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Abstract

We present an extension to arbitrary dimensions of a worldline path integral approach to

one-loop quantum gravity, which was previously formulated in four spacetime dimensions. By

utilizing this method, we recalculate gauge invariant coefficients related to the UV divergences

of quantum gravity. These gauge invariant coefficients were previously obtained in arbitrary

dimensions through two alternative techniques: the quantization of the N = 4 spinning particle

that propagates the graviton on Einstein spaces and the more conventional heat kernel approach.

Our worldline path integrals are closer to the latter method and are employed to compute the

trace of the heat kernel.

1 Introduction

Worldline methods have a long-standing history in the study of quantum field theories, see [1] for

a review and [2] for the inclusion of gravitational backgrounds. In recent years, there have been

significant advancements in the treatment of the graviton itself in first quantization. Originally,

a worldline description of the free graviton emerged as a special case in the construction of

relativistic particles with N -extended local supersymmetry on the worldline. This description

pertains to particles of spin s = N
2 in four dimensions, as understood in [3] and demonstrated

in [4, 5]. The graviton, with spin 2, arises by setting N = 4. However, achieving couplings

to nontrivial backgrounds has proven challenging for sufficiently large N , including the case of

the graviton, as discussed in [6, 7]. The worldline path integral performed on the circle in [8]

could just reproduce the physical degrees of freedom of the graviton. To bypass this impasse,

a direct worldline approach in four dimensions, akin to the spirit of heat kernel treatments

of quantum gravity [9, 10, 11], was proposed in [12]. This method was employed to validate

the correctness of the quadratic divergences of the effective action of higher spin fields, which

encompassed the graviton as a special case [13]. Subsequently, a more systematic path integral

approach based on the quantization of the N = 4 spinning particle moving on Einstein spaces
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has been developed [14, 15]. This approach has been utilized to compute certain gauge-invariant

coefficients arising as divergences of the effective action of quantum gravity evaluated on-shell

in arbitrary dimensions. The validity of the path integral for the N = 4 spinning particle is

grounded in the BRST analysis conducted in [16], with further advancements explored in [17]

and in [18, 19].

In this paper, we present an extension to arbitrary D dimensions of the older approach of

ref. [12], which was valid in D = 4 only. In [12], one started as in the usual Schwinger-DeWitt

heat kernel approach to quantum gravity [9, 10, 11], where differential operators corresponding

to the inverse propagators of the graviton and ghost fields were obtained by gauge-fixing the

Einstein-Hilbert action in the background field method with a weighted de Donder gauge. These

differential operators were then interpreted quantum mechanically as “fictitious” Hamiltonians

whose heat kernels could be used to represent the one-loop effective action. In particular,

the divergencies of the latter were seen to correspond to the Seeley-DeWitt coefficients that

arise from the expansion of the heat kernel at a small proper time. Several methods exist for

computing these coefficients, based on solving iteratively the heat equation, see for instance

[9, 10, 11, 20, 21, 22, 23, 24, 25]. In ref. [12], on the other hand, it was proposed to consider the

equivalence of operatorial quantum mechanics and path integrals, and use the latter to evaluate

the Seeley-DeWitt coefficients with standard perturbative methods. These path integral meth-

ods were then applied to calculate the divergences of the effective action of quantum gravity

with cosmological constant, verifying and extending the well-known result of refs. [26, 27, 28]

about the divergences of quantum gravity. However, the construction presented in ref. [12]

had the limitation of being valid in four dimensions only. In this note, we extend its validity

to arbitrary D dimensions. As a motivation, let us mention that gravitational theories have

been explored in diverse dimensions, as in the Kaluza-Klein approach, arising naturally in the

context of string theories. Thus, we believe it useful to have computational methods at hand

that would apply to arbitrary dimensions.

Heat kernel methods are standard nowadays and they continue to be used in many contexts,

as in the recent discussions on trace anomalies [29, 30, 31]. However, a reformulation in terms of

path integrals has its advantages. For example, path integrals offer the possibility of performing

manipulations that can simplify calculations, as seen in many worldline treatments [1, 32].

Applied to the calculation of the Seeley-DeWitt coefficients, they lead to a non-recursive method

for computing them, providing at the same time physical intuition about the particle dynamics

at work. An illustration of the utility of physical intuition derived from worldline path integrals

is evident in the examination of the Schwinger pair creation phenomenon. This process can be

understood as a form of tunneling mediated by a worldline instanton [33]. Utilizing this method

has provided practical benefits in analyzing broader configurations of electric fields that induce

pair creation [34]. Similarly, within the realm of gravitation, a worldline path integral approach

has recently been found useful to investigate the gravitational waves generated by the collision

of black holes characterized by their respective worldlines [35].

To perform the extension of the path integral approach of ref. [12] to arbitrary dimensions,

we need to eliminate nonperturbative vertices that appear in the worldline sigma model for

the graviton on curved backgrounds. This is done by restricting the background metric to

satisfy the Einstein space condition Rµν = λgµν with constant λ. This condition eliminates

the unwanted vertices and delivers the effective action evaluated on-shell, which is, therefore,

gauge invariant. Having obtained this extension, we use it to recompute the gauge invariant
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coefficients for spacetimes of arbitrary dimensions D, studied recently in refs. [14, 15], and find

complete agreement. Along the way, we point out how the Einstein space condition allows us

to simplify the form of the particle actions (the worldline sigma models) used in [12], improving

further on their efficiency.

Our paper is structured as follows. In Section 2, we start with the Einstein-Hilbert ac-

tion and identify the relevant differential operators arising in the quadratic approximation after

gauge-fixing. Section 3 is dedicated to discussing the worldline treatment of the heat kernels cor-

responding to these differential operators. Here, we describe the worldline actions corresponding

to each of the differential operators that characterize the quadratic fluctuations of the traceless

graviton, graviton trace, and ghosts. Subsequently, we perform path integration over the circle,

evaluating the path integrals perturbatively up to quadratic terms in spacetime curvature. The

results produce UV divergences when integrated over proper time. In Section 4, we consider the

full effective action by summing up the contributions of the traceless graviton, trace, and ghosts.

