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ALGEBRAIC PROPERTIES OF THE FERMI VARIETY FOR PERIODIC

GRAPH OPERATORS

JAKE FILLMAN, WENCAI LIU, AND RODRIGO MATOS

Abstract. We present a method to estimate the number of irreducible components of the
Fermi varieties of periodic Schrödinger operators on graphs in terms of suitable asymptotics.
Our main theorem is an abstract bound for the number of irreducible components of Laurent
polynomials in terms of such asymptotics. We then show how the abstract bound implies
irreducibility in many lattices of interest, including examples with more than one vertex
in the fundamental cell such as the Lieb lattice as well as certain models obtained by the
process of graph decoration.

1. Introduction

In recent decades, there has been intense activity on the algebraic and analytic properties
of the Bloch and Fermi varieties of periodic Schrödinger operators. Such properties are
related to many problems of interest, including the absence of embedded eigenvalues in
continuous settings [18] and discrete settings [19, 23], the existence of eigenfunctions of
unbounded support in locally perturbed periodic media [30], properties of spectral band
functions [23], inverse spectral problems [10, 21, 25, 26], quantum ergodicity [22, 27], flat
bands [1, 14, 15, 28], and ballistic motion [5, 6, 8]. For additional information and background
see, e.g., the surveys [16, 17, 24].

The study of irreducibility of Fermi and Bloch varieties started about 30 years ago.
Bätting, Gieseker, Knörrer, and Trubowitz studied this question for periodic Schrödinger
operators in dimensions d ∈ {2, 3} by compactification methods [2, 3, 10]. When d = 2, the
irreducibility of the Bloch variety was proved by Bättig [2]. In [10], Gieseker, Knörrer and
Trubowitz proved that the Fermi variety is irreducible except for finitely many values of λ.
When d = 3, Bättig proved that the Fermi variety is irreducible for every λ [3].

For continuous periodic Schrödinger operators, Knörrer and Trubowitz proved that the
Bloch variety is irreducible (modulo periodicity) when d = 2 [13]. When the periodic poten-
tial is separable, Bättig, Knörrer and Trubowitz proved that the Fermi variety at any level
is irreducible (modulo periodicity) for d = 3 [4].

For further developments on these topics, see [20] for the case of planar periodic graphs
and [7] for a work which explores the connection with discrete geometry.

Recently, one of the authors introduced a novel approach to study the irreducibility of
polynomials, obtaining several new results for periodic operators of the form −∆ + V on
ℓ2
(
Zd
)
. In this case, Liu proved that for d = 2, the Fermi variety is irreducible at every

energy level λ except for, possibly, the average energy level. He also proved that when
d ≥ 3, the Fermi variety is irreducible for every level λ [23]. In particular, for such operators
it follows that the Bloch variety is irreducible in arbitrary dimension [23]. The results in [23]
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provide a complete proof for conjectures about the irreducibility of Fermi and Bloch varities
in the discrete settings, as discussed in numerous articles [3, 4, 10, 13, 16, 18].

On a technical level, the approach in [23] can be divided into several steps.

1. Show that the variety associated with every irreducible factor contains certain singu-
lar points in the Riemann sphere.

2. Calculate the asymptotics (tangent cones after changing coordinates of variables) of
the Fermi variety at those singular points.

3. Prove that the asymptotics themselves are irreducible.
4. Use degree arguments to complete the proof.

Our previous work [9] studied the Bloch variety associated to certain Zd-periodic graphs
and Schrödinger operators given by the sum of a multiplication operator (the potential) and
a Toeplitz operator (governing the site-to-site interactions). Following the approach outlined
above, we introduced new ideas to study the Bloch varieties associated to such operators
on single-vertex models, that is, Zd-periodic graphs in which the action is transitive on
the vertices (i.e., there is a single vertex orbit under the Zd action). Compared to the
irreducibility of Fermi varieties, we were able to work with asymptotics that also depend on
the spectral parameter λ in a specific way. As a result we proved the irreducibility of Bloch
variety for a large family of periodic graph operators [9].

The key idea in both works [9, 23] is to find a way to reduce the problem to one in which the
potential disappears. Indeed, the dependence of the full dispersion relation on the potential
can be very delicate, so this is exactly the role of the asymptotic terms. In both cases, the
approach is to expand the dispersion relation in terms of the symbol of the Toeplitz operator
governing the site-to-site interactions. However, there are a couple of drawbacks to their
results. First, [23] only focuses on single-vertex models; many models of physical interest
such as graphene, the Lieb lattice and Kagome lattices and others do not fall into the single-
vertex category. Secondly, the arguments in [9] are only effective in studying irreducibility
of the dispersion relation itself (equivalently, irreducibility of the Bloch variety). However,
the most interesting irreducibility results are for the dispersion relation with fixed energy,
which corresponds to the Fermi variety. The present paper thus develops a method to study
the dispersion relation at fixed energy. In particular, the technique here gives new results,
even for the single-vertex case.

We now give context to the present manuscript and point out several difficulties inherent
to the setting of many-vertex models which had to be overcome by us in order to implement
the strategy outlined above in steps 1-4. We also comment on the importance of the models
studied here for the mathematics and physics of periodic structures.

Our goal in this note is to present irreducibility criteria which can be applied to many-
vertex models, that is, periodic lattices with more than one vertex in their fundamental cell.
Although the general scheme of the proof follows [23], the framework and its implementation
for specific examples are significantly more challenging. The many-vertex context is typically
introduced to interpret physical systems which either contain many particles or allow for
internal degrees of freedom such as spins, energy levels, and other physical parameters.
Therefore, the scope of Hamiltonians which arise in this study, even when restricted to the
Zd-periodic setting, is wide and also corresponds to a diverse range of physical phenomena.

One guiding example for the results presented here is the Lieb lattice, which is ubiquitous
in nanostructures and exhibits exotic flat band structures. This lattice is of interest to
ferromagnetism, superconductivity and fractional quantum Hall effects; see [11, 12] and
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references therein. A finite portion of the two dimensional Lieb lattice with three vertices in
the fundamental cell is shown in Figure 1 below.

