
p prime

‖Lτ,s,λ0
p
‖2HS ≪ τ 2σ

(
τ−δx2 + x

1

2
+ǫτ−2δ

)
,

see Proposition 3.9 for a more precise statement. Taking τ ≈ x− 3

2δ , the right
hand side is Oǫ(x

1− 3

δ
(σ− 5

6
δ)+ǫ). This means that for a “typical” prime p we

have

‖Lτ,s,λ0
p
‖2HS = Oǫ(p

− 3

δ
(σ− 5

6
δ)+ǫ),

which is enough to deduce Theorem 1.4.
We point out that all the known unconditional bounds for character sums

over primes (at least those known to the author) have a rather high depen-
dency on the conductor. In our application, we need to estimate the sum
(10) with d as large as d ≈ xA for some absolute constant A > 0. Using
unconditional bounds only leads to weak (and actually useless) estimates in
(11).
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1.4. Organization of the paper. In Section 2 we gather the basic defini-
tions and tools needed for our main proof of Theorem 1.4. In particular, we
introduce Schottky groups, refined transfer operators, and we recall the re-
lation between eigenvalues and zeros of refined zeta functions. The proof of
Theorem 1.4 is then given in Section 3.

1.5. Notation. We write f(x) ≪ g(x) or f(x) = O(g(x)) interchangeably to
mean that there is a constant C > 0 such that |f(x)| 6 C|g(x)| for all |x| > C.
We write f(x) ≪y g(x) or f(x) = Oy(g(x)) to mean that C depends on y.
We write C = C(y) to emphasize that C depends on y. In this paper, all the
implied constants are allowed to depend on the Schottky group Γ, which we
assume to be fixed throughout. We write s = σ + it ∈ C to mean that σ and
t are the real and imaginary parts of s respectively. Given a finite set S, we
denote its cardinality by |S|. We use p ∼ x is a shorthand for x/2 < p 6 x.

1.6. Acknowledgments. I thank Irving Calderón and Michael Magee for
several helpful comments. I am also grateful to Irving Calderón for suggesting
a more compact formulation and a more elegant proof of Lemma 3.6, which
helped improve the presentation.

2. Preliminaries

2.1. Hyperbolic geometry. Let us recall some basic facts about hyperbolic
surfaces, referring the reader to Borthwick’s book [1] for a comprehensive
discussion. One of the standard models for the hyperbolic plane is the Poincaré
half-plane

H2 = {x+ iy ∈ C : y > 0}
endowed with its standard metric of constant curvature −1,

ds2 =
dx2 + dy2

y2
.

The group of orientation-preserving isometries of (H2, ds) is isomorphic to
PSL2(R). It acts on the extended complex plane C = C ∪ {∞} (and hence
also on H2) by Möbius transformations

γ =

(
a b
c d

)
∈ PSL2(R), z ∈ C =⇒ γ(z) =

az + b

cz + d
.

An element γ ∈ PSL2(R) is either

• hyperbolic if |tr(γ)| > 2, which implies that γ has two distinct fixed
points on the boundary ∂H2,

• parabolic if |tr(γ)| = 2, which implies that γ has precisely one fixed
point on ∂H2, or

• elliptic if |tr(γ)| < 2, which implies that γ has precisely one fixed point
in the hyperbolic plane H2.
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2.2. Hyperbolic surfaces and Fuchsian groups. Every hyperbolic surface
X is isometric to a quotient Γ\H2, where Γ is a Fuchsian group, that is, a
discrete subgroup Γ ⊂ PSL2(R). A Fuchsian group Γ is called

• torsion-free if it contains no elliptic elements,
• non-cofinite if the quotient Γ\H2 has infinite-area,
• non-elementary if it is generated by more than one element, and
• geometrically finite if it is finitely generated, which is equivalent with
Γ\H2 being geometrically and topologically finite.

All the Fuchsian groups Γ considered in this paper satisfy all the above
conditions. The limit set Λ of X , which is defined as the set of accumulation
points of all orbits of the action of Γ on H2, is a Cantor-like fractal subset of
the boundary ∂H2 ∼= R ∪ {∞}. Its Hausdorff dimension, denoted by δ, lies
strictly between 0 and 1.

Furthermore, Γ is called convex cocompact if it is finitely generated and
if it contains neither parabolic nor elliptic elements. This is equivalent with
the convex core of X = Γ\H2 being compact. By a result of Button [5], every
infinite-area, convex cocompact hyperbolic surface X can be realized as the
quotient of H2 by a so-called Schottky group Γ, which we will define in §2.6
below, see also [1, Theorem 15.3].

We also remark that since we only work with torsion-free Fuchsian groups
in this paper, it makes no difference whether we work with PSL2(R) or with
SL2(R), so we will henceforth stick to SL2(R).

2.3. Spectral theory of infinite-area hyperbolic surfaces. Let us review
some aspects of the spectral theory of infinite-area hyperbolic surfaces. We
refer the reader to [1] for an in-depth account of the material given here.
The L2-spectrum of the Laplace–Beltrami operator ∆X on an infinite-area
hyperbolic surface X is rather sparse and was described by Lax–Phillips [25]
and Patterson [30] as follows:

• The absolutely continuous spectrum is equal to [1/4,∞).
• The pure point spectrum is finite and contained in the interval (0, 1/4).
In particular, there are no eigenvalues embedded in the continuous
spectrum.

• If δ 6 1/2 then the pure point spectrum is empty. If δ > 1/2 then
λ0(X) = δ(1− δ) is the smallest eigenvalue.

In light of these facts, the resolvent operator

RX(s) :=
(
∆X − s(1− s)

)−1
: L2(X) → L2(X)

is defined for all s ∈ C with Re(s) > 1/2 and s(1 − s) not being an L2-
eigenvalue of ∆X . From Guillopé–Zworski [13] we know that the resolvent
extends to a meromorphic family

(12) RX(s) : C
∞
c (X) → C∞(X)

on C with poles of finite rank. The poles of RX(s) are called the resonances
of X and the multiplicity of a resonance ζ is the rank of the residue operator
of RX(s) at s = ζ . We denote by R(X) the set multiset of resonances of X
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repeated according to multiplicities. Resonances are contained in the half-
plane Re(s) 6 δ, with no resonances on the vertical line Re(s) = δ other
than a simple resonance at s = δ. Note that resonances s on the half-plane
Re(s) > 1

2
correspond to eigenvalues λ = s(1− s) of ∆X . In other words, the

set Ω(X) defined in the introduction can be re-expressed as

Ω(X)
m
= R(X) ∩ {Re(s) > 1

2
}.

In particular, if δ 6 1
2
, then the set Ω(X) is empty.

R

iR Re = δRe = 1/2

s = δ

Ω(X) = resonances
corresponding to

eigenvalues

Figure 1. Distribution of resonances for infinite-area Γ\H2

in the case δ > 1
2

2.4. Twisted Selberg zeta function. Given a finitely generated Fuchsian
group Γ < PSL2(R), the set of prime periodic geodesics on X = Γ\H2 is
bijective to the set [Γ]prim of Γ-conjugacy classes of primitive hyperbolic ele-
ments in Γ. We denote by ℓ(γ) the length of the geodesic corresponding to
the conjugacy class [γ] ∈ [Γ]prim.

