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SPECTRAL PROPERTIES OF THE RHALY OPERATOR ON

WEIGHTED NULL SEQUENCE SPACES AND ASSOCIATED

OPERATOR IDEALS

ARNAB PATRA, JYOTI RANI, AND SANJAY KUMAR MAHTO

Abstract. In this article, a comprehensive study is made on the continuity,
compactness, and spectrum of the lower triangular terraced matrix, introduced
by H. C. Rhaly, Jr. [Houston J. Math. 15(1): 137-146, 1989], acting on
the weighted null sequence spaces with bounded, strictly positive weights.
Several spectral subdivisions such as point spectrum, residual spectrum, and
continuous spectrum are also discussed. In addition, a new class of operator

ideal χ
(s)
c0(r)

associated to the Rhaly operator on weighted c0 space is defined

using the concept of s-number and it is proved that under certain condition,

χ
(s)
c0(r)

forms a quasi-Banach closed operator ideal.

1. Introduction

The linear map C which maps a sequence {xn} of real or complex numbers to
its sequence of averages {x1+···+xn

n
} is the well-known discrete Cesàro operator.

Extensive study can be found in the literature on the continuity and spectrum of C
defined over sequence spaces such as c0, c, ℓp, bvp (1 ≤ p <∞), bv0, etc [19, 1, 8, 13,
2, 17]. Recently Albanese et al. studied the spectral properties of Cesàro operator
defined over the weighted sequence spaces [3, 4, 5]. Several generalised version of
the Cesàro operator such as p−Cesàro operator [20, 7], discrete generalized Cesàro
operator [21, 30, 31], q−Cesàro operator [28, 10, 11], etc. are also studied. For a
sequence a = {an} of real or complex numbers Rhaly [20] introduced the terraced
matrix Ra also known as Rhaly matrix where

Ra =















a1 0 0 0 · · ·

a2 a2 0 0 · · ·

a3 a3 a3 0 · · ·

...
...

...
...

. . .















.

The operator represented by the above matrix is known as the Rhaly operator. The
Cesàro operator C can be obtained by taking an = 1

n
. Rhaly [20] also considered the

case an = 1
np , p ∈ R which is the p-cesaro operator. Many researchers investigated

the spectrum of Rhaly operators defined over several classical sequence spaces such
as c0 [25, 27, 24], ℓp [26], bv0 [29], etc. To the best of our knowledge, no investigation
is carried out so far on the spectral properties of Rhaly operators over the weighted
sequence spaces. The present work is an attempt in this direction. The aim of this
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paper is to study the continuity, compactness and spectrum of the Rhaly operator
defined over the weighted null sequence space c0(r) where r = {rn} is the weight
vector. Also using the concept of s-number sequences, we introduce a new class of

operator ideal χ
(s)
c0(r)

related to the Rhaly operator Ra acting on weighted c0 spaces.

It is demonstrated that under some assumptions on the sequence a = {an}, the class
forms an quasi-Banach closed operator ideal. Moreover, an inclusion relation among
operator ideals are also proved.

The remainder of this paper is organized as follows. Section 2 contains some
notations and some useful results. Section 3 deals with the continuity and com-
pactness and various spectral subdivision of Rhaly operator defined over weighted c0
spaces. In section 4 we introduce a new class of operator ideal χ

(s)
c0(r)

and discussed

few of its properties.

2. Preliminaries and Notations

Throughout the article, all the infinite sequences and matrices are indexed by
the set of natural numbers N. Let T : X → Y be a bounded linear operator where
X and Y are complex Banach spaces. The range space of T and null space of T
are denoted by R(T ) and N(T ) respectively. The Banach-adjoint of T , denoted by
T ∗, is a bounded linear operator T ∗ : Y ∗ → X∗ which is defined by

(T ∗φ)(x) = φ(Tx) for all φ ∈ Y ∗ and x ∈ X,

where X∗ and Y ∗ are the dual spaces of X and Y respectively. B(X,Y ) and
K(X,Y ) denote the space of all bounded linear operators and the ideal of all com-
pact operators form X into Y . If X = Y, then B(X,Y ) and K(X,Y ) are denoted
by B(X) and K(X) respectively. For any T ∈ B(X), the operator norm is denoted
by ‖T ‖ and the norm ‖.‖∞ denotes the supremum norm on the sequence space c0.
For any operator T ∈ B(X), the resolvent set of T is the set of all complex numbers
λ for which the operator T −λI has a bounded inverse in X where I is the identity
operator in X. The resolvent set of T is denoted by ρ(T,X). The complement of the
resolvent set in the complex plane C is called the spectrum of T and it is denoted
by σ(T,X). The set of points λ ∈ C for which N(T − λI) 6= {0} is called the point
spectrum of T and it is denoted by σp(T,X). The set of points λ ∈ C for which

N(T −λI) = {0}, and R(T − λI) = X but R(T − λI) 6= X is called the continuous
spectrum of T and denoted by σc(T,X), and the set of points λ ∈ C for which

N(T −λI) = {0} and R(T − λI) 6= X is called the residual spectrum of T and it is
denoted by σr(T,X). The three sets σp(T,X), σc(T,X), σr(T,X) are disjoint and
their union is the whole spectrum σ(T,X).

Let CN denotes the space of all complex sequences. For an infinite positive real
sequence r = {rk}, the weighted null sequence space c0(r) is defined as

c0(r) = {{xk} ∈ C
N : lim

k→∞
rkxk = 0}

equipped with the norm ‖x‖r = supk |xk|rk. If Dr is the diagonal matrix with
i-th diagonal entry ri then, Dr is an isometric isomorphism from c0(r) to c0 since
x = {xk} ∈ c0(r) implies Drx = {xkrk} ∈ c0, and ‖x‖r = ‖Drx‖∞. Hence ‖x‖r
defines a norm on c0(r) and (c0(r), ‖x‖r) is a Banach space under this norm. The
dual of c0(r) is linearly isometric with the weighted sequence space ℓ1(r

−1) where
r−1 = { 1

rn
}. Also it must be noted that if infk rk > 0 then c0(r) = c0 and the norms

are equivalent. Therefore we are interested in the case infk rk = 0.
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We record the following lemmas which are useful in this sequel.