Many-vertex models also naturally arise in the process of graph decoration. While this
process may produce drastic effects on the spectrum of the underlying adjacency operator,
such as the creation of spectral gaps [29], we show below that in many examples of interest
irreducibility is unaffected by decoration procedures. In this way, we are able to present new
irreducibility results for a class of examples of interest to mathematical physics. We now
comment on some technical merits of the approach developed in this manuscript.

A first contribution of the present work is to present unified criteria for irreducibility.
Indeed, the main results of Theorems 2.4 and 2.6 below include both types of examples
discussed above and also recover known results for single-vertex models in which the action
by Zd has a single vertex orbit. In short, we show that in many situations of interest the
Fermi variety is irreducible for all but finitely many energies. The criteria obtained here
reduces the question of counting irreducible factors of the Fermi variety to counting factors
of suitable asymptotics, which is achieved in Theorems 2.4 and 2.6.

We also emphasize that our main results of Theorems 2.4 and 2.6 are abstract and possi-
bly of independent interest. Moreover, these results are not only applicable to the study of
irreducibility but, rather, they bound the number of irreducible components of a polynomial
in terms of the number of components of two of its asymptotics whenever the appropriate
conditions are met. Within the realm of applications to irreducibility of the Fermi variety
of periodic operators, the operators considered here are vector-valued, and their dispersion
relations may depend non-trivially on the values of the potential at every site of the funda-
mental domain and also on the spectral parameter in a more delicate fashion than in the
single-vertex case. In particular, the potential values and spectral parameter λ appear in the
tangent cone asymptotics in a highly nontrivial fashion, in contrast to [23] and [9], where
the asymptotics are independent of the potential and of the spectral parameter as well. In
fact, this dependence explains one of the crucial technical challenges of this work.

The rest of the paper is laid out as follows. In Section 2, we describe the general setting
of our abstract results. The proofs of those abstract theorems are then given in Section 3.

Figure 1. A finite portion of the two dimensional Lieb lattice. A fundamental
cell is show with dashed lines.
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Since we consider many-vertex models, we need to use the matrix-valued version of Floquet
theory, which we describe in Section 4. Finally, we give our main applications to Lieb and
decorated lattices in Sections 5 and 6, respectively.

Acknowledgements
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Physics for the Workshop on “Ergodic operators and quantum graphs” and ICERM for the
Hot Topics workshop on “Algebraic Geometry in Spectral Theory”, at which some of this
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2. Setting and Statement of Main Results

Let C⋆ = C\{0}, C = C ∪ {∞}, and for m ∈ N, let C[x1, . . . , xm] (respectively
C[x±1

1 , . . . , x±1
m ]) denote the set of polynomials (respectively Laurent polynomials) in m vari-

ables. We denote a typical element of C[x±1
1 , . . . , x±1

m ] by

(2.1) f(x) =
∑

α∈Zm

cαx
α, x ∈ (C⋆)m,

where
xα = xα1

1 · · ·xαm

m , for x ∈ (C⋆)m, α ∈ Zm.

As usual, f ∈ C[x±1
1 , . . . , x±1

m ] is a unit if and only if 1/f ∈ C[x±1
1 , . . . , x±1

m ], which in turn
holds if and only if f is a nonzero monomial: f(x) = cxα for some c 6= 0 and α ∈ Zd. If f 6≡ 0
is not a unit, it is irreducible if it cannot be factored nontrivially. Equivalently, f is irreducible
if and only if f = gh implies that one of g, h must be a unit. Given f ∈ C[x±1

1 , . . . , x±1
m ], we

let
V (f) = {x ∈ (C⋆)m : f(x) = 0}

denote the variety associated to f , and we say that f meets y ∈ Cm
if the closure of V (f)

contains y (with the closure being taken with respect to the usual product topology on C
m
).

Define
0k = (0, 0, . . . , 0︸ ︷︷ ︸

k copies

),

and notice that f meets (0m−1,∞) if and only if f(x̂) meets 0m, where x̂ = (x1, x2, . . . , xm−1, x
−1
m ).

We also denote pointwise operations via

(2.2) x⊙ y = (x1y1, . . . , xmym) and x⊙α = (xα1

1 , . . . , x
αm

m ).

Given a Laurent polynomial as in (2.1), set

(2.3) A = A(f) = {α ∈ Zm : cα 6= 0}.
We define αmin(j) = αmin,f(j) = min{αj : α ∈ A}, that is, αmin(j) is the lowest exponent
of xj in f(x). We also introduce

(2.4) α0(j) = α0,f(j) = max{−αmin,f(j), 0}
so that

(2.5) α0 = α0,f := (α0,f(1), . . . , α0,f(m))

is the vector in Zm
+ with smallest length such that f+(x) := xα0f(x) is a polynomial. The

interplay between (ir)reducibility properties of f(x) (as a Laurent polynomial) and f+(x)
(as a polynomial) plays a key role in this manuscript. In particular, let us note that f is
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irreducible as a Laurent polynomial if and only if f+ has only one irreducible factor that is
not a monomial. This motivates the following definitions.

Definition 2.1. A nontrivial monomial is a Laurent polynomial of the form cxα where c 6= 0
and α 6= 0m. If cx

α is nontrivial and αj ≥ 0 for all j, we call cxα a positive1 monomial. The
degree of f is defined as deg(f) = α1 + α2 + · · · + αm. Abusing notation slightly, we also
denote deg(α) = α1+α2+ · · ·+αm for the multi-index α = (α1, . . . , αm) ∈ Zm. We say that
f ∈ C[x1, . . . , xm] is a proper polynomial if f has no positive monomial factors.

Definition 2.2. Given a Laurent polynomial

f(x) =
∑

α

cαx
α,

let L− = min{deg(α) : cα 6= 0}. Then, the lowest degree component of f is defined to be the
Laurent polynomial

f(x) =
∑

deg α=L−

cαx
α.

We sometimes refer to this simply as the lowest component of f .
More generally, if l ∈ Zm \ {0}, then the l-degree of xα and α are defined by

(2.6) degl(x
α) = degl(α) := deg(xl⊙α) = deg(l ⊙ α) =

m∑

j=1

ljαj .

