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We consider the problem of finding the energy minimum of a complex quantum Hamiltonian by
employing a non-Markovian bath prepared in a low energy state. The energy minimization problem
is thus turned into a thermodynamic cooling protocol in which we repeatedly put the system of
interest in contact with a colder auxiliary system. By tuning the internal parameters of the bath,
we show that the optimal cooling is obtained in a regime where the bath exhibits a quantum phase
transition in the thermodynamic limit. This result highlights the importance of collective effects in
thermodynamic devices. We furthermore introduce a two-step protocol that combines the interaction
with the bath with a measure of its energy. While this protocol does not destroy coherence in the
system of interest, we show that it can further enhance the cooling effect.

I. INTRODUCTION

Optimization problems arise in different fields as com-
puter science, physics, computational biology or drug de-
sign. One possible approach to solve an optimization
problem with quantum algorithms is to encode the prob-
lem into an Ising Hamiltonian

Hp = −1

2

∑
i,j

Jijσ
z
i σ

z
j −

∑
i

hiσ
z
i , (1)

where σw
i is the Pauli w = x, y, z operator of the ith

qubit, while the coupling strength Jij and external field
hi specify the optimization problem. Models like the one
in Eq. (1) were originally introduced in condensed mat-
ter physics to study disordered magnetic materials [1],
but are now used to describe, e.g., neural networks [2],
protein folding [3], socioeconomic behavior such as drug
and tobacco use [4] and trading models in stock markets
[5]. For reviews and perspectives on quantum computing
applied to combinatorial optimisation, see [6–8].

When the parameters Jij and hi in Eq. (1) are
normally distributed, the model in (1) becomes a
Sherrington-Kirkpatrick (SK) spin-glass [1, 9], whose en-
ergy minimization is an NP–hard problem. NP–hard
problems are the hardest class of classical optimisation
problems [10, 11], examples include variants of the Trav-
eling Salesman problem [12]. One disadvantage of NP–
hardness as a concept is that it is a worst case statement,
proven by mapping other NP–hard problems using poly-
nomial resources. As a result, NP–hardness actually tells
us nothing about the difficulty of a “typical”, in other
words randomly generated, instance of a problem, and
examples are known of NP–hard problems where typical
instances are easy [13, 14]. For numerical studies such
as this one, we also want the additional property of uni-
form hardness, which is a statement about the hardness
of typical instances. The presence of a finite-temperature
spin-glass transition [9] strongly suggests that as well as

being NP-hard, the SK spin glass is uniformly hard, for
this reason it has been used in other similar numerical
studies [15, 16].

The use of quantum algorithms to solve such problems
has the potential to provide a speedup over classical al-
gorithms, provided that the system is made genuinely
quantum by including a non-commuting driver term to
the system Hamiltonian [17, 18]. The difficulty in prov-
ing speedups for NP–hard problems derives from the fact
that the best classical algorithms are not known (strictly
speaking it is not even known if the scaling is exponential
for the best algorithm, although it is strongly suspected
to be). In the case of unstructured search a more artifi-
cial problem where the best algorithm is known, Hamil-
tonians based adiabatic [19] and quantum walk [20] ap-
proaches (and in fact a family of algorithms which inter-
polate between the two[21]) are known to yield an opti-
mal speedup equivalent to the one given by Grover’s well
known gate model algorithm [22, 23].

In order to find the ground state of the model described
by Eq. (1), in this paper we use an approach that has
been termed computing by cooling in [24]: in practice one
employs a non-Markovian quantum bath in the form of
a spin system with an easy-to-prepare low-temperature
state, see a sketch of our proposal in Fig. 1. Coupling
the system represented by the problem Hamiltonian (1)
to such a cold bath, the system of interest is thus cooled
down toward its ground state. Other thermodynamic-
inspired approaches to classical and quantum computa-
tion have been previously proposed [25, 26].

As a novel approach in the present paper we con-
sider baths that can undergo quantum phase transitions
(QPT) in the thermodynamic limit. We show that by
tuning the parameter that determines the bath phase,
we can speed up the search for the ground state of the
problem Hamiltonian. Second–order QPT and other col-
lective phenomena have indeed been shown to boost dy-
namic and thermodynamic performance in a number of
thermal devices, both in classical and quantum regime
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FIG. 1: Schematic of the collision protocol: a series of aux-
iliary spin chains (squares) interact with the SK spin glass
system (circles). Black and red solid lines connecting spins
in the glass represent positive and negative pairwise inter-
actions, respectively, as described by the terms proportional
to Jij in Eq. (1). Their thickness represents their random
relative magnitude. The gray broken lines represent the in-
teraction between the spins in the system and in the bath, as
given by J in Eq. (7). At the end of every collisional stroke
the exhaust auxiliary chain is wasted and replaced by a new
chain.