The Selberg zeta function is defined for Re(s) > δ by the infinite product

(13) ZΓ(s)
def
=

∞∏

k=0

∏

[γ]∈[Γ]prim

(
1− e−(s+k)ℓ(γ)

)
,

and it has a meromorphic continuation to s ∈ C. By Patterson–Perry [31]
the zero set of ZΓ(s) consists of the so-called “topological” zeros at s = −k
for k ∈ N0, and the set of resonances, repeated according to multiplicity.
Therefore, any problem about resonances and eigenvalues can be rephrased
as a question about the distribution of the zeros of the Selberg zeta function.

Given a finite-dimensional, unitary representation (ρ, V ) of Γ, we define
the twisted Selberg zeta function by

(14) ZΓ(s, ρ)
def
=

∞∏

k=0

∏

[γ]∈[Γ]prim

detV
(
IV − ρ(γ)e−(s+k)ℓ(γ)

)
.
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Clearly, if ρ = 1C is the trivial, one-dimensional representation of Γ, then
(14) reduces to classical Selberg zeta function (13). Furthermore, the product
definition (14) implies that we have the factorization

(15) ZΓ(s, ρ1 ⊕ ρ2) = ZΓ(s, ρ1)ZΓ(s, ρ2),

where ρ1 ⊕ ρ2 denotes the orthogonal direct sum of ρ1 and ρ2.

2.5. Venkov–Zograf induction formula. The reason we are interested in
twisted Selberg zeta functions is because of the Venkov–Zograf induction for-
mula [40, 39]. It says that if Γ′ is a finite-index subgroup of Γ, then we have

(16) ZΓ′(s) = ZΓ(s, λΓ/Γ′).

where

(17) λΓ/Γ′

def
= IndΓ

Γ′(1Γ′)

is the induced representation of the trivial one-dimensional representation 1Γ′

of Γ′ to the larger group Γ. See also the more recent paper [10] for a proof of
this formula based on the Frobenius character formula.

Let g1, . . . , gn be a full set of representatives in Γ of the left cosets in Γ/Γ′,
where n = [Γ : Γ′] is the index of Γ′ in Γ. Then the induced representation
can be thought of as acting on the space

(18) VΓ/Γ′

def
= spanC{g1, . . . , gn} =

{
n∑

i=1

αigi : α1, . . . , αn ∈ C

}
.

By definition, for each γ ∈ Γ and for each i ∈ [n] there exists σ(i) ∈ [n] and
γ̃ ∈ Γ′ such that γgi = gσ(i)γ̃. The action of λΓ/Γ′ is then given by

λΓ/Γ′(γ)

(
n∑

i=1

αigi

)
=

n∑

i=1

αigσ(i).

In fact, σ ∈ Sn is a permutation of [n] and with respect to the basis {g1, . . . , gn},
λΓ/Γ′(γ) acts on VΓ/Γ′ by the permutation matrix associated to σ. Moreover,
the induced representation splits as an orthogonal direct sum

λΓ/Γ′ = 1Γ ⊕ λ0
Γ/Γ′ ,

where λ0
Γ/Γ′ is an (n− 1)-dimensional representation acting on the subspace

(19) V 0
Γ/Γ′

def
=

{
n∑

i=1

αigi ∈ VΓ/Γ′ :
n∑

i=1

αi = 0

}
.

Thanks to (15) we have

(20) ZΓ′(s) = ZΓ(s)ZΓ(s, λ
0
Γ/Γ′).

We conclude that “new” resonances for X ′ = Γ′\H2 (that is, resonances which
have greater multiplicity in X ′ than in X) appear as zeros of ZΓ(s, λ

0
Γ/Γ′). In

particular, if λ is a “new” eigenvalue for X ′, then we have λ = s(1 − s) for
some s ∈ [1

2
, δ] with ZΓ(s, λ

0
Γ/Γ′) = 0.
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2.6. Schottky groups. Let us now recall the definition of Schottky groups.

• Define the alphabet A = {1, . . . , 2m} and for each a ∈ A define

a
def
=

{
a + r if a ∈ {1, . . . , m}
a−m if a ∈ {m+ 1, . . . , 2m}

• Fix open disks D1, . . . , D2m ⊂ C centered on the real line with mutu-
ally disjoint closures.

• Fix isometries γ1, . . . γ2m ∈ SL2(R) such that for all a ∈ A
γa(CrDa) = Da and γa = γ−1

a .

(In the notation of [1, §15] we have m = r and γa = S−1
a .)

• Let Γ ⊂ SL2(R) be the group generated by the elements γ1, . . . γ2m.
This is a free group on m generators, see for instance [1, Lemma 15.2].

∂H2

H2

D1

D4

D2
D3

D5

D6

γ1
γ2 γ3

Figure 2. A configuration of Schottky disks and isometries
with m = 3

Throughout the rest of this paper, Γ is a non-elementary Schottky group
with Schottky data D1, . . . , D2m and γ1, . . . , γ2m as above. This assumption
will not be repeated in the sequel.

2.7. Combinatorial notation for words. Let Γ be a Schottky group as in
§2.6. We will follow the combinatorial notation of Dyatlov–Zworski [8] for
indexing elements in the free group Γ.

• A word a in the alphabet A = {1, . . . , 2m} is a finite string a =
a1 . . . an with a1, . . . , an ∈ A. For technical reasons, we also introduce
the empty word ∅, a string of length zero.

• A word a = a1 . . . an is said to be “reduced” if aj 6= aj+1 for all
j = 1, . . . , n − 1. For all n ∈ N denote by Wn the set of (reduced)
words of length n:

Wn = {a1 · · ·an : a1, . . . , an ∈ A s.t. aj 6= aj+1 for all j = 1, . . . , n− 1} .
Moreover, put W0 = {∅} where ∅ is the empty word.

• Let W =
⊔

n>0Wn be the set of all reduced words and write |a| = n
if a ∈ Wn. In other words, |a| is the reduced word length of a. Given
m ∈ N let W>m =

⊔
n>mWn the set of all reduced words whose length



11

is at least m, and let W◦ = W>1 be the set of all non-empty reduced
words.

• Given a word a = a1 · · · an ∈ W◦ write a′ = a1 · · ·an−1 ∈ W. Note
that W is a tree with root ∅ and a′ is the parent of a.

• For a = a1 · · · an ∈ W and b = b1 · · · bm ∈ W write a → b if either
a = ∅, or b = ∅, or an 6= b1. Note that in this case, ab ∈ W, that is,
if a → b, then the concatenation ab is also a reduced word.

• Given a word a = a1 · · · an let a = a1 · · · an be its “mirror” word.

• Write a ≺ b if a is a prefix b, that is, if b = ac for some c ∈ W.

• We have the one-to-one correspondence

a = a1 · · · an ∈ W 7→ γa = γa1 · · · γan ∈ Γ.

Moreover, we have γab = γaγb, γ
−1
a

= γa, and γa = I if and only if
a = ∅.

• For a = a1 · · · an ∈ W◦ we define the disk

Da := γa′(Dan).

If a ≺ b then Da ⊂ Db. On the other hand, if a ⊀ b and b ⊀ a then
Da ∩Db = ∅. We define the interval

(21) Ia := Da ∩ R

and we denote by |Ia| its length which is equal to the diameter of Da.

• Denote

D =
⊔

a∈A

Da and I =
⊔

a∈A

Ia.

• In the above notation, the limit set of Γ may be re-expressed as follows:

Λ =
⋂

n>1

⊔

a∈Wn

Ia ⊂ R.