One can then put L−(l) = min{degl(α) : cα 6= 0} and the component of lowest l-degree is

(2.7) f
l
(x) =

∑

degl(α)=L−(l)

cαx
α.

The component of lowest l-degree has the helpful property that (fg)
l
= f

l
g
l
, so (ir)reducibility

results for the lowest-degree components can give helpful information about (ir)reducibility
of a given polynomial.

One can also view the lowest degree component of a Laurent polynomial in a geometrical
way. While our approach does not rely on the following perspective, it adds helpful context.
The Newton polytope of the Laurent polynomial f is defined to be the convex hull of the set
A(f) given by (2.3). Then, any vector l ∈ Zm \ {0} determines a corresponding face of the
polytope via

F = Fl =

{
y ∈ N (f) : 〈y, l〉 = min

y′∈N (f)
〈y′, l〉

}
.

The facial polynomial corresponding to the face F is

fF (x) =
∑

α∈F

cαx
α.

The reader can then check that f
l
(x) is exactly the Newton polytope facial polynomial

associated with the face Fl.

With the basic definitions, we are now ready to formulate our main results. Let P, P̃ ∈
C[x±1

1 , . . . , x±1
m ], and suppose that there exists l ∈ Nm such that

(2.8) P̃(x) = P(x⊙l).

1Obviously, positive refers to the vector of exponents, not to the range of values taken by the monomial.
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Let h̃0 be the lowest degree component of P̃+, h̃∞ be the lowest degree component of (P̃(x̂))+,

where x̂ = (x1, x2, · · · , xm−1, x
−1
m ). Notice that both h̃0 and h̃∞ are polynomials.

Under these assumptions, there exist h0, h∞ ∈ C[x1, . . . , xm] such that

h̃0(x) = h0(x
⊙l), h̃∞(x) = h∞(x⊙l)

for example, by [9, Lemma 3.1]. We remark that h0 is the component of lowest l-degree of
P+ and h∞ is the component of lowest l-degree of (P(x̂))+.

For the first result of this note, we will make the following assumptions:

(A1) Each factor of P(x) meets either 0m or (0m−1,∞).

(A2) Both P+(x) and (P(x̂))+ are proper polynomials, in the sense of Definition 2.1.

(A3) h0 has p1 irreducible factors and h∞ has p2 irreducible factors.

(A4) deg(h̃0)+deg((h̃∞(x̂))+) > deg(P̃+) or deg((h̃0(x̂))
+)+deg((h̃∞(x))) > deg((P̃(x̂))+)

As we shall see in several examples, assumptions (A1)-(A4) can be verified in many cases of
interest.

Remark 2.3. If P+(x) and (P(x̂))+ are proper polynomials, then (P(x̂))+ = (P+(x̂))+.

Theorem 2.4. Under assumptions (A1)-(A4), the Laurent polynomial P(x) has at most
p1 + p2 − 1 irreducible components.

Theorem 2.4 will be proved in Section 3. As an immediate consequence we obtain the
following corollary.

Corollary 2.5. If p1 = p2 = 1, assumptions (A1)–(A4) imply that the Laurent polynomial
P(x) is irreducible.

It the sequel we consider the situation when we have an equality between the degrees, that
is, when assumption (A4) is replaced by

(A′
4) deg h̃0+deg((h̃∞(x̂))+) = deg P̃+ and deg((h̃0(x̂))

+)+deg((h̃∞(x))) = deg((P̃(x̂))+)

Theorem 2.6. Under assumptions (A1), (A2), (A3), and (A′
4), either the Laurent polynomial

P(x) has at most p1+p2−1 irreducible components or P(x) has p1+p2 irreducible components

and P̃+(x) = Ch̃0(x)(h̃∞(x̂))+ where C is a constant.

As discussed before, Theorems 2.4 and 2.6 improve the results of [9] in several ways. First,
the approach of [9] is necessarily limited to single-vertex models (that is operators on graphs
with a free Zd-action that acts transitively on vertices), since that manuscript worked directly
with polynomials enjoying a certain expansion in terms of a single fixed Laurent polynomial
and some characters. For more general lattices and especially for lattices with many points
in the fundamental domain, that expansion is not valid, so it is necessary to deal directly
with P rather than p. The abstract result here formulates conditions purely on asymptotics
of the polynomial itself which can be checked directly.

3. Proofs of Theorems 2.4 and 2.6

Before proving our main theorems we will need to collect a few other results.
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3.1. Technical Lemma.

Lemma 3.1. Let P be a Laurent polynomial that satisfies assumptions (A1), (A2), and (A3).
Then P has at most p1 + p2 irreducible components. Moreover, if P(x) has exactly p1 + p2
irreducible components then P+ enjoys a factorization of the form

(3.1) P+ = fg,

where f ∈ C[x1, . . . , xm] meets 0m and does not meet (0m−1,∞) and g ∈ C[x1, . . . , xm] meets
(0m−1,∞) and does not meet 0m.

Proof. Factoring P+ into irreducibles and applying Assumption (A1), we can write

(3.2) P+ =
3∏

i=1

ai∏

j=1

fij ,

where each f1j is a polynomial that meets 0m and does not meet (0m−1,∞), each f2j is a
polynomial that meets (0m−1,∞) and does not meet 0m, and each f3j is a polynomial that
meets both 0m and (0m−1,∞). Note by assumption (A2) that no fij can be a monomial so
a1 + a2 + a3 is the number of irreducible components of both P and of P+.

For each i ∈ {1, 3}, j, let g̃ij denote the component of f̃ij = fij(x
⊙l) of lowest degree, and

gij be such that g̃ij = gij(x
⊙l). Let tij , i ∈ {1, 3} denote the number of irreducible factors of

gij.
Since f1j and f3j meet 0m, we have that tij ≥ 1 for all 1 ≤ j ≤ ai, i = 1, 3. In particular,

(3.3)

ai∑

j=1

tij ≥ ai, i = 1, 3.

We also observe that by definition f2,j does not meet 0m, thus f2,j(0m) 6= 0.