[27–39].

While open system effects such as those experienced in
our cooling approach could ruin the potential for quan-
tum advantage, it is nevertheless known that even a pro-
jective measurement, which leads to pure decoherence,
can lead to an optimal quantum speedup for unstruc-
tured search [40] (the problem encountered by Grover’s
algorithm) if performed in the correct basis. While un-
structured search has the advantage of being a setting
where quantum computing has known, provable speedup
over classical computing, it has the disadvantage of be-
having very different from the real optimisation problem
considered in Ref. [15], providing less information about
possible performance on moderately sized real problems.
For this reason, in this work, we elect to study a uni-
formly hard problem such as finding the minimum energy
of SK spin glasses. The reason uniform hardness is im-
portant is that it implies that random instances will be
hard. This is not true for typical NP-hardness, since the
statement of NP-hardness is based on the ability to map
to other problems and is thus a worst-case rather than a
typical-case statement. There are in fact well known in-
stances of NP-hard problems where randomly generated
instances are easy to solve [13, 14]. Ising spin glasses
however have a finite temperature spin glass transition,
which strongly suggests that even random instances will
be hard [41] (this property is known as uniform hard-
ness). This subtlety had led to problems in previous
works benchmarking quantum annealers, where it was

realised that although solving Ising models when limited
to the hardware graph of flux qubit devices is NP-hard,
it is in fact not uniformly hard, and such problems are
easy for classical Monte-Carlo algorithms [42].
This work is organised as follows. In Sec. II we start

by describing our model while in Sec. III we discuss in
detail the computational cooling scheme we propose. In
Sec. IV we introduce a scheme which involves measuring
the auxiliary system after its collision with the system
of interest and in Sec. V we summarise and discuss our
findings.

II. PRELIMINARIES

In this paper we use the model described by the Hamil-
tonian in Eq. (1) with random coefficients as a test-bed
to assess the performance of our algorithms and com-
pare them to other quantum algorithms. In particular,
we study a modified Sherrington-Kirkpatrick spin glass,
as referenced in the introduction, consisting of randomly
coupling all spins with coupling strengths and fields in
Eq. (1) selected from a Gaussian distribution[64]. We
start our analysis by following the procedure described
in Ref. [43] as a basis for comparison. The parame-
ters Jij and hi are drawn from a normal distribution
with zero mean and variance equal to one. In particu-
lar, we complement the problem Hamiltonian (1) with
a “driver” Hamiltonian, and following previous works
[15, 17, 18, 43], we will take it of the form

Hd = −
N∑
i=1

σx
i , (2)

such that the total Hamiltonian reads

H(γ(t)) = γ(t)Hd +Hp. (3)

Such a Hamiltonian results in quantum tunneling among
the localized classical states, which correspond to the

eigenstates |E(i)
p ⟩ of Hp (forming the computational ba-

sis).
The ground state of Hd is the equal superposition of all

the states forming the computational basis, a state that
is in principle easy to prepare. Indeed, at t = 0, we pre-
pare the system in the ground state of the driver Hamil-
tonian (2) and consider the following unitary dynamics
generated by the Hamiltonian (3), a process sometimes
called a “two-stage quantum walk”. As time protocol we
choose γ(t) = γ1 + (γ2 − γ1)θ(t− tq) i.e. a quench in the
driver’s strength γ at time tq, where we have used the
step function θ(t), which is 0 for t < 0 and 1 for t ≥ 0.
The post-quench unitary dynamics of the total system
with H(γ2) corresponds thus to a quantum random walk
driven by Hd.

Notice that the system, initially in the ground state of
Hd, effectively experiences a quench also at t = 0 when its
Hamiltonian changes from Hd to H(γ1). We emphasise
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the importance of the two quenches, one at t = 0 and one
at t = tq, as means to change the system energy, which is
otherwise conserved during the quantum walk dynamics.