Lemma 2.1. [22] The matrix A = (ank) gives rise to a bounded linear operator
T ∈ B(c0) if and only if the following conditions hold,

(i) the rows of A are in ℓ1 and their ℓ1 norms are bounded,
(ii) the columns of A are in c0.

The operator norm of T is given by the supremum of the ℓ1 norms of the rows.

Lemma 2.2. [6, Theorem 1] For two weight vectors r = {rn}, s = {sn} and an
infinite matrix A = (ank), the matrix A ∈ B(c0(r), c0(s)) if and only if the following
conditions hold,

(i) sup
n∈N

sn
∞
∑

k=1

|ank

rk
| <∞,

(ii) lim
n→∞

skank = 0 ∀ k ∈ N.

Then the norm of A is given by ‖A‖r,s = sup
n∈N

sn
∞
∑

k=1

|ank

rk
|.

Lemma 2.3. [12, p. 59] The bounded linear operator T : X → Y has dense range
if and only if T ∗ is one to one.

3. Boundedness and compactness of Ra

Let r = {rn} and s = {sn} are two bounded, strictly positive weight vectors for
the sequence spaces c0(r) and c0(s) respectively. For any operator T : c0(r) → c0(s)
the operator norm is denoted by ‖T ‖r,s and if T is defined from c0(s) to c0(s) then
‖T ‖r,s = ‖T ‖s. Following theorem is an immediate application of Lemma 2.2.

Theorem 3.1. The Rhaly operator Ra : c0(r) → c0(s) is bounded if and only if
{

snan

n
∑

k=1

1

rk

}

n∈N

∈ ℓ∞,

and in this case, ‖Ra‖r,s = sup
n

sn |an|
n
∑

k=1

1
rk
.

Proof. It follows from Lemma 2.2 that the Rhaly operator Ra is a bounded linear
operator from c0(r) to c0(s) if and only if

sup
n
sn |an|

n
∑

k=1

1

rk
<∞ and lim

n→∞
ansn = 0.

If sup
n

sn |an|
n
∑

k=1

1
rk
<∞ then there exists a positive real number M such that,

sn |an|
n
∑

k=1

1

rk
< M for all n ∈ N. (3.1)

Since r = {rk} is a bounded sequence of strictly positive real numbers, there exists
a real number M1 > 0 such that ∀n ∈ N,

n
∑

k=1

1

rk
> n

1

M1
.
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Finally from (3.1) it follows that

0 < sn |an| <
MM1

n
for all n ∈ N,

and consequently limn→∞ ansn = 0.Hence supn sn |an|
n
∑

k=1

1
rk
<∞ implies limn→∞ ansn =

0. Also the expression of ‖Ra‖r,s is a direct consequence of Lemma 2.2. �

Theorem 3.2. The Rhaly operator Ra : c0(r) → c0(s) is compact if and only if
{

snan

n
∑

k=1

1

rk

}

n∈N

∈ c0.

Proof. Let us consider the linear operator Tr,s : C
N → CN defined as

Tr,s(x) =

{

ansn

n
∑

k=1

xk
rk

}

n∈N

.

Then DsRa = Tr,sDr and consequently Ra : c0(r) → c0(s) is a compact map if and

only if Tr,s ∈ K(c0). Let

{

ansn
n
∑

k=1

1
rk

}

n∈N

∈ c0. Define a sequence of operators

{T
(k)
r,s }k∈N where T

(k)
r,s : c0 → c0 and

T (k)
r,s (x) =

{

a1s1
x1
r1
, a2s2

(

x1
r1

+
x2
r2

)

, · · · , aksk

k
∑

i=1

xi
ri
, 0, 0, · · ·

}

.

For each k ∈ N the operator T
(k)
r,s is a finite rank operator. Now

∥

∥

∥(Tr,s − T (k)
r,s )x

∥

∥

∥

∞
= sup

n>k

|an| sn

n
∑

i=1

xi
ri

≤ ‖x‖∞ sup
n>k

|an| sn

n
∑

i=1

1

ri
.

Hence
∥

∥

∥
Tr,s − T (k)

r,s

∥

∥

∥
≤ sup

n>k

|an| sn

n
∑

i=1

1

ri
.

Since ansn
n
∑

i=1

1
ri

→ 0 as n → ∞, by taking k → ∞ on both side of the above

relation we get
∥

∥

∥Tr,s − T (k)
r,s

∥

∥

∥→ 0.

Hence the sequence of operators {T
(k)
r,s } converges to Tr,s under the operator norm,

and this implies Tr,s ∈ K(c0).
For the converse part we adopt similar approach as in Proposition 2.2 [4]. Let
Ra : c0(r) → c0(s) is a compact operator. This implies Tr,s ∈ K(c0). This also
implies Tr,s(Bc0 [0, 1]) is a relatively compact set where Bc0 [0, 1] denotes the closed
unit ball in c0. Therefore using the result of [9, p. 15] there exists a sequence
y = {yn} ∈ c0 such that

|(Tr,s(x))n| ≤ |yn| for all n ∈ N, x ∈ Bc0 [0, 1].

Since y ∈ c0, for every ǫ > 0 there exists a n0 ∈ N such that,

|(Tr,s(x))n| < ǫ for all n > n0.
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Let us consider for each n ∈ N the sequence {u(n)} with {u
(n)
k }k∈N ∈ Bc0 [0, 1] such

that for k ∈ {1, 2, · · · , n}, u
(n)
k = 1 and 0 otherwise. Then

∣

∣

∣(Tr,s(u
(n)))n

∣

∣

∣ = sn |an|
n
∑

k=1

1

rk
< ǫ for all n > n0.