Since h̃0(x) = C
∏

i=1,3

∏ai
j=1 g̃ij and

(3.4) h0(x) = C
∏

i=1,3

ai∏

j=1

gij ,

these observations and (3.3) give

(3.5) a1 + a3 ≤
∑

i=1,3

ai∑

j=1

tij = p1.

Similarly, we find that

(3.6) a2 + a3 ≤ p2.

Combining (3.5) and (3.6), we conclude that

(3.7) a1 + a2 + a3 ≤ a1 + a2 + 2a3 ≤ p1 + p2.

Thus, the total number of components, a1 + a2 + a3, is bounded above by p1 + p2, and (3.7)
makes it clear that a1 + a2 + a3 = p1 + p2 forces a3 = 0, as desired. �
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3.2. Proofs of Theorems.

Proof of Theorem 2.4. For simplicity, we assume the first half of Assumption (A4) holds,
that is,

(3.8) deg(h̃0) + deg((h̃∞(x̂))+) > deg(P̃+).

From Lemma 3.1, we conclude that P+(x) has at most p1 + p2 irreducible factors. Assume
for the sake of contradiction that P+(x) has exactly p1 + p2 irreducible factors. By Lemma
3.1 we can write P+ = fg, where where f is a polynomial that meets 0m and does not meet
(0m−1,∞) and g is a polynomial that meets (0m−1,∞) and does not meet 0m. By definition

of h̃0 and h̃∞ and the assumptions on f and g, we have that

(3.9) f(x⊙l) = C1(h̃0(x) + f1(x))

where each term in f1(x) has degree higher than the degree of h̃0(x) and

(3.10) g(x⊙l) = C2(h̃∞(x̂) + g1(x̂))x
α′

m

where g1(x̂) consists of higher order terms of x̂ and α′ is a suitable constant, namely,

α′ = max{α0,h̃∞(x)(m), α0,g1(m)},

with α0 defined as in (2.4). In simple terms, α′ is defined in a way that x−α′

m is the lowest

power of xm appearing in the sum h̃∞(x̂) + g1(x̂). Then, letting f̃(x) = f(x⊙l)

(3.11) deg P̃+ ≥ α′ + deg(h̃∞(x̂)) + deg(f̃) ≥ deg((h̃∞(x̂))+) + deg(h̃0),

which contradicts our assumption (3.8). Therefore, P has at most p1 + p2 − 1 components,
as desired.

The case when deg((h̃0(x̂))
+) + deg((h̃∞(x))) > deg((P̃(x̂))+) is proved similarly. �

Proof of Theorem 2.6. Assume that P(x) has p1+p2 irreducible components. We can follow
the proof of Theorem 2.4 to reach the chain of inequalities (3.11). By the first half of

assumption (A′
4), namely deg h̃0 + deg((h̃∞(x̂))+) = deg P̃+, all of these must be equations

hence by (3.9) and (3.10), we have that α′ = α0,h̃∞

and deg(f̃) = deg(h̃0). From the latter,

we deduce f1 ≡ 0. Similarly, using the second half of assumption (A′
4) we find that g1 ≡ 0,

finishing the proof. �

4. Floquet Transform in the Matrix-Valued Case

Our main interest in the results contained in Theorems 2.4 and 2.6 comes from applica-
tions to Schrödinger operators, in particular to estimating the number of components of the
dispersion relation and its restriction to constant energies. The former estimates the num-
ber of components of the Bloch variety and the latter estimates the number of components
associated to the Fermi variety. Before stating corollaries of our general results, we include
some basic terminology and results from Floquet theory in the discrete case following [9].
For a more complete picture we recommend Kuchment’s survey [16] and references therein.

Since we are interested in periodic operators on graphs, it will be convenient for us to
discuss the matrix-valued version of the Floquet transform. This is well-known. We include
a summary to fix notation for the reader’s convenience. To that end, fix d ∈ N and ν ∈
N, which here denotes the order of matrices and later will denote the number of vertex
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orbits in a given periodic graph. For a set S, we denote by Cν×S the set of functions from
{1, 2, . . . , ν} × S to C.

We then consider the basic Hilbert space

ℓ2(Zd,Cν) ∼= ℓ2(ν × Zd)

=

{
ϕ ∈ Cν×Zd

:

ν∑

j=1

∑

l∈Zd

|ϕ(j, l)|2 <∞
}
.

Let us now define the operators of interest on this space. Given

{aijn : n ∈ Zd, 1 ≤ i, j ≤ ν}

such that aij has compact support for each 1 ≤ i, j ≤ ν, the associated matrix-valued
Toeplitz operator A : ℓ2(Zd,Cν) → ℓ2(Zd,Cν) is given by

(4.1) [Aψ](i, l) =
ν∑

j=1

∑

l′∈Zd

aijl−l′ψ(j, l
′), 1 ≤ i ≤ ν, l ∈ Zd.

It is helpful to rewrite this in matrix form, especially since we will be describing some other
block decompositions later. More specifically, set ψ(l) = [ψ(1, l), . . . , ψ(ν, l)]⊤ ∈ C

ν for
ψ ∈ ℓ2(Zd,Cν) and write

A(l) =



a11l · · · a1νl
...

. . .
...

aν1l · · · aννl




and observe that we can rewrite (4.1) as

(4.2) [Aψ](l) =
∑

l′∈Zd

A(l − l′)ψ(l′), l ∈ Zd.

To add a potential, we consider V : ν × Z

d → C bounded and define [V ψ](i, l) =
V (i, l)ψ(i, l) for 1 ≤ i ≤ ν and l ∈ Zd. We are then interested in the operator

(4.3) H = A+ V.

For q ∈ Nd, we say that V is q-periodic if2 V (j, n+ l ⊙ q) = V (j, n) for all 1 ≤ j ≤ ν and
n, l ∈ Zd. In this case, denote by

W = {w ∈ Zd : 0 ≤ wi < qi ∀1 ≤ i ≤ d}

its fundamental domain and write Γ = {l ⊙ q : l ∈ Zd} for the period lattice. Writing q∗ =
(q−1

1 , . . . , q−1
d ), the dual lattice is given by Γ∗ = {l ⊙ q∗ : l ∈ Zd} = {( l1

q1
, . . . , ld

qd
) : l ∈ Zd}.

