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Simon Podnar e, Peter Černelč a, Miran Brvar f, Mateja Notar a, Manca Köster a, 
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A B S T R A C T   

The growing threat of antibiotic resistance necessitates accurate differentiation between bacterial and viral infections for proper antibiotic 
administration. In this study, a Virus vs. Bacteria machine learning model was developed to distinguish between these infection types using 16 
routine blood test results, C-reactive protein concentration (CRP), biological sex, and age. With a dataset of 44,120 cases from a single medical 
center, the model achieved an accuracy of 82.2 %, a sensitivity of 79.7 %, a specificity of 84.5 %, a Brier score of 0.129, and an area under the ROC 
curve (AUC) of 0.905, outperforming a CRP-based decision rule. Notably, the machine learning model enhanced accuracy within the CRP range of 
10–40 mg/L, a range where CRP alone is less informative. These results highlight the advantage of integrating multiple blood parameters in di-
agnostics. The "Virus vs. Bacteria" model paves the way for advanced diagnostic tools, leveraging machine learning to optimize infection 
management.   

1. Introduction 

Accurate and timely differentiation between bacterial and viral infections is essential to ensure appropriate antibiotic prescribing 
practices and mitigate the spread of antibiotic resistance [1]. The rise of antibiotic resistance poses a major threat to global public 
health, as it undermines the efficacy of life-saving antibiotics and increases the risk of complications and mortality associated with 
common infections [2]. A key driver of antibiotic resistance is the inappropriate use of antibiotics, particularly in situations where they 
are not clinically indicated, such as viral infections [3]. 

Healthcare providers commonly employ blood tests to obtain insights into a patient’s health status. Complete blood count (CBC) 
and C-reactive protein (CRP) are among the most frequently measured blood test parameters in clinical practice, as they can provide 
valuable information about a patient’s immune response and inflammation levels. The most commonly studied biomarkers for dis-
tinguishing between bacterial and viral infections include CRP, procalcitonin (PCT), and various cytokines [4–6]. Among these, PCT 
has shown the most promise due to its higher specificity and sensitivity in differentiating both bacterial infections from viral infections 
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and bacterial infections from other noninfective causes of systemic inflammation [7]. PCT levels tend to be markedly elevated in 
bacterial infections, whereas they remain low in viral infections, providing a useful clinical tool for guiding antibiotic therapy [8]. CRP, 
an acute-phase protein produced by the liver in response to inflammation, infection, or tissue injury [9], has also been widely used as a 
diagnostic biomarker to differentiate between bacterial and viral infections. CRP levels are elevated in bacterial infections compared to 
viral infections [10] in response to pro-inflammatory cytokines, such as interleukin-6 (IL-6), which are predominantly secreted during 
bacterial infections [11]. However, CRP is also a non-specific marker of inflammation and can be elevated in various non-infectious 
conditions, such as autoimmune diseases and cancer [12]. 

Unfortunately, these biomarkers are often limited by their lack of specificity, as the results can be influenced by a variety of factors, 
like the progression of the infection and those unrelated to the underlying infection, such as age, comorbidities, and medication use. 
Additionally, there is considerable overlap in the values observed in bacterial and viral infections, making it difficult to establish 
definitive cutoffs that can reliably distinguish between the two types of infections [9]. 

Recent advancements in machine learning (ML) have demonstrated the potential to revolutionize the field of diagnostic medicine 
[13], with applications ranging from the early detection of skin cancer [14] to the identification of pneumonia in chest X-ray images 

Fig. 1. Flow diagram of cases included in the study. Unlabeled cases were used only for training the diagnostic model. All reported results were 
obtained using the labeled cases only. 
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[15]. Machine learning models can leverage large amounts of data to uncover complex patterns and relationships that are not apparent 
to clinicians, enabling more accurate and efficient diagnoses [16,17]. The application of machine learning to the analysis of blood test 
results has the potential to improve the differentiation between bacterial and viral infections and, consequently, optimize antibiotic 
prescribing practices. According to several authors [18–20] who analyzed hundreds of scientific papers, the most popular supervised 
machine learning algorithms for learning from structured medical data are decision trees and ensembles (gradient boosting, random 
forests), support vector machines, nearest neighbors, and shallow artificial neural networks. For other data modalities, such as images 
and unstructured text, deep learning methods, such as deep neural networks, are frequently used [20]. 

In this study, we present a machine-learning model that differentiates between bacterial and viral infections based solely on the 
most frequently measured blood test values and CRP. Our model aims to provide physicians with a reliable and objective diagnostic 
tool that can help guide decisions for prescribing antibiotics and reduce the overuse of antibiotics when not necessary. The proposed 
model builds upon our previous work in the field of machine learning-based diagnostics, such as hematological disorders [21], 
COVID-19 [22] and brain tumors [23]. We performed a comprehensive comparison of various ML algorithms (see Model Comparison 
and Performance), and selected XGBoost because it achieved significantly higher classification accuracy than any other algorithm. 
XGBoost [24] is a leading framework for extreme gradient boosting, well respected for its scalability and performance, and widely used 
in medical applications. 

A major focus of our model is the analysis of CRP levels, a widely used biomarker for inflammation and infection. Despite its clinical 
utility, the interpretation of CRP levels remains challenging due to the lack of universally accepted cutoff values for distinguishing 
between bacterial and viral infections [12]. 

Our model aims to overcome the limitations of CRP levels by adding other routinely measured blood test values, such as white 
blood cell counts, to improve the accuracy of differentiating between viral and bacterial infections. 

2. Materials and methods 

2.1. Cohort characteristics 

A pool of 69,394 medical cases with various viral and bacterial infections was obtained from the population of adult, non-pregnant 
patients admitted to the University Medical Centre Ljubljana (UMCL), Slovenia, between January 2005 and May 2020. All cases were 
de-identified prior to storage and analysis in accordance with the European General Data Protection Regulation (GDPR). 

