
Topological heavy fermions in magnetic field

Keshav Singh∗1,2 , Aaron Chew3 , Jonah Herzog-Arbeitman3 , B. Andrei Bernevig3,4,5 and Oskar Vafek1,2

1National High Magnetic Field Laboratory, Tallahassee, Florida, 32310
2Department of Physics, Florida State University, Tallahassee, Florida, 32306

3Department of Physics, Princeton University, Princeton, NJ 08544
4Donostia International Physics Center, P. Manuel de Lardizabal 4, 20018 Donostia-San Sebastian, Spain

5IKERBASQUE, Basque Foundation for Science, Bilbao, Spain

The recently introduced topological heavy fermion model (THFM) provides a means for
interpreting the low-energy electronic degrees of freedom of the magic angle twisted bilayer graphene
as hybridization amidst highly dispersing topological conduction and weakly dispersing localized
heavy fermions. In order to understand the Landau quantization of the ensuing electronic spectrum,
a generalization of THFM to include the magnetic field B is desired, but currently missing. Here
we provide a systematic derivation of the THFM in B and solve the resulting model to obtain
the interacting Hofstadter spectra for single particle charged excitations. While naive minimal
substitution within THFM fails to correctly account for the total number of magnetic subbands
within the narrow band i.e. its total Chern number, our method –based on projecting the light and
heavy fermions onto the irreducible representations of the magnetic translation group– reproduces
the correct total Chern number. Analytical results presented here offer an intuitive understanding
of the nature of the (strongly interacting) Hofstadter bands.

I. INTRODUCTION

Since the discovery of the remarkable phase diagram
of the magic angle twisted bilayer graphene (MATBG)
[1, 2], substantial effort [3–32] has been devoted to
understanding its rich physics. The presence of
topological narrow bands within this system [33–36]
provides a novel platform to study the interplay between
strong electron correlations and band topology. The
recently introduced topological heavy fermion model
(THFM) for MATBG [37, 38] bridges the contrary
signatures of localized [39, 40] and delocalized physics[41,
42] reported via STM and transport measurements[43,
44]. Within THFM the low energy electrons are viewed
as a result of the hybridization between heavy px ± ipy-
like Wannier states, localized at the AA stacking sites,
and topological conduction fermions, denoted by f and
c respectively in analogy to heavy fermion materials[37].
Among its other features, THFM allows for an intuitive
explanation of the charged excitation spectra [37] at
integer fillings hitherto obtained via strong coupling
expansion of projected models[18, 45].

The large moiré period of ∼13nm in MATBG has
revealed a sequence of broken symmetry Chern insulators
yielding a plethora of finite magnetic field(B) induced
phases at lower fluxes[43, 46–53] and has showcased,
for the first time, reentrant correlated Hofstadter states
at magnetic fields as low as 31T [54]. Thus it
becomes important to better understand the interplay
of correlations and band topology in the presence of
a perpendicular B field. Theoretical studies have
previously focused on non-interacting [55–57] and strong
coupling [58–60] regimes. Although exact, each employed
considerable numerical analysis, restricting a deeper
physical understanding of the mechanism for Landau
quantization.

In this manuscript, we show how one can understand

the Landau quantization of the strong coupling spectra
in terms of hybridization amidst Landau levels (LLs)
of c fermions and hybrid Wannier states of f fermions.
We find that only a particular number of f fermion
momentum channels are allowed to hybridize to c
fermion LLs, with coupling strength which decreases with
increasing B and increasing LL index m. Moreover,
through our analysis we can clearly understand the
reason why a naive minimal coupling is unable to recover
the correct total Chern number of the narrow bands.
In the flat band limit of THFM, our framework allows
for an exact solution including the dominant interactions
and analytically explains the total Chern number. Even
for cases with a non-trivial Chern number, we explicitly
demonstrate the dependence of total number of states
on the magnetic field as is expected by the Streda
formula[61]. Although going away from the flat band
limit requires numerics, given the simple structure of our
Hamiltonian, we are still able to compute the spectrum
to unprecedentedly small fluxes and find it to be well
captured by the analytical solution in the flat band limit,
M = 0, which can be taken all the way to B = 0 as
shown in Figs.(2),(4),(5) at narrow band filling factors
ν = 0,−1,−2 respectively.

The formulas we derive are general for any rational
value of ϕ/ϕ0, with ϕ being the flux through the unit cell
and ϕ0 being the flux quantum hc/e, but we focus our
analysis on the 1/q flux sequence and low B where the
results become particularly transparent. Our analysis as
well unveils the physical nature of the anomalous low
energy mode which is seen to be almost B-independent,
also observed in previous numerics[58], as the anomalous
zero-LL of a massless Dirac particle, a key ingredient
of the topological heavy fermion picture of MATBG.
Although this work deals directly with THFM, our
methods apply more generally.
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FIG. 1. The spin-valley degenerate non-interacting
Hofstadter spectra for THFM at w0/w1 = 0.7 in the flat
band limit M = 0. For illustration, we have fixed m⋆ = 5
so that the B → 0 energies for remote magnetic subbands,
i.e. ±γ, are tractable. The value of parameters used are
γ = −39.11meV , v′∗ = 1.624eV.Å, v∗ = −4.483eV.Å and
λ = 0.3792Lm. ‘Total-f character’ color labeling on left,
unlike in the rest of the figures, represents the total f weight
of the flat bands composed of zero modes. We sum over the
f -weights of each zero mode and normalize it by the total
number of zero modes, i.e. 2q. For the coupled modes
obtained using ansätze in Eqs.(209)-(211), the f -weight is

obtained as |c(µ)5 |2+|c(µ)
6 |2, after normalizing the eigenvector.

The f -weight for the decoupled f -modes is 1, while that of the
anomalous c in Eq.(19)is zero. The remote bands in ‘black’
do not correspond to the above color labeling.

II. RESULTS

Review of THFM and the Key Challenge: The
THFM in momentum space is given by [37]

Ĥ0 =
∑

|k|<Λc

∑
τs

4∑
aa′=1

Hc,τ
aa′(k)c̃

†
kaτsc̃ka′τs +

∑
|k|<Λc

∑
τs

4∑
a=1

2∑
b=1

(
e−

1
2k

2λ2

Hcf,τ
ab (k)c̃†kaτsf̃kbτs+h.c.

)
.