2recall that x⊙ y = (x1y1, x2y2, . . . , xdyd)
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Let us now define Td
∗ = R

d/Γ∗,

Hq,ν =

{
f : ν ×W ×Td

∗ → C :
ν∑

j=1

∑

w∈W

∫
|f(j, w, k)|2 dk|Td

∗|
<∞

}

∼=
ν⊕

j=1

∫ ⊕

T

d
∗

C

W dk

|Td
∗|

∼= L2

(
T

d
∗,C

ν×W ;
dk

|Td
∗|

)
.

The first version of the Floquet transform is given by Fq,ν : ℓ
2(Zd,Cν) → Hq,ν , u 7→ û where

û(j, w, k) =
∑

n∈Zd

e−2πi〈n⊙q,k〉u(j, w + n⊙ q),

for 1 ≤ j ≤ ν, w ∈ W , and k ∈ Td
∗. This conjugates H to a decomposable operator whose

action on the kth fiber of Hq,ν is given by the restriction of H to {1, . . . , ν} × W with
boundary conditions

(4.4) u(j, n+m⊙ q) = e2πi〈m⊙q,k〉u(j, n), n,m ∈ Zd, 1 ≤ j ≤ ν.

More precisely, for k ∈ Td
∗, define H̃(k) on Cν×W by

[H̃(k)u](i, w)

= V (i, w)u(i, w) +
ν∑

j=1

∑

w′∈W

∑

l∈Zd

e2πi〈l⊙q,k〉aijw−(w′+l⊙q)u(j, w
′)(4.5)

for 1 ≤ i ≤ ν, w ∈ W . We have the following:

Proposition 4.1. The operator Fq,ν is unitary. If V is q-periodic, then

Fq,νHF
∗
q,ν =

∫ ⊕

T

d
∗

H̃(k)
dk

|Td
∗|
,

where H̃(k) is as in (4.5).

Proof. This follows from a direct calculation. �

For our purposes, the form of H from Proposition 4.1 is not optimal, since the dependence

of H̃(k) on the Floquet multipliers can be highly nontrivial. In order to compute asymp-
totic terms, it is useful to have a different version of the Floquet transform that places the
multipliers on a (block) diagonal.

To describe this, let Q = #W = q1q2 · · · qd, and let us consider the νQ-dimensional
vector space Cν×W which consists of vectors u : {1, 2, . . . , ν} ×W → C. For k ∈ Rd, the
corresponding fiber of the Floquet transform F (k) : Cν×W → C

ν×W is given by

(4.6) [F (k)u](j, w) =
1√
Q

∑

n∈W

e−2πi〈w⊙q∗+k,n〉u(j, n).

It turns out that F (k)H̃(k)F (k)∗ takes a simple form: the sum of a block-diagonal
operator that depends only on A and k and a block-operator that depends only on V (and
not on k).
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For 1 ≤ i, j ≤ ν, define

(4.7) pij(z) =
∑

n∈Zd

aijn z
−n

and consider p(z) ∈ Cν×ν given by

(4.8) p(z) =




p11(z) p12(z) . . . p1ν(z)
p21(z) p22(z) . . . p2ν(z)

...
...

. . .
...

pν1(z) pν2(z) . . . pνν(z).




Given q ∈ Nd and n ∈ Zd, the vector µn = µn,q ∈ (C⋆)d is defined by

(4.9) µj
n = e2πinj/qj , 1 ≤ j ≤ d.

Using µn as in (4.9), define

(4.10) Dz(n, n
′) = p(µn ⊙ z)δn,n′ , n, n′ ∈ W,

where z = (e2πik1, . . . , e2πikd), which we abbreviate as z = exp(2πik).
The linear operatorDz onC

ν×W is then the (block-diagonal) operatorDz = diag(Dz(n, n)),
that is,

(4.11) [Dzu](w) = p(µw ⊙ z)u(w), w ∈ W,

where similar to before, we denote u(w) = [u(1, w), . . . , u(ν, w)]⊤ ∈ Cν . Equivalently, choos-
ing an enumeration W = {w1, . . . , wQ}, one can write Dz as a block-diagonal matrix

(4.12) Dz =




p(µw1
⊙ z)

p(µw2
⊙ z)

. . .
p(µwQ

⊙ z)




with ν × ν blocks on the diagonal and in which all unspecified blocks are zero.
Writing the discrete Fourier transform of a q-periodic function g : Zd → C on Γ∗ by

ĝl =
1√
Q

∑

n∈W

e−2πi〈l,n〉gn, l ∈ Γ∗,

we define B = BV by

(4.13) B(n, n′) = diag
(
V̂1 (q

∗ ⊙ (n− n′)) , . . . , V̂ν (q
∗ ⊙ (n− n′))

)
, n, n′ ∈ W,

where we recall q∗ = (q−1
1 , . . . , q−1

d ).
The corresponding operator B = BV on Cν×W is given in block matrix form in a similar

fashion to Dz:

(4.14) [BV u](w) =
∑

w′∈W

BV (w,w
′)u(w′).
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Enumerating W = {w1, . . . , wQ} as before, one can write BV as the Q×Q block matrix

(4.15) BV =




B(w1, w1) B(w1, w2) · · · B(w1, wQ)
B(w2, w1) B(w2, w2) · · · B(w2, wQ)

...
...

. . .
...

B(wQ, w1) B(wQ, w2) · · · B(wQ, wQ)




where each block is ν × ν.

Proposition 4.2. Assume V is q-periodic. Then

(4.16) F (k)H̃(k)F (k)∗ = Dz +BV

for each k, where Dz and BV are as above. In particular, writing F =
∫ ⊕

T

d
∗

F (k), one has

(4.17) F H̃F
∗ =

∫ ⊕

T

d
∗

(Dexp 2πik +BV )
dk

|Td
∗|
.

Proof. This follows from a calculation almost identical to that in the proof of [9, Proposition
5.3]. �

Proposition 4.3. Assume V is q-periodic, and let

(4.18) P̃(z, λ) = det(Dz − BV − λI),

where Dz and BV are as before. For any w ∈ W ,

(4.19) P̃(µw ⊙ z, λ) ≡ P̃(z, λ).