We find agreement with previous calculations of the on-shell, one-loop divergences of quantum

gravity with a cosmological constant, thereby validating those results and providing support

for the proposed worldline treatment. Our conclusions are presented in Section 5. Appendix A

provides additional details on the perturbative computations of the worldline path integrals in

curved space.

2 Einstein-Hilbert action and gauge-fixing

To get started, let us briefly review the approach of ref. [12]. The Einstein-Hilbert action with

cosmological constant in D dimensions is a functional of the metric Gµν(x) and reads

S[G] = − 1

κ2

∫

dDx
√
G
(

R(G)− 2Λ
)

(1)

where κ is the gravitational coupling and Λ the cosmological constant. Using a background-

quantum split Gµν = gµν + hµν , where gµν represents the background metric and hµν the

quantum fluctuations, one gauge-fixes with a weighted de Donder gauge, expands the action in

powers of hµν , and keeps the quadratic approximation to obtain the gauge-fixed action

Sgf = −
∫

dDx
√
g

[

1

4
hµν

(
∇2 + 2Λ

)
hµν −

1

8
h
(
∇2 + 2Λ

)
h

+
1

2
hµρhνσ Rµνρσ +

1

2

(
hµρhνρ − hhµν

)
Rµν +

1

8

(
h2 − 2hµνhµν

)
R

] (2)

joined by the action for the ghost fields bµ, cµ, also kept at quadratic order

Sbc = −
∫

dDx
√
g bµ

[

∇2cµ +Rµν c
ν
]

. (3)

These quadratic actions identify differential operators that enter the Schwinger-DeWitt heat

kernel method, which is then used to represent and study the one-loop effective action of quan-

tum gravity, see refs. [9, 10, 11, 21, 22, 23, 25].

To construct a useful worldline representation of these differential operators, in [12] it was

found convenient to split the metric fluctuations hµν into a traceless part h̄µν , which satisfies
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gµν h̄µν = 0, and a trace part h, defined by h = gµνhµν ,

hµν ≡ h̄µν +
1

D
gµν h . (4)

In the split form the gauge-fixed action Sgf reads

Sgf =

∫

dDx
√
g

[

−1

4
h̄µν∇2h̄µν +

(
1

8
− 1

4D

)

h∇2h− V1 − V2

]

(5)

where the potentials V1 and V2 are given by

V1 =
1

2
h̄µρh̄νσRµνρσ +

1

2

(
h̄µρh̄νρ −

(
1− 4

D

)
hh̄µν

)
Rµν −

1

4
h̄µν h̄µν

(
R− 2Λ

)
, (6)

V2 =

(
1

8
− 3

4D
+

1

D2

)

h2R+

(
1

2D
− 1

4

)

h2Λ . (7)

Eq. (6) contains a term that mixes h and h̄µν . It vanishes only at D = 4. This means that,

in a QFT path integral, a complete factorization of the functional determinant for hµν into a

determinant for the traceless fluctuations h̄µν and a determinant for the trace h is achieved only

at D = 4. For this reason ref. [12] focused on four dimensions only. Without this splitting, the

full fluctuations hµν were seen to give rise to a non-perturbative vertex in the worldline action.

That is so because the trace projector needed to extract h from hµν , that enters the vertex

coupling h to hµν , prevents a perturbative evaluation of the path integral. This point will be

clarified further in section 3, where we deal with the specific worldline model for the (traceless)

graviton fluctuations, i.e. the tensor particle.

In this paper, we are interested in considering arbitrary dimensions D. This extension can be

obtained quite easily. We aim at computing gauge invariant quantities defined by the one-loop

effective action of quantum gravity. For that purpose, one must evaluate the effective action on-

shell, that is for background metrics that satisfy Einstein’s equations with cosmological constant.

These metrics obey the relation

Rµν = λgµν (8)

with constant λ. For such metrics, the offending term ∼ h h̄µνRµν in eq. (6) vanishes, leading

to a complete decoupling of the fluctuations h̄µν and h. Thus, using Einstein metrics (8), we

are led to the following quadratic actions for the metric fluctuations h̄µν , h, and ghosts bµ, cµ

Sh̄ =

∫

dDx
√
g

(

−1

4
h̄µν∇2h̄µν − 1

2
Rµνρσh̄

µρh̄νσ
)

(9)

Sh =

∫

dDx
√
g

(
D − 2

8D
h∇2h+

D − 2

4D2
Rh2

)

(10)

Sbc = −
∫

dDx
√
g bµ

(

∇2 +
R

D

)

cµ . (11)

At this stage, we should recall that the kinetic term in Sh has the wrong sign. This can be fixed

by Wick rotating the integration contour in h-space to guarantee path integral convergence [27],

yielding

Sh =

∫

dDx
√
g

(

−D − 2

8D
h∇2h− D − 2

4D2
Rh2

)

(12)
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which can be further normalized canonically by redefining the scalar field h→ 2
√
D√

D−2
h to obtain

Sh =

∫

dDx
√
g

(

−1

2
h∇2h− R

D
h2

)

. (13)

Now, everything is ready to express the one-loop partition function Z[g] as the product of

three determinants, corresponding to the invertible differential operators Kh̄, Kh, Kbc implicitly

defined by the quadratic actions (9), (13), (11),

Z[g] = e−Γ[g] =

∫

Dh̄DhDbDc e−Sh̄−Sh−Sbc = Det
− 1

2
TT [Kh̄] Det

− 1
2

S [Kh] DetV [Kbc] (14)

where the subscripts on the determinants remind us of the functional spaces on which the

operators act, namely traceless symmetric rank two tensors, scalars, and vectors. The operators

Kh̄, Kh, Kbc are explicitly given by

(Kh̄)µν
ρσ = −∇2δρµδ

σ
ν − 2Rµ

ρ
ν
σ (15)

Kh = −∇2 − 2R

D
(16)

(Kbc)µ
ν = −

(

∇2 +
R

D

)

δνµ (17)

and are meant to act on the appropriate functional spaces (traceless symmetric rank two tensors,

scalars, vectors) and defined with metrics that satisfy the Einstein space condition (8). We stress

that in these operators the scalar curvature is given by the constant R = λD, as implied by (8).