2.8. Twisted transfer operators. In what follows, let V be a finite-dimensional
complex vector space with hermitian inner product 〈·, ·〉V and induced norm

‖v‖V =
√

〈v, v〉V . Let ρ : Γ → U(V ) be a unitary representation. Here, “uni-
tary” means that for all γ ∈ Γ and v, w ∈ V we have 〈ρ(γ)v, ρ(γ)w〉V = 〈v, w〉V
and in particular ‖ρ(γ)v‖V = ‖v‖V .

We letH2(D, V ) be the Hilbert space of V -valued, square-integrable, holo-
morphic functions on D =

⊔
a∈A Da:

(22) H2(Ω, V )
def
= {f : D → V holomorphic | ‖f‖ < ∞} ,
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with L2-norm given by

‖f‖2 def
=

∫

D

‖f(z)‖2V dvol(z).

Here “vol” denotes the Lebesgue measure on the complex plane. On this
space, we define for all s ∈ C the twisted transfer operator

(23) Ls,ρ : H
2(D, V ) → H2(D, V )

by the formula

(24) Ls,ρf(z)
def
=

2m∑

a∈A
a→b

γ′
a(z)

sρ(γa)
−1f(γa(z)) if z ∈ Db.

Note that the derivative on the right satisfies γ′
a(z) > 0 for all z ∈ Ib = Db∩R,

so the complex power γ′
a(z)

s is uniquely defined and holomorphic for z ∈ Db

and s ∈ C. More concretely, we define

γ′
a(z)

s def
= exp(sL(γ′

a(z))),

where

(25) L(z) = log |z|+ arg(z),

with arg : C r (−∞, 0] → (−π, π) being the principal value of the argument.
When V = C and ρ = 1Γ is the trivial, one-dimensional representation,

the functional space H2(Ω, V ) reduces to the classical Bergman space H2(D),
and (24) reduces to the well-known transfer operator Ls = Ls,1Γ

which can
be found for instance in Borthwick’s book [1, Chapter 15]. The operator (23)
is trace class for every s ∈ C and its Fredholm determinant is equal to the
twisted Selberg zeta function of the Schottky group Γ, see for instance [20]:

(26) ZΓ(s, ρ) = det(1−Ls,ρ).

In particular, since Ls,ρ depends holomorphically on s ∈ C, this identity shows
that ZΓ(s, ρ) extends to an entire function.

2.9. Partitions and refined transfer operators. Now we define refined
transfer operators which were introduced by Dyatlov–Zworski [8]. These are
generalizations of the standard transfer operator Ls. Given a finite subset
Z ⊂ W we put

• Z ′ = {a′ : a ∈ Z} and
• Z = {a : a ∈ Z}.

For all s ∈ C and all finite-dimensional, unitary representations ρ : Γ → U(V )
we define the operator

(27) LZ,s,ρ : H
2(D, V ) → H2(D, V )

by the formula

(28) LZ,s,ρf(z)
def
=
∑

a∈(Z)′

a→b

γ′
a(z)

sρ(γa)
−1f(γa(z)) if z ∈ Db.
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Note that LZ,s,ρ reduces to the standard transfer operator Ls if Z is taken to
be W2, the set of reduced words of length two.

A finite set Z ⊂ W◦ is called a partition if there exists N ∈ N such that
for every reduced word a ∈ W with |a| > N , there exists a unique b ∈ Z such
that b ≺ a. In terms of the limit set, a finite set Z ∈ W◦ is a partition if we
have the disjoint union

Λ =
⊔

b∈Z

(Ib ∩ Λ).

Trivial examples of partitions are the sets of reduced words Wn of length
n > 2, in which case we have LWn,s = Ln−1

s .
The fundamental fact about partitions is the following result of Dyatlov–

Zworski [8]:

Lemma 2.1. Let Z be a finite subset of W>2 =
⊔

n>2Wn. If Z is a partition,

then for every f ∈ H2(D) the following holds true:

Ls,ρf = f =⇒ LZ,s,ρf = f.

In other words, 1-eigenfunctions of Ls are also 1-eigenfunctions of LZ,s,ρ,
provided Z is a partition. When combined with the Fredholm determinant
identity (26), this implies that if s ∈ C is a zero of ZΓ(s, ρ), then it also is a
zero of the (holomorphic) function s 7→ det(1 − LZ,s,ρ), provided Z ⊂ W>2 is
a partition.

The partitions relevant in this paper are defined as follows: for any suffi-
ciently small τ > 0, called the “resolution parameter”, we put

Z(τ)
def
= {a ∈ W◦ : |Ia| 6 τ < |Ia′ |}.

The set Z(τ) is a partition by virtue of the fact that the interval length |Ia|
tends to zero as |a| → ∞. This in turn follows from the definition of the
intervals Ia in (21) and from the uniform contraction property in Lemma 2.2
below. Finally, we define the τ -refined transfer operator by

(29) Lτ,s,ρ
def
= LZ(τ),s,ρ.

Using (28) Lτ,s,ρ is explicitly given for every f ∈ H2(D, V ) and b ∈ A by

(30) Lτ,s,ρf(z) =
∑

a∈Y (τ)
a→b

γ′
a(z)

sρ(γa)
−1f(γa(z)) if z ∈ Db,

where

(31) Y (τ)
def
= Z(τ)

′
.

Note that the operator (29) is well-defined if and only if Y (τ) ⊂ W ◦, or
equivalently, Z(τ) ⊂ W>2. This condition is satisfied whenever the resolution
parameter τ > 0 is small enough.

The reason for using this particular family of operators is that we can
control the size of Y (τ) as well as the derivatives γ′

a
when a ∈ Y (τ), see

Lemma 2.3 below. This is what allows us to obtain an explicit spectral gap
in Theorem 1.4.
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2.10. Some useful bounds for Schottky groups. We now record some
useful estimates for Schottky groups when acting on the hyperbolic plane.
Following Magee–Naud [28], we use the following notation: for every a ∈ A
we pick a point oa ∈ Da and for any a ∈ W◦ we set

oa
def
= oa

where a ∈ A is chosen such that a → a and we put

Υa

def
= |γ′

a
(oa)|.

The following basic estimates are due to Naud [27] and Magee–Naud [28]:

Lemma 2.2 (Basic distortion estimates). The following estimates hold true
with implied constants depending only on Γ:

(i) Uniform contraction: There are constants 0 < θ1 < θ2 < 1 and C > 0
such that for all b ∈ A and for all a ∈ W with a → b and z ∈ Db we
have

C−1θ
|a|
1 6 |γ′

a
(z)| 6 Cθ

|a|
2 .

(ii) Bounded distortion 1: For all b ∈ A and for all a ∈ W with a → b and
z1, z2 ∈ Db we have

C−1 6
|γ′

a
(z1)|

|γ′
a
(z2)|

6 C.

(iii) Bounded distortion 2: There exists a constant C > 0 such that for all
b1, b2 ∈ A, all z1 ∈ Db1 and all z2 ∈ Db2, and all a ∈ W◦ with a → b1, b2
we have ∣∣∣∣

γ′
a
(z1)

γ′
a
(z2)

∣∣∣∣ 6 C.

(iv) For all b ∈ A and z ∈ Db with a → b we have |γ′
a
(z)| ≍ Υa.

(v) For all a ∈ W◦ we have Υa ≍ Υa.
(vi) For all a ∈ W◦ we have Υa ≍ Υa.
(vii) For all a, b ∈ W◦ with a → b we have Υab ≍ ΥaΥb.
(viii) For all b ∈ A, a ∈ W◦ with a → b, z ∈ Db, and s = σ + it we have

|γ′
a
(z)s| ≪ CσΥσ

a
eC|t|,

where C > 0 and the implied constant depend solely on Γ.