In particular, P̃(z, λ) = P(z⊙q, λ) for a suitable Laurent polynomial P.

Proof. For w ∈ W , let Tw : Cν×W → C

ν×W denote the operator

[Twu](j, w
′) = u(j, {w′ − w}), 1 ≤ j ≤ ν, w′ ∈ W,

where for n ∈ Zd, {n} denotes the unique element of W that is equivalent to n modulo Γ.
By direct calculations, T ∗

wDzTw = Dµw⊙z and T ∗
wBV Tw = BV , so

P̃(µw ⊙ z, λ) = det(T ∗
w(Dz +BV − λ)Tw) = P̃(z, λ),

as desired. The second statement then follows immediately from [9, Lemma 3.1]. �

Let us conclude this section by pointing out that the framework described above includes
all finite-range translation-invariant operators on periodic graphs in a canonical fashion.

More precisely, recall that a graph G consists of a nonempty set V of vertices and E a set of
unordered pairs of elements of V, called edges. A Zd-periodic graph is a locally finite graph
G on which Zd acts freely and cocompactly. We denote the action of Zd additively, so the
assumption that Zd acts freely can be expressed as

v + n 6= v, ∀n 6= 0d.

The translations v 7→ v + n induce unitary operators Un : ℓ2(V) → ℓ2(V) via [Unf ](v) =
f(v+n). One says that a bounded operator A on ℓ2(V) is translation-invariant if AUn = UnA
for all n ∈ Zd.

Consider a translation-invariant operator A and choose a fundamental domain Vf so that
V =

⋃
n∈Zd(Vf + n). Let ν = #Vf , and write Vf = {v1, . . . , vν}. Thus, any v ∈ V can be

written as vj + n for some j ∈ {1, 2, . . . , ν} and n ∈ Zd.
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We further assume that A has finite range in the sense that there exists r > 0 such that

(4.20) 〈δvi+n, Aδvj+m〉 = 0 whenever |n−m| > r.

The map Φ : ℓ2(V) → ℓ2(Zd,Cν) given by

[Φf ](j, n) = f(vj + n)

is unitary, and ΦAΦ∗ is the matrix Toeplitz operator corresponding to coefficients aijn given
by

(4.21) aijn = 〈δvi+n, Aδvj〉,
as above.

5. Applications to the Lieb Lattice

The Lieb lattice in dimension d = 2 is the graph with vertices V consisting of all n ∈ Z2

such that n1 and n2 are not both odd. One then connects a pair of vertices n and m by an
edge whenever ‖n − m‖1 = 1. Compare Figure 1; there, the black vertices are those that
belong to 2Z⊕ 2Z.

We let A denote the adjacency operator on the Lieb lattice and the corresponding operator
A+ V acting on ℓ2(Z2,C3), where V : Z2 → C

3 is q-periodic. Let us exploit the connection
discussed in the previous section to write this as a matrix-valued periodic operator. Referring
to Figure 1, let ψ1, ψ2, and ψ3 respectively represent the value of ψ ∈ ℓ2(Z2,C3) at the
corresponding black, red, or blue vertex respectively. Writing {e1, e2} ⊆ Z2 for the standard
basis and defining ∆±ej on ℓ2(Z2) by

[∆±ejψ](n) = ψ(n) + ψ(n± ej), ψ ∈ ℓ2(Z2),

the reader can theck that

(5.1) [Aψ](n) =



[∆−e1ψ2](n) + [∆−e2ψ3](n)

[∆e1ψ1](n)
[∆e2ψ1](n)


 .

In matrix form:

(5.2) A =




0 ∆−e1 ∆−e2

∆e1 0 0
∆e2 0 0


 .

Let us now use Proposition 4.2 to write the Floquet matrix of A+ V , with A as in (5.1),
as the 3Q× 3Q matrix Dz +BV .

By (4.8) and (5.2), p(z) is given by

(5.3) p(z) =




0 1 + z−1
1 1 + z−1

2

1 + z1 0 0
1 + z2 0 0




so

(5.4) det(p(z)− λI) = (−λ)(z−1
1 + z1 + z−1

2 + z2 + λ2 + 4)



FERMI VARIETIES OF PERIODIC GRAPH OPERATORS 14

Notice that the factor of λ shows the existence of a flat band of the operator A. Indeed, one
can check that

(5.5) ψ(n) =





+1 n = (0, 1), (2, 1)

−1 n = (1, 0), (1, 2)

0 otherwise

defines an eigenfunction of A with eignevalue 0 having compact support.
Recall that the matrix B = BV is a 3Q×3Q matrix given by (4.13) and (4.15) with blocks

of the form

(5.6) B(n, n′) =



V̂1(n− n′) 0 0

0 V̂2(n− n′) 0

0 0 V̂3(n− n′)


 n, n′ ∈ W.

In comparison to the adjacency operator of Z2, the inclusion of extra vertices accounts for
additional interactions, which increases the complexity of the study of the Fermi variety in a
substantial fashion, especially in the presence of a periodic potential. For nontrivial choices

of V , counting the number of irreducible components of P̃(z) = det(Dz +BV − λI) and the
related P(z) is significantly harder due to the contributions from the off-diagonal blocks.
We shall explain below how irreducibility of the latter follows from Theorem 2.6 for all but
finitely many values of λ.

Before proving the main irreducibility result for the Lieb lattice, we will need a suitable
technical result about the asymptotic terms. Let us fix some notation. Fix λ ∈ C. Let

P̃(z) = det(Dz +BV − λI) with Dz and BV given by (4.11) and (4.15). By Proposition 4.3,

there is a polynomial P such that P̃(z) = P(z⊙q). Define h̃0 h0, h̃∞ and h∞ as in Section 2.
Since we are interested in the Fermi variety, we want to consider P as a polynomial in the

variable z with λ fixed. Thus, we generally write P(z) unless we need to explicitly mention
the dependence on λ, in which case we write P(z;λ), with similar notation for h0, h∞, and
so on.

Lemma 5.1. If gcd(q1, q2) = 1, then h0 and h∞ are irreducible for all but finitely many λ.