(1)

Here Λc is the momentum cutoff for c fermions while f
fermions, whose bandwidth is negligibly small, reside in
the entire moiré Brillouin zone (mBZ). The tilde on the
fermionic creation and annihilation operators indicates
that they are at B = 0. The parameter λ ≈ 0.38Lm is a
damping factor proportional to the spatial extent of the

localized Wannier functions[37], with Lm being the moiré
period; τ = +1(−1) represents graphene valley k(k′) and
s spin ↑, ↓. The c-c and c-f couplings are

Hc,1 =

 0 0 v∗k 0
0 0 0 v∗k̄
v∗k̄ 0 0 M
0 v∗k M 0

, Hcf,1 =

 γ v′∗k̄
v′∗k γ
0 0
0 0

 ,

(2)

where k = kx + iky and k̄ = kx − iky. The explicit
k dependence in Hc,1(k) and Hcf,1(k) above has been
suppressed for brevity. The parameters v∗, v

′
∗, M and

Γ were determined from the Bistritzer-MacDonald [62]
(BM) model in Ref.[37]. The bandwidth of narrow bands
is set by 2|M | and the gap between the narrow bands
and the remote bands is |γ| − |M |. The couplings at the
opposite graphene valley (i.e. at τ = −1) can be obtained
by replacing k ↔ −k̄ in Eq.(2).
In order to illustrate the key challenge to promoting

the model to non-zero B, we consider a simplified
case wherein we set the bandwidth and the spatial
extent of the localized Wannier functions to zero,
i.e. M = λ = 0 in Eqs.(1) and (2). As argued
below and as shown in the supplementary note 8, the
conclusions reached hold even for a general case without
making this simplification. Following a naive minimal
substitution, we promote kx + iky → −i

√
2â/ℓ[63],

where the magnetic length is ℓ =
√
ℏc/(eB) and

â is the Landau level (LL) lowering operator. The
eigenstates of thus minimally substituted Hamiltonian(

Hc,1 Hcf,1

Hcf,1† 0

)
can be obtained exactly. It can

be readily verified that the zero modes take the form
(a1,m |m⟩ , a2,m |m− 1⟩ , a3,m |m+ 1⟩ , a4,m |m− 2⟩ ,
b1,m |m⟩ , b2,m |m− 1⟩)T , where |n⟩ denotes nth-LL and
aα,m and bβ,m are complex coefficients with α ∈
{1, . . . , 4} and β ∈ {1, 2}. The LL indexm ∈ {0, . . . ,m∗}
where m∗ denotes its upper cut-off. For m = 0,
the non-zero coefficients are a3,0 = −iγℓ and b1,0 =√
2v∗, while for m = 1 they are a3,1 = 2v′2∗ − γ2ℓ2,

b1,1 = −2iγℓv∗ and b2,1 = 2
√
2v∗v

′
∗. For each m ≥ 2,

there are two zero modes whose non-zero coefficients
are a3,m =

√
2
√
m(m− 1)v′∗, a4,m = iγℓ

√
m+ 1,

b2,m =
√
2
√
m2 − 1v∗ and a3,m = −iγℓ

√
m− 1, a4,m =√

2
√
m(m+ 1)v′∗, b1,m =

√
2
√
m2 − 1v∗, respectively.

Including the anomalous zero-LL of the c-c coupling,

(0, 0, |0⟩, 0, 0, 0)T , we have a total of 2m∗ +1 zero modes
within the narrow bands.
These zero modes are well separated from the remote

subbands by a gap that limits to |γ| as B → 0. This
gap cannot close in the stated limit even if we relax
the above mentioned assumptions. The value of m∗ is
typically determined by requiring that the LL spectrum
converges in the energy range of interest. For us this
energy window includes the narrow bands and perhaps
several LLs from the remote bands. However, increasing
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m∗ results in an unbounded increase in the number of
LLs within the narrow band energy range as seen from
our exact result. In other words, since each LL contains
ϕ/ϕ0 states per moiré unit cell, the zero modes would
accommodate (2m∗ + 1)ϕ/ϕ0 states per moiré unit cell
for each spin and valley. But the total Chern number of
the narrow bands atB = 0 vanishes which means that the
zero modes should accommodate precisely two states per
moiré unit cell for each spin and valley independent of B
[61]. This demonstrates that the naive minimal coupling
is unable to account for the correct number of magnetic
subbands within the narrow bands for an arbitrary m∗.
In the next sections we introduce the framework for

systematically promoting THFM to non-zero B and
naturally solve the problem illustrated above. Our
approach also provides a deeper understanding of the
nature of the Hofstadter subbands. This framework is
also extended to include interactions at a mean-field
(MF) level. We do so by illustrating the Landau
quantization for the “one-shot” Hartree-Fock (HF)
bands obtained using the MF Hamiltonian for the
parent valley polarized (VP) state[37] at three different
integer fillings of the narrow bands.

Basis states at non-zero magnetic field: As
illustrated in the previous section, the naive minimal
coupling is inadequate. In order to develop a systematic
framework for THFM at non-zero B, we begin by
carefully constructing the basis states in the way that
takes into account the nature of the c and f fermions.
In addition, our construction takes advantage of the
magnetic translation symmetry of the underlying
Hamiltonian[62]. This not only helps us to label our
states using good quantum numbers but also allows us
to transparently keep track of the total number of states
at finite B.

We start by briefly reviewing the magnetic translation
symmetry. In the presence of an out-of-plane magnetic
field, employed via Landau gauge vector potential A =
(0, Bx, 0), the minimally coupled BM Hamiltonian[62],
Hτ

BM (p − e
cA), preserves the translational symmetry

with respect to the primitive moiré lattice vector L2 =
Lm(0, 1) but translation with respect to the primitive

moiré lattice vector L1 = Lm(
√
3
2 ,

1
2 ) needs to be

accompanied by a gauge transformation. In other words,
if f(r) is an eigenstate of Hτ

BM (p − e
cA), then so is

t̂L2f(r) = f(r−L2) and t̂L1f(r) = exp
(
iL1xy

ℓ2

)
f(r−L1)

with the same eigenvalue (also see supplementary note
1 for details). These operators do not commute as

t̂±L2
t̂L1

= exp
(
∓2πi ϕ

ϕ0

)
t̂L1 t̂±L2 , where the flux through

the moiré unit cell is ϕ = BL1xLm. However for
ϕ/ϕ0 = p/q, with p and q being relatively prime integers,
we have the commuting set of magnetic translation(MT)
operators [t̂qL2

, t̂L1 ] = 0, which we use to label our basis
states.

We can now proceed to construct the non-zero B basis
for f -fermions by utilizing MT. At B = 0 the basis for

fs is composed of two Wannier functions WR,bτ (r) =
W0,bτ (r − R) in each moiré unit cell which behave as
px± ipy orbitals sitting on the AA stacking sites spanned
by moiré triangular lattice vectorR. The highly localized
nature of these states and the trivial topology of their
bands allow us to construct a complete basis for the fs at
B ̸= 0 using the hybrid Wannier method [58, 64]. To this
end we first construct hybrid Wannier states (hWs) out
of W0,bτ (r) by a repeated application of the translation

operator t̂L2
(as seen in Eq.(3)). The hWs are Bloch

extended in the y direction, i.e. along L2, while localized
in the x direction with the localization center at the
origin. Note that A respects the translational symmetry
along y. Moreover, near the origin where A is small at
small B [64], hWs must have a large overlap with the
B ̸= 0 magnetic subbands that emanate out of B = 0
bands of fs i.e. the B ̸= 0 Hilbert space of f ’s that we
pursue. The rest of the basis is then generated similarly
by projecting the hWs onto irreducible representations
(irreps) of the magnetic translation group (MTG) as

ηbτk1k2
(r) =

1√
N

∑
s,n∈Z

e2πi(sk1+nk2)t̂sL1
t̂nL2

W0,bτ (r). (3)