Hence

{

ansn
n
∑

k=1

1
rk

}

n

∈ c0 and this proves the theorem. �

Remark 3.3. Few important remarks on the above result are mentioned below.

(a) If rn = sn = 1 for all n ∈ N then both the weighted sequence spaces
c0(r) and c0(s) reduce to the classical sequence space c0. In this setting,
Theorem 3.1 yields, the Rhaly operator Ra : c0 → c0 is bounded if and only
if {nan} ∈ ℓ∞. This result is proved by Leibowitz [14] in Proposition 3.2.

(b) Since |an|sn
∑n

k=1
1
sk

≥ |an|, n ∈ N, a necessary condition for Ra ∈

B(c0(s)) and Ra ∈ K(c0(s)) is that an ∈ ℓ∞ and an ∈ c0 respectively.

Let s = {sn} be a decreasing, strictly positive sequence of real numbers. Then

sn |an|
n
∑

k=1

1

sk
≤ n |an| .

Therefore Ra ∈ B(c0(s)) if {nan} ∈ ℓ∞ and Ra ∈ K(c0(s)) if {nan} ∈ c0. Also let
{en} be a sequence in c0(r) such that the n-th entry is one and all other entries are
zero. Then for n ∈ N,

‖Raen‖s = sup
k≥n

sk |ak| ≥ ansn = |an| ‖en‖s .

This gives the following corollary.

Corollary 3.4. Let s = {sn} be a bounded, decreasing, strictly positive sequence of
real numbers. Then Ra ∈ B(c0(s)) if {nan} ∈ ℓ∞ and Ra ∈ K(c0(s)) if {nan} ∈ c0.
Also

sup
n

|an| ≤ ‖Ra‖s ≤ sup
n

n |an| .

The following example implies the above corollary is merely a sufficient condition.

Example 3.5. Let for n ∈ N, an = 1
log(n+1) and sn = 1

2n . Then sn
∑n

k=1
1
sk

=

2n+1−2
2n , n ∈ N. Hence

ansn

n
∑

k=1

1

sk
=

2n+1 − 2

2n log(n+ 1)
→ 0 as n→ ∞.

Here, {sn} is a bounded strictly decreasing sequence and {nan} is unbounded but
Ra ∈ K(c0(s)).

4. Spectral properties of Ra

From now onwards, let {an} is a sequence of positive real numbers such that
limn→∞ nan exists finitely and equal to χ 6= 0 and S = {an : n ∈ N}. The following
lemma ([29, Lemma 2.7], [19, Lemma 7]) is useful in this sequel.
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Lemma 4.1. Let λ ∈ C \ S and α = ℜ( 1
λ
). Then the following relation holds

n
∏

k=1

∣

∣

∣
1−

ak
λ

∣

∣

∣
≃

1

nαχ
,

where the notation an ≃ bn means the sequences
{

an

bn

}

and
{

bn
an

}

are bounded and

for any z ∈ C, ℜ(z) denotes the real part of z.

Using the similar concept as [19, Lemma 7], we prove a slightly modified result.

Lemma 4.2. For a fixed m ∈ N, let λ ∈ C \ {ak : k = m + 1,m + 2, · · · } and
α = ℜ( 1

λ
). Then the following relation holds

n
∏

k=m+1

∣

∣

∣1−
ak
λ

∣

∣

∣ ≃
1

nαχ
.

Proof. Let 1
λ

= α + iβ where α, β ∈ R and limn→∞ nan = χ implies an ≃ χ

n
.

Imitating the calculations of Lemma 7 in [19] and using the fact that ex ≥ 1 + x
for all x ∈ R, we have the following relation

n
∏

k=m+1

∣

∣

∣1−
ak
λ

∣

∣

∣ ≤ O(1) exp

n
∑

k=m+1

(

−
χ

k
α+

(α2 + β2)

2

χ2

k2

)

. (4.1)

Now we use the following inequality

n
∑

k=m+1

1

k
≥

n
∫

m

1

x+ 1
dx = log(n+ 1)− log(m+ 1) ≥ logn− log(m+ 1).

Therefore from (4.1) we deduce that

n
∏

k=m+1

∣

∣

∣1−
ak
λ

∣

∣

∣ ≤
O(1)

nχα
.

Also note that
n
∑

k=m+1

1

k
≤

n−1
∫

m−1

1

x+ 1
dx = log n− logm.

Using the above inequality, in a similar way it can be proved that

n
∏

k=m+1

∣

∣

∣1−
ak
λ

∣

∣

∣

−1

≤ O(1)nχα.

This proves the result. �

Next we derive the point spectrum of Ra.

Theorem 4.3. Let s = {sn} be a bounded, strictly positive sequence such that
Ra ∈ B(c0(s)). Then

σp(Ra, c0(s)) = {λ ∈ S : lim
n→∞

ansnn
αχ = 0}

where α = ℜ( 1
λ
) = 1

λ
.
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Proof. Let us consider Rax = λx for some λ ∈ C and non-zero x. This gives the
system of equations

a1x1 = λx1

a2(x1 + x2) = λx2

...

ak(x1 + x2 + · · ·+ xk) = λxk

...







































. (4.2)

If λ /∈ S then from the above equations it follows that xk = 0 for all k ∈ N. Hence
σp(Ra, c0(s)) ⊆ S.. Any element λ of S belongs to σp(Ra, c0(s)) if and only if
Rax = λx holds for some non-zero x = {xn} ∈ c0(s). Simplifying Rax = λx we get,

xn =
n
∏

j=m+1

(

λa−1
j−1

λa−1
j − 1

)

xm, n = m+ 1,m+ 2, · · · , (4.3)

where xm is the first non-zero entry of {xn}. Now we rearrange the right hand side
of the above equation as follows;

xn =

n
∏

j=m+1

(

λa−1
j−1

λa−1
j − 1

)

xm =

n
∏

j=m+1

(

aja
−1
j−1

1− aj

λ

)

xm =

n
∏

j=m+1

aja
−1
j−1

n
∏

j=m+1

(

1− aj

λ

)

xm

=
an

am

n
∏

j=m+1

(

1− aj

λ

)

xm.