Proof. We will only prove irreducibility of h0 since the result for h∞ is analogous. From

the structure of Dz and BV one readily checks that the lowest degree term of P̃(z) =
det(Dz − BV − λI) is of the form

r0(z) =
∑

cαz
α

where the summation runs over those α ∈ [−q1q2, 0]2∩Z2 satisfying α1+α2 = −Q = −q1q2.
Moreover, since r0(z) = r0(µn ⊙ z) for each n ∈ W , the only terms in r0(z) that can have
cα 6= 0 are the terms with α1 = m1q1 and α2 = m2q2 for integers −q2 ≤ m1 ≤ 0 and
−q1 ≤ m2 ≤ 0. Since gcd(q1, q2) = 1 the only solutions to

m1q1 +m2q2 = −q1q2
within the given range are (m1, m2) = (−q2, 0) and (m1, m2) = (0,−q1). In particular,

r0(z) = c2z
−Q
1 + c1z

−Q
2 ,

where cj = cj(λ) for j = 1, 2. From this, it follows that

h̃0(z) = (z1z2)
Qr0(z) = c1z

Q
1 + c2z

Q
2 .
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We shall see below that c1(λ) and c2(λ) are polynomials in λ that do not vanish identically.
Consequently, h0(z) = c1z

q2
1 + c2z

q1
2 is irreducible for all but finitely many λ; indeed, it

is irreducible precisely for those λ for which c1(λ) and c2(λ) are both nonzero. To finish
the proof we now show c2(λ) 6≡ 0 (the argument for c1(λ) is analogous) by expanding
det(Dz+BV −λI) using permutations σ : {1, . . . , 3Q} → {1, . . . , 3Q}. Note that the highest
degree term in c2(λ) is achieved precisely by the permutation τ given by

(5.7) τ(j) =





j + 1 if j ≡ 1 mod 3

j − 1 if j ≡ 2 mod 3

j otherwise

,

which yields a term in det(Dz +BV −λI) of the form (−1)Q(V̂3(0)−λ)Qz−Q
1 . It follows that

c2(λ) is a polynomial of degree Q in λ which completes the proof. �

Lemma 5.2. Let P̃(z) = det(Dz +BV − λI) as above with gcd(q1, q2) = 1. Let P(z) satisfy

P̃(z) = P(z⊙q) for all z ∈ C. Then, for all but finitely many values of λ, each factor of P(z)
meets either (0, 0) or (0,∞).

Proof. Assume z(n) = (z1(n), z2(n)) ∈ V (P̃) with z(n) → y = (y1, y2) ∈ C2
and y1 = 0. For

all but finitely many λ, this forces y2 ∈ {0,∞}. Indeed, if y2 ∈ C⋆, then we follow the the
proof of Lemma 5.1 to conclude that

P̃(z(n)) = c2(λ)
1

z1(n)Q
+O(z1(n)

−(Q−1)).

Whenever c2(λ) 6= 0, this gives P̃(z(n)) → ∞, which is inconsistent with z(n) ∈ V (P̃).
Since z(n) → (0, 0) (respectively, z(n) → (0,∞)) if and only if (z(n))⊙q → (0, 0) (respec-

tively, (z(n))⊙q → (0,∞)) it readily follows that each factor of P(z) meets either (0, 0) or
(0,∞). �

Corollary 5.3. If gcd(q1, q2) = 1 the Fermi variety of the Schrödinger operator A + V on
the Lieb lattice given by (5.1) is irreducible for all but finitely many λ ∈ C.

Proof. In view of the discussion in previous proofs, when the periods q1 and q2 are coprime
(z1z2)

Q det(Dz +BV − λI) has a lowest degree term of the form

(5.8) h̃0(z) = c01(λ, V )z
Q
1 + c02(λ, V )z

Q
2

where each c0j(λ, V ) is a polynomial of degree Q in λ that in principle also depends on V (l)

for all l ∈ W . In particular, there exists a finite set Z0 such that for λ ∈ C \ Z0 h̃0(z, λ)
does not have any monomial factors. Similarly (or by symmetry considerations) one checks

that h̃∞(z) = c11(λ, V )z
Q
1 + c12(λ, V )z

Q
2 where each c1j(λ, V ) is a polynomial of degree Q in

λ and therefore that (h̃∞(ẑ))+ = c12(λ)+ c11(λ)z
Q
1 z

Q
2 . It follows that (h̃∞(ẑ))+ also does not

have any monomial factors for λ ∈ C \ Z0. In particular

deg h̃0(z) + deg(h̃∞(ẑ))+ = deg P̃+(z) = 3Q.

Therefore, for λ ∈ C\Z0 the assumptions of Theorem 2.6 are met. We conclude that if P(z)
is reducible then we must have

(z1z2)
QP̃(z) = K[c01(λ)z

Q
2 + c02(λ)z

Q
1 ](5.9)

× [c12(λ) + c11(λ)z
Q
1 z

Q
2 ].(5.10)
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where K = K(λ) is a rational function of λ. We will show that the above setting leads to
a contradiction for all but finitely many λ. Indeed, the highest power of λ on the left-hand
side of (5.9) equals 3Q. Since each of the polynomials c1(λ), c2(λ) has degree Q, we conclude
from this that K(λ) ∼ λQ in the sense that

lim
λ→∞

K(λ)

λQ
= C 6= 0.

However, this implies that the coefficient of zQ2 in the right-hand side is of the order of λ3Q

whereas the coefficient of zQ2 on the left-hand side is of the order of λQ, according to the proof
of Lemma 5.1. Thus, this leads to a contradiction unless λ belongs to a certain algebraic
set. In particular, P(z) is irreducible for all but finitely many values of λ. �

6. Applications to Decorated Lattices

Another application of the main results of this note concerns certain graph decorations
of Zd by polygons of ν ∈ N vertices. Let G = (V, E) denote the graph obtained from Z

d

by attaching a cyclic graph of order ν to each n ∈ Zd. More precisely, the vertices of G are
given by V = Z× Zν and edges described as follows:

• For any n, n′ ∈ Zd with ‖n− n′‖1 = 1, there is an edge from (n, 0) to (n′, 0)
• For any n ∈ Zd and j ∈ Zν , there is an edge from (n, j) to (n, j+1) and to (n, j−1).