3 Worldline representation

Following Schwinger [36], and using a proper time parameter, the one-loop effective action for

quantum gravity can be read off from (14) and written in terms of heat kernel traces as

Γ[g] = Γh̄[g] + Γh[g] + Γbc[g] = −1

2

∫ ∞

0

dT

T

(
Tr

[
e−TKh̄

]
+Tr

[
e−TKh

]
− 2Tr

[
e−TKbc

])
(18)

where the traces are taken over the corresponding functional spaces mentioned earlier. It can

be analyzed with standard heat kernel methods [36, 9, 10, 11].

Here, we wish to use an alternative but equivalent route to compute the heat kernels in

eq. (18). We employ the equivalence between canonical quantization and path integrals and

use the latter to evaluate perturbatively the heat kernels, as in [12]. The heat kernel e−TK is

interpreted as the evolution operator for an euclidean time T of a quantum mechanical system

with Hamiltonian operator K. Then, the matrix element of the evolution operator between

initial and final states can be computed by a path integral

〈xf |e−TK |xi〉 =
∫ x(T )=xf

x(0)=xi

Dx(τ) e−S[x(τ)] (19)

where the mechanical action S[x(τ)] is the one corresponding to the Hamiltonian K. In partic-

ular, the trace of the heat kernel is given by a path integral with periodic boundary conditions

Tr
[
e−TK

]
=

∫

dDx 〈x|e−TK |x〉 =
∫

P
Dx(τ) e−S[x(τ)] (20)

5



where P stands for the periodic boundary conditions x(0) = x(T ).

The simplest system that exemplifies this setup is that of a free particle (of mass m = 1
2 )

with Hamiltonian K = p2 and action S[x(τ)] =
∫ T
0 dτ 1

4 ẋ
2. It gives rise to

Tr
[
e−TK

]
=

∫

P
Dx(τ) e−S[x(τ)] =

∫

dDx
1

(4πT )
D
2

. (21)

In general, one needs more dynamical variables on the worldline to represent spin and other

degrees of freedom associated with the particle. More importantly, one has to introduce non-

trivial background fields, like the background Einstein metric required for our application to

quantum gravity. With nontrivial background fields, the dictionary between canonical methods

and path integrals is more subtle and must be made precise to eliminate all possible sources of

ambiguities [37]. For the sake of clarity, and to be self-contained, let us discuss more extensively

this point.

From the perspective of quantizing a mechanical system with classical action S[x(τ)], it is

well-known that one may find ordering ambiguities in identifying a quantum Hamiltonian K

out of the classical Hamiltonian Kcl delivered by the action S[x(τ)]. To fix these ambiguities

one may use symmetries, and try to maintain classical symmetries also in the quantum theory

by choosing a particular ordering of the operators, thus finding the quantum Hamiltonian K of

interest. This happens for instance in the case of a charged particle coupled to electromagnetism,

where gauge invariance fixes the quantum ordering uniquely. It is not always possible to achieve

a unique ordering, as in the treatment of a particle in curved space. In that case, the imposition

of invariance under arbitrary changes of coordinates allows for the existence of a family of

quantum Hamiltonians parametrized by a free coupling to the background scalar curvature.

The desired physical application may then select a specific coupling to the curvature, as we

shall see in our applications.

From the perspective of path integrals, equivalent ambiguities show up when one must choose

a regularization scheme to define concretely the path integral. For instance, the path integral

may be defined by the time-slicing method implemented by the mid-point discretization of the

classical action, or by the mode regularization that defines path integration as an integration

over the mode coefficients of the paths expanded in a suitable basis of the functional space.

Attached to these regularization schemes there are local counterterms that are needed to match

prefixed renormalization conditions. The latter define unambiguously the quantum theory, as

well-known in QFT. This phenomenon is present in quantum mechanics as well, specifically in

the treatment of a quantum particle moving in a curved space. In QFT language, the action

of the particle in curved space is seen as a nonlinear sigma model that gives rise to a super-

renormalizable theory in 0+1 dimensions [37].

In our applications to the heat kernels of eq. (18), the quantum mechanical Hamiltonians

are fixed from the beginning by the differential operators produced by the gauge-fixed Einstein-

Hilbert action, the ones listed in eqs. (15)–(17), so that for each quantum Hamiltonian K the

quantum theory is defined unambiguously. Then, to construct corresponding path integrals, one

has to find for each K the related classical action S that leads to K after canonical quantization

with a choice of ordering of the quantum operators. At this point, one has to decide which

regularization scheme one wants to use to evaluate the path integral associated with the action S.

The regularization scheme must assign consistent rules for evaluating the correlation functions

arising in the perturbative expansion, which typically consists of a product of distributions.
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Having chosen the regularization scheme, the final step is to fix the local counterterms that

guarantee that the quantum theory defined by the path integral corresponds precisely to the

one fixed by the quantum Hamiltonian K. One way of doing this is to add a potential Vct
to the classical action, evaluate perturbatively the transition amplitude for small propagation

time with the regulated path integral, and obtain the Schrödinger equation satisfied by this

transition amplitude: the counterterm Vct is fixed by requiring that the Schrödinger equation is

the one corresponding to the Hamiltonian K.

Several regularization schemes have been studied for the case of a particle in a curved space.

Since the worldline theory is super-renormalizable, the counterterms are fixed once for all by a

two-loop calculation on the worldline. Let us review them for the case of a scalar particle in a

curved space, i.e. the system with quantum Hamiltonian Kh in (16), that contains already all

the relevant features of our discussion. Thus, let us consider a quantum Hamiltonian K given

by the differential operator

K = −∇2 + V (x) (22)

where the scalar laplacian can be written as

∇2 =
1√
g
∂µ

√
ggµν∂ν (23)

and V (x) is an arbitrary scalar potential. It is an operator that acts on scalar wave functions.

