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Abstract

Pre-trained language models such as BERT are
impressive machines with the ability to mem-
orize, possibly generalized learning examples.
We present here a small, focused contribution
to the analysis of the interplay between mem-
orization and performance of BERT in down-
stream tasks. We propose PreCog, a mea-
sure for evaluating memorization from pre-
training, and we analyze its correlation with
the BERT’s performance. Our experiments
show that highly memorized examples are bet-
ter classified, suggesting memorization is an
essential key to success for BERT.

1 Introduction

Pre-trained language models (PTLMs) (Peters
et al., 2018; Devlin et al., 2019; Liu et al., 2019)
are intriguing machines dominating the arena of
NLP tasks with their ability to memorize gener-
alizations of texts in synthetic neurons. After
long pre-training on large amounts of unlabeled
data, PTLMs have shown to learn effectively down-
stream tasks with limited labeled data (Howard and
Ruder, 2018) and generalize in out-of-distribution
examples (Hendrycks et al., 2020). Extensive stud-
ies have shown that these PTLMs tend to mimic tra-
ditional linguistic syntactic models (Jawahar et al.,
2019) and traditional NLP pipelines (Tenney et al.,
2019). Hence, a crucial issue is to clarify why
PLTMs exploit pre-training better than traditional
NLP modules exploit annotated corpora.
Understanding the learning process of PTLMs
may help in understanding their results in down-
stream tasks and in improving their linguistic rep-
resentations in scenarios where they fail (Kumar
etal., 2020). Indeed, unlike traditional general NLP
modules in pipelines, PTLMs need to be fine-tuned
for the specific tasks (Devlin et al., 2019) and, even-
tually, domain-adapted on the specific language of
the novel corpus (Jin et al., 2022). Moreover, as
many other machine learning models, fine-tuned

PTLMs lose their ability to solve a task if subse-
quently fine-tuned to another task (Xu et al., 2020)
although they apparently do not change their lan-
guage models (Merchant et al., 2020). This phe-
nomenon is known as catastrophic forgetting (Kirk-
patrick et al., 2017) in machine learning. Then, it is
still unclear how these models exploit pre-training
and training examples.

PTLMSs, such as BERT (Devlin et al., 2019),
have shown to have an impressive ability to mem-
orize and possibly generalize learning examples.
This ability has been largely investigated as it may
be extremely harmful. In fact, these PTLMs may
reveal sensitive information that has been acquired
during pre-training. For example, memories of
Generative Pretrained Transformers (GPTs) (Rad-
ford and Narasimhan, 2018) have been violated
and produced phone numbers, and usernames (Car-
lini et al., 2021; Thakkar et al., 2021). However,
this simple ability to memorize may play a crucial
role in the performances of PTLMs in downstream
tasks.

This paper presents a small, focused contribution
to the role of memorization in the performance of
BERT in downstream tasks. We propose PreCog, a
very simple measure of coverage that evaluates how
much pre-training covers the information needed
to model a given example or, better if BERT has
already partially seen the example - it pre-cognizes
the example. The aim is to evaluate if PreCog pre-
cognizes on which examples BERT adapted to a
downstream task performs better inferences. We
have extensively experimented with PreCog by us-
ing BERT over the GLUE tasks (Wang et al., 2018),
and we observed the ability of PreCog to predict
examples where a task-adapted BERT performs
better. Besides being a predictive measure, PreCog
showed that example memorization is a crucial part
of the success of BERT.



2 Related Work

The ability of linguistic neural models to memorize
facts is out of doubt. This ability has been deeply
explored as it is a problem for privacy issues. In-
deed, LSTM language models remember facts so
well that individual facts can be retrieved during
inference (Carlini et al., 2019). These facts may re-
veal sensitive personal information such as names
and addresses associated with people. Moreover,
revitalizing the idea of sparse distributed memo-
ries (Kanerva, 1988), Petroni et al. (2019) hypoth-
esized that large language models might be used
as clever and inexpensive ways to build up effort-
lessly knowledge bases. Even in other areas like
image classification, it appears that large neural
networks may memorize entire datasets as these
networks achieve very low error rates over datasets
with random generated target labels (Zhang et al.,
2017). Yet, it is still unclear to what extent this
ability to memorize facts helps neural networks in
downstream tasks.