The following following estimates concerning the sets Z(τ) and Y (τ) are
also crucial:

Lemma 2.3 (Estimates for Z(τ) and Y (τ)). For all τ > 0 small enough the
following estimates hold true with implied constants depending only on Γ:

(i) For all a ∈ Z(τ) we have Υa ≍ τ.
(ii) For all a ∈ Y (τ) we have Υa ≍ τ.
(iii) |Y (τ)| ≍ |Z(τ)| ≍ τ−δ.
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(iv) For all a ∈ Y (τ) we have

‖γa‖ ≍ τ−1/2,

where ‖ · ‖ is the Frobenius norm

‖
(
a b
c d

)
‖ =

√
a2 + b2 + c2 + d2.

Proof. The estimates for Z(τ) can be found in [2]. It is then easy to deduce the
same estimates for Y (τ). Alternatively, Parts (i)-(iii) can be deduced from the
definitions of the sets Z(τ) and Y (τ) and Lemma 2.2 above. Let us now prove
Part (iv) for which we could not find any reference. For technical reasons we
may assume that zero is not contained in any of the Schottky disks (Db)b∈A.
Otherwise, we replace the Schottky group Γ by a conjugate g−1Γg with some
suitable g ∈ SL2(R). Note that this does not affect the statement, since for all
‖γa‖ large enough, we have ‖g−1γag‖ ≍ ‖γa‖ with positive implied constants
depending only on g and Γ. Writing

γa =

(
a b
c d

)
, a, b, c, d ∈ R, ad− bc = 1

we calculate xa = γa(∞) = −d/a and

γ′
a
(z) =

1

(cz + d)2
=

1

c2(z − xa)2
.

Now fix b ∈ A, a ∈ W◦ with a → b, and z ∈ Db. If we write a = a1 · · ·an,
then the condition a → b is equivalent to an 6= b. Observe also that xa =
γa(∞) ∈ Dan . Since the Schottky disks have mutually disjoint closures this
implies that for all z ∈ Db the difference |z − xa| is bounded from above and
below by some positive constants depending only on Γ. Thus we have

|γ′
a
(z)| ≍ 1

c2
.

If we assume further that a ∈ Y (τ) then from Lemma 2.2 we obtain

τ ≍ Υa ≍ 1

c2

and therefore
|c| ≍ τ−1/2.

Now, according to our assumption, 0 /∈ D, so both γa(0) and γa(0) lie inside
D. Hence, since D ⊂ C is bounded, we can find a constant C > 0 depending
only on Γ such that

C−1 < |γa(0)|, |γa(0)| < C.

But since |γa(0)| = | b
d
| and |γa(0)| = | b

a
|, this gives

|a| ≍ |b| ≍ |d|
with implied constants depending only on Γ. Finally, combining the relation
ad− bc = 1 with |c| ≍ τ−1/2 we conclude that

|a| ≍ |b| ≍ |c| ≍ |d| ≍ τ−1/2.
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Therefore,

‖γ‖ =
√
a2 + b2 + c2 + d2 ≍ τ−1/2,

as claimed. �

2.11. Hilbert–Schmidt norm of refined transfer operators. Given a
trace-class operator A : H → H on a separable Hilbert space H , the Hilbert–
Schmidt norm is defined by

‖A‖2HS
def
= tr (A∗A) ,

where A∗ denotes the adjoint of A. The goal of this subsection is to prove the
following:

Lemma 2.4 (Hilbert–Schmidt norm). For any finite-dimensional, unitary
representation ρ : Γ → U(V ), the Hilbert–Schmidt norm of the operator Lτ,s,ρ

is given by the formula

(32) ‖Lτ,s,ρ‖2HS =
∑

b∈A

∑

a,b∈Y (τ)
a,b→b

tr
(
ρ(γ−1

a
γb)
)
I(b)
a,b,

where

I(b)
a,b =

∫

Db

γ′
a
(z)sγ′

b
(z)sBD(γa(z), γb(z)) dvol(z)

Here BD(z, w) is the reproducing kernel of the Bergman space H2(D). More-
over, for all b ∈ A and for all a, b ∈ Y (τ) with a, b → b we have the bound

(33) |I(b)
a,b| ≪ (Cτ)2σeC|t|,

where C > 0 and the implied constant depend solely on Γ.

Proof. Similar proofs of formulas for the Hilbert–Schmidt norm for similar
operators can be found in [28, Lemma 4.7] and in [32, Proposition 5.5]. We
now provide an alternative but essentially equivalent argument. We denote by
BD(z, w) the reproducing kernel of the classical Bergman space H2(D) over

D =
⊔

b∈ADb,. This kernel satisfies BD(·, w) ∈ H2(D) for all w ∈ D and
∫

D

BD(z, w)f(w) dvol(w) = f(z)

for all f ∈ H2(D) and all z ∈ D, and is uniquely defined by these two
properties. Hence, using the formula (30), Lτ,s,ρ can be rewritten as the
integral operator

Lτ,s,ρf(z) =

∫

D

Kτ,s,ρ(z, w)f(w) dvol(w),

where the kernel is given for all z, w ∈ D by

Kτ,s,ρ(z, w) =
∑

a∈Y (τ)
a→b

γ′
a
(z)sρ(γa)

−1BD(γa(z), w), if z ∈ Db.
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Note that if the points z, w ∈ D are fixed, then Kτ,s,ρ(z, w) is an element of
the endomorphism ring End(V ) of V . The Hilbert–Schmidt norm on End(V )
is defined by

‖A‖2 =
√
trV (AA∗), A ∈ End(V ),

where trV is the trace of V . We will drop the subscript V from the notation,
writing only trV = tr. For all z ∈ Db and w ∈ D the Hilbert–Schmidt norm
of Kτ,s,ρ(z, w) (viewed as an element on End(V )) is given by

‖Kτ,s,ρ(z, w)‖22 = tr (Kτ,s,ρ(z, w)Kτ,s,ρ(z, w)
∗)

=
∑

a,b∈Y (τ)
a,b→b

tr
(
ρ(γ−1

a
γb)
)
γ′
a
(z)sγ′

b
(z)sBD(γa(z), w)BD(γb(z), w).

Note that for the second equality we used the unitarity of the representation
ρ (which implies in particular that ρ(γa)

∗ρ(γb) = ρ(γ−1
a

γb)). The Hilbert–
Schmidt norm of Lτ,s,ρ can now be computed as follows:

‖Lτ,s,ρ‖2HS =

∫

D

∫

D

‖Kτ,s,ρ(z, w)‖22 dvol(w) dvol(z)

=
∑

b∈A

∫

Db

∫

D

‖Kτ,s,ρ(z, w)‖22 dvol(w) dvol(z)

=
∑

b∈A

∑

a,b∈Y (τ)
a,b→b

tr
(
ρ(γ−1

a
γb)
)
I(b)
a,b,

where
(34)

I(b)
a,b =

∫

Db

γ′
a
(z)sγ′

b
(z)s

(∫

D

BD(γa(z), w)BD(γb(z), w) dvol(w)

)
dvol(z).