Clearly, ηbτk1k2 is a simultaneous eigenstate of t̂L1 and
t̂qL2

with eigenvalues e−2πik1 and e−2πiqk2 , respectively.
Thus, k1,2 labels the momentum along the primitive
reciprocal lattice vectors g1,2, where g1 = 4π√

3Lm
(1, 0) and

g2 = 2π√
3Lm

(−1,
√
3). For the fs k1,2 ∈ [0, 1) i.e. there

are two fs per moire unit cell; the normalization factor
N = stotntot, where stot and ntot denote the total count
of s and n (see supplementary note 3 for details). The
states with different k1 and [k2]1/q are guaranteed to be
orthogonal which is apparent through their eigenvalues
under the MTs, where [b]a denotes b modulo a. In
supplementary note 3, we prove that the overlap between
states with k2 differing by integral multiples of 1/q is very
small i.e. to an excellent approximation, these states
are also orthogonal. This stems from the extremely well
localized nature of the B = 0 Wannier states.
In order to construct the non-zero B basis for c-

fermions, we recall that the B = 0 basis for the cs is
composed of four k · p Bloch states eik·rΨ̃Γaτ (r), where

Ψ̃Γaτ is the Bloch state at the Γ point in mBZ[37]. We

can extend the cs to non-zero B by multiplying Ψ̃Γaτ

by LL wavefunctions, a result obtained when the k · p
method is extended to B ̸= 0 [65]. So as to use the same
quantum numbers as for fs, we also project the c’s LL
wavefunctions Φm onto the (orthonormal) irreps of the
MTG as

χk1k2m(r) =
1√
ℓLm

1√
N
∑
s∈Z

e2πisk1 t̂sL1
Φm(r, k2g2). (4)

Again, χk1k2m is a simultaneous eigenstate of t̂L1
and

t̂qL2
with eigenvalues e−2πik1 and e−2πiqk2 , respectively.

Here k1 ∈ [0, 1), but unlike in Eq.(3), k2 ∈ [0, pq )

i.e. there are ϕ/ϕ0 = p/q states per moiré unit
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cell in each Landau level. (see supplementary note
3 for details on orthonormality and the domain of

k1(2)). Φj(r, k2g2) = e2πik2
y

Lm φj

(
x− k2

2πℓ2

Lm

)
, the

harmonic oscillator (h.o.) wavefunctions φm(x) =

e−x2/2ℓ2Hm(x/ℓ)/π
1
4

√
2mm! with Hermite polynomials

Hm. The k2 induced offset in the h.o. wavefunctions is
2πk2ℓ

2/Lm = qk2L1x/p. Although the LL wavefunction
Φm is an eigenstate of t̂±L2

, the function χk1k2m is
not. Instead, t̂±L2

χk1k2m(r) = e∓2πik2χ[k1∓ p
q ]1k2m(r).

We utilize this identity in the proceeding sections. (see
supplementary note 4B, Eq.s(92)-(94) for derivation).

Since the qL2 translations break up the k2 domain
into units of width 1

q , from here on we use the label

k = (k1, k2) with k1 ∈ [0, 1) and we fix k2 ∈ [0, 1q ).

The original k2 domains are then accessed using labels
r′ ∈ {0, . . . q − 1} and r ∈ {0, . . . , p − 1}, denoting the

magnetic strip [ r
′

q ,
r′+1
q ) and [ rq ,

r+1
q ) along g2 for η and

χ respectively. We thus relabel the states as ηbτkr′(r) and
χkrm(r), respectively. Having assembled the low energy
basis at B ̸= 0, we now expand the low energy field at a
given spin s and valley τ as

ψτ,s(r) =
∑

k∈[0,1)⊗[0, 1q )

(
2∑

b=1

q−1∑
r′=0

ηbτkr′(r)fbτkr′s+

4∑
a=1

ma,τ∑
m=0

p−1∑
r=0

Ψaτ (r)χkrm(r)caτkrms

)
, (5)

where Ψaτ (r) =
√
AtotΨ̃Γaτ (r) with Atot being the

total sample area, and fbτkr′s and caτkrms denote the
annihilation operators for the B ̸= 0 f and c basis
states, respectively. Anticipating the appearance of
anomalous Dirac LLs for the topological c fermions,
we allow for the a dependence of the upper cutoff on
the LL index at each valley τ , denoted by ma,τ above,
with m1,+1 = m2,−1 = m⋆ + 1, m2,+1 = m1,−1 = m⋆,
m3,+1 = m4,−1 = m⋆ + 2 and m4,+1 = m3,−1 = m⋆ − 1.
As discussed in supplementary note 3, the choice of
m⋆, although arbitrary, needs to be below an upper-
bound to ensure the orthogonality amidst the c-states
Ψaτ (r)χkrm(r). This is because it relies on the fact that
their overlaps are exponentially small in ℓ2g2 as long as
the LL index m is held below an upper cutoff m⋆ ≲ q/2,
where g is the reciprocal moiré lattice vector.

Non-interacting Hamiltonian at B ̸= 0: The
single particle THFM at B ̸= 0 can be computed using
the low energy fields derived in the previous section (Eq.
5)

ĤB
0 =

∑
τ,s

ˆ
d2rψ†

τ,s(r)H
τ
BM

(
p− e

c
A
)
ψτ,s(r)

≈
∑
τ,s

Hτ,s
cc +

∑
τ

(
Hτ,s

cf + h.c.
)
, (6)

where the f -f coupling is neglected in the last line

because it is negligibly small (this is also the case at
B = 0 in Eq.(1)). The c-c and c-f couplings are

Hτ,s
cc =

∑
k∈[0,1)⊗[0, 1q )

4∑
a,a′=1

ma,τ∑
m=0

ma′,τ∑
m′=0

p−1∑
r,r̃=0

h̃τ[amr],[a′m′r̃](k)c
†
aτkrmsca′τkr̃m′s, (7)

Hτ,s
cf =

∑
k∈[0,1)⊗[0, 1q )

4∑
a=1

2∑
b=1

ma,τ∑
m=0

p−1∑
r=0

q−1∑
r′=0

hτ[amr],[br′](k)

c†aτkrmsfbτkr′s. (8)

The matrix element for c-c coupling h̃τ[amr],[a′m′r̃](k) =

⟨Ψaτχkrm|Hτ
BM (p− e

cA)|Ψa′τχkr̄m′⟩ takes the same form
as obtained by the direct minimal substitution in c-
c coupling in Eq.(2) and expanding in LL basis, as is
expected from k · p[65]:

h̃τ[amr],[a′m′r̃](k) = δrr̃

(
02×2 hτ,cmm′

σxh
τ,c
mm′σx Mδmm′σx

)
aa′

,(9)

where the Pauli matrix σx acts on the c orbitals and

h+1,c
mm′ = i

√
2v∗
ℓ

(
−
√
m′δm+1,m′ 0

0
√
mδm,m′+1

)
(10)

with h−1,c
mm′ = −σxh+1,c

mm′σx. For M = 0, we recover the
LLs of two massless Dirac particles, with two zero LLs
at each valley (see supplementary note 4A for details of
derivation).
As discussed in the previous section, there are two

f -states per moiré unit cell per valley for each spin
projection. On the other hand, for each c-LL there are
p/q states per moiré unit cell per valley for each spin
projection. In order to understand the hybridization
between these states that, together with the c-c coupling,
gives rise to an isolated band of states whose total
number is independent of B –because its total Chern
number vanishes[61]– we need to carefully analyze the c-f
coupling. Although formidable at first sight, it is actually
possible to find an analytical expression for this matrix
element hτ[amr][br′](k) = ⟨Ψaτχkrm|Hτ