From Lemma 4.2 it can be deduced that λ ∈ σp(Ra, c0(s)) if and only if

lim
n→∞

ansnn
αχ = 0,

where α = ℜ( 1
λ
) = 1

λ
.

�

Remark 4.4. Here we mention few important observations related to the point
spectrum.

(i) Since the weight vector s = {sn} is a bounded sequence, and an ≃ χ

n
, for

any λ ∈ S satisfies λ > χ we have

ann
αχ ≃ χnαχ−1

where α = ℜ( 1
λ
) = 1

λ
. This proves that ansnn

αχ → 0 as n → ∞ and con-
sequently λ ∈ σp(Ra, c0(s)). In this regard we have the following inclusion
relation

{λ ∈ S : λ > χ} ⊆ σp(Ra, c0(s)).

(ii) Let λ ∈ σp(Ra, c0(s)). Then for all µ ∈ S such that λ ≤ µ the following
relation holds for all n ∈ N

ansnn
χ
µ ≤ ansnn

χ
λ .

This shows that µ ∈ σp(Ra, c0(s)) for all λ ≤ µ.
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(iii) If an = 1
n

and sn = 1 for all n ∈ N then χ = 1. In this case ansnn
χ
ak

does not converge to zero for any k ∈ N and hence σp(Ra, c0(s)) = ∅. This
reflects the case of the point spectrum of the Cesàro matrix over c0 space
which is obtained by Reade [19, Theorem 1].

Theorem 4.5. Let s = {sn} be a bounded strictly positive sequence such that
Ra ∈ B(c0(s)). Then the following statements hold

(i) 0 /∈ σp(R
∗
a, c0(s)

∗),
(ii) S ⊆ σp(R

∗
a, c0(s)

∗),

(iii) Let λ ∈ C \ S. Then λ ∈ σp(R
∗
a, c0(s)

∗) if and only if

∞
∑

n=1

1

snnαχ
<∞,

where α = ℜ( 1
λ
).

Proof. (i) Let the relation R∗
ax = 0 holds for some x. This implies

∑∞
k=n akxk = 0

for all n ∈ N and eventually we have xn = 0 for all n ∈ N. This shows that
0 /∈ σp(R

∗
a, c0(s)

∗).
(ii) Consider the equation R∗

ax = λx for some λ ∈ C. This gives the following
system

a1x1 + a2x2 + a3x3 + a4x4 + · · · = λx1

a2x2 + a3x3 + a4x4 + · · · = λx2

a3x3 + a4x4 + · · · = λx3

...























. (4.4)

From the above system it follows that for all n ∈ N and n ≥ 2

xn =

n−1
∏

j=1

(

1−
aj
λ

)

x1. (4.5)

If λ = al for some l ∈ N then from the above equation, it follows

xl+1 = xl+2 = · · · = 0.

Hence {xk} ∈ ℓ1(s
−1). It follows that S ⊆ σp(R

∗
a, c0(s)

∗).

(iii) Now let λ ∈ C \ S. Then R∗
ax = λx implies the equation (4.5) for {xn}.

Then using Lemma 4.1 we get for n ∈ N,

|xn| =

∣

∣

∣

∣

∣

∣

n−1
∏

j=1

(

1−
aj
λ

)

x1

∣

∣

∣

∣

∣

∣

≃
1

nαχ
|x1| ,

where α = ℜ( 1
λ
). Hence λ ∈ σp(R

∗
a, c0(s)

∗) if and only if
∑∞

n=1
1

snnαχ <∞. �

Remark 4.6. The following facts are used to obtain the next lemma. For λ ∈ C\{0}
and a fixed χ > 0 the following statements hold

(i)
∣

∣λ− χ

2

∣

∣ < χ

2 if and only if ℜ
(

1
λ

)

> 1
χ
,

(ii)
∣

∣λ− χ

2

∣

∣ = χ

2 if and only if ℜ
(

1
λ

)

= 1
χ
,

(iii)
∣

∣λ− χ
2

∣

∣ > χ
2 if and only if ℜ

(

1
λ

)

< 1
χ
.
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Lemma 4.7. Let s = {sn} be a bounded strictly positive sequence such that
Ra ∈ B(c0(s)). Then

σp(R
∗
a, c0(s)

∗) ⊆
{

λ ∈ C :
∣

∣

∣λ−
χ

2

∣

∣

∣ <
χ

2

}

∪ S.

Proof. It is already proved that an ∈ σp(R
∗
a, c0(s)

∗) for all n ∈ N. Let λ /∈ S such
that λ ∈ σp(R

∗
a, c0(s)

∗). Then from Theorem 4.5 it follows that
∑∞

n=1
1

snnαχ < ∞,

where α = ℜ( 1
λ
). Now

1

snnαχ
≥ ||s||−1

∞

1

nαχ
.

holds for all n ∈ N. Hence

λ ∈ σp(R
∗
a, c0(s)

∗) ⇒
∞
∑

n=1

1

nαχ
<∞ ⇒ αχ > 1,

and consequently λ satisfies
∣

∣λ− χ

2

∣

∣ < χ

2 . This proves the lemma. �

The next result provides an estimation of the spectrum of the operator Ra.

Theorem 4.8. Let s = {sn} be a bounded, decreasing sequence of positive real
numbers such that Ra ∈ B(c0(s)), then

σ(Ra, c0(s)) ⊆
{

λ ∈ C \ S̄ :
∣

∣

∣λ−
χ

2

∣

∣

∣ ≤
χ

2

}

∪ S̄.