We acquired data on the patient’s age, sex, routine blood test results, and final diagnoses. The cases were marked by medical 
doctors as VIRUS, BACTERIA, or UNLABELED, where unlabeled cases were those where the cause of infection (viral or bacterial) 
couldn’t be determined based on the ICD code. 

We further excluded cases without complete blood count, or CRP measurements, resulting in 49,000 cases. In the next step, we 
excluded ambiguous cases where a label of another type occurred among comorbidities (i.e. cases that were labeled with viral and 
bacterial infection at the same time). The final number of valid cases was 44,120 (Fig. 1). 

Cases were split into training and testing (evaluation) sets in a random manner, using group stratification. To account for the inter- 
patient dependence, which refers to the relationship between medical cases of a single patient and the class imbalance, the samples 
were grouped based on patient ID and stratified to ensure that all medical cases for a single patient were present in only one set and that 
the positive and negative class examples were balanced within each set. The training set included 37,944, of which 11,946 were 
bacterial, 12,957 viral infections, and 13,041 unlabeled cases. The testing (evaluation) set included 6176 cases, of which 2923 were 
bacterial and 3253 viral infections. Unlabeled cases were then labeled using semi-supervised bootstrap labeling and subsequently used 
only for training and not for model evaluation. 

All methods were performed in accordance with the relevant guidelines and regulations. The National Ethics Committee of Slovenia 
approved the study (No. 0120–718/2015/7, No. 0120–170/2020/6, No. 0120-058/2016-2 KME 7/01/16, No. 0120–341/2016-2 KME 
33/07/16, No. 0120–718/2015-2 KME 103/11/15 and No. 0120–718/2015/5); patients’ written informed consent was not needed 
according to the Slovenian Patients’ Rights act, article 44/6. The study was performed in accordance with the STARD recommen-
dations [25]. 

2.2. Determining case diagnoses 

Every medical case in our dataset (later used for building and testing the model) consisted of a final diagnosis– bacterial or viral, 
and 17 blood test results as the most important part of the data, accompanied by the biological sex and age of every patient. All blood 
test results were obtained upon admission before any treatment was introduced. All final bacterial or viral diagnoses were clinically 
determined by regular physician protocols using best practices for diagnosing bacterial and viral infections. This means that the Virus 
vs. Bacteria model has learned from physicians and, therefore, from sound medical knowledge. 

2.3. Semi-supervised bootstrap labeling and noise detection 

In many machine learning applications, including computer-aided medical diagnosis [26,27], there is often an extensive pool of 
unlabeled (undiagnosed) data available. In our scenario, we treated the cases where the infection could be either of bacterial or viral 
origin as unlabeled. We performed a semi-supervised bootstrap labeling step on the training set before training the final model (Al-
gorithm 1 in supplemental materials). In this step, a model was built on the labeled data only – cases clearly marked as either viral or 
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bacterial infections. This model was then used to label the unlabeled cases [27]. Only unlabeled cases that were classified with a 
probability higher than 70 % were assigned the predicted label and included in the final training set (Fig. 2). 

Labeled cases from the training set that the model was unable to correctly predict were treated as noise. These cases (910 in total) 
were excluded from all training steps but were still included in the validation steps during 10-fold cross-validation. The final training 
set included 12,746 viral cases, 11,247 bacterial infection cases, and 10,020 cases labeled by the semi-supervised bootstrap labeling 
model (Table 5). 

2.4. SBAS machine learning algorithm 

The Virus vs. Bacteria model, as presented in this paper, was built using the Smart Blood Analytics Swiss (SBAS) algorithm– a 
CRISP-DM compliant machine learning pipeline consisting of five processing stages (Algorithm 2 in supplemental materials) corre-
sponding to phases 2–6 of the CRISP-DM process standard [28]. The stages are as follows:  

• Data acquisition: acquiring raw data from the database  
• Data filtering: constructing the training dataset consisting of blood test results obtained before treatment 
• Data pre-processing: the canonization of blood parameters (matching them with our reference blood parameter database, con-

version to SI units, data quality control)  
• Data modeling: building the diagnostic model using a ML algorithm (base learner)  
• Evaluation: evaluating the model with stratified ten-fold cross-validation and/or independent testing data  
• Deployment of the successfully evaluated model in the cloud (accessible either through hospital information systems or the 

SBAS website - https://app.smartbloodanalytics.com). 

As the base ML method, any algorithm that produces probabilistic outputs can be used. We performed a comprehensive comparison 
of various ML algorithms (see the Base machine learning methods section) and decided on using XGBoost in production (see the 
Quantification and statistical evaluation section and Table S4). 

2.5. Base machine learning methods 

Each of the following machine learning methods was used and evaluated as a base learner:  

• XGBoost – XGB [29] is based on gradient boosting and utilizes a combination of decision trees and regularization techniques to 
minimize a differentiable loss function, enabling it to effectively handle complex and high-dimensional data with typically 
excellent predictive performance. 

Fig. 2. Semi-supervised bootstrap labeling of unlabeled cases.  
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• Random Forest [30] is an ensemble learning algorithm that constructs a multitude of decision trees at training time and outputs the 
class that is the mode of the classes or mean prediction of the individual trees, achieving high accuracy and robustness to overfitting 
through bootstrap aggregation and feature randomness.  

• K-nearest neighbors–KNN [31] classifies an example based on the majority class of its k-nearest neighbors in the feature space, 
using generic or custom distance metrics and efficient data structures for retrieval.  

• Support Vector Machines–SVM [32] constructs a hyperplane or set of hyperplanes in a high-dimensional feature space to maximize 
the margin between different classes, using kernel functions to implicitly map the data into higher dimensions and achieve 
non-linear separation.  

• Decision Trees–DT [33] recursively partitions the feature space into subsets based on the most informative feature, using a heuristic 
criterion to maximize the partition purity. Their structure allows for easy interpretation and visualization.  

• Logistic Regression – LR [34] models the probability of a binary or multi-class outcome as a function of the input features, using a 
logistic function and maximum likelihood estimation to optimize the coefficients and enable efficient probabilistic classification.  