BM (p− e
cA)|ηbτkr′⟩

and thus determine the c-f coupling at non-zero B.
The Methods-A provides the key steps for the derivation
which we omit here for brevity. The result can be cast in
a closed form expression which for p = 1 and for ℓ ≫ λ
reads

hτ[am0],[br′](k) =

(
γΥm,r′(k)σ0 + hτ,cfm,r′(k)

02×2

)
ab

,(11)

with h+1,cf
m,r′ (k) =

i

√
2v′∗
ℓ

(
0

√
mΥm−1,r′(k)

−
√
m+ 1Υm+1,r′(k) 0

)
,(12)
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FIG. 2. The spin degenerate interacting heavy fermion
Hofstadter spectra (b) contrasted with zero field strong
coupling spectra (a) in flat band (M=0) limit at w0/w1 =
0.7 for both valleys at CNP. We fix m⋆ = ⌈ q−3

2
⌉. The

B = 0 energies at Γ, labelled using E± = ±U1
4

+

√
U2

1
16

+ γ2,
are recovered in B → 0 limit of our theory. The value
of parameters used are J = 18.27meV , U1 = 51.72meV ,
γ = −39.11meV , v′∗ = 1.624eV.Å, v∗ = −4.483eV.Å and
λ = 0.3792Lm. Following [37], twist angle θ = 1.05◦ in

this work and Lm = 134.218Å. We set k1,2 = 0, although
inconsequential as magnetic subbands are Landau levels in
this regime and thus do not disperse.

and h−1,cf
m,r′ (k) = −σxh+1,cf

m,r′ (k)σx, where σx acts in

orbital space of c and f fermions. The matrix Υm,r′(k)
is given as

Υm,r′(k) =

√
L1x

ℓ
eiπr

′
q(k2−2k1)eiπr

′
q(r

′
q−1) 1

2q

e
−2π2 λ2

L2
m

(
k2+

r′q
q

)2

Fm

(
λ, (r′q + qk2)L1x

)
, (13)

where r′q = sgn+
(
q
2 − r′

)
min[r′, q − r′] with sgn+(x)

being the usual sign function except at 0 where it
evaluates to 1, and

Fm(λ, x0) =
1

π
1
4

√
2mm!

√
ℓ2

ℓ2 + λ2
e
− x2

0
2(ℓ2+λ2)

×Hm

( −2x0ℓ

ℓ2 + λ2
,−1 +

2λ2

ℓ2 + λ2

)
. (14)

The two variable Hermite polynomials[66] are given by

Hm(x, y) = m!
∑⌊m

2 ⌋
k=0 (x

m−2kyk)/((m − 2k)!k!), where

FIG. 3. (a) THFM Hofstadter spectrum at valley k′ with
M = 3.248meV (i.e. including dispersion of the flat bands)
for m⋆ = ⌈ q−3

2
⌉ and w0/w1 = 0.7. (b) Strong coupling

projected BM Hofstadter spectrum (i.e. in the flat band limit)
at w0/w1 = 0.7 computed using the gauge-invariant basis of
magnetic translation group irreps (see supplementary note 12
for details). The spectra above are spin degenerate.

⌊m⌋ denotes the floor function at m. Their relation
to the Hermite polynomials used above is Hm(x) =
Hm(2x,−1).

Although we can significantly simplify the form of
ĤB

0 and gain a deeper analytical understanding of our
solution as we do in next section, one can already use
the above expressions to obtain the Hofstadter spectrum
for THFM numerically. Such numerical calculation
recovers the correct total number of states within the
narrow band energy window, i.e. 2 per moiré unit cell
per valley for each spin projection regardless of the value
of m⋆, thus solving the key challenge outlined earlier.
As illustrated in Fig.(1) for M = 0, these zero modes
are well separated from the remote bands by a gap that
limits to |γ| as B → 0. The results are qualitatively the
same for M ̸= 0 as shown in supplementary Fig.(10b)
except the zero modes split into a group of states with a
width set by 2|M | as expected. In the following sections,
we elucidate the nature of the Hofstadter subbands by
carefully casting the B ̸= 0 Hamiltonian in terms of
coupled and decoupled modes of f fermions. This not
only helps us to obtain an exact solution in the flat band
limit but also to understand the total Chern number via
straightforward analytical arguments.

Analytical results for the non-interacting
Hamiltonian at B ̸= 0: As mentioned, for M = 0 we
find two isolated zero modes per moiré unit cell per valley
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for each spin projection from numerical calculation. In
order to obtain these zero modes analytically, we start by
noting that the general form of our Hamiltonian at B ̸= 0
presented in the previous section immediately implies a
certain lower bound on their number. Within each valley
and for each spin projection, the Hamiltonian matrix at

a given k has the form

(
C F
F † 0

)
where C is a square

matrix of dimension 4m⋆ + 6 and F is a (4m⋆ + 6)× 2q
rectangular matrix; the last 2q × 2q block is filled with
zeros. This automatically guarantees a lower bound on
the number of zero modes equal to the difference in the
number of F ’s columns and rows, as is easily established
by considering the singular value decomposition (SVD)
of F (see e.g. Ref[67]). Moreover, as seen in the

Eq.(11), F has the form

(
F ′

0(2m⋆+3)×2q

)
where F ′ is

a (2m⋆ + 3) × 2q rectangular matrix. Therefore, half
of the singular values of F are guaranteed to vanish.
This implies that we can readily obtain a (larger) lower
bound of 2q − (2m⋆ + 3) zero modes. Physically, these
zero modes are just linear combinations of different fs
which decouple from cs. Clearly they do not account for
the total number of zero modes in the spectrum, i.e. 2q
at each k or two per moiré unit cell per valley for each
spin projection. As we go forth to show, the remaining
2m⋆ + 3 zero modes are contributed by the coupled
modes, which at M ̸= 0 get split into a group of states
with a width of 2|M | accounting for the bandwidth of
magnetic subbands within the narrow bands. Below we
build a framework for analyzing them.

To that end, we define new fermion fields f̄ by the
canonical transformation

f̄bτkr̄s =

q−1∑
r′=0

Vr̄r′fbτkr′s, (15)

where the unitary matrix V is defined via the SVD of

matrix Υmr′ =
∑maτ

m′=0

∑q−1
r̄=0 Umm′Σm′r̄Vr̄r′ . Here U is a

unitary matrix of dimensions (ma,τ +1)× (ma,τ +1) and
Σ is a rectangular matrix of dimensions (ma,τ + 1) × q
containing the singular values of the matrix Υ along the
main diagonal and zeros elsewhere, i.e. Σmr = Σmδmr.
Moreover, using the closed form expression for Υ stated
in the previous section, we find that the matrix U above
is extremely close to an identity matrix at low B (see
supplementary note 5 for details). Substituting the SVD
in Eq.(11) and using U = I, we find that 2q−(2mmax+3)
of the f̄ modes decouple from the c’s for each valley, spin
and k. For example at τ = +1, the modes in Eq.(15)
that decouple from the cs are the ones with r̄ > m⋆ +
1 and r̄ > m⋆ for f̄11kr̄s and f̄21kr̄s, respectively (see
supplementary note 6 and 7 for details at τ = +1 and
τ = −1, respectively). We thus recover the 2q−(2m⋆+3)
zero modes contributed by the decoupled fs as discussed
earlier.