Proof. From the inclusion relation (ii) in Theorem 4.5 we have, S ⊆ σp(R
∗
a, c0(s)

∗).
Also it is known that for a Banach space X , σp(T

∗, X∗) ⊆ σ(T,X). Therefore we
have S ⊆ σ(Ra, c0(s)) with the fact that σ(Ra, c0(s)) is a closed subset of C. Hence
S ⊂ σ(Ra, c0(s)). Again for λ /∈ S the inverse (Ra − λI)−1 exists and has the
matrix representation

(Ra − λI)−1 = (bnk) =



































1

an − λ
, n = k

−an

λ2
n
∏

j=k

(1− aj

λ
)
, 1 ≤ k < n

0, otherwise.

(4.6)

From Lemma 2.2 it follows that (Ra −λI)−1 = (bnk) ∈ B(c0(s)) if and only if both

the conditions sup
n∈N

sn
n
∑

k=1

|bnk|
sk

< ∞, and lim
n→∞

sn|bnk| = 0, ∀k ∈ N are satisfied.

Let λ ∈
{

λ ∈ C \ S̄ :
∣

∣λ− χ
2

∣

∣ > χ
2

}

. Then we have for n ∈ N

sn

n
∑

k=1

|bnk|

sk
= sn

n−1
∑

k=1

|bnk|

sk
+ |bnn|

= sn

n−1
∑

k=1

an
∣

∣

∣

∣

∣

λ2
n
∏

j=k

(1− aj

λ
)

∣

∣

∣

∣

∣

sk

+

∣

∣

∣

∣

1

an − λ

∣

∣

∣

∣

. (4.7)

Also, since limn→∞
na

(n+1)a = 1 for all real a, Lemma 4.2 yields

D1

(n+ 1)αχ
≤

n
∏

k=1

∣

∣

∣1−
ak
λ

∣

∣

∣ ≤
D2

(n+ 1)αχ
, (4.8)
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for some positive constants D1 and D2 and Lemma 4.2 and equation (4.8) together
imply

M1an
nαχ

kαχ
≤

an
n
∏

j=k

∣

∣1− aj

λ

∣

∣

≤M2an
nαχ

kαχ
, (4.9)

for some positive constants M1 and M2. Therefore using the relation (4.9) in the
equation (4.7) we obtain for n ∈ N

sn

n
∑

k=1

|bnk|

sk
≤ M2

sn
|λ|2

n−1
∑

k=1

ann
αχ

skkαχ
+

1

dλ
,

where dλ = dist (λ, S̄). Therefore we have

sup
n

ansnn
αχ

n−1
∑

k=1

1

skkαχ
<∞ ⇒ sup

n

sn

n
∑

k=1

|bnk|

sk
<∞.

As λ ∈
{

λ ∈ C \ S̄ :
∣

∣λ− χ

2

∣

∣ > χ

2

}

, this is equivalent to αχ < 1. In this case for
n ∈ N,

ann
αχ

n−1
∑

k=1

sn
skkαχ

≤ (nan)n
αχ−1

n−1
∑

k=1

1

kαχ
≤ D1n

αχ−1
n−1
∑

k=1

1

kαχ
(4.10)

for some positive constant D1 as {nan} is convergent sequence and {sn} is decreas-
ing. Also

n−1
∑

k=1

1

kαχ
≤

n−1
∫

0

1

xαχ
dx = lim

ǫ→0+

n−1
∫

ǫ

1

xαχ
dx =

(n− 1)1−αχ

1− αχ
.

The above inequality and (4.10) together imply

sup
n

ansnn
αχ

n−1
∑

k=1

1

skkαχ
<∞.

Also from (4.9) we have for each k ∈ N and large n

0 ≤ sn|bnk| =
snan

∣

∣

∣

∣

∣

λ2
n
∏

j=k

(1− aj

λ
)

∣

∣

∣

∣

∣

≤M2ansn
nαχ

|λ|2kαχ
.

Hence limn→∞ ansnn
αχ = 0 ⇒ limn→∞ sn|bnk| = 0.

Again 0 ≤ ansnn
αχ = (nan)snn

αχ−1 ≤ D2n
αχ−1 holds for some positive con-

stant D2 as {nan} and {sn} are bounded. This also proves that lim
n→∞

ansnn
αχ = 0.

Hence (Ra − λI)−1 exists and (Ra − λI)−1 ∈ B(c0(s)) and consequently λ ∈
ρ(Ra, c0(s)). Finally we have

{

λ ∈ C \ S̄ :
∣

∣

∣λ−
χ

2

∣

∣

∣ >
χ

2

}

⊆ ρ(Ra, c0(s)).

This proves the result.
�
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Now we summarize all the result on the spectrum and fine spectrum of the Rhaly
operator over the sequence space c0(s). Consider the following sets

A1 =
{

λ ∈ S : lim
n→∞

ansnn
αχ = 0

}

,

A2 =

{

λ ∈ C \ (S ∪ {0}) :
∞
∑

n=1

1

snnαχ
<∞

}

,

where α = ℜ( 1
λ
). In this setting we have the following result.

Theorem 4.9. Let {sn} be a bounded and strictly positive sequence such that
Ra ∈ B(c0(s)) and limn→∞ nan = χ 6= 0 then the following statements hold

(i) σp(Ra, c0(s)) = A1,
(ii) σp(R

∗
a, c0(s)

∗) = A2 ∪ S,
(iii) σr(Ra, c0(s)) = (A2 ∪ S) \A1 = A2 ∪ (S \A1).

In addition, if the sequence {sn} is a decreasing sequence then

(iv) σ(Ra, c0(s)) ⊆
{

λ ∈ C \ S̄ :
∣

∣λ− χ
2

∣

∣ ≤ χ
2

}

∪ S̄,

(v) {0} ⊆ σc(Ra, c0(s)) ⊆ (
{

λ ∈ C \ S̄ :
∣

∣λ− χ
2

∣

∣ ≤ χ
2

}

∪ S̄) \ (A2 ∪ S).