• TabNet deep neural network–NN [35] is an interpretable deep learning architecture specialized for tabular data that employs 
sparse attention and feature masking to learn both local and global representations, achieving state-of-the-art performance on 
various machine learning tasks. 

For KNN, SVM and LR, standard scaling has been applied by removing the mean and scaling features to unit variance. Imputation 
was not needed for any method since no missing values were present in the dataset. 

For all methods, model parameters were optimized with the Ray Tune library using a random search [36]. Optimized models were 
evaluated using classification accuracy [37], sensitivity [37], specificity [37], Brier score [38], as well as AUC [37,39] and statistically 
compared using parametric (paired t-test) and non-parametric (Wilcoxon signed rank) statistical tests with Bonferroni correction 
[40–42]. 

2.6. Model explanation with Shapley values 

Each model output can be explained by depicting Shapley values, a model-agnostic and theoretically grounded explanation 
framework that assigns fair and unique values to each blood parameter based on its marginal contribution to the expected output, 
providing a comprehensive and consistent interpretation across the models [43–45]. 

2.7. Data visualization with UMAP 

The UMAP (Uniform Manifold Approximation and Projection) dimensionality reduction technique [46] was used to visualize the 
dataset. This method seeks to preserve the global structure of the data while reducing the dimensionality to a lower number of features 
that can be easily plotted on a 2D scatterplot. By projecting the high-dimensional data into a lower-dimensional space, UMAP allows 
for the visual inspection of the data structure and relationships between samples. 

2.8. Model performance evaluation 

The performance of a binary classifier was evaluated using grouped stratified 10-fold cross-validation. To account for the inter- 
patient dependence, which refers to the relationship between medical cases of a single patient, and the class imbalance, the sam-
ples were grouped based on patient ID and stratified to ensure that all medical cases for a single patient were present in only one fold at 
a time and that the positive and negative class examples were balanced within each fold. The classifier was trained and tested 10 times, 
rotating through each fold, and multiple classification metrics were calculated for each iteration, such as accuracy, precision, recall, 
and Brier score. The average performance was then calculated from the 10 iterations to provide an estimate of the classifier’s overall 
ability to generalize to unseen data. 

2.9. Baseline approach 

As a baseline performance criterion, we compare our results with a simple decision rule, based on the CRP value alone. In Ref. [47] 
authors are skeptical of prescribing antibiotics when CRP<20 mg/L (viral infection), while in Refs. [48,49] authors suggest that for 
CRP>40 mg/L (or 50 mg/L), antibiotics should be prescribed (bacterial infection). As sources differ with respect to the hard threshold, 
above which an infection can be said to be bacterial in nature, we approached the problem optimistically by finding the optimal value 
for our training data. 

CRPopt = argmax
c

{Accuracyc(data)}

Here, Accuracyc(data) stands for diagnostic accuracy of the CRP decision rule with CRPopt=c. In our case, CRPopt = 24 mg/L, which 
is not much above 20 mg/L [47]. While this value of CRPopt may not be the best in general, it represents the best possible (and thus 
optimistic) threshold for our data. The optimal CRP decision rule for our dataset is, therefore, as follows: 

if CRP < CRPopt then a diagnosis is Virus else diagnosis is Bacteria. 
Characteristics (ROC curves) of the optimal CRP decision rule are shown in Supplemental Fig. S2. 
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2.10. Parameter contributions 

From Tables 2–4 we can see that diagnostic models are significantly superior to the simple CRP decision rule. As the models account 
for other blood parameters as well, they must consequently contribute to the final decision. In Table 1, we show descriptive statistics of 
blood parameters and statistical comparisons of the ‘Bacteria’ and ‘Virus’ populations using both the two-sample Anderson-Darling 
population test [50] and the non-parametric Mann-Whitney U (a.k.a. Wilcoxon Rank-Sum) test [51,52]. As both populations are quite 
large (12,957 and 11,946 cases, respectively), even small differences are statistically significant, although the differences may not 
always be clinically relevant. In such cases, it is best to assess the magnitude of population differences for each parameter using Cohen’s 
d effect size [53]. For qualitative assessment of effect size, we use the established range of values: none (− ) below 0.2, small (S) 
between 0.2 and 0.5, medium (M) between 0.5 and 0.8, and large (L) above 0.8. While in all parameters, the differences between 
populations are statistically very significant (p < 0.00.1), in 6 out of 18 parameters (33 %), the effect size is negligible or small. 

3. Results 

3.1. Dataset description 

A dataset consisting of 44,120 cases was used for this study, including 37,944 cases in the training set (11,946 bacterial, 12,957 
viral, and 13,041 unlabeled cases) and 6176 cases in the testing set (2923 bacterial and 3253 viral infections) (Fig. 1). They were 
obtained from a pool of 69,394 cases with various viral and bacterial infections admitted to the University Medical Centre Ljubljana 
(UMCL), Slovenia, between January 2005 and May 2020 (see details in the Methods section). 

3.2. Blood parameters (features) analysis 

For the set of blood parameters, we chose the most frequently measured and complete blood parameters in our dataset together 
with CRP as the most commonly used biomarker for the infection. The selected parameters are: leukocyte count, lymphocyte count, 
monocyte count, neutrophils count, lymphocyte %, monocyte %, neutrophils %, erythrocyte count, hemoglobin, hematocrit, mean 
corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), mean corpuscular volume (MCV), erythrocyte 
distribution width (RDW), thrombocytes count, mean platelet volume (MPV), CRP and patient’s age and sex. We also used the 
neutrophil-to-lymphocyte ratio (NLR) [54–58]. 