By the defining property of the Bergman kernel, we have
∫

D

BD(γa(z), w)BD(γb(z), w) dvol(w) =

∫

D

BD(γa(z), w)BD(w, γb(z)) dvol(w)

= BD(γa(z), γb(z)),

which when inserted into (34) gives

I(b)
a,b =

∫

Db

γ′
a
(z)sγ′

b
(z)sBD(γa(z), γb(z)) dvol(z),

completing the proof of (32).
Let us now prove the bound in (33). Fix b ∈ A and words a,b ∈ Y (τ)

such that a,b → b. Combining Lemmas 2.2 and 2.3 implies that for all z ∈ Db

|γ′
a
(z)s| ≪ (Cτ)σeC|t|

for some constant C = C(Γ) > 0. Thus, by the triangle inequality

|I(b)
a,b| 6

∫

Db

|γ′
a
(z)s||γ′

b
(z)s||BD(γa(z), γb(z))| dvol(z)
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≪ (Cτ)2σe2C|t| sup
z∈Db

|BD(γa(z), γb(z))|.

It remains to prove that

(35) sup
z∈Db

|BD(γa(z), γb(z))| ≪ 1.

Note that BD(z, w) equals zero unless the points z and w belong to the same
Schottky disk Db, in which case BD(z, w) = BDb

(z, w). Letting rb > 0 and
cb ∈ R be the radius and the center of Db, respectively, we have the following
explicit formula for the Bergman kernel over Db, see for instance [7, Chapter
1]:

BDb
(z, w) =

r2b

π2 (r2b − (z − cb)(w − cb))
2 .

Using this formula, we deduce that

(36) |BDb
(z, w)| ≪ 1

dist(z, ∂Db) dist(w, ∂Db)
,

where dist(z, ∂Db) denotes the minimal euclidean distance from z to the
boundary ∂Db. From the uniform contraction property in Lemma 2.2 we
deduce that for all a → b with a ∈ W◦ we have dist(γa(z), ∂D) > c for some
constant c = c(Γ) > 0. Inserting this into (36) we obtain the desired bound
(35). This completes the proof. �

2.12. Refined zeta function and pointwise estimate. We now define the
refined zeta function as the Fredholm determinant

ζτ (s, ρ)
def
= det

(
1−L2

τ,s,ρ

)
,

which will be crucial in the next section. In particular, we will need the
following:

Lemma 2.5 (Pointwise estimate for ζτ(s, ρ)). For all τ > 0 sufficiently small
and s ∈ C with σ = Re(s) > δ,

− log |ζτ(s, ρ)| 6 dim(ρ)
(Cτ)2(σ−δ)

1− (Cτ)2(δ−σ)
,

where C > 0 depends only on Γ and dim(ρ) is the dimension of ρ.

Proof. For every separable Hilbert space H and for every trace class oper-
ator A : H → H with ‖A‖H < 1, we have the absolutely convergent series
expansion

(37) det(1− A) = exp

(
−

∞∑

k=1

1

k
tr(Ak)

)
,

see for instance [12]. Taking absolute values and logarithms on both sides
yields

(38) − log | det(1− A)| 6
∞∑

k=1

1

k
|Re(tr(Ak))| 6

∞∑

k=1

1

k
|tr(Ak)|.
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Applying this to A = L2
τ,s,ρ with σ = Re(s) > δ gives

(39) − log |ζτ (s, ρ)| 6
∞∑

k=1

1

k
|tr(L2k

τ,s,ρ)|.

From the proof of Proposition 4.8 in Magee–Naud [28], the traces on the right
are bounded by

|tr(L2k
τ,s,ρ)| 6 dim(ρ)(Cτ)2kσ|Z(τ)|2k,

where C > 0 depends only on Γ. By Lemma 2.3 we also have

|Z(τ)| ≪ τ−δ.

Combining the previous two estimates we obtain (possibly with a larger con-
stant C)

|tr(L2k
τ,s,ρ)| 6 dim(ρ)(Cτ)2k(σ−δ).

Returning to (39) and using the geometric series formula we obtain for all
τ > 0 small enough,

− log |ζτ (s, ρ)| 6 dim(ρ)

∞∑

k=1

(Cτ)2k(σ−δ) = dim(ρ)
(Cτ)2(σ−δ)

1 − (Cτ)2(δ−σ)
,

as claimed. �

3. Proof of Theorem 1.4

The goal of this section is to prove our main Theorem 1.4.

3.1. Reducing the proof to counting zeros. We say that λ is a “new”
eigenvalue for the Laplacian on X0(p) = Γ0(p)\H2 if it occurs with greater
multiplicity than in X = Γ\H2 and we define

Ωnew(X0(p))
def
=

{
s ∈

[
1

2
, δ

]
: λ = s(1− s) is a new eigenvalue for X0(p)

}
.

We denote by Np(σ) the number of new eigenvalues λ = s(1− s) with s > σ,
or equivalently,

Np(σ)
def
= #Ωnew(X0(p)) ∩ [σ, δ].

This section is actually devoted to prove the following theorem from which
Theorem 1.4 follows directly:

Theorem 3.1 (Main theorem, elaborated). Let Γ ⊂ SL2(Z) be a Schottky
group with δ > 3

4
. Assume GRH for quadratic L-functions. Then, for all x

sufficiently large depending on Γ and for all ǫ > 0 we have

(40)
∑

p6x
p prime

Np(σ) 6 C(ǫ,Γ)x1− 3

δ
(σ− 5

6
δ)+ǫ
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It is easy to see that this implies Theorem 1.4. Fix some η > 0. The
bound (40) shows that the number of primes p for which Np(

5
6
δ + η) > 1 not

exceeding x is at most Oǫ(x
1− 3

δ
η+ǫ). On the other hand, by the prime number

theorem there are roughly x
log x

primes below x, so the number of primes p for

which Np(
5
6
δ + η) = 0 has relative density one.

Let us now turn to the proof of Theorem 3.1. We use a dyadic decompo-
sition to re-express the sum in (40) as

(41)
∑

p6x
p is prime

Np(σ) =
∑

ν∈N

S(
x

2ν
, σ)

with

(42) S(x, σ)
def
=

∑

p∼x
p is prime

Np(σ),

where p ∼ x is a shorthand for x/2 < p 6 x. For technical reasons (see also
Remark 3.4 below), it is more convenient to work with the sums S(x, σ). We
will prove an estimate of the form

S(x, σ) 6 C̃(ǫ,Γ)x1− 3

δ
(σ− 5

6
δ)+ǫ.

Note that the estimate (40) follows directly from this one.
Recall from §2.5 that the the Selberg zeta function ZΓ0(p)(s) can be written

as

(43) ZΓ0(p) = ZΓ(s, λp),

where λp = IndΓ
Γ0(p)

(1Γ0(p)) is the induced representation of the identity 1Γ0(p)

on the subgroup Γ0(p) to the larger group Γ. This representation decomposes
as

(44) λp = 1Γ ⊕ λ0
p.

In view of (15) we have the factorization

ZΓ0(p)(s) = ZΓ(s)ZΓ(s, λ
0
p).

Therefore, new eigenvalues λ for X0(p) are related to zeros s of ZΓ(s, λ
0
p) by

the equation λ = s(1 − s). So far we have only reformulated the problem in
terms of the zeros of the zeta function:

Np(σ) = #
{
s ∈ [σ, δ] : ZΓ(s, λ

0
p) = 0

}
.