We finally evaluate the expectation values of the differ-
ent energy terms together with the fidelity with respect
to the state of interest, as given by

P (t) = tr
{
ρ(t)Π(0)

p

}
, (4)

with Π
(0)
p = |E(0)

p ⟩⟨E(0)
p | the projector onto the problem

Hamiltonian ground state.
The results for one specific realization of the disorder

in (1) are shown in Fig. 2 where we plot the energy terms
and the fidelity (4) as functions of the time. As a baseline
comparison for the efficiency of the quench+walk process,
we compare the energy and the fidelity to the correspond-
ing values obtained for the ground state of Hp and of the
total Hamiltonian H(γ2).
In Fig. 3 we also show the results of an annealing pro-

cess with a linear control function γ(t) = γ1+(γ2−γ1)t/tf
for the same values of the control parameters γ1 and γ2
as in Fig. 3. Both figures 2 and 3 will be used as a basis
of comparison for the cooling methods introduced and
discussed in the following sections.

We do not consider many of the factors which realisti-
cally exist in a large many-qubit annealing system. The
reason we have elected to do this is so that our study can
isolate the cooling effects from other competing effects
which would greatly complicate our analysis. The largest
consideration here is that the system will likely be in
contact with an uncontrolled bath. These effects are im-
portant in real superconducting flux qubit architectures,
the only fully controllable annealing systems built with
thousands of qubits to date. These effects are not always
detrimental, and benefits from interaction with a ther-
mal bath have been experimentally demonstrated [44].
In fact, reverse annealing as implemented on D-Wave sys-
tems would not be able to solve optimisation problems
without dissipation [45, 46]. Realistically, bath effects
will often still be undesirable; it has been demonstrated
that coherent regimes can be reached experimentally by
quenching very fast [47], but such approaches are unlikely
to be practical in our setting since a large evolution time
may be needed. Alternatively, in the future the proto-
cols described here could be simulated on a fault toler-
ant universal quantum computer, thus avoiding having
bath effects altogether. Simulations of annealing proto-
cols on gate-model machines have recently gained inter-
est through the approximate quantum annealing (AQA)
algorithm proposed by Willsch et. al. [48].

III. COMPUTATIONAL COOLING

In this section we introduce and discuss a computa-
tional cooling protocol to efficiently approach the ground
state of Hp. To this purpose we let the system repre-
sented by the Hamiltonian Hp interact with an auxiliary

0 10 20 30 40
t

−20

−15

−10

−5

0

5

10

E
(0)
H(γ2)

E
(0)
p

〈Hd〉
〈Hp〉
〈Htot〉

0 10 20 30 40
t

0.0

0.1

0.2

0.3

0.4

P
(t

)

ground state of H(γ2)

FIG. 2: Top: Expectation values of the different contributions
to the total Hamiltonian (3) as a function of the time, with
the quench+walk protocol, and with the ergotropy extraction
protocol. The values of the control function parameters are
taken to be γ1 = 4 and γ2 = 1. For reference, we also plot the

ground state energy E
(0)
p of Hp, Eq. (1) and that, E

(0)

H(γ2)
, of

the total Hamiltonian H(γ2), Eq. (3). Bottom: fidelity (4) as
a function of time. We have used N = 9 spins.

system which is initially prepared in a state of low energy,
see Fig. 1. Specifically we connect the spins of the SK
model to an auxiliary 1D transverse-field spin-1/2 Ising
chain, whose eigenvalues and eigenstates are well known
[49]. The total Hamiltonian thus reads

Htot = Hp + αHA +HI , (5)

HA = −
N∑
i=1

(1− f)Σx
i Σ

x
i+1 − fΣz

i , (6)

HI = −J

N∑
i=1

σx
i Σ

x
i , (7)

where we have introduced the Pauli operators Σw
i , w =

x, y, z for the auxiliary system, which we assume to be
characterised by open boundary conditions (N+1 ≡ 1 in
Eq. (6)). The dimensionless parameter α is introduced to
lower the value of the ground state energy of the auxiliary
system, and as we will see, to enhance the cooling effect
when α > 1.
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FIG. 3: Main panel: Expectation value of the problem’s
Hamiltonian (1) as a function of the time, with the annealing
protocol γ(t) = γ1 +(γ2 − γ1)t/tf on a system of N = 9 spins
with γ1 = 4, γ2 = 1, tf = 25. Inset: fidelity (4) as a function
of time.

It is worth noting that in the thermodynamic limit
the auxiliary system in Eq. (6) exhibits a second order
QPT at the critical point fc = 1/2 (see Ref. [49]), with a
doubly degenerate ground state and non-vanishing mag-
netization along the x-axis for f < 1/2.