The differences in the distributions of the parameters for viral and bacterial infections were assessed using violin plots (Fig. 3) and 
descriptive statistics (Table 1). They both show statistically significant differences in the distribution of all blood parameters regarding 
viral and bacterial infections. In Table 1, we show descriptive statistics of blood parameters and statistical comparisons of the ‘Bacteria’ 
and ‘Virus’ populations using both the two-sample Anderson-Darling population test [50] and the non-parametric Mann-Whitney U (a. 
k.a. Wilcoxon Rank-Sum) test [51,52]. As both populations are quite large (12,957 cases for viral and 11,946 cases for bacterial 
infection), even small differences are statistically significant (p < 0.01), although the differences may not always be clinically relevant. 
We assessed the relevance of population differences for each parameter with Cohen’s d effect size [53]. For qualitative assessment, we 

Table 1 
Descriptive statistics of blood parameters in training data set and statistical comparisons of ‘Bacteria’ and ‘Virus’ populations. The populations are 
statistically significantly different in all parameters using both the two-sample Anderson-Darling population test [50] and the non-parametric 
Mann-Whitney U (a.k.a. Wilcoxon Rank-Sum) test [51,52]. The magnitude of population differences for each parameter was assessed using 
Cohen’s d effect size [53] on the none (− )/small (S)/medium (M)/large (L) scale.  

Parameter Median IQR Anderson- Darling Mann-Whitney U Cohen’s effect size  

All Bacteria Virus All Bacteria Virus (p-value) (p-value) (-/S/M/L) 

WBC [1E9/L] 8.1 10.2 6.4 5.8 7.1 3.2 <0.01 <0.01 L 
Neutrophils count [1E9/L] 5.33 7.48 3.64 5.30 6.28 2.41 <0.01 <0.01 L 
Lymphocyte count [1E9/L] 1.38 1.13 1.71 1.07 0.93 1.02 <0.01 <0.01 M 
Monocyte count [1E9/L] 0.56 0.60 0.52 0.37 0.44 0.29 <0.01 <0.01 S 
Neutrophils % [1] 0.693 0.769 0.592 0.221 0.163 0.166 <0.01 <0.01 L 
Lymphocyte % [1] 0.182 0.113 0.286 0.197 0.125 0.145 <0.01 <0.01 L 
Monocyte % [1] 0.076 0.067 0.086 0.043 0.046 0.037 <0.01 <0.01 M 
RBC [1E12/L] 4.37 4.16 4.60 0.86 0.86 0.68 <0.01 <0.01 M 
Hb [g/L] 132 124 140 27 26 21 <0.01 <0.01 L 
Hct [1] 0.393 0.372 0.418 0.078 0.075 0.059 <0.01 <0.01 L 
MCV [fL] 90.2 89.6 91.0 7.3 7.3 6.9 <0.01 <0.01 S 
MCH [pg/cell] 30.2 29.9 30.4 2.5 2.6 2.4 <0.01 <0.01 S 
MCHC [g/L] 333 333 333 14 16 13 <0.01 <0.01 – 
RDW [1] 0.138 0.143 0.133 0.022 0.023 0.014 <0.01 <0.01 M 
Platelet count [1E9/L] 210 227 193 108 128 84 <0.01 <0.01 S 
MPV [fL] 8.5 8.5 8.5 1.5 1.5 1.4 <0.01 <0.01 – 
CRP [mg/L] 23 90 3 108 147 6 <0.01 <0.01 L 
NLR [1] 3.80 6.77 2.07 6.52 9.32 1.76 <0.01 <0.01 M 
Age [years] 62 74 44 35 22 22 <0.01 <0.01 L  
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used the established range of values: none (− ) below 0.2, small (S) between 0.2 and 0.5, medium (M) between 0.5 and 0.8, and large 
(L) above 0.8. The effect size is large in WBC, Hb, Hct, Neutrophils count, Neutrophils %, Lymphocyte %, CRP, and age. 

Differences in both types of infections can also be visualized with the UMAP (Uniform Manifold Approximation and Projection) 
dimensionality reduction technique (Fig. 4). 

3.3. Labeling 

Every medical case in the dataset includes a confirmed ICD-encoded diagnosis relating to its origin: bacterial or viral infection. The 
diagnoses were obtained by regular physician protocols using best practices for diagnosing bacterial and viral infections. For 13,041 
cases, it was - based on the ICD code only - not possible to decide whether the infection was of bacterial or viral origin. Such cases were 
used in a semi-supervised manner (see details in the Methods section) for training and weren’t used in any evaluation. 

3.4. Model comparison and performance 

For the training of the diagnostic model, seven well-known supervised machine learning approaches were considered, described in 
the Base machine learning methods section. For each model, an extensive hyperparameter optimization was performed, using a 
random search, with the objective of maximizing the accuracy. In Table 2, we report the mean results and their standard deviations 
obtained from 10-fold cross-validation for the best models obtained by hyperparameter optimization. For sensitivity, specificity, ROC- 
curve, and related visualizations, the ‘Bacteria’ diagnosis is considered as positive to comply with the established presentation. For 
consistency, the same data partitioning into folds was used for all the experiments. 

We tested the statistical significance of results using the one-sided non-parametric Wilcoxon signed rank test [40,59], as well as the 
parametric paired t-test. In both cases, to account for multiple testing (seven methods and CRP decision criterion), p-values were 

Table 2 
10-fold cross-validation results (mean ± standard deviation). The XGBoost model (XGB) has both a significantly higher classification accuracy and a 
significantly lower Brier score than any other compared models. The difference between the CRP decision rule and XGB is 6.8 % ± 1.2 %.   