In terms of the quantum mechanical position operator x̂µ and momentum operator p̂µ with

usual commutation relation [x̂µ, p̂ν ] = iδ
µ
ν , the quantum ordering fixed by (23) takes the form

K = g−
1
4 (x̂) p̂µ g

1
2 (x̂)gµν(x̂) p̂ν g

− 1
4 (x̂) + V (x̂) (24)

which is easily checked to be hermitian. More details on this issue can be found in the seminal

paper [38]. The classical Hamiltonian corresponding to (24) is obtained by ignoring the quantum

orderings and reads

Kcl = gµν(x) pµpν + V (x) . (25)

It leads to the classical configuration space action (with real Minkowskian time)

SM [x(τ)] =

∫ T

0
dτ

(
1

4
gµν(x) ẋ

µẋν − V (x)

)

(26)

where T is the total propagation time and ẋµ = dxµ

dτ . This is the action of a particle in a curved

space, also known as a nonlinear sigma model in (0+1) dimensions. Its derivative interactions

make it into a super-renormalizable theory. It is convenient at this stage to perform a Wick

rotation τ → −iτ (and also T → −iT , x0 → −ix0) to obtain the action

S[x(τ)] =

∫ T

0
dτ

(
1

4
gµν(x)ẋ

µẋν + V (x)

)

(27)

to be used in the Euclidean path integral, as in (19).

The relation in (19) is formal and must be made concrete by choosing a regularization scheme

with corresponding counterterms. Three regularizations have been studied extensively in the

literature [37]. The first one is called time slicing (TS). It is based on the use of the mid-point

prescription for the discretization of the classical action and carries with it the counterterm

VTS = −1

4
R+

1

4
gµνΓρµσΓ

σ
νρ (28)
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where the noncovariant “gamma-gamma” part that depends on the Christoffel symbols Γρµν
reinstates the covariance broken by the discretization process. A second regularization is called

mode regularization (MR). One considers a mode expansion of the paths and defines the reg-

ulated path integral by integrating over the mode coefficients up to a higher cut-off mode M ,

which eventually is sent to infinity to reach the continuum limit. It carries the counterterm

VMR = −1

4
R− 1

12
gµαgνβgργΓ

ρ
µνΓ

γ
αβ . (29)

It also includes a noncovariant “gamma-gamma” term, though different from the previous one.

Finally, a third known regularization is the worldline dimensional regularization (DR). It extends

the usual dimensional regularization to the worldline setting, and in particular to worldlines with

a finite extension. It carries the covariant counterterm

VDR = −1

4
R . (30)

We refer to [37] for details and examples on how to compute the perturbative expansion directly

in the continuum limit using these regularization schemes. They are all bound to produce the

same final physical result as the heat kernel would do.

Before applying the worldline path integrals to our problem, let us mention one final technical

detail that must be dealt with before carrying out explicit calculations. It concerns the path

integral measure. The configuration space path integral for the nonlinear sigma model in eq.

(27) must be defined by a covariant measure of the form

Dx =
∏

τ

√

g(x(τ)) dDx(τ) (31)

where g(x) = |det gµν(x)|. This measure can be deduced from a phase space path integral

by integrating out the momenta. However, it is convenient to re-exponentiate the nontrivial

dependence on the metric gµν to recover a translational invariant path integral measure and

be able to define a perturbative expansion. This can be done as in [39], using bosonic aµ and

fermionic bµ, cµ worldline ghosts to represent the measure as

Dx =
∏

τ

√

g(x(τ)) dDx(τ) = Dx

∫

DaDbDc e−Sgh[x,a,b,c]

Sgh[x, a, b, c] =

∫ T

0
dτ

1

4
gµν(x)(a

µaν + bµcν)

(32)

where Dx =
∏

τ d
Dx(τ) denotes the standard translational invariant measure, with similar

definitions for Da, Db, Dc. Effectively, this leads to shifting

ẋµẋν → ẋµẋν + aµaν + bµcν (33)

inside (27). This helps substantially in organizing the perturbative expansion of the path

integral. Here, we just note that the measure ghosts aµ, bµ, cµ create worldline divergences

that compensate the divergences created by correlators of the fields ẋµ. Divergences formally

cancel and one is left with a finite theory, whose remaining ambiguities are taken care of by

choosing the regularization scheme with corresponding counterterms, as described above. Said

differently, the measure ghosts guarantee that the counterterms are finite and there is no need
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of an infinite renormalization. The use of the same symbols for the fermionic worldline measure

ghosts as the ones used for the gauge-fixing of quantum gravity should not cause any confusion.

Having reviewed how the path integral method is used to compute the heat kernel, we are

now going to apply it to the three different systems appearing in the effective action of quantum

gravity in eq. (18).

3.1 The scalar particle

The simplest operator in (18) is the scalar operator Kh, related to the trace of the graviton.

It is interpreted as the Hamiltonian of a scalar particle in curved space. Its path integral

representation is well-known [40, 39, 37], as reviewed in the previous section.

Comparing (16) with (22), we see that one needs the scalar potential

V (x) = −2R

D
(34)

with a constant scalar curvature R. Then, the Euclidean action related to the operator Kh is

Sh[x] =

∫ T

0
dτ

(
1

4
gµν(x)ẋ

µẋν − 2

D
R+ Vct

)

, (35)

where we have inserted a counterterm of the form Vct = −1
4R+∆Vct. As explained previously,

∆Vct contains noncovariant terms that cure the breaking of covariance induced by the chosen

regularization. These noncovariant terms vanish in dimensional regularization (DR), which is

the one we are going to use in our calculations, so we set ∆Vct = 0. For other regularizations,

the appropriate ∆Vct must be reintroduced.

For a perturbative evaluation, it is useful to rescale the time τ to run in the range [0, 1] and

write the action in the form

Sh[x] =

∫ 1

0
dτ

(
1

4T
gµν(x)ẋ

µẋν − D + 8

4D
TR

)

(36)

which makes it easier to recognize that the total propagation time T can be used as the parameter

organizing the perturbative expansion of the path integral (it plays the same role as ~ in counting

the number of loops of the nonlinear sigma model: worldline propagators go like T , while vertices

extracted from the kinetic term go like T−1).