We initially prepare the system in the ground state of
(2), and the auxiliary system in its own ground state

|E(0)
A ⟩. The two systems are then allowed to evolve

following the unitary dynamics generated by the total
Hamiltonian Htot for a time interval ∆t, after which we
disconnect the auxiliary system, and connect the system
to a new auxiliary system freshly prepared in its ground

state |E(0)
A ⟩. We then iterate this procedure for a number

nc of cooling cycles. The resulting problem’s energies of
this cooling procedure, for different values of the param-
eter f can be seen in Fig. 4. First of all, we notice that
for all f > 0 we observe some cooling effect in the sys-
tem. A closer inspection of the results clearly indicates
that the cooling procedure is most efficient for f ≃ 0.6,
both in terms of cooling rate of ⟨Hp⟩ and of increasing
value of the fidelity. While the critical value of f for the
Hamiltonian HA is fc = 1/2, such a value is renormalized
by the interaction with the system through the interac-
tion Hamiltonian, and the value of f required to induce
disorder in the auxiliary system becomes larger, f ≃ 0.6,
see the discussion in Appendix A. We have checked that
adding a term of the type σy

i Σ
y
i to the Hamiltonian (7)

does not lead to any substantial change to the results
shown in fig. 4.

Comparing the results of Fig. 4 with those of Fig. 2, we
see that that connecting the system to the external cooler
improves significantly the optimization of the problem’s
energy. The lowest energy obtained with the repeated
collisions are similar to that obtained with the annealing
reported in Fig. 3 in a similar timescale.

We also evaluate the long time behaviour of ⟨Hp⟩ as a
function of f , as given by the final values of ⟨Hp⟩ at the
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FIG. 4: Expectation value of the problem Hamiltonian (top)
and fidelity (bottom) as a function of t for the cooling protocol
consisting of repeated collisions with the auxiliary system (6)
for different values of f , with α = 3, nc = 5 cooling strokes of
duration ∆t = 5 in dimensionless time units. The system is
composed of N = 9 spins, and the parameters of Hp are the
same as in Fig. 2.

end of the last cooling stroke. The results are shown in
Fig. 5: inspection of this figure confirms that the maximal
cooling effect is obtained for f ≃ 0.6.
In Appendix B, we complement our study by investi-

gating the effect of the parameter α renormalizing the
auxiliary system Hamiltonian (see Eq. (5) on the cooling
protocol. Furthermore, we consider the effect of freezing
the system dynamics by reducing the interaction strength
J appearing in Eq. (7). We also show that the long time
behaviour of the system undergoing repeated collision
with the auxiliary bath is practically independent of the
chosen initial state. Finally, in the same Appendix, we
consider different realizations of the quenched disorder in
the SK chain (different sets of values of Jij and hi): the
cooling performance of our protocol does not show any
substantial change, see Fig. 14.
In order to evaluate the purity of the system across

different strokes, we compute the von Neumann entropy
of the reduced density matrix of the system:

S(ρS) = −trρS ln ρS . (8)

In Fig. 6, we report S(ρS) as a function of the time.
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FIG. 5: Final value of ⟨Hp⟩ as a function of f . For each value
of f , ⟨Hp⟩fin is the final value of the system energy at the end
of the last cooling stroke of Fig. 4.

After the first cycle the system gets close to the max-
imally mixed state, corresponding to a large system-
environment entanglement. Subsequently, S(ρS) de-
creases as the number of cooling cycles increases. Thus,
while the repeated collision protocol reduces the energy
of the system, such a cooling is achieved thanks to the
establishment of quantum correlations with the auxiliary
system. This was also noted in smaller collision models
[50]. In the inset of the same figure we plot the fidelity
as a function of the time for ten cooling cycles.
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0.00
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0.15
0.20
0.25 P (t)

FIG. 6: Main panel: von Neunmann entropy of the reduced
density matrix of the system S(ρS) as a function of the time
for three values of f . The dashed line corresponds to the
entropy of the completely random state N ln 2. Inset: fidelity
as a function of the time for the same values of f . α = 3,
nc = 10 cooling strokes of duration ∆t = 5 in dimensionless
time units. The system is composed of N = 9 spins, and the
parameters of Hp are the same as in Fig. 2.

It is worth noticing that the process describing the
evolution of the system state is non–Markovian. Indeed
we use a finite interaction time ∆t = 5 in dimension-
less units which does not lead to a Gorini-Kossakowski-
Susarshan-Lindblad (GKSL) master equation for the sys-

tem of interest. The evolution of an open quantum sys-
tem is Markovian if and only if the process is described
by a GKSL master equation, see, e.g. [51] and references
therein. The GKSL master equation is retrieved if one
considers vanishing interaction time ∆t between the bath
and the system, and interaction strength that scales as
HI ∼ 1/

√
∆t [52]. In Appendix B we investigate the per-

formance of the cooling protocol in that regime and find
that the finite time interaction protocol performs con-
siderably better in a single interaction stroke than the
Markovian one with several short collisions. Thus we
conclude that the bath and the system need to interact
for a finite time for the bath to extract an appreciable
amount of heat from the system.