This reformulation holds true for any finitely generated subgroup Γ ⊂ SL2(Z).
Now we invoke the transfer operator machinery for Schottky groups in §2.9.
By Lemma 2.1, any zero of ZΓ(s, λ

0
p) is also a zero of

(45) ζτ (s, λ
0
p)

def
= det

(
1− L2

τ,s,λ0
p

)
,

where Lτ,s,λ0
p
is the refined transfer operator defined in (30). It turns out that

the dyadic sums S(x, σ) can be estimated using the Hilbert–Schmidt norm of
this transfer operator:
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Proposition 3.2 (Zero counting). For all τ > 0 sufficiently small, for all
K > 1 sufficiently large, and for all x sufficiently large we have

(46) S(x, σ) ≪ K max
Re(s)>σ− α

K

|Im(s)|6βK



∑

p∼x
p prime

‖Lτ,s,λ0
p
‖2HS


+ x2τK .

The implied constant as well as the constants α > 0 and β > 0 depend solely
on Γ.

Proof. We use essentially the same argument as in [19, 32]. We exploit Jensen’s
formula for holomorphic functions, or rather a weaker variant thereof, which
we recall now. Let f be an entire function and consider the pair of concentric
disks Di = DC(σ0, ri) with i ∈ {1, 2} centered at σ0 ∈ R and with radii
r2 > r1 > 0. Assume that σ0, r1, r2 are chosen in such a way that

(47) [σ, δ] ⊂ D1 ⊂ D2.

Define

Mf (σ, δ)
def
= #{s ∈ C : f(s) = 0, s ∈ [σ, δ]}.

Then we have

(48) Mf (σ, δ) 6
1

log(r2/r1)

(∫ 1

0

log |f(σ0 + r2e
2πiθ)|dθ − log |f(σ0)|

)
.

Applying this to the refined zeta function f(s) = ζτ(s, λ
0
p) we obtain

(49) Np(σ) 6
1

log(r2/r1)

(∫ 1

0

log |ζτ (σ0 + r2e
2πiθ, λ0

p)|dθ − log |ζτ(σ0, λ
0
p)|
)
.

For all p large enough we have dim(λ0
p) = p, see Lemma 3.6 below. Thus, if

we assume furthermore that σ0 > δ, then the pointwise estimate in Lemma
2.5 gives
(50)

Np(σ) 6
1

log(r2/r1)

(∫ 1

0

log |ζτ(σ0 + r2e
2πiθ, λ0

p)|dθ + p
(Cτ)2(σ0−δ)

1− (Cτ)2(σ0−δ)

)
.

Next, using Weyl’s estimate

log | det(1− A)| 6 ‖A‖1
together with the Cauchy–Schwarz-type bound

‖A1A2‖1 6 ‖A1‖HS‖A2‖HS,

yields

(51) log |ζτ (s, λ0
p)| 6 ‖L2

τ,s,λ0
p
‖1 6 ‖Lτ,s,λ0

p
‖2HS.

Inserting this into (50) gives

(52) Np(σ) 6
1

log(r2/r1)

(∫ 1

0

‖Lτ,σ0+r2e2πiθ ,λ0
p
‖2HSdθ + p

(Cτ)2(σ0−δ)

1− (Cτ)2(σ0−δ)

)
.
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Summing this inequality over all the primes in (x
2
, x] with x large enough

yields
(53)

S(x, σ) 6
1

log(r2/r1)



∫ 1

0

∑

p∼x
p prime

‖Lτ,σ0+r2e2πiθ ,λ0
p
‖2HSdθ + x2 (Cτ)2(σ0−δ)

1− (Cτ)2(σ0−δ)


 .

Let us now choose appropriate parameters σ0, r1, r2. For K > 1, we put

σ0 = δ +K, r1 =
√
(σ0 − σ)2 + 1 and r2 = r1 + 1/K.

One can verify that these choices ensure that the inclusions in (47) hold true.
Furthermore, for K > 1 large, the following estimates hold true with some
absolute implied constants:

(i) r1 ≍ r2 ≍ σ0 − σ ≍ K,

(ii)
√

1 + 1
(σ0−σ)2

= 1 +O( 1
K2 ),

(iii) r1 =
√
(σ0 − σ)2 + 1 = (σ0 − σ)

√
1 + 1

(σ0−σ)2
= (σ0 − σ) +O( 1

K
), and

(iv) r2 = σ0 − σ +O( 1
K
).

These estimates imply that for all s = σ0 + r2e
2πiθ with θ ∈ [0, 1] we have

Re(s) > σ0 − r2 > σ − O(
1

K
) and |Im(s)| 6 σ0 + r2 = O(K).

Therefore, returning to (53), if τ > 0 is sufficiently small (in terms of Γ), we
obtain

S(x, σ) ≪ K max
Re(s)>σ−O( 1

K
)

|Im(s)|6O(K)



∑

p∼x
p prime

‖Lτ,s,λ0
p
‖2HS


 + x2τK ,

with all implied constants independent of x, τ,K, as claimed. This establishes
Proposition 3.2. �

3.2. The main number-theoretic bound. Recall that for any subgroup
Γ ⊂ SL2(Z) we let λp be the induced representation IndΓ

Γ0(p)
(1Γ0(p)) and we

define λ0
p = λp⊖1Γ. Moreover, we endow the space of 2×2 real matrices with

the Frobenius norm

‖
(
a b
c d

)
‖ =

√
a2 + b2 + c2 + d2,

and we write I =

(
1 0
0 1

)
for the identity.

The aim of this subsection is to prove the following:

Proposition 3.3 (Main number-theoretic bound). Let Γ be a finitely gener-
ated subgroup of SL2(Z). Assume GRH for quadratic L-functions. Then, for
all x large enough (in terms of Γ) and for every hyperbolic element γ ∈ Γ with

‖γ‖ <
1

20
x2
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we have

(54)
∑

p∼x
p prime

log(p)tr(λ0
p(γ)) = O(x

1

2 log(x)2)

with some absolute implied constant.

Remark 3.4. We remark that in (54) it is not possible to replace p ∼ x by
p 6 x. This is why we need a dyadic decomposition in (41).

We recall that the Legendre symbol is defined for all integers a and all odd
primes p by

(
a

p

)
=





1 if a = x2 mod p for some x ∈ Fp r {0}
0 if a = 0 mod p

−1 else.

There is a standard way of extending the Legendre symbol to a Dirichlet
character in the bottom argument. For p = 2 we define

(a
2

)
=






0 if a is even

1 if a = ±1 mod 8

−1 if a = ±3 mod 8.

Now we define for all n ∈ N the Kronecker symbol by
(a
n

)
=

(
a

p1

)r1

· · ·
(

a

pm

)rm

,

where n = pr11 · · ·prmm is the prime factorization of n. Clearly, if n = p is an
odd prime, then the Kronecker symbol is just the Legendre symbol. If either
the top or bottom argument is fixed, the Kronecker symbol is a completely
multiplicative function in the remaining argument. In fact, it is well known
that if d ≡ 0, 1 or 2 mod 4, then χd(n) =

(
d
n

)
is a non-principal Dirichlet

character of conductor at most 4|d|.
The crucial number-theoretic ingredient in the proof of Proposition 3.3

is the following bound which can be extracted from the classical textbook of
Iwaniec–Kowalski [16].

Theorem 3.5 (Special case of Theorem 5.15 in [16]). Assume GRH for qua-
dratic L-functions. Then for all d > 1 with d ∈ {0, 1, 2} mod 4 we have, as
x → ∞,

(55)
∑

26p6x
p prime

log(p)

(
d

p

)
= O(x

1

2 log(dx)2)

with some absolute implied constant.