To summarize, the trace of the heat kernel for the scalar fluctuation h can be computed by a

worldline path integral on the circle with the action Sh in (36) and periodic boundary conditions

xµ(1) = xµ(0), so that for the corresponding term in (18) one finds the following representation

Γh[g] = −1

2

∫ ∞

0

dT

T
Tr

[
e−TKh

]
= −1

2

∫ ∞

0

dT

T

∫

P
Dx e−Sh[x] . (37)

Evaluating the path integral perturbatively for small T delivers the following answer

Γh[g] = −1

2

∫ ∞

0

dT

T

∫
dDx

√
g

(4πT )
D
2

[

1 + TR

(
D + 12

6D

)

+ T 2R2

(
5D2 + 118D + 720

360D2

)

+ T 2RµνρσRµνρσ

(
1

180

)

+O(T 3)

]

. (38)
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The main steps of the calculation are described in appendix A. Here we just mention that, in

performing the path integral over periodic functions, it is necessary to factor out the constant

zero mode xµ0 . The zero mode is integrated at the very end, and it reproduces the spacetime

integration of the effective action, as seen in (21) and (38) (where it is renamed as xµ). Also

in this case there are several methods to perform this factorization. The two most commonly

used ones are related to the Dirichlet boundary conditions (DBC) and string-inspired boundary

conditions (SI). In both methods, one starts parametrizing the general paths by

xµ(τ) = x
µ
0 + qµ(τ) (39)

where xµ0 is the constant zero mode. In the DBC method, one takes vanishing Dirichlet boundary

conditions on the quantum fluctuations qµ(τ), i.e. one requires that qµ(0) = qµ(1). The corre-

sponding propagators satisfy these boundary conditions and are fixed uniquely. This method

has the interpretation of first considering loops with a fixed base-point xµ0 , which is eventually

integrated over to place the loop everywhere in spacetime. This way the full path integration

over loops is achieved. In the SI method, one instead requires that
∫ 1

0
dτ qµ(τ) = 0 (40)

so that xµ0 corresponds to the average position of the loop and generically it does not sit on the

loop itself. Again, the final integration over xµ0 places the loop everywhere in spacetime, and

the path integral over periodic functions is again obtained. The two methods are equivalent,

and are seen to differ only by integrals of total derivatives, which are assumed to vanish. In

particular, the SI method differs from the DBC method by total derivatives which are often

beneficial, in that they deliver the final result in a very compact form, see for instance the

Seeley-DeWitt coefficients calculated for abelian gauge theories in [41]. The extension of the SI

method to curved space has been discussed in [42], while [43] carries an exemplification of both

methods.

As a final note, we should stress that the above expansion of the effective action does not

converge because of the infrared divergences typical of massless fields (the trace fluctuation of

the metric h is massless and a term e−m
2T that guarantees IR convergence for massive fields

of mass m is missing). It is nevertheless useful for isolating the diverging part of the effective

action, which is the aim of the present work.

3.2 The vector particle

The worldline treatment of Kbc related to the ghosts follows a similar path. Since Kbc acts on

the functional space of vector fields, the quantum mechanics for it needs additional dynamical

variables. In ref. [12], on top of the spacetime coordinates xµ(τ) and momenta pµ(τ), complex

worldline fermions λµ(τ) and λ̄µ(τ) were introduced to obtain after canonical quantization a set

of operators with (anti-)commutation relations

[xµ, pν ] = i δµν , {λµ, λ̄ν} = δµν (41)

acting on a Hilbert space containing antisymmetric tensor fields

|Ψ〉 ∼ Ψ(x, λ) =

D∑

n=0

Ψµ1···µn(x)λ
µ1 · · ·λµn . (42)
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Then, a projection to keep only the vectors Ψµ(x) on the Hilbert space was achieved by gauging

an abelian U(1) worldline field a(τ) coupled to the fermions λ(τ) and λ̄(τ) with in addition a

specific Chern-Simons coupling for a(τ) itself. This construction is similar to the treatments of

the O(2) spinning particle discussed in [44] and the U(1) and U(2) spinning particles studied in

[45, 46], with the difference that here the states are vector fields with no gauge symmetry, rather

than gauge invariant field strengths. In the end, the worldline model for the ghost fluctuations

is fixed by the action

Sbc[x, λ, λ̄, a] =

∫ 1

0
dτ

[
1

4T
gµν ẋ

µẋν + λ̄µ
(
Dτ + ia

)
λµ + T Rµν λ̄µλ

ν − 3

4
TR+ isa

]

(43)

where Dτ is the covariant derivative with the target space Christoffel connection, acting on the

worldline fermion as Dτλ
µ = λ̇µ + ẋνΓµνρλρ. The Chern-Simons coupling s = 1 − D

2 is fixed to

achieve the projection on the Hilbert space of vector fields in arbitrary D dimensions. Finally,

we have included a counterterm Vct = −3
4R in the action (assuming DR, otherwise extra non-

covariant pieces must be added). This comes about by considering two terms: −1
4R comes from

the usual bosonic component as in the scalar particle, while −1
2R is related to the presence of

the additional fermionic potential ∝ R
µ
ν λ̄µλ

ν . For a discussion on counterterms of sigma models

with fermionic potentials we refer to [47].

This action can be used to compute by path integration

Γbc[g] =

∫ ∞

0

dT

T
Tr

[
e−TKbc

]
=

∫ ∞

0

dT

T

∫

P/A

DxDλDλ̄Da
Vol(Gauge)

e−Sbc[x,λ,λ̄,a] (44)

after fixing the U(1) worldline gauge symmetry and using periodic boundary conditions (P )

on x and antiperiodic boundary conditions (A) on λ and λ̄ to implement the functional trace.