Quantum thermalization machines made of ancillary
spins were also proposed in [53, 54] to realise the ther-
mal states of single spins or finite many-body systems.
In those references, the authors also used repeated in-
teractions with engineered environments, however a fine
tuning of the baths energy level was required to achieve
the target thermal states.

It is worth briefly discussing the practical implemen-
tation of the protocol depicted in Fig. 1. The most naive
approach is to consider a new spin chain being coupled for
each cooling cycle. Such an implementation would be im-
practical, since the number of qubits would grow linearly
with the number of cooling cycles. Alternatively, if we
had a separate procedure to “reset” the same spin chain
to an approximate ground state, we could reuse the same
chain, see for instance Ref. [55]. This would introduce a
period of time during which the chain was reset and the
spin glass was allowed to undergo dynamics. Based on
numerical observations in [15], it is likely that during this
time period the system would rapidly equilibrate toward
a long-time average, so adding such a time period would
be unlikely to be detrimental. Adding such a time period
would however complicate our model and give us another
parameter to consider so it is therefore undesirable at the
level of detail which we are working. We argue that the
cooling time could be avoided using a constant number of
spin chains using the following procedure: after each spin
chain has interacted with the system it immediately be-
gins the resetting procedure, meanwhile another already
reset spin chain interacts with the system. As long as
the number of spin chains is greater than the ratio of the
resetting time to the time of each cycle, a reset spin chain
will always be available, see also discussion in Ref. [56].

One question is how the coupling could be turned on
or off in practice, but this will depend on the under-
lying system. For example, in circuit based flux qubit
architectures, the coupling elements are the same as the
qubits, but biased into a monostable rather than bistable
regime [57]. In such an architecture it would be rela-
tively straightforward to tune coupling by independently
adjusting the biases on the different qubits (and single-
body correction factors on the qubits they couple). In
this setting a model of individually tuning couplers is
realistic, although instantaneously turning off coupling
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may be difficult, making a model where the coupling is
reduced non-instantaneously over time slightly more re-
alistic. Simulating such systems would however be much
more numerically demanding. Since we are interested
in qualitative behaviour of realistic systems rather than
simulating real devices, instantaneous switching is suf-
ficient for these purposes. Likewise, in atomic systems,
coupling could be controlled by manipulating the physi-
cal separation between the system and bath qubits could
be an effective method of turning coupling off, especially
since all couplings are turned on and off at the same time.
Shuttling of ions is considered to be an important com-
ponent to trapped ion quantum computing and protocols
to effectively and quickly move ions are being developed
[58], so this could be a realistically achievable way of con-
trolling the coupling.

As for the resetting procedure itself, we first note that,
strictly speaking, the third law of thermodynamics for-
bids a system from being prepared exactly in its ground
state in a finite time. For our purposes however, we as-
sume that the spin chain is prepared in an approximate
ground state with a finite energy gap, where, at a small
but finite temperature, probabilities to be excited can
be neglected. In fact a common approximation in quan-
tum annealing is to assume that the system originates in
the ground state of the driver Hamiltonian [59], in many
ways our approximation is no different. As this state
is an approximate thermal state, it is a free thermody-
namic resource, see for instance Ref. [60]. From such a
simple product state, it is possible to prepare strongly
correlated systems that are ground states of quantum
spin models, Ref. [61, 62]. This would require a num-
ber of gates that scales polynomially with the number of
qubits in the environmental chain. This gates may re-
quire external thermodynamic work to be realised which
therefore scales polynomially with the number of qubits.

We emphasise that our proposal can also be imple-
mented in quantum circuit models as a quantum colli-
sion model, also known as a repeated interaction model.
In fact, small quantum collision models have already
been demonstrated in superconducting quantum cir-
cuits [55, 63]

IV. COOLING BY MEASURING THE
AUXILIARY SYSTEM

In this section we consider again the system de-
scribed in Eqs. (5)–(7) and combine the collisional cooling
method discussed in the previous section, with projective

measurements on the auxiliary system. Let |E(j)
A ⟩ be the

eigenstates of HA with projector Π
(j)
A = |E(j)

A ⟩⟨E(j)
A |, and

ρtot the state of the combined system plus environment
at a given time. The probability of measuring the energy