Proof. The relations (i) and (ii) are direct consequences of Theorem 4.3 and Theo-
rem 4.5 respectively. Also from lemma 2.3 it follows that σr(Ra, c0(s)) = σp(R

∗
a, c0(s)

∗)\
σp(Ra, c0(s)) which gives the expression for σr(Ra, c0(s)) in (iii). The relation (iv)
follows from Theorem 4.8. The first inclusion relation in (v) follows from Theo-
rem 4.3 and Theorem 4.5(i) and the other inclusion relation in (v) follows from
the fact that σp(Ra, c0(s)), σr(Ra, c0(s)), and σc(Ra, c0(s)) forms a partition of
σ(Ra, c0(s)). �

5. Operator Ideal

The theory of operator ideals holds a distinctive place in functional analysis
because of its numerous applications in spectrum theory, Banach space geometry,
the theory of eigenvalue distributions, etc. Many researchers have developed classes
of operator ideals that result from operators acting over sequence spaces [15, 16, 23].
In this section, we introduce a new class of operator ideal with the help of s-
number sequences and discussed of its properties. Let X , Y , Z, X0 and Y0 are the
Banach spaces, B denotes the class of all bounded linear operators between any
pair of Banach spaces, X ′ denotes the dual of X , x′ denotes the continuous linear
functional on X . The sequences r = {rn}, t = {tn} and u = {un} are the weight
vectors corresponding to sequence spaces c0(r), c0(t) and c0(u) respectively. Let
x′ ∈ X ′ and y ∈ Y then the mapping (x′ ⊗ y) : X → Y is defined by (x′ ⊗ y)(x) =
x′(x)y, x ∈ X . Before proceeding, we list certain known definitions and results
which are necessary for our results.

Definition 5.1. [18, p.79] A map s : B → R
N which assigns every operator φ ∈ B

to a non-negative sequence {sn(φ)} is called a s-number sequence if it satisfies the
following properties:

(i) ‖φ‖ = s1(φ) ≥ s2(φ) ≥ · · · ≥ 0 for φ ∈ B(X,Y ),
(ii) sm+n−1(φ + ψ) ≤ sm(φ) + sn(ψ) for φ, ψ ∈ B(X,Y ),
(iii) sn(ζφη) ≤ ‖ζ‖sn(φ)‖η‖ for ζ ∈ B(Y, Y0), φ ∈ B(X,Y ), η ∈ B(X0, X),
(iv) If rank(φ) < n, then sn(φ) = 0,
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(v) sn(I2 : ℓ
(i)
2 → ℓ

(i)
2 ) = 1, where I2 denotes the identity operator on the

i-dimensional Hilbert space ℓ
(i)
2 .

We call sn(φ) the n-th s-number of the operator φ.

Definition 5.2. [18, p.25] For a subsetA(X,Y ) of B(X,Y ), the classA = ∪X,Y A(X,Y )
is said to be an operator ideal if each component A(X,Y ) satisfies the following
conditions:

(i) x′ ⊗ y ∈ A(X,Y ) for x′ ∈ X ′ and y ∈ Y ,
(ii) φ+ ψ ∈ A(X,Y ) for φ, ψ ∈ A(X,Y ),
(iii) ζφη ∈ A(X0, Y0) for η ∈ B(X0, X), φ ∈ A(X,Y ), ζ ∈ B(Y, Y0).

Definition 5.3. [18, p.25] A function Γ : A → R+ which assigns to every operator
φ ∈ A a non-negative number Γ(φ) is called a quasi-norm on the operator ideal A
if it satisfies the following properties:

(i) Γ(x′ ⊗ y) = ‖x′‖‖y‖ for x′ ∈ X ′ and y ∈ Y ,
(ii) Γ(φ+ ψ) ≤ c(Γ(φ) + Γ(ψ)) for φ, ψ ∈ A(X,Y ) where c ≥ 1 is a constant,
(iii) Γ(ζφη) ≤ ‖ζ‖Γ(φ)‖η‖ for η ∈ B(X0, X), φ ∈ A(X,Y ), ζ ∈ B(Y, Y0).

Definition 5.4. [18, p.81] An s-number s is called multiplicative if

sm+n−1(φψ) ≤ sm(φ)sn(ψ) for ψ ∈ L(X,Y ) and φ ∈ L(Y, Z).

Definition 5.5. [18, p.26] An operator ideal A is closed if all components A(X,Y )
are closed linear subsets of B(X,Y ).

The following lemma is useful in this context.

Lemma 5.6. [18, p.80] If φ, ψ ∈ B(X,Y ) then |si(φ) − si(ψ)| ≤ ‖φ− ψ‖, i ∈ N.

Now we define sequence space χc0(r) associated to the Rhaly operator Ra as
follows

χc0(r) = {v ∈ C
N : Ra(v) ∈ c0(r)}.

Thus

χc0(r) =







v ∈ C
N : lim

i→∞





i
∑

j=1

aivj



 ri = 0







.

An operator φ ∈ B(X,Y ) is called s-type χc0(r) operator if

lim
i→∞



ai

i
∑

j=1

sj(φ)



 ri = 0

We denote the class of all s-type χc0(r) operators by χ
(s)
c0(r)

i.e.,

χ
(s)
c0(r)

=







φ ∈ B : lim
i→∞



ai

i
∑

j=1

sj(φ)



 ri = 0







.

If φ ∈ B(X,Y ) then

χ
(s)
c0(r)

(X,Y ) =







φ ∈ B(X,Y ) : lim
i→∞



ai

i
∑

j=1

sj(φ)



 ri = 0







.