Figure 2 illustrates this in the case d = 2 and ν = 3. The black vertices represent (n, 0) with
n ∈ Z2 while the blue vertices represent (n,±1). The case when ν = 2, where the graph is
decorated by lines, is one of the examples of graphs studied by Aizenman and Schenker to
create spectral gaps, see [29, Figure 2].

We now let A denote the adjacency operator on ℓ2(V). As in the previous section, one can
write this a periodic operator with matrix coefficients. For ψ ∈ ℓ2(Zd,Cν) we identify the
coordinate function ψ(j, n) with the value of ψ on (n, j − 1 mod ν). With these definitions,
one has that

(6.1) [Aψ](n) =




[∆ψ1](n) + ψ2(n) + ψν(n)
ψ1(n) + ψ3(n)

...
ψν−2(n) + ψν(n)
ψν−1(n) + ψ1(n)



,

where ∆ in the top row represents the adjacency operator on ℓ2
(
Z

d
)
. A portion of the

example where d = 2 and ν = 3 is presented in Figure 2.
This time, the diagonal blocks of the Floquet matrix are generated by

(6.2) p(z) =




b0(z) 1 1
1 0 1

1 0 1
. . .

. . .
. . .

1 0 1
1 1 0



,

where b0(z) = z1 + z−1
1 + . . . + zd + z−1

d and all unspecified entries are 0. We now consider
the operator H = A+ V with a q-periodic potential V : Zd → C.
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We will check below that that the dispersion relation P̃(z) = det(Dz+BV −λI) of A+V ,
with A as in (6.1) and V q-periodic, satisfies the assumptions of Theorem 2.4 (respectively

2.6) whenever d > 2 (respectively d = 2) for all but finitely many λ ∈ C. Define P, h̃0, h0,

h̃∞, and h∞ as in Section 2.
Note that, under the above definitions

(6.3) h̃0(z;λ) = h̃∞(z;λ) = s(λ)(z1 · · · zd)Q
∏

n∈W

r0(µn ⊙ z)

with r0(z) = z−1
1 + . . .+ z−1

d and s(λ) a polynomial in λ of degree (ν − 1)Q.
Consequently,

(6.4) (h̃∞(ẑ;λ))+ = s(λ)(z1 · · · zd−1)
Q
∏

n∈W

r∞(µn ⊙ z)

with r∞(z) = r0(ẑ) = z−1
1 + . . . + z−1

d−1 + zd and s(λ) is as above. In particular, whenever

s(λ) 6= 0 we have that h̃0(z) and h̃∞(z) are nonzero.
Recalling that

(6.5) h̃0(z) = h0(z
⊙q) and h̃∞(z) = h∞(z⊙q),

we have the following.

Lemma 6.1. If gcd(q1, . . . , qd) = 1, then h0 and h∞ given by (6.3), (6.4), (6.5) are irreducible
for all but finitely many λ. The finite set of exceptional λ’s is precisely the set on which
s(λ) = 0.

Proof. See [23, Lemma 5.1]. �

Lemma 6.2. Let P̃(z) = det(Dz + BV − λI), and let P(z) satisfy P̃(z) = P(z⊙q) for all
z ∈ C. Then, for all but finitely many values of λ, each factor of P(z) meets either 0d or
(0d−1,∞).

Proof. If P̃(z) = 0 with (z1, . . . , zd−1) → 0d−1 then we must have that zd → 0 or zd → ∞
since otherwise we would have P̃(z) = s(λ)(z−Q

1 + . . .+z−Q
d−1)+l.o.t with s(λ) the polynomial

from (6.3). In particular whenever s(λ) 6= 0 this would imply that P̃(z) → ∞, which is a
contradiction. It follows as in the proof of Lemma 5.2 that each factor of P(z) meets either
0d or (0d−1,∞). �

Corollary 6.3. Let d ≥ 2 and assume that gcd(q1, . . . , qd) = 1. Then the Fermi variety of
A+ V , with A given by (6.1) is irreducible for all but finitely many λ ∈ C.
Proof. If d > 2 then this result follows from Theorem 2.4. Indeed, in this case we have that

deg h̃0(z) = (d− 1)Q and deg((h̃∞(ẑ))+) = Qd by (6.3) and (6.4). In particular,

deg h̃0(z) + deg((h̃∞(ẑ))+) = (2d− 1)Q > (d+ 1)Q = deg P̃+(z),

which verifies assumption (A4) as d > 2. Moreover, Lemma 6.1 implies that p1 = p2 = 1.
For d = 2, we have (2d−1)Q = (d+1)Q hence the above considerations imply assumption

(A′
4) so one only needs to check that the factorization

P̃+(z;λ) = K(λ)h̃0(z;λ)(h̃∞(ẑ;λ))+
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Figure 2. A Z2 decoration by triangles

cannot happen. In fact, this would imply that

(z1z2)
Q det(Dz +BV − λI)

= K(λ)s2(λ)(z1z2)
QzQ1

(
∏

n∈W

r0(µn ⊙ z)

)(
∏

n∈W

r∞(µn ⊙ z)

)
.

(6.6)

Let us show that this can happen for at most finitely many λ ∈ C. First, notice that
gcd(q1, q2) = 0 implies that r0(µn⊙ (z1,−z1)) is not identically zero for any n ∈ W \{0d}. In
particular, setting z2 = −z1 and expanding P̃(z1,−z1;λ), we see that the highest power of z1
in P̃(z1,−z1;λ) is of the form t(λ)zQ−1

1 where t(λ) is a polynomial of degree ν+(ν−1)(Q−1)
in λ. On the other hand, if (6.6) holds for some λ, using r0(z1,−z1) = 1

z1
+ 1

−z1
= 0, yields

P̃+(z1,−z1;λ) = 0, ∀z1 ∈ C.
In particular (6.6) can only be true when t(λ) = 0, which in turn is true only for finitely
many λ. Therefore, P(z;λ) is irreducible for all but finitely many λ. �
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