E
(j)
A is then given by

p(E
(j)
A ) = tr[Π

(j)
A ρtot], (9)
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nc = 3, 30%

0.0 0.2
pA

−18

−15

−12 nc = 4, 38%

FIG. 7: Post-measurement system energy (11) as a function
of pA as obtained by measuring HA at the end of the first
four cooling strokes, for different values of f , with α = 3
and N = 9. The rest of parameters are as in Fig. 4. Dashed
lines: ⟨Hp⟩ at the end of the cycle, i.e. immediately before the
measurement, see also Fig. 4 for the cycles with α = 3. The
percentage gives the fraction of measurements that return a
value of ⟨Hp⟩ below the value at the end of the cycle.

and the post-measurement reduced state of the system is

ρS(t|E(j)
A ) = trA[Π

(j)
A ρtot]/p(E

(j)
A ). (10)

One can then evaluate the expectation value of ⟨Hp⟩ con-
ditioned by the outcome of measurement E

(j)
A on the aux-

iliary system

⟨Hp⟩E(j)
A

= trS [ρS(t|E(j)
A )Hp]. (11)

To evaluate the effect of a measurement after the re-
peated cooling strokes, we first apply the measure pro-
tocol to the cooling dynamics as depicted in Fig. 4: at
the end of a given number of cooling cycles we evalu-

ate the probability p(E
(j)
A ) of measuring a given eigen-

state of HA, and the corresponding value of the post-
measurement system energy ⟨Hp⟩E(j)

A

. More precisely,

we set nc = 1, 2, 3 or 4, cool the system as described in
the previous section, and then measure the energy of A.
The results of such a measurement protocol are shown in
Fig. 7, for different values of the parameter f . We see
that, in general, measuringHA has no practical beneficial
effect in the cooling of the system: the total probability
that a measurement returns a value of ⟨Hp⟩ lower that the
value at the end of the cooling stroke is smaller than 50%.
However, at the end of the 4th stroke and for α = 2, 3
there is a significant probability (≳ 40%) that the mea-
surement returns a value of ⟨Hp⟩ lower than the one at
the end of the cooling stroke, resulting in additional net
cooling.
Next, we investigate whether the measurement of the

auxiliary system can be used to speed-up the cooling of
the system of interest and enhance the fidelity with re-
spect to the target state Eq. (4) when compared to the
simple collisional cooling shown in Fig. 4.
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To this end, we implement the following cooling algo-
rithm: at t = 0 we prepare both the system of interest
and the auxiliary system as described above, i.e., the sys-
tem starts in the ground state of (2) while the auxiliary
cooler A starts in its own ground state. We then let the
composite system evolve with the dynamics generated
by the total Hamiltonian (5) for a time ∆t, at the end
of which we perform a measure of HA, calculate the cor-
responding system post-measurement reduced state (10)
and start a new cycle by connecting the system with a
new auxiliary system freshly prepared in its ground state

|E(0)
A ⟩. We then iterate the above procedure for a given

number of strokes. We consider two different protocols
where we combine collisional cooling and measurements.

First, we only select post-measurement states corre-

sponding to the second smallest eigenvalue of HA, E
(1)
A ,

see Fig. 8. The rationale behind this choice is that, be-
ing the A system prepared in its ground state, finding it
in its first excited state is the minimal requirement for
the system of interest to be cooled. While this specific
protocol might be of limited practical use, as the proba-
bility of achieving a sequence of exactly nc measurements

with EA = E
(1)
A can be pretty small, it is however a use-

ful exemplification of the cooling mechanism obtained by
energy transfer to the A system prepared in a cold state.
This scenario might however be interesting in presence of
a Maxwell daemon, selecting only the post-measurement

state |E(1)
A ⟩. The feasibility of this setup and its thermo-

dynamic cost is however beyond the scope of the present
paper.

Second, we consider a more viable protocol consist-
ing of a stochastic post-measurement selection protocol,
more similar to a realistic experimental setup. At the
end of each cooling stroke, we perform a measurement of
HA and as a consequence the system collapses in a post-

measurement state ρs(t|E(j)
A ) with probability p(E

(j)
A ),

see Eqs. (9)–(10). After such a projective measurement,
we disconnect the system from the A system, and con-
nect it to a new A system prepared in its ground state
and iterate the procedure. The corresponding results are
shown in Fig. 9. The curves in such a figure should be
compared with those in Fig. 4 and 11 obtained with
repeated collisions alone for the same value of the pa-
rameter f . Combining collisions and repeated measure-
ments gives a similar decreasing rate for ⟨Hp⟩. Averaging
over many stochastic “trajectories” as the one depicted
in Fig. 9, one would obtain the curves for ⟨Hp⟩ and P (t)
shown in Fig. 4, which thus represent the expectation
values of the quantities under scrutiny when repeating
the stochastic post-measurement selection protocol sev-
eral times.