For the remaining coupled modes, we note that the
sum of the c-c and c-f couplings in Eqs.(7) and (8) at
τ = +1 can be rewritten in the f̄ basis as

H+1,s
cc +

(
H+1,s

cf + h.c.
)
=

∑
k

6∑
α,α′=1

mα∑
m=0

mα′∑
m′=0

⟨m|ĥ+1,s
α,α′ |m′⟩d†msα(k)dm′sα′(k),

(16)

where mα=1,...,4 = mα,+1, m5 = m⋆ + 1 and m6 = m⋆,

d†msα(k) =
(
c†11k0ms, c

†
21k0ms, c

†
31k0ms, c

†
41k0ms,

f̄†11kms, f̄
†
21kms

)
α
. (17)

The operator ĥ+1,s
α,α′ is defined as

ĥ+1,s
α,α′ =



0 0 −i
√
2 v∗

ℓ â 0 γΣ(â†â) i
√
2
v′
∗
ℓ â

†Σ(â†â)

0 0 0 i
√
2 v∗

ℓ â
† −i

√
2
v′
∗
ℓ âΣ(â

†â) γΣ(â†â)

i
√
2 v∗

ℓ â
† 0 0 M 0 0

0 −i
√
2 v∗

ℓ â M 0 0 0

γΣ(â†â) i
√
2
v′
∗
ℓ Σ(â

†â)â† 0 0 0 0

−i
√
2
v′
∗
ℓ Σ(â

†â)â γΣ(â†â) 0 0 0 0


α,α′

. (18)

Here â is a simple h.o. lowering operator with eigenstate
|m⟩ and Σ(m) = Σm. In the B → 0 limit, up to
the first order in flux, the singular values of Υ can be

approximated as Σ(m) ≈ 1 −
(
m+ 1

2

)
λ2

ℓ2 . We note in
passing that we do not have to rely on this approximation
and can find the full closed form expression for Σ(m) as
shown in the Eq.(28).

A naive minimal substitution into Eq.(1) with λ =
0 would reproduce Eq.(18) with unit singular values.
However, the decoupling of 2 − (2m⋆ + 3)/q modes per
moiré unit cell per spin in each valley is completely
overlooked by the naive minimal substitution. This is
the reason why it fails to recover the correct count of
subbands within the narrow bands as noted earlier.
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While the decoupled f̄ modes account for 2q−(2m⋆+3)
zero modes, the remaining 2m⋆+3 zero modes of the flat
band limit (i.e. M = 0) originate from the zero modes of
the operator (18). This can be readily verified via exact
solutions, the first of which is a pure c-mode

θ1 = [0, 0, |0⟩ , 0, 0, 0]T . (19)

The above can be interpreted as the anomalous zero-LL
of a massless Dirac particle coming from the c-c coupling.
The remaining spectrum can be solved using the ansätze:

θ3 =
[
c
(3)
1 |0⟩ , 0, c(3)3 |1⟩ , 0, c(3)5 |0⟩ , 0

]T
, (20)

θ5 =
[
c
(5)
1 |1⟩ , c(5)2 |0⟩ , c(5)3 |2⟩ , 0, c(5)5 |1⟩ , c(5)6 |0⟩

]T
,(21)

θ6m =
[
c
(6m)
1 |m⟩ , c(6m)

2 |m− 1⟩ , c(6m)
3 |m+ 1⟩ ,

c
(6m)
4 |m− 2⟩ , c(6m)

5 |m⟩ , c(6m)
6 |m− 1⟩

]T
, (22)

where m ∈ {2, . . . ,m⋆ + 1}. c
(µ)
α denotes the complex

coefficient of the corresponding h.o state at index α,
and µ labels the ansatz index θµ (with a slight abuse of
notation we have µ = 6 for ansätze in Eq.(22) ∀m). Using
the above, we can set up the eigen-equation for each θµ,
which yields a corresponding decoupled µ× µ Hermitian

matrix with eigenvectors c
(µ)
α (see supplementary note 6

for details).
The anomalous c-mode θ1 offers one zero mode. The

hermitian matrices obtained using ansätze θ3 and θ5
offer one zero mode each. The non-zero coefficients
of these modes are c

(3)
3 = −iΣ0γℓ, c

(3)
5 =

√
2v∗ and

c
(5)
3 = Σ0Σ1(2v

′2
∗ − γ2ℓ2), c

(5)
5 = −2iΣ0γℓv∗, c

(5)
6 =

2
√
2v∗v

′
∗Σ1, respectively. The hermitian matrix obtained

using the ansatz θ6m is bipartite and offers two zero
modes ∀m. The non-zero coefficients for these zero
modes are c

(6m)
3 =

√
2
√
m(m− 1)v′∗Σm−1, c

(6m)
4 =

iγℓ
√
m+ 1Σm−1, c

(6m)
6 =

√
2
√
m2 − 1v∗ and c

(6m)
3 =

−iγℓ
√
m− 1Σm, c

(6m)
4 =

√
2
√
m(m+ 1)v′∗Σm, c

(6m)
5 =√

2
√
m2 − 1v∗, respectively. The coupled modes thus

offer a total of 2m⋆ + 3 zero modes. Including the
2q − (2m⋆ + 3) of the decoupled f modes, at each k
we recover sum total of 2q zero modes in the non-
interacting case for each valley, independent of m⋆. This
gives the total of 2 states per moiré unit cell per spin
independent of B, i.e. the total Chern number 0. Note
that the magnetic subbands within the narrow band
window remain separated by a gap from the remote
subbands for B ̸= 0 because the remote bands emanate
out ofB → 0 energy eigenvalues±γ obtained using above
ansätze, as shown in Fig.(1).

The analysis can straightforwardly be extended
to include interactions using appropriate mean field
parameters. In the next sections we illustrate it by
discussing the strong coupling Hofstadter spectra at
three integer fillings of the narrow bands.