Theorem 5.15 in [16] actually says that for all non-principal characters χ
(not just the Kronecker symbol χd) we have

(56)
∑

n6x

Λ(n)χ(n) = O(x
1

2 log(dx)2),
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where Λ(n) is the von Mangoldt function

Λ(n) =

{
log(p) if n = pk for some k ∈ N and some prime p

0 else.

It is easy to deduce (55) from (56). Informally, this statement says that
the values of χ(p), when p ranges over the primes (in increasing order) vary
extremely randomly. The reason we are specifically interested in the Kronecker
symbol will become clear in the next lemma. Before stating it, we define for
all n ∈ N the reduction modulo n map by

πn : Γ → SL2(Z/nZ), γ 7→ γ (mod n).

Lemma 3.6 (Trace formula). Let Γ be a subgroup of SL2(Z) and let p be a
prime such that πp : Γ → SL2(Z/pZ) is onto. Then, writing d(γ) = tr(γ)2−4,
we have

(57) tr(λ0
p(γ)) =

{
p if γ = ±I (mod p)(

d(γ)
p

)
else.

In particular, dim(λ0
p) = p.

Proof. For the rest of the proof we write Gp = SL2(Z/pZ). Observe that
Γ0(p) is equal to the pre-image π−1

p (Bp) of the subgroup of upper triangular
matrices

Bp
def
=

{(
∗ ∗
0 ∗

)}
6 Gp.

Since πp : Γ → Gp is surjective we have Xp
def
= Bp\Gp

∼= Γ0(p)\Γ. Therefore,
λp = indΓ

Γ0(p)
(1Γ0(p)) is equivalent to the regular representation on the space

ℓ2(Xp) of functions f : Xp → C endowed with the standard inner product.
This representation, which by abuse of notation we also denote by λp, is
defined for all f ∈ ℓ2(Xp), γ ∈ Gp and x ∈ Xp by

λp(γ)f(x) = f(xγ).

In this view, λ0
p is the restriction of λp to the subspace ℓ20(Xp) consisting of

functions f ∈ ℓ2(Xp) with
∑

x∈Xp
f(x) = 0. In particular, since λp = λ0

p ⊕ 1Γ,
the trace satisfies

tr(λ0
p(γ)) = tr(λp(γ))− 1.

The proof rests on the following two claims:

(i) The map sending a line ℓ in F2
p to StabGp

(ℓ) is a bijection from P(F2
p) to

the set of conjugates of Bp in Gp;
(ii) The normalizer of Bp in Gp equals Bp, so we can identify to the set of

conjugates of Bp in Gp with Xp = Bp\Gp.

We proceed in two steps: first we show that for all γ ∈ Gp the trace tr(λp(γ))
is equal to the number L(γ) of lines ℓ ⊆ F2

p such that γℓ = ℓ, and then we
compute L(γ).
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Step 1: Let δx be the function on Xp taking 1 at x and 0 elsewhere. Note
that {δx : x ∈ Xp} is an orthonormal basis for ℓ2(Xp). Thus, tr(λp(γ)) is equal
to the number of fixed points of the action of γ on Xp. Note that Bpgγ = Bpg
if and only if γ belongs to g−1Bpg. By Claim (i), Xp corresponds to the set
of conjugates of Bp in Gp, so tr(λp(γ)) is equal to the number of conjugates
of Bp containing γ. By Claim (i), this is equal to L(γ).

Step 2: Note that the discriminant of the characteristic polynomial of γ is
equal to d(γ) = tr(γ)2 − 4. If d(γ) = 0, then γ has a double eigenvalue λ,
namely λ = ±1. The eigenspace Eλ has dimension either 2 or 1. If dim(Eλ) =
2, then γ = ±I, so γ fixes every line in P(F2

p). Thus, in this case we have

L(γ) = #P(F2
p) =

p2−1
p−1

= p + 1, so tr(λ0
p(γ)) = L(γ)− 1 = p. If dim(Eλ) = 1,

then γ only fixes the line Eλ, whence tr(λ0
p(γ)) = L(γ)− 1 = 0 =

(
d(γ)
p

)
.

Now suppose alternatively that d(γ) 6= 0. If d(γ) is a square in F×
p , then

it has two distinct eigenvalues. In this case L(γ) = 2, since γ fixes exactly its
two eigenspaces (which are different lines). If d(γ) is not a square in F×

p , then
γ has no eigenvalue in Fp, in which case L(γ) = 0. In both cases, we have

L(γ)− 1 =

(
d(γ)

p

)
.

This completes the proof. �

Remark 3.7. There is an alternative proof of Lemma 3.6 based on the Frobe-
nius induction formula (also known as Mackey formula). Letting s, t ∈ Gp

denote the elements

s =

(
0 −1
1 0

)
, t =

(
1 1
0 1

)
,

one can verify by direct computation that the p+ 1 elements

(58) I = t0, t, t2, . . . , tp−1, s

provide an explicit set of representatives for the (left or right) cosets of B
in Gp. If πp : Γ → Gp is onto, then the representation λp is equivalent to

Ind
Gp

Bp
(1Bp

), so we may express its trace in terms of these representatives as
follows:

(59) tr(λp(γ)) = 1Bp
(s−1γs) +

p−1∑

j=0

1Bp
(t−jγtj),

where 1Bp
is indicator function of Bp. A somewhat tedious calculation then

leads to the formula claimed in Lemma 3.6.

Also crucial is the following result:

Lemma 3.8. Let q > 2 be an integer and let γ ∈ SL2(Z) be a hyperbolic
element such that γ ≡ ±I mod q. Then we have

‖γ‖ >
q2

3
.
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Proof. Write

γ =

(
a b
c d

)
∈ SL2(Z).

We use the following observation due to Sarnak–Xue [35]: if γ ≡ ±I mod q,
then the trace tr(γ) = a+ d satisfies the congruence

(60) tr(γ) ≡ ±2 mod q2.

To see this, note that γ ≡ ±I mod q implies that there are integers a′, b′, c′, d′ ∈
Z such that

a = a′q ± 1, b = b′q, c = c′q, and d = d′q ± 1.

Furthermore, the relation ad− bc = 1 gives

(61) 1 = (a′d′ − b′c′)q2 ± (a′ + d′)q + 1,

which forces
a′ + d′ = 0 mod q.

But this implies that

(62) tr(γ) = a + d = (a′ + d′)q ± 2 = ±2 mod q2

as claimed. Now since γ is hyperbolic by assumption we have |tr(γ)| > 2,
which combined with the congruence in (62) implies that for all q > 2

(63) |a+ d| = |tr(γ)| > q2 − 2 > q2/2.

We deduce that for all q > 2

‖γ‖2 = a2 + b2 + c2 + d2

= (a+ d)2 + (b− c)2 − 2

> (a+ d)2 − 2

> q4/4− 2

> q4/8.

Thus, ‖γ‖ >
√
q4/8 > q2/3, as claimed. �

We are now ready to finish the proof of Proposition 3.3:

Proof of Proposition 3.3. Fix a finitely-generated subgroup Γ ⊂ SL2(Z) and
a hyperbolic element

γ =

(
a b
c d

)
∈ Γr {I}, a, b, c, d ∈ Z, ad− bc = 1

such that

(64) ‖γ‖ <
x2

20
.