V. CONCLUSIONS

In this paper we have presented a thermodynamics-
inspired protocol to find the minimum energy of quantum
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ncycles
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FIG. 8: Collisional cooling strokes followed by a projective
measurement of the auxiliary system Hamiltonian HA with
α = 1, ∆t = 5 and J = 1 (see Eqs. (5)-(7)). In this pro-
tocol we select the post-measurement state corresponding to

the second smallest eigenvalue of HA: E
(1)
A . Top panel: ex-

pectation value of the system Hamiltonian Hp after the mea-
surement as a function of the number of cooling cycles. In-
set: probability of the selected state of the auxiliary system
pA(E

1
A). Bottom panel: expectation value ⟨Hp⟩ as a function

of t. Inset: fidelity as a function of t.

systems characterized by complex Hamiltonians. Specif-
ically we have considered a classical optimization prob-
lem, that is turned into a quantum cooling process by us-
ing a non-Markovian bath that induces coherent cooling
dynamics in the system of interest. The bath is initially
prepared in its ground state and lowers the system energy
through repeated collisions. The optimal working regime
for our machinery is found in the range of parameters
where the bath exhibits a QPT in the thermodynamic
limit, thus emphasizing the importance of collective ef-
fects in thermal devices.

We conjecture that this result is not restricted to the
specific bath considered in the present paper: any bath
operating in its critical region should be extremely “sus-
ceptible” to external disturbances and thus more capable
of exchanging energy from the systems they are put in
contact with.

By combining the cooling protocol with measurements
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FIG. 9: Collisional cooling strokes followed by a projective
measurement of the auxiliary system Hamiltonian HA (see
eqs. (5)–(7)). In this protocol we randomly select the post-

measurement state with probability p(E
(j)
A ), Eq. (9). Top

figure, main panel: expectation value ⟨Hp⟩ as a function of t
for a single realization of the repeated measurement process.
Inset: fidelity as a function of t. Bottom figure: ⟨Hp⟩ as a
function of t for 2 different values of α and f = 0.6.

on the bath alone, we are able to improve further the
protocol, and in particular to keep the post-measurement
state of the system pure. The possibility of using feed-
back control, mimicking a Maxwell daemon, with post-
measurement selection rules affecting the bath alone
seems to be an interesting direction for future explo-
rations.

It would be interesting to compare to other algorithms,
for example gate model variational algorithms like the
quantum approximate optimization algorithm [16, 46].
Due to the similar continuous-time setting we have lim-
ited the present study to comparison with annealing and
multi-stage quantum walks, but a broader comparison
would be enlightening. A systematic analysis of the ther-
modynamic and computational resources required for our
protocol and the comparison with alternative schemes re-
mains an open problem.

While we studied the performance of the protocol in
terms of cooling and fidelity rate for a wide range of pa-
rameters, it can be further improved by systematic op-
timization of the relevant parameters. In particular it

might be interesting to consider baths with a number of
spins different from the system of interest.
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Appendix A: Effect of f on the static properties of
the A system

In the main text we have seen that the optimal cooling
effect obtained with repeated collisions with the A sys-
tem is obtained for f ≃ 0.6, see Eqs. (5)-(7). In this Ap-
pendix we compare the behaviour of the auxiliary system
with (J ̸= 0 in Eq. (7)) or without interaction (J = 0)
with the problem Hamiltonian. We remind the reader
that the spectrum and the eigenstates of Hamiltonian
(6) have been fully characterized in [49]. In particular,
the ground state of HA becomes doubly degenerate for
f < 0 with non–vanishing magnetization along the x-axis
for f < fc = 1/2. In Fig. 10 we compare the expectation
value of Σx in presence or absence of interaction with
the problem Hamiltonian for a system with N spins, to-
gether with the exact solution of the magnetization in
the thermodynamic limit. We see clearly that the inter-
action with the problem Hamiltonian shifts the value of f
for which the auxiliary system exhibits disorder toward a
larger value than fc. This must be compared again with
the dynamical results of the collisional cooling, as exem-
plified in, e.g., Fig. 4 or 5, where we show very clearly
that the optimal cooling effect is obtained for values of f
larger than fc = 1/2. Thus a comparison of Fig. 10 with
Fig. 4 and 5 suggests that the optimal cooling regime oc-
curs for values of f for which an order-disorder transition
occurs in the auxiliary system coupled to the system of
interest.