A key research question is to understand how
large pre-trained neural networks generalize over
memorized examples. Pre-training seems to be
a winning strategy to boost generalization. In
fact, pre-trained models generalize better on out-
of-distribution data and can detect such data better
than non-pre-trained methods (Hendrycks et al.,
2020). However, these models need a significant
number of training instances to exploit this gener-
alization ability in downstream tasks (Ténzer et al.,
2022). Hence, since fine-tuning on specific datasets
seems to be connected to catastrophically forget-
ting examples (Xu et al., 2020), generalization and
memorization can be strictly correlated.

To explore the correlation between memoriza-
tion and performance on downstream tasks,we pro-
pose a mechanism for analyzing sentence cov-
erage.In particular, we investigate how much
sentences are seen in the pre-training phase in
transformer-based PLMs using perturbation mask-
ing methods. These methods allow us to observe
the impact of pre-training on the performance of
downstream tasks.This novel measure is needed
as current measures for understanding coverage,
such as “forgetting event” (Toneva et al., 2019) and
counterfactual memorization (Zhang et al., 2021),
mix performance and actual memorization.

3 Method and Data

This section introduces PreCog that is our measure
to evaluate how much pre-training covers the infor-
mation needed to model a given example (Sec. 3.1),
two comparative measures Lenght and LexCov
(Sec. 3.2), and the experimental setting (Sec. 3.3).

3.1 PreCog: a measure to evaluate
pre-training coverage

BERT (Devlin et al., 2019) is pre-trained on bil-
lions of text tokensby using the Masked Language
Modeling (MLM) as one of the two main learning
tasks.Indeed, during pre-training, MLM randomly
selects and masks 15% of all tokens in any given se-
quence. This 15% of tokens are either (a) replaced
with the special token [MASK], (b) replaced by
a random token, or (c) kept unchanged with a re-
spective probability of 80%, 10%, and 10%. Then,
BERT learns to predict the masked tokens. This
task is learned till near the overfitting. Then, one
of the main ability of BERT is unmasking masked
tokens.

We aim to captureto which extent a sequence of
tokens is covered by pre-training in transformers
such as BERT .For this reason, we build on the
core capacity of BERT, that is, unmasking masked
tokens. Hence, if BERT can predict masked tokens
of a given sequence of tokens, it possibly has the
knowledge to better deal with that sequence.Our in-
tuition is that a measure built on unmasking masked
tokens describes the “prior” knowledge of BERT
over sequences.

Given a sentence or text excerpt as a list of
tokens = [z1, ..., x|, our function PreCog(x)
is defined as follows.Firstly, we mask one by one
each token in = obtaining T different sequences
i’i = [:L‘l, ceey Lj—1, [MASK], L1+ {L‘T]. Then,
the measure is straightforwardly defined as:

S F  6(x; € BERT v (24))

)
where BERT 10 (2;) is the set of the first 100
tokens predicted by BERT for the position ¢ and
0(x; € X)is lif z; € X and O otherwise.
PreCog is a very simple measure.Yet, it may
reveal important facts about how BERT uses pre-
training text in downstream tasks.A very important
issue is to understand if PreCog correlates with
the performance of BERT in these tasks.A positive
and steady correlation will be an important hint for

PreCog(z) =
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(c) Accuracy histograms of BERTrr

(a) Accuracy histograms of BERTrr
on bins of 20 points plotted vs. the
value of measures.

LexCov

(b) Percent of coverage of the dataset
for intervals of values of the measures.

PreCog

on bins of 20 points plotted vs. the cov-
erage of the testset of the bins for the
three measures. Values of the extremes
of the bins are reported on the curve
related to the measure.

Figure 1: Accuracy plots of BE RTr7 for the weighted sum of accuracies in each GLUE task.

understanding the role of pre-training.

3.2 Alternative Coverage Measures

To comparatively evaluate PreCog, we use two
measures: Length and LexCov. Length aims to
correlate the accuracy of BERT to the length of
samples and LexCov to the coverage of dictionary
of BERT. Then, the measures are defined as fol-
lows:

* Length(z) = % where T is the

length of x, minp and maxp are the min
and the max length of samples in a dataset D;

e LexCou(z) = w where OOV (z)
is the set of the out-of-vocabulary words of the
example x with respect to BERT’s vocabulary.