Lemma 5.7. If rn ≤ tn for all n then χ
(s)
c0(t)

⊆ χ
(s)
c0(r)

.
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Proof. Suppose φ ∈ χ
(s)
c0(t)

then

lim
i→∞



ai

i
∑

j=1

sj(φ)



 ti = 0

Now,

lim
i→∞



ai

i
∑

j=1

sj(φ)



 ri ≤ lim
i→∞



ai

i
∑

j=1

sj(φ)



 ti = 0

Thus φ ∈ χ
(s)
c0(r)

. �

Theorem 5.8. The following statements hold,

(i) χ
(s)
c0(r)

is an operator ideal if {an} ∈ c0(r),

(ii) χ
(s)
c0(r)

is a closed operator ideal if {nan} ∈ c0(r).

Proof. (i) Let X and Y are any two Banach spaces. Let x′ ∈ X ′ and y ∈ Y . Then
x′ ⊗ y is a rank one operator so si(x

′ ⊗ y) = 0 for all i ≥ 2. Consider,

lim
i→∞



ai

i
∑

j=1

sj(x
′ ⊗ y)



 ri = lim
i→∞

ais1(x
′ ⊗ y)ri

=‖x′ ⊗ y‖ lim
i→∞

airi

=0.

Thus, (x′ ⊗ y) ∈ χ
(s)
c0(r)

(X,Y ).

Suppose φ, ψ ∈ χ
(s)
c0(r)

(X,Y ). By using properties of s-number, we have

lim
i→∞

ai





i
∑

j=1

sj(φ+ ψ)



 ri = lim
i→∞



ai





i
∑

j=1

s2j−1(φ+ ψ) +

i
∑

j=1

s2j(φ+ ψ)







 ri

≤ lim
i→∞



ai





i
∑

j=1

s2j−1(φ+ ψ) +

i
∑

j=1

s2j−1(φ+ ψ)







 ri

=2 lim
l→∞

ai





i
∑

j=1

s2j−1(φ+ ψ)



 ri

≤2ai lim
i→∞





i
∑

j=1

(sj(φ) + sj(ψ))



 ri

=2 lim
i→∞

ai





i
∑

j=1

sj(φ)



 ri + 2 lim
i→∞

aian





i
∑

j=1

sj(ψ)



 ri

=0.
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This implies, limi→∞ ai

(

∑i

j=1 sj(φ+ ψ)
)

ri = 0. Thus, φ+ ψ ∈ χ
(s)
c0(r)

(X,Y ).

Suppose ζ ∈ B(Y, Y0), η ∈ B(X0, X) and φ ∈ χ
(s)
c0(r)

(X,Y ). Then

lim
i→∞

ai





i
∑

j=1

sj(ζφη)



 ri = ‖ζ‖‖η‖ lim
i→∞

ai





i
∑

j=1

sj(φ)



 ri = 0.

Thus, ζφη ∈ χ
(s)
c0(r)

(X0, Y0). Hence χ
(s)
c0(r)

is an operator ideal.

(ii) Let {φk} be any sequence in χ
(s)
c0(r)

(X,Y ) converging to φ ∈ B(X,Y ) with

respect to the operator norm. Given ǫ > 0, we can fix k0 ∈ N such that

‖φ− φk‖ ≤ ǫ for k ≥ k0.

Now,

lim
i→∞



ai

i
∑

j=1

sj(φ)



 ri = lim
i→∞



ai

i
∑

j=1

sj(φ − φk + φk)



 ri

≤ lim
i→∞



ai

i
∑

j=1

s1(φ− φk)



 ri + lim
i→∞



ai

i
∑

j=1

sj(φk)



 ri

=‖φ− φk‖ lim
i→∞

iairi + lim
i→∞



ai

i
∑

j=1

sj(φk)



 ri

=0.

Hence, φ ∈ χ
(s)
c0(r)

(X,Y ) as limi→∞

(

ai
∑i

j=1 sj(φ)
)

ri = 0. The required result is

proved.
�

Define a mapping Q(s) : χ
(s)
c0(r)

→ R+ where R+ is the set of all positive real

numbers, by

Q(s)(φ) = sup
i

∣

∣

∣

∣

∣

∣

ai

i
∑

j=1

sj(φ)

∣

∣

∣

∣

∣

∣

ri where φ ∈ χ
(s)
c0(r)

.

The next result proves that under certain condition Q(s) forms a quasi norm on

χ
(s)
c0(r)

.

Theorem 5.9. If supi |ai|ri = 1 then the mapping Q(s) is a quasi norm on the set

χ
(s)
c0(r)

and the operator ideal χ
(s)
c0(r)

is complete under the quasi-norm Q(s).

Proof. Let X and Y are any two Banach spaces and x′ ∈ X ′,y ∈ Y . Now

Q(s)(x′ ⊗ y) = sup
i

∣

∣

∣

∣

∣

∣

ai

i
∑

j=1

sj(x
′ ⊗ y)

∣

∣

∣

∣

∣

∣

ri

=sup
i

|ais1(x
′ ⊗ y)| ri

=‖x′ ⊗ y‖ sup
i

airi

=‖x′ ⊗ y‖.
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Clearly ‖x′ ⊗ y‖ = ‖x′‖‖y‖, so Q(s)(x′ ⊗ y) = ‖x′‖‖y‖.

Suppose φ, ψ ∈ χ
(s)
c0(r)

(X,Y ) and consider

Q(s)(φ+ ψ) = sup
i

∣

∣

∣

∣

∣

∣

ai

i
∑

j=1

sj(φ + ψ)

∣

∣

∣

∣

∣

∣

ri

≤2 sup
i

∣

∣

∣

∣

∣

∣

ai

i
∑

j=1

(sj(φ) + sj(ψ))

∣

∣

∣

∣

∣

∣

ri

=2 sup
i

∣

∣

∣

∣

∣

∣

ai





i
∑

j=1

sj(φ)



 ri + ai





i
∑

j=1

sj(ψ)



 ri

∣

∣

∣

∣

∣

∣

≤2 sup
i

∣

∣

∣

∣

∣

∣

ai

i
∑

j=1

sj(φ)

∣

∣

∣

∣

∣

∣

ri + 2 sup
i

∣

∣

∣

∣

∣

∣

ai

i
∑

j=1

sj(ψ)

∣

∣

∣

∣

∣

∣

ri

≤2
(

Q(s)(φ) +Q(s)(ψ)
)

.