Further details on this model are found in [12]. As it stands, the path integral computes the

trace for the differential operator on vector fields of the form

(K̂bc)µ
ν = −∇2δνµ −Rνµ (45)

that reduces to the one in (17) when using Einstein’s metrics for which Rνµ = R
Dδ

ν
µ

However, this worldline sigma model that was already used in [12] can be simplified. Con-

sidering Einstein’s metrics, the fermionic coupling to the curvature can be assigned directly to

the scalar potential, obtaining the simpler but equivalent action

S̃bc[x, λ, λ̄, a] =

∫ 1

0
dτ

[
1

4T
gµν ẋ

µẋν + λ̄µ
(
Dτ + ia

)
λµ − D + 4

4D
TR+ isa

]

(46)

which in DR requires only the “scalar” counterterm Vct = −1
4R, already inserted in the above

expression.

Using any of the above actions in the path integral, the perturbative expansion (see ref. [12],

for the explicit form of the propagators) leads to the same final answer for the ghost fluctuations

Γbc[g] =

∫ ∞

0

dT

T

∫
dDx

√
g

(4πT )
D
2

[

D + TR

(
D + 6

6

)

+ T 2R2

(
5D2 + 58D + 180

360D

)

+ T 2RµνρσRµνρσ

(
D − 15

180

)

+O(T 3)

]

. (47)
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3.3 The tensor particle

We now come to the realization as a quantum mechanical model of the differential operator

Kh̄ in (15) for the traceless graviton. It acts on traceless, symmetric, rank 2 tensors. Here we

review the construction of ref. [12] and extend it to arbitrary D.

To construct the correct Hilbert space, we consider the coordinate and momentum variables

of the particle xµ(τ) and pµ(τ) and add to them complex worldline fermions which form traceless,

symmetric, rank 2 tensors. We denote them by ψab(τ) and ψ̄ab(τ) and to keep ordering issues

under control we use flat indices on them. They satisfy the tracelessness conditions ψaa(τ) =

ψ̄aa(τ) = 0. As usual, a vielbein eaµ(x) can be used to convert flat indices to curved ones and

vice versa.

Upon canonical quantization, the worldline variables satisfy the following (anti-)commutation

relations

[xµ, pν ] = iδµν , {ψab, ψ̄cd} = δac δ
b
d + δadδ

b
c −

2

D
δabδcd (48)

where δab is the flat metric. At the quantum level, xµ and ψab represent a set of graded

coordinates of the wave function, while their conjugate momenta, pν and ψ̄cd, are represented

as derivatives acting on the corresponding coordinates

pν = −ig−1/4∂νg
1/4, ψ̄ab =

∂

∂ψab
. (49)

Formally, the derivative ψ̄ab acts as follows

∂

∂ψab
ψcd = δcaδ

d
b + δdaδ

c
b −

2

D
δabδ

cd (50)

to realize correctly the anticommutation relations. A state in the Hilbert space is described

by a wave function depending on the graded coordinates xµ and ψab. Expanded in Grassmann

variables it reads

|Ψ〉 ∽ Ψ(x, ψ) =

(D+2)(D−1)
2∑

n=0

Ψ(ab)1···(ab)n(x)ψ
(ab)1 · · ·ψ(ab)n (51)

where (D+2)(D−1)
2 is the number of independent components of a traceless, symmetric, rank 2

tensor in D dimensions. Among the fields in the wave function, the term with n = 1 contains the

traceless symmetric rank two tensor Ψab(x) = h̄ab(x) of our interest, analogously with the vector

case. As before, the unwanted components can be projected out so that we can directly identify

the wave function by traceless symmetric rank two tensor Ψ(x, ψ) ∽ h̄(x, ψ) = h̄ab(x)ψ
ab.

With the above ingredients, one represents the Lorentz algebra SO(D) by

Mab = −M ba =
1

2
[ψac, ψ̄bc ]−

1

2
[ψbc, ψ̄ac ] = ψa · ψ̄b − ψb · ψ̄a (52)

where the convention ψa · ψ̄b = ψacψ̄bc is used. Then, a covariant derivative ∇̂µ can be defined

operatorially by

∇̂µ = ∂µ + ωµab(x)ψ
a · ψ̄b (53)

12



where ωµab(x) is the spin connection. It reproduces correctly the effect of the usual covariant

derivative ∇µ on the rank two tensor contained in the wave function

∇̂µh̄(x, ψ) = (∇µh̄ab(x))ψ
ab = (∂µh̄ab + ωµa

ch̄cb + ωµb
ch̄ac)ψ

ab . (54)

The momentum operator pµ is realized as in (49), so that the covariant derivative ∇µ is fully

realized on the Hilbert space by

∇̂µ = ig
1
4 (pµ − iωµabψ

a · ψ̄b)g− 1
4 = ig

1
4πµg

− 1
4 (55)

where πµ = pµ − iωµabψ
a · ψ̄b defines the covariant momentum. At this stage, the operatorial

expression of the laplacian ∇̂2 acting on wave functions follows naturally

∇̂2 =
1√
g
∇̂µ

√
ggµν∇̂ν = −g− 1

4πµ
√
ggµνπνg

− 1
4 . (56)

One may verify that it reproduces correctly the effect of the laplacian ∇2 on tensor fields

∇̂2h̄(x, ψ) = (∇2h̄ab(x))ψ
ab . (57)

Having in our hands the tools to represent the operator Kh̄ as a quantum mechanical Hamilto-

nian, the next step is to get rid of the unwanted components of the wave function. One may

follow the same procedure implemented in the vector case and introduce a U(1) gauge field a(τ)

coupled to the fermions with an additional Chern-Simons coupling s fixed to project on the re-

quired subspace. Taking all these ingredients into account, one ends up with the configuration

space action

Sh̄[x, ψ, ψ̄, a] =

∫ 1

0
dτ

[
1

4T
gµν ẋ

ν ẋµ +
1

2
ψ̄ab

(
Dt + ia

)
ψab − 1

2
Rabcdψ

acψ̄bd + TVct + isa

]

(58)

where the covariant derivative Dτψ
ab = ∂τψ

ab+ẋµ(ωµ
a
cψ

cb+ωµ
b
cψ

ac) contains the spin connec-

tion ωµab, while s = 1− (D+2)(D−1)
4 is the value required to achieve the projection to symmetric

traceless tensors. Dimensional regularization requires the following counterterm

Vct = −1

4
R+

D + 2

2D
R =

D + 4

4D
R (59)

with the first term due to the bosonic part, while the second one is related to the fermionic

potential ∝ Rabcdψ
acψ̄bd.