Electron-electron interactions at integer fillings
of narrow bands at B ̸= 0: To understand the
effect of interactions on single-particle Hofstadter
spectra discussed above, we extend our formalism
to illustrate the Landau quantization for “one-shot”
Hatree-Fock (HF) bands obtained using the mean-field
(MF) Hamiltonian for a parent valley polarized (VP)
state. The VP state at B = 0 is given by a product of
valley polarized f̃ -multiplets and the Fermi sea (|FS⟩) of
half-filled c̃-electron bands [37]. The narrow band filling
factor ν then determines the number of f -electrons to
be filled per moiré unit cell above |FS⟩. The U(4)-flavor
of the f -electrons to be filled is further dictated by the
U(4) Hund’s rule discussed in [37]. Below, we start
with the B ̸= 0 solution for single particle charge ±1
excitation at the charge neutrality point (CNP).
ν= 0: At CNP, the MF interactions for the parent VP
state with τ = +1 valley occupied by the f -electrons
with respect to the spinor in Eq.(17) are taken to be [37]

V +1,s,ν=0
α,α′ =

 0 0 0
0 −J

2 σ0 0
0 0 −U1

2 σ0


α,α′

. (23)

Within this approximation we continue using the B =
0 MF parameters J and U1 obtained for the parent
VP state in Ref[37]. The MF parameter U1 is the
largest energy scale of the THFM as it corresponds
to the strong onsite Coulomb repulsion amidst the
localized Wannier states of the f -fermions. The MF
parameter J corresponds to the energy associated with
the ferromagnetic exchange interaction between the U(4)
moments of f and c fermions with a = {3, 4}.
The decoupled f modes in the valley τ = +1 now

move to energy −U1/2, while the spectrum of the coupled
modes in the same valley can be obtained by solving the

eigenvalues of the operator ĥ+1,s+V +1,s,ν=0, where ĥ+1,s

is defined in Eq.(18). The spectrum for sector τ = −1
of the MF Hamitonian is the particle-hole symmetric
partner of the spectrum for τ = +1[37]. Thus for a
given valley quantum number τ , the 2q − (2m⋆ + 3)
decoupled f -modes now move to the energy −τU1/2
forming the lower and upper bounds on the strong
coupling energy window for narrow bands as shown in
the Fig.(2b). In order to understand the mode counting
within the narrow band strong coupling energy window,
we first discuss the solutions in the flat band limit
M = 0 which can be obtained using ansätze presented
in Eq.(19)-Eq.(22). The anomalous c-mode θ1 in Eq.(19)
forms the B independent level at −J/2 as shown in the
Fig.(2b). Using the remaining ansätze θµ, we can set up
corresponding µ×µ hermitian matrices with eigenvectors
cµα. The three hermitian matrices in total offer 2m⋆ + 2
modes within the strong coupling narrow band energy
window. This can be understood by noting that these
modes emanate out of the 2m⋆+2 fold degenerate B → 0
energy eigenvalue −J/2 of the above hermitian matrices.
Using the fact that Σm → 1 and ℓ−1 → 0 as B → 0,
it can be readily verified that the non-zero coefficients
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for these B → 0 2m⋆ + 2 degenerate modes at τ = +1

are c
(3)
3 = 1 for θ3, c

(5)
3 = 1 for θ5, c

(6m)
3 = 1 for θ6m

and c
(6m)
4 = 1 for θ6m . Note that in this limit, we have

three extra modes of a = 3 than the a = 4 c-fermion.
Similarly at τ = −1, we will have three extra modes
of a = 4 than the a = 3 c-fermion in the B → 0
limit. This can be understood as a direct consequence
of a winding number three at Γ, reported in [29]. We
present an effective Hamiltonian of these modes in the
next paragraph. By the particle-hole symmetry[37], we
similarly have 2m⋆ + 3 modes emanating out of +J/2
for τ = −1 (see supplementary note 7A for details).
Including the 2q − (2m⋆ + 3) decoupled fs at energy
−τU1/2, we have a total of 2q magnetic subbands within
the narrow band strong coupling window±(J/2 to U1/2),
i.e. 2 states per moiré unit cell per valley per spin. The
remote magnetic subbands on the other hand emanate

out of the B → 0 energies −τ U1

4 ±
√

U2
1

16 + γ2, marked by

±E∓τ in Fig.(2b). Note that all the B → 0 energies
mentioned above correspond to the zero field THFM
energies at Γ ∈ mBZ at CNP, illustrated in Fig.(2a).
The lowest energy single particle excitations at the

CNP at B = 0 reside at the Γ point, as can be seen in
Fig.(2a). The Landau quantization of these bands can be
better understood through a simple effective Hamiltonian
obtained by systematically projecting onto the subspace
spanned by a = {3, 4} c-fermions. It qualitatively
describes the modes emanating from energy eigenvalues
−τJ/2. Including both valleys, the effective Hamiltonian

for each spin projection is Heff =

(
Hτ=1

eff 0

0 Hτ=−1
eff

)
,

where

Hτ=1
eff =

(
−J

2 − ℏωcâ
†â i Aℓ3 â

†3

h.c. −J
2 − ℏωcââ

†

)
, (24)

and Hτ=−1
eff can be obtained by replacing â ↔ â† and

changing the overall sign of ωc, A and J in Hτ=1
eff . Also

h.c. in Eq.(24) represents hermitian conjugate. The
values of coefficient A and effective cyclotron frequency
ωc ∼ ℓ−2 are provided in the Methods-C. In the B → 0
limit we can drop the off-diagonal terms in Hτ

eff because

they are O
(
ℓ−3
)
. For each spin, the anomalous modes

(|0⟩, 0)T and (0, |0⟩)T at τ = +1 and −1 respectively,
are singly degenerate at energy −τJ/2. All other modes
are doubly degenerate (for each spin). The energies of
these pairs are −τ(J/2 + nℏωc) where n = 1, 2, 3, . . ..
Including the spin degeneracy, this would result in a LL
filling sequence of 0,±2,±6,±10, . . . in the asymptotic
B → 0 limit. As B increases, however, the off-diagonal
terms grow and cause the splitting of these pairs. For
example, the splitting of the first pair, i.e. with n = 1, is
visible at ϕ/ϕ0 ∼ 0.025 (∼ 0.63Tesla) in the Fig.(2b).
Moreover, the B field required for the splitting of a
given pair with an index n decreases with increasing
n because each action of the â is accompanied by a
square root of the LL index making the off-diagonal terms

comparable with the diagonal terms at a lower B. If
we compare the Fig.(2b) with the Hofstadter spectrum
of the BM model in the strong coupling limit at CNP
presented in Fig.(3b), we see a qualitative agreement in
the nature of the LL spectra for low B. Note that the
latter is computed by neglecting the band kinetic energy
and using the gauge invariant formalism introduced in
the Ref.[59] without any recourse to the heavy fermion
model. For example, in the vicinity of ϕ/ϕ0 = 0.025
we can see that the anomalous mode is followed by
a nearly degenerate pair of LLs, an isolated LL, and
another two nearly degenerate LLs in both Figs.(2b) and
(3b). Through the effective model analysis presented
above we understand that these features appear due to
the splitting of asymptotic B → 0 degeneracy of non-
anomalous modes by the O

(
ℓ−3
)
terms as B increases.

The splitting amidst the first pair of LLs (after the
anomalous mode) appears to grow faster with increasing
B in Fig.(3b) compared to that in Fig.(2b). Thus
although the LL sequence at CNP from both approaches
is ‘0,±2,±4’, the LL gap at ±4 is significantly smaller
in the M = 0 THFM compared to that in the strong
coupling Hofstadter spectrum of BM model when ϕ/ϕ0
reaches 0.1 (i.e. 2.5Tesla). Interestingly, the LL filling
sequence ‘0,±2,±4’ at CNP was also reported in the
experiment of Ref.[43], on an MATBG device with a non-
vanishing gap at the CNP atB = 0. We come back to the
experimental comparison at ν = ±2 in the later section.