Thus,

Q(s)(φ+ ψ) ≤ 2
(

Q(s)(φ) +Q(s)(ψ)
)

.

Let φ ∈ χ
(s)
c0(r)

(X,Y ) and ζ ∈ B(Y, Y0), η ∈ B(X0, X).

Q(s)(ζφη) = sup
i

∣

∣

∣

∣

∣

∣

ai

i
∑

j=1

sj(ζφη)

∣

∣

∣

∣

∣

∣

ri

≤‖ζ‖‖η‖ sup
i

∣

∣

∣

∣

∣

∣

ai





i
∑

j=1

sj(φ)





∣

∣

∣

∣

∣

∣

ri.

This implies,

Q(s)(ζφη) ≤ ‖ζ‖Q(s)(φ)‖η‖.

Hence, Q(s) is quasi-norm on operator ideal χ
(s)
c0(r)

.

Also, suppose φ ∈ χ
(s)
c0(r)

(X,Y ). We have

Q(s)(φ) = sup
i

∣

∣

∣

∣

∣

∣

ai

i
∑

j=1

sj(φ)

∣

∣

∣

∣

∣

∣

ri

≥ sup
i

s1(φ)airi

=‖φ‖ sup
i

airi

=‖φ‖.

This implies,

‖φ‖ ≤ Q(s)(φ) for φ ∈ χ
(s)
c0(r)

(X,Y ). (5.1)

�
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Let {φn} be a Cauchy sequence in χ
(s)
c0(r)

(X,Y ). Then for ǫ > 0 there exists

k ∈ N such that

Q(s)(φn − φm) < ǫ for all n,m ≥ k. (5.2)

By using equation (5.1), we have

‖φn − φm‖ < ǫ for all n,m ≥ k.

This implies {φn} is a Cauchy sequence in B(X,Y ). Since B(X,Y ) is a Banach
space, there exists φ ∈ B(X,Y ) such that φn → φ as n → ∞. Using Lemma 5.6,
we have

|si(φn − φm)− si(φ − φm)| ≤ ‖φn − φ‖, i ∈ N.

As φn → φ, taking n→ ∞ and keeping m fixed we have

si(φn − φm) → si(φ− φm), i ∈ N. (5.3)

Now, we shall show that φn → φ as n → ∞ in χ
(s)
c0(r)

(X,Y ). Again, from equation

(5.2), we have

sup
i

∣

∣

∣

∣

∣

∣

ai

i
∑

j=1

sj(φn − φm)

∣

∣

∣

∣

∣

∣

ri < ǫ for all m ≥ k.

Keeping m fixed and letting n→ ∞, we obtain on using equation (5.3)

sup
i

∣

∣

∣

∣

∣

∣

ai

i
∑

j=1

sj(φ− φm)

∣

∣

∣

∣

∣

∣

ri < ǫ for all n,m ≥ k. (5.4)

which gives Q(s)(φ − φm) < ǫ for all m ≥ k. This implies φm → φ under the quasi
norm Q(s). Again,

i
∑

j=1

sj(φ) =

i
∑

j=1

s2j−1(φ) +

i
∑

j=1

s2j(φ) ≤2

i
∑

j=1

s2j−1(φ)

=2

i
∑

j=1

s2j−1(φ − φm + φm)

≤2





i
∑

j=1

sj(φ− φm) +

i
∑

j=1

sj(φm)



 .

Thus,
i
∑

j=1

sj(φ) ≤ 2





i
∑

j=1

sj(φ− φm) +

i
∑

j=1

sj(φm)



 . (5.5)

The above inequality implies that
∣

∣

∣

∣

∣

∣

ai

i
∑

j=1

sj(φ)

∣

∣

∣

∣

∣

∣

ri ≤2

∣

∣

∣

∣

∣

∣

ai





i
∑

j=1

sj(φ− φm) +

i
∑

j=1

sj(φm)





∣

∣

∣

∣

∣

∣

ri

≤2

∣

∣

∣

∣

∣

∣

ai

i
∑

j=1

sj(φ− φm)

∣

∣

∣

∣

∣

∣

ri + 2

∣

∣

∣

∣

∣

∣

ai

i
∑

j=1

sj(φm)

∣

∣

∣

∣

∣

∣

ri.
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By using relation (5.4), we obtain that
∣

∣

∣

∣

∣

∣

ai

i
∑

j=1

sj(φ)

∣

∣

∣

∣

∣

∣

ri ≤ 2ǫ+ 2

∣

∣

∣

∣

∣

∣

ai

i
∑

j=1

sj(φm)

∣

∣

∣

∣

∣

∣

ri ∀m ≥ k.

Taking limit on both sides, we obtain that

lim
i→∞

∣

∣

∣

∣

∣

∣

ai

i
∑

j=1

sj(φ)

∣

∣

∣

∣

∣

∣

ri ≤ 2ǫ+ 2 lim
i→∞

∣

∣

∣

∣

∣

∣

ai

i
∑

j=1

sj(φm)

∣

∣

∣

∣

∣

∣

ri

Then,

lim
i→∞

∣

∣

∣

∣

∣

∣

ai

i
∑

j=1

sj(φ)

∣

∣

∣

∣

∣

∣

ri ≤ 2ǫ.

Thus, φ ∈ χ
(s)
c0(r)

(X,Y ), and this implies, χ
(s)
c0(r)

is complete under quasi-norm Q(s).
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