Accuracy Sensitivity Specificity Brier score AUC 

XGB 0.835 ± 0.01 0.796 ± 0.015 0.870 ± 0.013 0.123 ± 0.007 0.910 ± 0.007 
KNN 0.820 ± 0.01 0.729 ± 0.017 0.896 ± 0.010 0.131 ± 0.006 0.896 ± 0.008 
RF 0.830 ± 0.009 0.790 ± 0.013 0.867 ± 0.010 0.243 ± 0.000 0.904 ± 0.007 
SVM 0.812 ± 0.007 0.743 ± 0.012 0.876 ± 0.011 0.137 ± 0.006 0.885 ± 0.007 
DT 0.806 ± 0.01 0.768 ± 0.016 0.841 ± 0.017 0.145 ± 0.006 0.876 ± 0.007 
LR 0.812 ± 0.008 0.744 ± 0.014 0.875 ± 0.011 0.137 ± 0.006 0.886 ± 0.007 
NN 0.821 ± 0.01 0.779 ± 0.019 0.861 ± 0.021 0.130 ± 0.006 0.900 ± 0.007 
CRP 0.767 ± 0.006 0.653 ± 0.008 0.872 ± 0.007 0.177 ± 0.003 0.813 ± 0.008  

Table 3 
10-fold stratified cross-validation results (mean ± standard deviation) on the region with CRP between 10 and 40 mg/L. The XGBoost model (XGB) 
has both a significantly higher classification accuracy (with the exception of RF) and a significantly lower Brier score than any other compared 
models. Note especially the increased difference between the CRP decision rule and XGB (20.9 % ± 3.2 %).   

Accuracy Sensitivity Specificity Brier score AUC 

XGB 0.760 ± 0.025 0.755 ± 0.045 0.764 ± 0.016 0.171 ± 0.016 0.834 ± 0.024 
KNN 0.732 ± 0.029 0.683 ± 0.046 0.778 ± 0.027 0.187 ± 0.018 0.809 ± 0.027 
RF 0.751 ± 0.034 0.751 ± 0.046 0.751 ± 0.027 0.245 ± 0.000 0.819 ± 0.027 
SVM 0.720 ± 0.022 0.697 ± 0.035 0.741 ± 0.022 0.193 ± 0.013 0.790 ± 0.022 
DT 0.698 ± 0.016 0.672 ± 0.033 0.721 ± 0.025 0.218 ± 0.012 0.760 ± 0.018 
LR 0.722 ± 0.024 0.700 ± 0.037 0.741 ± 0.020 0.193 ± 0.013 0.792 ± 0.022 
NN 0.736 ± 0.021 0.720 ± 0.049 0.750 ± 0.050 0.184 ± 0.015 0.811 ± 0.023 
CRP 0.551 ± 0.020 0.463 ± 0.036 0.632 ± 0.025 0.298 ± 0.011 0.563 ± 0.022  

Table 4 
Results on an independent evaluation dataset (6176 test cases). Differences in accuracy and Brier score between the XGBoost model (XGB) and the 
CRP decision rule are statistically significant, albeit slightly smaller compared to 10-fold cross validation results (5.1 % ± 1.4 % vs 6.8 % ± 1.2 % for 
all cases and 17.9 % ± 4.1 % vs 20.9 % ± 3.2 % for the CRP range between 10 and 40 mg/L).  

(all cases) Accuracy Sensitivity Specificity Brier score AUC 

XGB 0.822 ± 0.010 0.797 0.845 0.129 0.905 
CRP 0.771 ± 0.010 0.662 0.869 0.175 0.818 
(cases with CRP 10–40 mg/L) Accuracy Sensitivity Specificity Brier score AUC 
XGB 0.732 ± 0.029 0.678 0.790 0.180 0.822 
CRP 0.553 ± 0.033 0.470 0.632 0.298 0.577  
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additionally corrected using the Bonferroni correction [42]. As we can see from Table 2, the XGBoost model (XGB) has both a 
significantly higher classification accuracy (83.5 % ± 1 %) and a significantly lower Brier score (0.123 ± 0.007) than any other 
compared models (p < 0.01 in all cases, see Table S1), and was therefore used as the principal Virus vs. Bacteria model. Additional 
characteristics (ROC curves) of the final model are shown in Supplemental Fig. S2. 

3.5. CRP is of little diagnostic value in the range of 10–40 mg/L 

Based on Fig. 5(A and B) and Fig. 6 and for the purpose of our study, we define the CRP range of interest between 10 and 40 mg/L. 
In the training set, the CRP region between 10 and 40 mg/L includes 3636 cases (14.6 %). Of these 1764 (pB=48.5 %) are labeled as 
‘Bacteria’ and 1872 (pV=51.5 %) as ‘Virus’. 

For all data, we tested the statistical significance of results using the one-sided Wilcoxon signed rank test and the paired t-test, both 
with the Bonferroni correction (Tables 4 and 5), the XGBoost model, has both a significantly (p < 0.01) higher classification accuracy 
(76 % ± 2.5 %) and a significantly lower (p < 0.01) Brier score (0.171 ± 0.016) than any other compared model, with the exception of 
the Random Forest (RF) model, where the difference in accuracy is not significant (p > 0.05). This result further justifies the choice of 
XGBoost as the principal Virus vs. Bacteria model. 

In the CRP 10–40 mg/L region, the optimal CRP decision rule (see the Quantification and statistical analysis-Baseline approach 
section), diagnoses all patients with a CRP level lower than 24 mg/L as having a viral infection and all patients with higher CRP levels 
as having a bacterial infection. The CRP decision rule achieves an accuracy of 55.1 % ± 2 % (2003 out of 3636). Compared with two 
simplistic approaches (most prevalent and random diagnosis), this result is not impressive. Diagnosing every case completely at 
random yields the accuracy p2

B + p2
V = 50.5 %, while labeling every case as ‘Virus’ (the prevalent diagnosis in this region) yields an 

accuracy of 51.5 %. We can conclude that in the 10–40 mg/L range, the CRP decision rule is only slightly better than a random 
diagnosis (by 4.6 %) and the most prevalent diagnosis (by 3.6 %). On the other hand, the XGB model achieves an accuracy of 76 % ±
2.5 % (2764 out of 3636), 20.9 % ± 3.2 % better than the CRP decision rule (see Table 3 and Table S2). 

The diagnostic significance of other blood parameters within this region is effectively elucidated through an examination of the 
importance of these parameters for the model across varying ranges of CRP, as depicted in Fig. 6. 