For M ̸= 0, the numerically determined strong
coupling Hofstadter spectrum for τ = −1, is shown in
Fig.(3a) (see supplementary note 7A for details). As
we can see, the lowest mode stays decoupled from the
rest of the spectrum. The effect of finite M can be
included by adding M

(
1− Mc

ℓ2 (2â†â+ 1)
)
σxζ0 to Heff .

The Pauli matrices σx and ζ0 act in the a = {3, 4} c-
orbital and valley space, respectively. The value of the
coefficientMc is provided in Methods-C. For non-zeroM
the double degeneracy of LLs which we saw at M = 0
is lifted even in the B → 0 limit. This results in a LL
sequence 0,±2,±4, . . . for the parent VP state at CNP
for a general B.

In the case of parent Kramers intervalley coherent
state (KIVC), the effect of finite M is included by

adding −M
(
1− M ′

c

ℓ2 (2â†â+ 1)
)
σzζx to Heff . The

coefficient M ′
c is presented in the Methods-C. The LLs

emanate out of the energy ±
√
J2/4 +M2 and are

singly degenerate for each spin projection for a general
B. Similar to the flat band limit (M = 0), the non-
anomalous LLs occur in nearly degenerate pairs in the
asymptotic B → 0 limit (see supplementary Fig.(14b)).
These pairs of LLs split in energy with increasing B.
The splitting amidst the first pair of LLs (after the
anomalous mode) is much weaker compared to other
pairs (see supplementary Fig.(11b)). Thus, although the
resulting LL sequence is ‘0,±2,±4’, the LL filling gap
±4 is much smaller compared to that for 0,±2 similar
to the M = 0 case discussed earlier. More details for
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KIVC can be found in supplementary notes 9A and 10A2.

ν= ±1: In this section, we discuss the Landau
quantization of the single particle excitation spectra
at the narrow band filling factor of ν = −1 (ν = +1
is related by particle-hole symmetry). Fig.(4) shows
the B = 0 spectrum and the Hofstadter spectra. We
will show that all features of the spectrum can be
analytically understood within the formalism, as well as
through simple effective models. As in the case of CNP,
we continue to use the B = 0 MF interactions for our
analysis. The considered MF interactions are computed
with respect to a partially spin- and completely valley-
polarized parent state. For this state, the valley-spin
flavor K ↑ for both b = 1, 2 (px ± ipy) f -fermions and
K ↓ for b = 1 f -fermion is occupied (at each unit cell)
above the Fermi sea |FS⟩ of half filled c-fermion bands
(See also supplementary Eq.(S320) in Ref[37]).

For the sector valley K spin ↓, the charge ±1
excitations occupy Chern ∓1 bands, which are separated
from each other by a sizable gap: the Chern −1 and
+1 bands, marked in red, can be seen in the energy
windows −(30, 50) meV and −(55, 100) meV of Fig(4a),
respectively. Below, we elucidate how our formalism
captures the fact that the Chern +(−)1 bands gain(lose)
states in presence of magnetic field B, as they must to
follow the Streda formula[61]. The MF interactions at
sector K ↓ for the coupled modes with respect to the

spinor in Eq.(17) read [37] V +1,↓,ν=−1
α,α′ =

−

 W1σ0 0 0
0 W3σ0 +

J
2 σz 0

0 0 (U1 + 6U2)σ0 +
U1

2 σz


α,α′

.(25)

The MF parameter Wa∈{1,3} corresponds to the energy
associated with the Coulomb repulsion between the c and
f fermions, while U2 corresponds to the energy associated
with the next nearest neighbor Coulomb interaction of
the f fermions. The decoupled f -modes, i.e. the f̄11kr↓
modes with r ∈ {m⋆ + 2, . . . , q − 1} and f̄21kr̄↓ modes
with r̄ ∈ {m⋆ + 1, . . . , q − 1}, are now at energies
−( 3U1

2 + 6U2) = −93.5 meV and −(U1

2 + 6U2) = −41.8
meV, respectively. The spectrum for the coupled modes
can be obtained by solving the eigenvalues of the operator

ĥ+1,↓ + V +1,↓,ν=−1, where ĥ+1,s and V +1,↓,ν=−1 are
defined in Eqs.(18) and (25) respectively. For M = 0,
the spectrum is exactly solvable. The anomalous c-mode
in Eq.(19) is an exact eigenstate which forms the B
independent level at −(W3 + J

2 ) = −58.46 meV. The
remaining spectrum can be solved using the ansätze θ3,
θ5 and θ6m , presented in Eqs.(20)-Eq.(22). The mode
count can be understood as follows

1. The spectrum for coupled modes includes m⋆ + 2
magnetic subbands emanating out of B → 0 energy
eigenvalue −(W3 + J

2 ). The non-zero coefficients

for these B → 0 eigenvectors are c
(3)
3 = 1 for θ3,

c
(5)
3 = 1 for θ5 and c

(6m)
3 = 1 for θ6m . Including

the anomalous c-mode in Eq.(19), we have m⋆ + 3
modes emanating out of −(W3 + J

2 ). Moreover,
accounting the q − (m⋆ + 2) decoupled f modes
at energy −( 3U1

2 − 6U2), we have a total of q + 1
magnetic subbands within the energy window of
−(55 to 100)meV. Recall that the isolated Chern
+1 band resides in this same energy window at
B = 0. We thus see that q + 1 magnetic subbands
emerge from the Landau quantization of the Chern
+1 band.

2. The spectrum for coupled modes includes m⋆ + 2
magnetic subbands emanating out of B → 0 energy
eigenvalue −(W3 − J

2 ) = −40.19 meV. The non-
zero coefficients for these B → 0 eigenvectors are

c
(6m)
3 = 1 for θ6m . Including the q − (m⋆ + 1)

decoupled f modes at energy −(U1

2 − 6U2), we
have in total q − 1 magnetic subbands in the
energy window of −(30 to 50) meV. Recall that the
isolated Chern -1 band resides in this same energy
window at B = 0. We thus see that q− 1 magnetic
subbands emerge from the Landau quantization of
the Chern -1 band.