3.3 Experimental set-up

To experiment with a variety of tasks, we use the
GLUE benchmark (Wang et al., 2018) containing
tasks for: (1) natural language inference, that is,
Multigenre NLI (MNLI) (Williams et al., 2018),
Question NLI (QNLI) (Wang et al., 2018), Recog-
nizing Textual Entailment (RTE) (Bentivogli et al.,
2009), and Winograd NLI (WNLI) (Levesque et al.,
2012); (2) semantic similarity, that is, the Microsoft
Research Paraphrase Corpus (MRPC) (Dolan and
Brockett, 2005), the Semantic Textual Similarity
Benchmark (STS-B) (Cer et al., 2017), and Quora
Question Pairs (QQP) (Sharma et al., 2019); senti-
ment classification - Stanford Sentiment Treebank
(SST-2) (Socher et al., 2013); and corpus of linguis-
tic acceptability (CoLA) (Warstadt et al., 2019).
SST-2 and CoLA are single sentence tasks.

We used two version of BERT (Devlin et al.,
2019): BERTrr with fine-tuning and BERTp 4
with domain-adaptation. These two are based on

the pre-trained version of BERTforSequenceClas-
sification (see (Wolf et al., 2020)). The fine-tuning
procedure is that of traditional BERT. For each
downstream task, we chose the Adam optimizer
(Kingma and Ba, 2015) with a batch size of 16 and
fine-tuned BERT for 4 epochs, following the origi-
nal paper (Devlin et al., 2019). For hyperparameter
tuning, the best learning rate is different for each
task, and all original authors choose one between
1x105%and 5 x 107°.

We conduct our experiments on NVIDIA RTX
A6000 GPUs with CUDA v11.3. We run the mod-
els from the Transformers library (Wolf et al., 2020)
using PyTorch v1.12.0.

To study the correlation between the perfor-
mance of BERT on the one side and one of the
three measures - PreCog, Length, or LexCov - on
the other side, we divided the sequences z in test-
sets in 5 bins according to the value of the measure,
we plotted histograms of accuracies of BERT with
respect to the three measures (Fig. 1), and we com-
puted the Pearson’s correlation of the measure with
respect to the accuracies (Tab. 2).

4 Experimental Results and Discussion

Accuracies reported in Fig. 1a and Fig. 1c and used
in Tab. 2 are the weighted sum of accuracies in each
GLUE task. This guarantees that the 20-point bins
have a sufficient set of samples to compute stable
accuracies.

PreCog correlates with the accuracy of
BE RTrr better than Lenght and LexCov (see Fig.
la and Tab. 2). Accuracies of PreCog in the dif-
ferent bins degrade more uniformly than the other
two measures (red solid line in Fig. 1a). Moreover,
the Pearson’s correlation between PreCog values
and the accuracies of BERITr7 is 0.9737 with a



Task

Global
BERTrp BERTp, | interval | #samples

Length
BERTEpT

BERTp A ‘ # samples

LexCov
BERTEpT

BERTp A ‘ # samples

PreCog
BERTEpT

BERTp 4

CoLa

0.920

0.935

‘ (80 IOOJ

499
446

857
88

0.926
0.852

0.940
0.886

571
368

0.951
0.870

0.972
0.878

mnli

0.716

0.721

(80,100]
[0:80]

7782
1361

6512
2631

0.739
0.660

0.745
0.660

3508
5635

0.759
0.690

0.770
0.690

mrpc

0.806

0.861

(80,100]
[0:80]

59
1590

924
725

0.818
0.789

0.877
0.839

376
1273

0.867
0.787

0.880
0.854

qnli

0.808

0.829

(80,100]
[0,80]

3245
1970

3123
2092

=]
%
=13
38

0.831
0.827

1769
3446

0.832
0.796

0.846
0.821

qqp

0.822

0.845

‘ (80,100]
[0,80]

32728
3990

PR | —S [ S | =
RS | 9D | &S | o

28862
7856

0.843
0.850

12810
23908

0.860
0.837

rte

0.646

0.653

‘ (80,100] ‘

146
122

0.678
0.623

155
113

0.723
0.558

46
222

0.674
0.649

sst2

0.939

0.924

‘ (80,100]
[0:80]

151
655

Q| =3
Q| w=

0.887
0.933

607
199

0.946
0.859

333
473

0.970
0.892

wnli

0.565

0.594

(80,100]
[0,80]

31
38

0.484
0.684

61
8

oo |oo |oo oo | o
wn OO ] o000 o0
wno D O | W

o | SG [ &= | =9

0.623
0.375

39
30

0.615
0.567

Table 1: Accuracies on the GLUE tasks computed grouping datasets according to the values of three measueres -

PreCog, LexCov, and Lenght - for BERTrr and BERTp 4.