3.6. Model performance on the evaluation dataset 

For rigorous methodological integrity, the evaluation dataset, encompassing 6176 cases, was exclusively employed to assess the 
performance of the ultimate diagnostic model. The outcomes parallel those derived from 10-fold cross-validation: an accuracy of 82.2 
% with 95 % binominal confidence intervals using the Agresti-Coull method [60] of ±1 %, a Brier score of 0.129, and an area under the 
ROC curve (AUC) of 0.905 (Table 4). The XGBoost model is again significantly superior to the CRP decision rule, both in terms of 
diagnostic accuracy and Brier score, especially in the CRP range between 10 and 40 mg/L (p < 0.01 for all comparisons, see Table S3). 
The performance of the optimal CRP decision rule (see the Quantification and statistical analysis-Baseline approach section), which 
diagnoses all patients with CRP levels lower than 24 mg/L as having a viral infection and all patients with higher CRP levels as having a 
bacterial infection, has an accuracy of 77.1 % with 95 % binominal confidence intervals using the Agresti-Coull method of ±1 %, a 
Brier score of 0.175, and an AUC of 0.818 (Table 4). 

Table 5 
Dataset Summary. We are reporting median ± interquartile deviation (IQR/2) or counts (for biological sex only).  

Parameter TRAINING SET (incl. unlabeled) TESTING SET  

ALL BACTERIA VIRUS ALL BACTERIA VIRUS 

No. cases 34013 19486 14527 6176 2923 3253 
Biological sex (male|female) 18925|15088 9741|9745 9184|5343 3627|2549 1483|1440 2144|1109 
Age [years] 62 ± 17.5 74 ± 11 44 ± 11 57 ± 16 70 ± 12.5 46 ± 11 
WBC [1E9/L] 8.1 ± 2.9 10.2 ± 3.55 6.4 ± 1.6 7.3 ± 2.35 9.2 ± 3.4 6.3 ± 1.65 
Neutrophils count [1E9/L] 5.33 ± 2.65 7.48 ± 3.14 3.64 ± 1.21 4.60 ± 2.06 6.40 ± 3.12 3.65 ± 1.22 
Lymphocyte count [1E9/L] 1.38 ± 0.53 1.13 ± 0.47 1.71 ± 0.51 1.46 ± 0.54 1.21 ± 0.51 1.66 ± 0.52 
Monocyte count [1E9/L] 0.56 ± 0.18 0.60 ± 0.22 0.52 ± 0.24 0.53 ± 0.165 0.57 ± 0.21 0.51 ± 0.14 
Neutrophils % [1] 0.693 ± 0.11 0.769 ± 0.081 0.592 ± 0.083 0.659 ± 0.104 0.740 ± 0.096 0.600 ± 0.082 
Lymphocyte % [1] 0.182 ± 0.99 0.113 ± 0.063 0.286 ± 0.072 0.220 ± 0.1 0.133 ± 0.081 0.278 ± 0.074 
Monocyte % [1] 0.076 ± 0.021 0.067 ± 0.023 0.086 ± 0.018 0.078 ± 0.020 0.071 ± 0.023 0.084 ± 0.017 
RBC [1E12/L] 4.37 ± 0.43 4.16 ± 0.43 4.60 ± 0.34 4.43 ± 0.425 4.20 ± 0.47 4.59 ± 0.35 
Hb [g/L] 132 ± 13.5 124 ± 13 140 ± 11.5 133 ± 14 125 ± 14 140 ± 11 
Hct [1] 0.393 ± 0.039 0.372 ± 0.037 0.418 ± 0.03 0.399 ± 0.04 0.375 ± 0.042 0.418 ± 0.031 
MCV [fL] 90.2 ± 3.65 89.6 ± 3.65 91.0 ± 3.45 90.6 ± 3.7 89.7 ± 3.75 91.3 ± 3.5 
MCH [pg/cell] 30.2 ± 1.25 29.9 ± 1.3 30.4 ± 1.2 30.3 ± 1.25 30.0 ± 1.4 30.5 ± 1.2 
MCHC [g/L] 333 ± 7 333 ± 8 333 ± 6.5 333 ± 7 332 ± 7.5 333 ± 6 
RDW [1] 0.138 ± 0.011 0.143 ± 0.012 0.133 ± 0.007 0.137 ± 0.01 0.143 ± 0.013 0.133 ± 0.007 
Platelet count [1E9/L] 210 ± 54 227 ± 64 193 ± 42 203 ± 51 221 ± 59 191 ± 44 
MPV [fL] 8.5 ± 0.75 8.5 ± 0.75 8.5 ± 0.7 8.5 ± 0.75 8.5 ± 0.8 8.5 ± 0.75 
CRP [mg/L] 23 ± 54 90 ± 73.5 3 ± 3 6 ± 33.5 67 ± 82.5 3 ± 2.5 
NLR [1] 3.80 ± 3.26 6.77 ± 4.74 2.07 ± 0.87 3.00 ± 2.39 5.62 ± 4.76 2.17 ± 0.90  
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Fig. 3. Violin plots of blood parameters for visual comparisons of ‘Bacteria’ and ‘Virus’ populations. Most parameters exhibit considerable 
perceptive differences between the populations. For this visualization, all cases from the training set were included. The red vertical dashed lines 
represent reference intervals. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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Fig. 4. Visualization of the parameter space with the UMAP method. Each dot represents a single blood test or, more specifically, an embedding of 
all blood parameters into a two-dimensional space, and its color represents the infection type. Blue dots represent blood tests with viral infections, 
and orange dots represent blood tests with bacterial infections. The visualization shows all the labeled cases from the training set. (For interpretation 
of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 5. Performance of the Virus vs. Bacteria model (model) and simple CRP decision rule (CRP) (A) on all cases from 10-fold cross-validation, (B) 
on all cases from 10-fold cross-validation that have CRP values within the region of interest between 10 and 40 mg/L. 
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In the evaluation set, the CRP region between 10 and 40 mg/L includes 884 cases (14.3 %), with 428 (pB=48.4 %) labeled as 
‘Bacteria’ and 456 (pV=51.6 %) labeled as ‘Virus’. Here, the CRP decision rule is unable to distinguish between bacterial and viral 
infections (the ROC curve is close to the diagonal, and the AUC is only slightly above 0.5) (Fig. 7(A and B)). On the other hand, the 
Virus vs. Bacteria model exhibits a normal, useful ROC curve, similar to the result using all evaluation cases, and an AUC of 0.822, only 
0.083 less than the result using all evaluation data (0.905). In this range, the Virus vs. Bacteria model achieved a diagnostic accuracy of 
73.2 % ± 2.9 %, which is 17.9 % ± 4.1 % more accurate than the CRP decision rule (55.3 % ± 3.3 %) (Table 4). 