Appendix B: Additional results

In Fig. 11 we study the effect of the parameter α renor-
malizing the auxiliary system Hamiltonian (see Eq. (5))
on the cooling protocol. We see that increasing α im-
proves the performance of the protocol introduced in this
section, both in terms of the lowest problem’s energy
reached and the time to reach it. This is due to the fact
that, for larger α, the system sees the auxiliary bath as



9

0.0 0.2 0.4 0.6 0.8 1.0
f

0.0

0.2

0.4

0.6

0.8

1.0
Σ
x A

〈E(0)
A |Σx

A|E
(0)
A 〉, N =7

〈E(0)
A |Σx

A|E
(0)
A 〉, exact

〈E(0)
tot |Σx

A|E
(0)
tot 〉, N =7

FIG. 10: x–magnetization of the A system in presence or
absence of the interaction with the problem Hamiltonian. The
full line is the exact solution for ⟨Σx⟩ in the thermodynamic
limit [49].

colder, given that we initially prepare it in its ground

state |E(0)
A ⟩ as discussed above.

In Fig. 12 we study the effect of freezing the system dy-
namics by reducing the interaction with the auxiliary sys-
tem: specifically we implement two subsequent quenches
on J , i.e., the interaction strength appearing in Eq. (7).
Inspection of Fig. 12 confirms that decreasing the interac-
tion strength between the system and the auxiliary cooler
simply freezes the system in its state.

In order to check that the repeated collision process
works regardless of the initial state, in Fig. 13 we study
the case in which the system to be cooled is initially
prepared in its own ground state. From the figure, we
can see that, after a few cycles, the results for this case
and for the case analysed in Fig. 11 approach each other
and reach approximately the same behaviour within the
timescales depicted in the figure. Only for the large value
f = 0.7, we observe some deviation possibly due to finite
sizes. This strongly suggests that the system is reach-
ing some kind of thermal equilibrium, independent of its
starting state. This behaviour is fundamentally different
from unitary algorithms such as the adiabatic algorithm,
where by construction memory of the starting state is
maintained throughout the algorithm. It also suggests
that the values here are the ultimate limit which the al-
gorithm can achieve and that waiting for longer would
not lead to improved performance.

In Fig. 14 we show the result for the cooling protocol
for three different realization of the SK chain, i.e. for
different sets of values of Jij and hi which are drawn
from a normal distribution with zero mean and unitary
variance. One of the three sets is the one used in the
main text.

In Fig. 15 we show the difference in cooling perfor-
mance of the protocol with long (∆t = 5) and short

(∆t = 0.1) bath-system interaction strokes. This elu-
cidates the need of non-Markovian memory effects in the
environment. For the long-stroke protocol the prefactor
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FIG. 11: Expectation value of the problem Hamiltonian (top)
and fidelity (bottom) as a function of t for the cooling protocol
consisting of repeated collisions with the auxiliary system (6)
for different values of f and α, with nc = 5 cooling strokes of
duration ∆t = 5 in dimensionless time units. The system is
composed of N = 9 spins, and the parameters of Hp are the
same as in Fig. 2. Larger values of α, e.g. α = 4, results in a
deterioration of the cooling performance (data not shown).

of the interaction Hamiltonian (7) takes the value α = 3
as in the main text. In this regime, the environment in-
teracts for a sufficiently long time such that back-flow
of information from the environment to the system, a
hallmark of non Markovianity, is possible. For the short-
stroke protocol, the prefactor of the interaction Hamil-
tonian reads α = 3/

√
∆t. In this regime the protocol

dynamics for the system becomes equivalent to the one
described by a Markovian GKSL master equation [52].
We see that the long-stroke protocol performs consider-
ably better than the short one, indicating that bath and
the system need to interact for a finite time for the bath
to extract an appreciable amount of heat from the sys-
tem.
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FIG. 12: Expectation value of the problem Hamiltonian
(top) and fidelity (bottom) as a function of t for the cooling
protocol consisting of repeated collisions with the auxiliary
system (6) for different values of f , with α = 3, nc = 12
cooling strokes of duration ∆t = 5 in dimensionless time units.
The system is composed of N = 9 spins, and the parameters
of Hp are the same as in Fig. 2. The dashed lines correspond
to a time protocol where we perform a quench on J every four
strokes, the continuous line correspond to constant interaction
strength J = 1. The time protocol J(t) is plotted in the inset
of the first figure.
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