At this point, perturbation theory can be implemented. Considering Einstein’s metrics we

evaluate the path integral with the propagators described in [12] and find

Γh̄[g] = −1

2

∫ ∞

0

dT

T
Tr

[
e−TKh̄

]
= −1

2

∫ ∞

0

dT

T

∫

P/A

DxDψDψ̄Da
Vol(Gauge)

e−Sh̄[x,ψ,ψ̄,a]

= −1

2

∫ ∞

0

dT

T

∫
dDx

√
g

(4πT )
D
2

[
(D + 2)(D − 1)

2
+ TR

(
D3 +D2 − 14D − 24

12D

)

+ T 2R2

(
5D4 + 3D3 − 132D2 − 236D − 1440

720D2

)

+ T 2RµνρσRµνρσ

(
D2 − 29D + 478

360

)

+O(T 3)

]

. (60)
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At this point, it is worth noticing again that one could have used the more general potential

considered in [12], without restricting to Einsten’s spaces, except at the point where one needs

to decouple the h fluctuation from h̄µν . That is, one could have considered the potential used

in [12] extended to arbitrary D, which would read

−1

2
Rabcdψ

acψ̄bd − 1

2
Rabψ

a · ψ̄b + TR

D
(61)

rather than the simpler potential

−1

2
Rabcdψ

acψ̄bd (62)

used in eq. (58). However, using the potential in (61) demands a different counterterm

Vct = −1

4
R+

4−D2

2D
R =

8− 2D2 −D

4D
R (63)

with the first contribution due to the standard bosonic kinetic term and the second one coming

from the structure of the new fermionic potential. One may check that the final answer in (60)

is obtained also using this alternative model. Of course, the action (58) is simpler.

As a final comment, let us discuss more clearly the issue about the non-perturbative vertex

that would arise if the traceless condition were dropped, as mentioned in section 3. Keeping

the trace in the worldline fermions ψab and ψ̄ab, so to create symmetric tensors with a non-

vanishing trace in the wave function, one finds that the last term in (48) would be absent.

Then, a canonical analysis of the Hamiltonian representing the differential operator acting on

the complete graviton fluctuations would lead to an action of the form

Sh̄[x, ψ, ψ̄, a] =

∫ 1

0
dτ

[
1

4T
gµν ẋ

ν ẋµ
(

1− 1

4
ψψ̄

)−1
+

1

2
ψ̄ab

(
Dt + ia

)
ψab + · · ·

]

(64)

where we used the shorthand notations ψ = δabψ
ab and ψ̄ = δabψ̄ab. For simplicity we have

neglected additional potential terms. This action should be compared with the one in eq. (58).

The multiplicative factor
(

1− 1
4ψψ̄

)−1
, which depends on the traces of the worldline fermions,

prevents a perturbative evaluation of the path integral. It is not clear how one could solve it.

For this reason, we have found it convenient to give an independent treatment of the trace and

traceless symmetric tensor.

4 Gauge invariant coefficients

In the previous sections, the three contributions to the complete one-loop effective action Γ[g]

in (18) have been computed with worldline path integrals at arbitrary D. Collecting them, one

finds the final gauge-invariant expression

Γ[g] = −1

2

∫ ∞

0

dT

T

∫
dDx

√
g

(4πT )
D
2

[
D(D − 3)

2
+ TR

(
D2 − 3D − 36

12

)

+ T 2R2

(
5D3 − 17D2 − 354D − 720

720D

)

+ T 2RµνρσRµνρσ

(
D2 − 33D + 540

360

)

+O(T 3)

]

(65)
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which delivers the following gauge invariant Seeley-DeWitt coefficients

a0 =
D(D − 3)

2

a1 = R

(
D2 − 3D − 36

12

)

a2 = R2

(
5D3 − 17D2 − 354D − 720

720D

)

+RµνρσRµνρσ

(
D2 − 33D + 540

360

)

. (66)

The results obtained coincide with the ones reported in [15], validating those findings. Al-

ternatively, the present results can be viewed as a test of the consistency of the worldline path

integrals for the graviton in arbitrary dimensions developed here.

5 Conclusions

In this paper, we have presented an extension of the worldline path integral approach, originally

developed in [12] for the one-loop effective action of quantum gravity, to arbitrary D dimensions.

By utilizing Einstein metrics, necessary to ensure the gauge invariance of the effective action,

we were able to simplify the worldline actions corresponding to the fluctuations of the traceless

graviton and ghost system, resulting in a more efficient set-up. We have verified the correctness

of the one-loop gauge invariant coefficients for quantum gravity with cosmological constant

obtained in [15]. The calculation of an additional gauge invariant coefficient, namely the one that

in six dimensions corresponds to the on-shell logarithmic divergences, has been computed very

recently [48]. In general, these coefficients characterize in a gauge invariant way how standard

pure quantum gravity diverges in the ultraviolet, giving some information on how additional

degrees of freedom carried by possible UV completions should act. The present construction

gives a further method to compute and verify the new coefficient. More generally, it gives an

additional tool for performing perturbative calculations in quantum gravity at one-loop.

Extending to higher loops poses greater challenges. One approach is to sew external lines

in the one-loop expressions using the graviton propagator, a method previously employed in

the study of QED [1]. However, this necessitates off-shell expressions at one-loop, while our

method confines the background to be on-shell. An alternative strategy could involve utilizing

multiloop worldline Green functions [49, 50, 51] leading to a so-called “worldgraph approach”,

as demonstrated at tree level for Yang-Mills amplitudes in [52]. Though challenging, further

development and extensions of these ideas to gravitational theories are worth considering.