3.7. Parameter importance to the model 

Shapley values were calculated for each blood parameter to understand its contribution to the XGB model’s decision-making 

Fig. 6. Importance of the top six parameters as a function of different CRP concentration ranges. The vertical dashed lines denote the CRP range of 
10–40 mg/L. 

Fig. 7. ROC curves of the Virus vs. Bacteria model (model) and simple CRP decision rule (CRP) (A) on all evaluation cases, (B) on all evaluation 
cases that have CRP values within the region of interest between 10 and 40 mg/L. For the model, a default operating point (0.5) is visualized; for the 
CRP decision rule, an operating point of 24 mg/L is displayed. 
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process. CRP contributes the most, followed by platelet count, lymphocyte%, WBC count, neutrophils count, etc. (Fig. 8). Together 
with the parameter data analysis (Table 1 and Fig. 3), we can find the most medically relevant parameters for distinguishing between 
bacterial and viral infections to be CRP, WBC, neutrophil count, lymphocyte count, platelet count, and age. 

In Table 1 we can see considerable median age differences between populations of ‘Virus’ and ‘Bacteria’ cases. To address this 
possible source of bias, we built another model using the same dataset but excluding age and compared the results. Overall, the model 
without age is only slightly worse (by 2 %) than the final Virus vs. Bacteria model and better than the CRP decision rule (by 4 %). 
Fig. S1 shows a comparison of the model performance stratified by age. We can see that while knowing the patient age helps the model, 
the difference in accuracy by strata is mostly in the range of 2 %. 

4. Discussion 

This study demonstrates the potential of machine learning models, particularly the Virus vs. Bacteria model, based on the most 
frequently measured blood parameters and CRP, in differentiating between bacterial and viral infections. Differentiating the main 
types of infections is an essential development in the ongoing efforts to combat antibiotic resistance, as more accurate diagnostic 
methods are crucial for improving patient care and reducing unnecessary antibiotic usage. Luz et al. [61] analyzed 158,616 journal 
articles related to antimicrobial resistance published between 1999 and 2018. They show that the number of antimicrobial 
resistance-related publications has grown 450 % over the two decades. 

Our study builds on our previous studies that have leveraged machine learning using blood test results for differential diagnosis in 

Fig. 8. Distribution of Shapley values across the entire dataset, which can be used to identify the features that have the greatest impact on the 
model’s predictions. Each dot represents a case in the dataset, and its position along the x-axis corresponds to the Shapley value for a particular 
blood parameter. The color of the dot indicates the value of the feature for that instance, with blue indicating a low value and red indicating a high 
value. The position of the dot indicates its impact on the prediction: dots to the left of the zero vertical line indicate a negative impact, while dots to 
the right indicate a positive impact. The larger the absolute value of the Shapley value, the larger the impact of the corresponding feature on the 
prediction. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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hematology [21], brain tumors [23] and particularly in COVID-19 [22]. Several other studies have explored the use of different, more 
specific blood biomarkers, to distinguish between bacterial and viral infections and also the use of machine learning in this process. 
Oved and colleagues [62,63] developed an assay combining three host proteins: tumor necrosis factor-related apoptosis-inducing 
ligand (TRAIL), interferon gamma induced protein-10 (IP-10) and CRP (AUC of 0.94). The assay was significantly more accurate in 
febrile children than CRP, procalcitonin, and routine laboratory parameters [6]. De Jager [54] showed that the neutrophil-lymphocyte 
count ratio (NLR) in the emergency department predicts the severity and outcome of community-acquired pneumonia with higher 
prognostic accuracy than traditional infection markers, and an additional utility in elderly adults was demonstrated by Cataudella 
[55]. NLR has also been identified as a diagnostic and prognostic tool in viral infections, including COVID-19 [57,58]. Shen et al. [64] 
presented an ontology-driven clinical decision support system IDDAP for infectious disease diagnosis and antibiotic prescription. It 
includes a rule-based inference engine that applies ontology-based rules to patient data and a user interface that presents the results of 
the inference to the clinician. IDDAP was evaluated using a dataset of 84 patients, yielding an AUC of 0.899, thus showing the potential 
to improve patient outcomes and reduce healthcare costs. Ramgopal et al. derived an ML model to predict serious bacterial infections 
in young febrile infants [65]. Lien et al. [66] have recently shown that an ML model using only complete blood count with differential 
leukocyte count data achieved similar performance as procalcitonin data in bacteremia prediction and Li et al. [67], showed in 293 
patients with suspected lower respiratory tract infections and/or sepsis that the most predictive variable was CRP. New experimental 
methods for viral/bacterial classification also build on ML methods; a nice example is the use of ML on infrared spectroscopy to di-
agnose inaccessible infections [68,69]. These studies highlight the potential of machine learning and biomarker-based approaches in 
improving diagnostic accuracy. 

Several studies have proposed different CRP cutoff values for prescribing antibiotics. In a Danish study [48], 59 % of patients with 
acute respiratory tract infection had a CRP test performed. At least 25 % of the patients were prescribed an antibiotic when the CRP 
level was >20 mg/L, 50 % when the CRP was >40 mg/L, and 75 % when the CRP was >50 mg/L. In another study [49] among 372 
patients with acute cough tested with a POCT for CRP, the CRP value was the strongest independent predictor of antibiotic pre-
scription, with an odds ratio of CRP ≥ 50 mg/L of 98.1. There are also recommendations that for CRP<20 mg/L, the prescription of 
antibiotics should be delayed [47,48]. On the other hand, normal CRP levels are usually considered to be below a fixed threshold, 
ranging from 3 to 10 mg/L. Consequently, relying solely on CRP levels for clinical decision-making may lead to misdiagnoses and 
inappropriate antibiotic prescriptions. 