Recall that p ∼ x means p ∈ (x
2
, x]. Note that (64) implies that γ 6= ±I

mod p for all p ∼ x. If not, then Lemma 3.8 would imply that

‖γ‖ >
p2

3
>

x2

12
,
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contradicting (64). Furthermore, we know from Gamburd [11] that for primes
p large enough the reduction map πp : Γ → SL2(Z/pZ) is onto. Hence, once x
is sufficiently large, Lemma 3.6 implies that for all primes p ∼ x we have

tr(λ0
p(γ)) =

(
d(γ)

p

)
.

Thus,
∑

p∼x
p prime

log(p)tr(λ0
p(γ)) =

∑

p∼x
p prime

log(p)

(
d(γ)

p

)
.

Now we invoke Theorem 3.5. Since γ ∈ Γ is hyperbolic we have tr(γ) 6= ±2,
so d(γ) = tr(γ)2 − 4 > 1. Moreover, it is easy to verify that d(γ) is either 0 or
1 modulo 4 and that d(γ) ≪ ‖γ‖2 ≪ x4, so we obtain

∑

p∼x
p prime

log(p)

(
d(γ)

p

)
= O(x

1

2 log(x)2),

completing the proof. �

3.3. Finishing the proof of Theorem 1.4. Let us now complete the proof
our main result. The main technical estimate in the proof is the following:

Proposition 3.9 (Sum of Hilbert-Schmidt norms). Assume GRH for qua-
dratic L-functions. Write s = σ + it. Then there are positive constants
x0, c, τ0, C, depending only on Γ, such that for all x > x0 and for all cx−2 <
τ < τ0 we have

(65)
∑

p∼x
p prime

‖Lτ,s,λ0
p
‖2HS ≪ eC|t|(Cτ)2σ

(
τ−δx2 + x

1

2 log(x)2τ−2δ
)
.

The implied constant depends solely on Γ.

Let us show how we can use this proposition to deduce Theorem 3.1. (Re-
call from the discussion in §3.1 that our main theorem follows from Theorem
3.1.) Recall that it suffices to bound the sum

(66) S(x, σ)
def
=

∑

p∼x
p prime

Np(σ).

By combining Propositions 3.2 and 3.9 we obtain that there are constants
c > 0 and C > 0 such that once x and K are large enough and τ > 0 is small
enough, we have

S(x, σ) ≪ K max
Re(s)>σ−O( 1

K
)

|Im(s)|6O(K)



∑

p∼x
p prime

‖Lτ,s,λ0
p
‖2HS


 + x2τK

≪ eO(K)(Cτ)2σ−O( 1

K
)
(
τ−δx2 + x

1

2 log(x)2τ−2δ
)
+ x2τK ,(67)
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provided τ > cx−2. It remains to choose K and τ optimally. This may be
done by taking K = (log x)1/2, say, and

τ = C−1x− 3

2δ .

Observe that the required condition τ > cx−2 is satisfied as long as δ > 3
4
and

x is sufficiently large. Inserting these choices into (67) we obtain that for any
x large enough and for any ǫ > 0

S(x, σ) 6 C(ǫ,Γ)x1− 3

δ
(σ− 5

6
δ)+ǫ.

Note that we have used the trivial bounds x2τK ≪ǫ 1, log(x)
2 ≪ǫ x

ǫ, eO(K) ≪ǫ

xǫ, and τ−O( 1

K
) ≪ǫ x

ǫ. This establishes Theorem 3.1. Now we give the proof
of Proposition 3.9.

Proof of Proposition 3.9. By Lemma 2.4 we can write down the following for-
mula for the Hilbert–Schmidt norm of the operator Lτ,s,λ0

p
:

‖Lτ,s,λ0
p
‖2HS =

∑

b∈A

∑

a,b∈Y (τ)
a,b→b

tr
(
λ0
p(γ

−1
a
γb)
)
I(b)
a,b,

where

I(b)
a,b =

∫

Db

γ′
a
(z)sγ′

b
(z)sBD(γa(z), γb(z)) dvol(z).

Multiplying this formula by log(p) and summing over all primes in (x
2
, x] gives

∑

p∼x
p prime

‖Lτ,s,λ0
p
‖2HS 6

∑

p∼x
p prime

log(p)‖Lτ,s,λ0
p
‖2HS(68)

=
∑

b∈A

∑

a,b∈Y (τ)
a,b→b



∑

p∼x
p prime

log(p)tr
(
λ0
p(γ

−1
a

γb)
)

 I(b)

a,b.

Clearly, for the diagonal terms a = b we have tr
(
λ0
p(γ

−1
a
γb)
)
= tr(λ0

p(I)) =
p, so by the prime number theorem we obtain

(69)
∑

p∼x
p prime

log(p)tr
(
λ0
p(γ

−1
a
γb)
)
=
∑

p∼x
p prime

log(p)p = O(x2).

Now we focus on the non-diagonal terms a 6= b. Here we appeal to
Proposition 3.9. Recall from Lemma 2.3 that for all a ∈ Y (τ)

‖γa‖ 6 Cτ−1/2

for some constant C = C(Γ) > 0. Thus, using the fact that the Frobenius
norm is sub-multiplicative, we obtain for all a,b ∈ Y (τ)

‖γ−1
a
γb‖ 6 ‖γa‖‖γb‖ < C2τ−1.

Therefore, taking τ > 20C2x−2 gives

(70) ‖γ−1
a
γb‖ <

1

20
x2.
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Note further that a 6= b implies that the element γ−1
a

γb is not the identity.
Hence γ−1

a
γb is hyperbolic since the only non-hyperbolic element in Γ is the

identity. Thus, conditional on GRH for quadratic L-functions, Proposition
3.3 gives

(71)

∣∣∣∣∣∣∣

∑

p∼x
p prime

log(p)tr
(
λ0
p(γ

−1
a
γb)
)
∣∣∣∣∣∣∣
≪ x

1

2 log(x)2.

Inserting this back into (68) yields

∑

p∼x
p prime

‖Lτ,s,λ0
p
‖2HS ≪ x2

∑

b∈A

∑

a∈Y (τ)
a→b

I(b)
a,a +

∑

b∈A

∑

a,b∈Y (τ)
a,b→b

∣∣∣∣∣∣∣

∑

p∼x
p prime

log(p)tr
(
λ0
p(γ

−1
a
γb)
)
∣∣∣∣∣∣∣
|I(b)

a,b|

≪ x2
∑

b∈A

∑

a∈Y (τ)
a→b

I(b)
a,a + x

1

2 log(x)2
∑

b∈A

∑

a,b∈Y (τ)
a,b→b

|I(b)
a,b|.

To estimate the remaining terms we use the bound in Lemma 2.4: for all
b ∈ A and a,b ∈ Y (τ) with a,b → b

|I(b)
a,b| ≪ (Cτ)2σeC|t|

for some C = C(Γ) > 0. Furthermore, by Lemma 2.3 we have

|Y (τ)| ≪ τ−δ.

Inserting these bounds above gives
∑

p∼x
p prime

‖Lτ,s,λ0
p
‖2HS ≪ x2

∑

b∈A

∑

a∈Y (τ)
a→b

(Cτ)2σeC|t| + x
1

2 log(x)2
∑

b∈A

∑

a,b∈Y (τ)
a,b→b

(Cτ)2σeC|t|

≪ x2|Y (τ)|(Cτ)2σeC|t| + x
1

2 log(x)2|Y (τ)|2(Cτ)2σeC|t|

≪ (Cτ)2σeC|t|
(
x2τ−δ + x

1

2 log(x)2τ−2δ
)
.

The proof of Proposition 3.9 is complete. �
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