Measure | Correlation p-value

Length -0.5922 0.292
LexCov 0.9014 0.037
PreCog 0.9737 0.005

Table 2: Pearson’s correlation between the measures
and the accuracy bins of BERTpr for the combined
GLUE tasks.

p-value of 0.005 and it is higher than the ones of
both LexCov, 0.9014 with a p-value of 0.037, and
Length which is not correlated (see Tab. 2).

PreCog values better separate examples in test-
ing sets. At first glance, LexCov may seem a better
model to separate samples with high with respect
to those with less accuracy expectations. Samples
with a value of LexCov less than 40 have low ac-
curacy (see Fig. 1a). However, samples having
LexCov between 0 and 40 are rare (Fig. 1b). Bet-
ter observations are derived by plotting accuracies
over bins rescaled according to their coverage (Fig.
Ic). Indeed, PreCog separates samples better than
LexCov (red solid line vs. dashed blue line in Fig.
1¢): samples from 18,000 to 55,000 fall in two bins
for PreCog and in only one bin for LexCov. Hence,
PreCog has better discriminative power than Lex-
Cov.

Results are substantially confirmed on task ba-
sis: PreCog is a better predictor of the accuracy
on tasks and a better separator of classes of sam-
ples (see Tab. 1). Accuracies of BERTrr are
generally higher for samples with PreCog in the
interval [80, 100] than for samples with the other
two measures in the same interval. LexCov has
higher accuracy for samples in [80, 100] only for
RTE. Moreover, accuracies of samples in the in-
terval [80, 100] are always higher than those in the
interval [0, 80] for both PreCog and LexCov. Yet,
PreCog partitions more evenly samples and the dif-

ferences in accuracies between intervals [80, 100]
and [0, 80] are generally higher.

Moreover, domain adaptation is not changing
the above findings. Accuracies for BERTp 4 are
generally higher than those without domain adap-
tation for all the tasks except for SST2 and WNLI
(Tab. 2). Moreover, focusing on PreCog, the over-
all increase in accuracies in CoLa, MNLI, and RTE
derives from an increase in the samples of the in-
terval [80, 100]. This fact suggests that BERTpa
is gaining a better model for these samples.

As a final observation, BERT seems to behave
better on sentences that have been, at least, par-
tially seen during pre-training. Indeed, PreCog is a
measure capturing how much the sentence is cov-
ered with the pre-training task Masked Language
Model (MLM). Typically, BERT overfits on MLM
during pre-training. Then, PreCog is a measure
telling whether sentences have already been par-
tially seen. Instead, LexCov describes how many
words of sentences are covered by BERT’s vocabu-
lary. Since there is a great difference in predicting
accuracy on tasks between PreCog and LexCov,
we can conclude that BERT behaves better when
general knowledge of the target sentence is already
acquired during pre-training.

5 Conclusion

Memorization of pre-training examples plays a
very important role in the performance of BERT.
Indeed, our PreCog, which measures how much
memorized pre-training knowledge cover target
examples, is highly correlated with BERT’s per-
formance in inference. PreCog can then be also
used as a measure of confidence for BERT-based
decisions in downstream tasks.

As BERT success is partially due to simple mem-



orization of examples and given the overwhelming
presence of ChatGPT, one area of future research
should be on better understanding the relation be-
tween actual training examples and inferences in
order to give credit to knowledge producers.

Limitations

This paper presents a small, focused contribution
towards the understanding of the relation between
memorization and performance of pre-trained lan-
guage models (PTLMs). However, we leave some
issues unresolved for this more long-term goal. In-
deed, we have explored our idea only for a specific
PTLM that is BERT with a specific pre-training
task, that is, masked language model (MLM). Fu-
ture analysis should explore whether our findings
hold for other PTLMs based on MLM. Morever,
we have not explored to what extent tasks exam-
ples are really covered by pre-training corpora used
by PTLMs. The correlation between PreCog and
the actual training examples should be investigated.
Finally, PreCog is not suitable for PTLMs that are
based pre-training tasks that ar not MLM. Then,
other coverage measures should be defined in those
cases.
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