One of the main findings of our study is the superior performance of the Virus vs. Bacteria model compared to the CRP decision rule, 
which is likely a close approximation to the way a physician decides whether the infection is of a viral or bacterial origin. This indicates 
that routinely measured blood parameters have important diagnostic value in distinguishing viral and bacterial infections. Moreover, 
the Virus vs. Bacteria model showed a remarkable improvement in accuracy within the CRP range of 10–40 mg/L, a region where the 
CRP decision rule has limited diagnostic value. Our analysis shows that using a simple CRP based decision rule outside of the 10–40 
mg/L CRP range is almost on par with our model. However, even outside of this CRP range, there are some bacterial infections in our 
dataset with a relatively low CRP, like spirochetal infections (Lyme disease, syphilis, leptospirosis) with a median CRP of 5 mg/L, and 
viral infections with a relatively high CRP, like viral pneumonia and influenza with a median CRP around 65 mg/L) and in COVID-19 
with a median CRP of 42 mg/L. Spirochetes can evade the host’s immune system, leading to lower CRP levels during infection because 
the host’s immune response relies more on cellular immunity rather than inflammation [70,71], which can be detected with other 
blood parameters. On the other hand, viral infections that affect the respiratory system cause inflammation in the airways and lung 
tissue, which leads to the production of CRP [72]. This can also be an indication of severe infection or complications, such as secondary 
bacterial infections or a more pronounced inflammatory response [22,73]. This further highlights the benefits of a multifactorial 
approach to diagnosing infections. 

The Shapley value analysis (Fig. 8) offered valuable insights into the relative contributions of individual blood parameters to the 
Virus vs. Bacteria model’s decision-making process. CRP, WBC, neutrophils count, lymphocyte count, and platelet count emerged as 
the most medically relevant blood parameters in distinguishing between bacterial and viral infections. This knowledge can help cli-
nicians prioritize these critical parameters when examining patient data. Elevated WBC counts often indicate bacterial infections, as 
the immune system combats the infection by increasing the production of these cells [74]. In contrast, viral infections usually lead to 
lower WBC counts or a modest increase due to the direct impact on bone marrow, immune-mediated destruction or redistribution of 
white blood cells, and the body’s stress response. Neutrophil count differences between bacterial and viral infections can be explained 
by their unique roles in immune response. Bacterial infections typically involve increased neutrophil counts due to rapid recruitment 
for bacterial elimination via phagocytosis [75]. In contrast, viral infections often decrease neutrophil count, as the immune system 
favors deploying lymphocytes, particularly T cells, to combat viruses, leading to a relative increase in differential analysis. Distinct 
differences in platelet count have been observed between bacterial and viral infections. Bacterial infections typically present higher 
platelet counts due to direct interaction and activation of platelets with bacteria [76]. In contrast, viral infections can cause throm-
bocytopenia, a reduced platelet count, due to impaired platelet production or increased destruction induced by the virus [77]. 

Besides blood parameters, age is an important parameter as it is a critical determinant due to the alterations in hematopoiesis 
associated with the aging process. Age is also correlated with a rise in bacterial infections and a decline in viral infections. (Fig. 8, age). 
This is likely due to immunosenescence and a higher prevalence of comorbidities [41,78]. Lower susceptibility to viral infections in 
older individuals might be attributed to prior exposure, which enhances immune memory and protection [79]. However, the severity 
and clinical outcomes of viral infections can be more severe in older individuals due to age-related decline of immune function [80]. 

This study demonstrates the potential of machine learning, specifically the Virus vs. Bacteria model, in accurately differentiating 
between bacterial and viral infections based on routinely measured blood parameters and CRP. The superior performance of the Virus 
vs. Bacteria model over the CRP decision rule highlights the importance of considering multiple blood parameters in diagnostic 
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decision-making. The insights gained from this study may contribute to the development of more sophisticated diagnostic tools that 
leverage machine learning and relevant biomarkers to facilitate better clinical decision-making in the management of infections. 

Future research should focus on validating these results in larger and more diverse patient cohorts as well as exploring alternative 
machine learning models to further improve diagnostic accuracy. This might also be achieved by monitoring temporal changes in 
blood parameters, potentially enhancing accuracy with a reduced number of measured parameters. Additionally, there’s potential in 
simplifying the model, especially for the CRP 10–40 mg/L range. This could be accomplished by incorporating additional parameter 
ratios (beyond NLR) and reconfiguring the model into more straightforward decision rules, thereby facilitating its application even in 
settings without advanced computational resources. 

4.1. Limitations of the study 

The current study only considered confirmed ICD-encoded diagnoses, and some patients could not be definitively classified as 
having bacterial or viral infections. These cases were used for semi-supervised training, and their inclusion may have introduced some 
bias in the model’s performance. Our objective was to distinguish between bacterial and viral infections, prompting us to exclude cases 
exhibiting both types. The model, which has been trained exclusively on data from patients diagnosed with bacterial or viral infections, 
lacks representation from healthy individuals. This limitation confines the model’s applicability to populations already exhibiting 
infection symptoms and consequently renders it less suitable for broader screening purposes where a mix of healthy and infected 
individuals is expected. Additionally, we did not include specific biomarkers like procalcitonin, TRAIL, IP-10, and others, despite their 
promising results in similar studies. Our analysis aimed to demonstrate the utility of standard blood tests, which may still be overly 
comprehensive for certain clinical settings. The data for this study was sourced from a single medical center, suggesting the need for 
future research to explore the findings’ applicability in varied clinical environments. 
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