A Evaluation of the path integral

For completeness, we present here some details on the computation of the path integrals, con-

sidering the one in equation (37) as an example. By utilizing the measure ghosts described in

equation (32), we recast the path integral as follows

∫

P
Dx e−Sh[x] = e

D+8
4D

TR

∫

P
DxDaDbDc e−S[x,a,b,c] (67)
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where a constant potential term has been extracted from the path integral, leading to the

reduced action

S[x, a, b, c] =

∫ 1

0
dτ

1

4T
gµν(x)(ẋ

µẋν + aµaν + bµcν) (68)

obtained from (36) by including the ghosts and deleting the potential. To perform the path

integral on the circle (implemented by the periodic boundary conditions denoted by the subscript

P ), we factorize the zero modes as in equation (39)

xµ(τ) = x
µ
0 + qµ(τ) (69)

and use the Dirichlet boundary conditions qµ(0) = qµ(1) on the quantum fluctuations qµ(τ).

Similar boundary conditions are used for the ghosts as well. Then, considering Riemann normal

coordinates centered at the point xµ0 , one expands the metric as

gµν(x) = gµν(x0 + q) = δµν +
1

3
Rαµνβ(x0)q

αqβ + · · · . (70)

This expansion allows to split the action (68) into a quadratic part plus an interacting one

S = S2 + Sint

S2 =

∫ 1

0
dτ

1

4T
δµν(ẋ

µẋν + aµaν + bµcν)

Sint =

∫ 1

0
dτ

1

4T
(gµν(x)− δµν)(ẋ

µẋν + aµaν + bµcν) .

(71)

The quadratic action S2 leads to the free propagators, which satisfy the boundary conditions

and are fixed uniquely by
〈qµ(τ)qν(σ)〉 = −2Tδµν∆(τ, σ)

〈aµ(τ)aν(σ)〉 = 2Tδµν∆gh(τ, σ)

〈bµ(τ)cν(σ)〉 = −4Tδµν∆gh(τ, σ)

(72)

where
∆(τ, σ) = (τ − 1)σ θ(τ − σ) + (σ − 1)τ θ(σ − τ)

∆gh(τ, σ) = δ(τ, σ)
(73)

with θ(τ−σ) denoting the standard Heaviside step function with θ(0) = 1
2 while δ(τ, σ) indicates

the Dirac delta on the space of functions with vanishing boundary conditions. At this stage,

the path integral is computed perturbatively by setting

∫

P
Dx e−Sh[x] = e

D+8
4D

TR

∫

P
DxDaDbDc e−S[x,a,b,c] = e

D+8
4D

TR

∫
dDx0

√

g(x0)

(4πT )
D
2

〈

e−Sint

〉

(74)

where the expectation value 〈e−Sint〉 is evaluated by Wick contractions with the propagators in

(72). The normalization is fixed by the free path integral which corresponds to the propagation

of a free particle, see eq. (21). The first nontrivial perturbative term is obtained by expanding

the exponential containing Sint. Recalling (70), one identifies it as

−〈Sint〉 = − 1

12T
Rαµνβ(x0)

∫ 1

0
dτ

〈

qα(τ)qβ(τ)
(

q̇µ(τ)q̇ν(τ) + aµ(τ)aν(τ) + bµ(τ)cν(τ)
)〉

+ · · ·
(75)
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where only terms contributing at order T have been kept. Performing the Wick contractions

with the propagators in (72), one finds

−〈Sint〉 =
TR(x0)

3

∫ 1

0
dτ [∆(•∆• +∆gh)− •∆2]

∣
∣
τ

︸ ︷︷ ︸

− 1
4

= −TR(x0)
12

(76)

where dots on the left/right on ∆(τ, σ) denote derivatives concerning the first/second variable,

and the symbol |τ indicates the coincidence limit. Note that the singularities in •∆•|τ cancels

against the ghost contributions due to ∆gh|τ . Naively, from the propagators in (72) one com-

putes •∆•(τ, σ) = 1 − δ(τ − σ), so that •∆(τ, σ) + ∆gh(τ, σ) = 1, while ∆•(τ, σ) = σ − θ(σ − τ)

at coinciding points evaluates to •∆|τ = τ − 1
2 . This leads to

∫ 1

0
dτ [∆(•∆• +∆gh)− •∆2]

∣
∣
τ
=

∫ 1

0
dτ [∆− •∆2]

∣
∣
τ
=

∫ 1

0
dτ

[

τ2 − τ −
(

τ − 1

2

)2]

=

∫ 1

0
dτ

(

− 1

4

)

= −1

4
.

(77)

At this juncture, we must recall that the cancellation of the singularities and the subsequent

calculations must be performed within a well-defined regularization scheme for treating the

distributions that arise from the propagators. However, in the present case, all regularizations

mentioned in the text produce the same answer. The calculation described above corresponds

specifically to the TS rules, where the Dirac deltas are canceled as indicated while the rule θ(0) =
1
2 is used systematically. Differences appear at the next order in T , which are compensated by

the different counterterms.

Now, we insert the result (76) inside (74), recall that R(x0) = R is a constant, and expand

the exponential with the constant potential at first order in T . We find

∫

P
Dx e−Sh[x] =

∫
dDx0

√

g(x0)

(4πT )
D
2

[(

1 +
D + 8

4D
TR+ · · ·

)(

1− TR

12
+ · · ·

)]

=

∫
dDx0

√

g(x0)

(4πT )
D
2

[

1 + TR

(
D + 12

6D

)

+ · · ·
]

(78)

that correctly delivers the first term in (38).

To compute the next order, one has to include additional vertices coming from the expansion

of the metric which in Riemann normal coordinates reads

gµν(x0 + q)− δµν =
1

3
Rαµνβ(x0)q

αqβ +
1

6
∇γRαµνβ(x0)q

αqβqγ

+
( 1

20
∇δ∇γRαµνβ(x0) +

2

45
Rµαβ

λ(x0)Rλγδν(x0)
)

qαqβqγqδ + · · · .
(79)

The terms with the covariant derivatives vanish on Einstein manifolds after applying Wick con-

tractions that lead to index contractions on the tensors. Evaluating the remaining perturbative

corrections at order T 2 (coming from the last term as well as from iterating the first term in

the metric expansion in (79)) leads to the T 2 terms in (38). Further details on the evaluation

of these perturbative corrections in the various regularization schemes can be found in [37].
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