Through the above mode count analysis, we see that the
Chern ±1 bands Landau quantize into q ± 1 magnetic
subbands. Our formalism thus clearly shows that the
total number of states per moiré unit cell for the Chern
±1 bands changes with magnetic field as 1± 1

q = 1± ϕ
ϕ0
,

as expected[61]. The mode count analysis for remaining
MF valley-spin sectors, namely valley k spin ↑ and k′

spin ↑↓ (degenerate) can be found in supplementary note
6C,7B. The Hofstadter spectrum for each MF sector at
ν = −1 is shown in Fig.(4-b,c,d) for M = 0.
To better understand the Landau quantization of the

dispersive (light mass) single particle excitations at ν =
−1, i.e. in vicinity of Γ, below we present an effective
model analysis similar to that at CNP. As can be seen in
Fig.(4d) the sectors K′ ↑↓ contribute magnetic subbands
in the energy window -(30, 50)meV; adding a particle into
any one of these subbands would move the filling towards
CNP. Because we wish to focus on light mass excitations
which move the filling away from CNP, we focus on the
sectors K ↑ and K ↓. The effective Hamiltonian at the
sector K ↓ takes the form

Hν=−1,K↓
eff =

(
−W3 − J

2 − ℏω̄câ
†â i Āℓ3 â

†3

h.c. −W3 +
J
2 − ℏω̃cââ

†

)
+M

(
1− M̄c

ℓ2
ââ† − M̃c

ℓ2
â†â

)
σx (26)

where Pauli matrix acts in the orbital space of the
a = {3, 4} c-fermions. The coefficients Ā, M̄c, M̃c and
cyclotron frequencies ω̃c ∼ ℓ−2, ω̄c ∼ ℓ−2 are provided
in the Methods-C. The magnetic subbands of interest
(the ones emerging from the Landau quantization of the
light mass excitations) emanate out of the energy −W3−
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FIG. 4. Interacting heavy fermion Hofstadter spectra for
sector (b) Valley k spin ↓, (c)Valley k spin ↑ and (d)Valley k′

spin ↑↓(degenerate) contrasted with (a) zero field spectrum
at filling ν = −1 at w0/w1 = 0.7, with parameters W1 =
44.05meV , W3 = 49.33meV , U2 = 2.656meV in the flat band
limit M = 0 with m⋆ = ⌈ q−3

2
⌉. The color on panel-(a) labels

the spin and valley sector (k ↓, k ↑ and k′ ↑↓), while color
labelling for panels-(b,c,d) denotes the f-character. The y-
axis in panels (a) and (b) are aligned.

√
J2

4 +M2 = −59.03 meV, and are singly degenerate for

a general B.
The effective Hamiltonian at sector K ↑ takes the same

form as in Eq.(24). It can be obtained by replacing
−J

2 , ωc and A by −(W3 + J
2 ), ω̄c and Ā′, respectively

in Eq.(24). The effect of M is included by adding

M
(
1− M̄ ′

c

ℓ2 (2â†â+ 1)
)
σx to the above obtained effective

Hamiltonian. The coefficients Ā′ and M̄ ′
c are provided in

the Methods-C. The LLs emerge out of energies −(W3 +
J/2)+M = −55.22 meV and −(W3+J/2)−M = −61.71

meV, and are singly degenerate for a general B.

In the B → 0 limit, we can drop the off-diagonal
O
(
ℓ−3
)
term in both of the above effective Hamiltonians.

Further taking the flat band limit M = 0, we find that
LL energies take the form −(W3 + J

2 + nℏω̄c), with
n ∈ {0, 1, 2, . . .}. The B independent anomalous mode
(n = 0) is doubly degenerate as it is part of the spectrum
at both sectors. The remaining modes (n > 0) are triply
degenerate each: singly degenerate at sector K ↓ and
doubly degenerate at sector K ↑. This results in the LL
sequence of +1,−1,−4,−7, . . . for M = 0 in asymptotic
B → 0 limit. The +1 gap in the sequence appears due
to the Chern number +1 of the occupied band at sector
K ↓ at B = 0.

Relaxing the B → 0 limit above, i.e. including the
O
(
ℓ−3
)
terms in the above effective Hamiltonians (still

M = 0), we see that the LL energies change to: Em, E↓
n

and Em, E↑±
n at sectors K ↓ and K ↑, respectively. Here

m ∈ {0, 1, 2}, n ∈ {0, 1, 2, . . .}, Em = −W3−J/2−mℏω̄c,

E↓
n = −W3 − 3ℏω̄c/2 − fn −

√
u2n + vnĀ2 and

E↑±
n = −(W3+J/2)−ℏω̄c(n+2)±

√
ℏ2ω̄2

c + vnĀ′2. The
coefficients fn = nℏ(ω̄c + ω̃c)/2, un = J/2 + 3ℏω̄c/2 +
nℏ(ω̄c − ω̃c)/2 and vn = (n + 1)(n + 2)(n + 3)/ℓ6.
Thus apart from the doubly degenerate levels at Em,
all others levels are singly degenerate. Since the

LL energies are in the order : E0 > E↑,+
0 > E1 >

E↑,+
1 > E2 > E↑,+

3 > . . ., the resulting LL sequence
is +1,−1,−2,−4,−5,−7,−8,−9, . . .. The LL gap at
‘−2’ is the smallest in this sequence, at least up to
ϕ/ϕ0 ∼ 0.1. Upon relaxing the flat band limit, i.e. for
M ̸= 0, all the above LL degeneracies get lifted. This
results in LL sequence +1, 0,−1, . . . for a general B,
with LL gaps at +1,−1 being the most dominant.

ν = = ±2: In this section, we discuss the Landau
quantization of the single particle excitation spectra at
the narrow band filling factor of ν = −2 (ν = +2 is
related by particle-hole symmetry). Fig.(5) shows the
B = 0 spectrum and its continuation in field. As before,
we will also derive the dominant LL sequence using
an effective model that is simple enough for analytical
solutions while capturing the low-energy features. As
in the previous sections, we continue to use the B = 0
MF interactions for our analysis. The considered MF
interactions are computed with respect to a spin and
valley polarized parent state, for which the valley-spin
flavor K ↑ for both b = 1, 2 (px ± ipy) f -fermions are
occupied (at each unit cell) above the Fermi sea |FS⟩
of half filled c-fermion bands (See also supplementary
Eq.(S333) in Ref[37]).

Below we discuss the valley sector K of the resulting
MF Hamiltonian, for both spin s =↑ and ↓. The single
particle charge +1 excitations occupy the red band in
energy window −(89.5 to 109.5) meV of the Fig.(5a),
which is part of the spectrum at sector K↓. On the other
hand, the single particle charge−1 excitations occupy the
dispersive blue band in energy window −(107.8 to 161.2)
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meV of the Fig.(5a), which is part of the spectrum at
sector K↑. The MF interactions for spin s, with respect
to the spinor in Eq.(17) reads [37] V +1,s,ν=−2

α,α′ =

−2

 W1σ0 0 0
0

(
W3 + ζs

J
4

)
σ0 0

0 0
(

4+ζs
4 U1 + 6U2

)
σ0


α,α′

,(27)

where ζs = (+) − 1 for s =(↑) ↓. For the spin s,
the 2q − (2m⋆ + 3) decoupled f modes are at energy

−
(

4+ζs
2 U1 + 12U2

)
, i.e. (−161.17)−109.45 meV for

s =(↑) ↓. The spectrum for the coupled modes can
be obtained by solving the eigenvalues of the operator

ĥ+1,s + V +1,s,ν=−2, where ĥ+1,s and V +1,s,ν=−2 are
defined in Eqs.(18) and (27) respectively. In the flat
band limit M = 0, the spectrum for coupled modes
is exactly solvable. The anomalous c-mode in Eq.(19)
is an exact eigenstate which forms the B independent
level at −(2W3 + ζs

J
2 ), i.e. (−107.79)−89.52 meV for

s =(↑) ↓. The remaining spectrum can be solved
using the ansätze θ3, θ5 and θ6m , presented in Eqs.(20)-
Eq.(22). The spectrum of coupled modes include
2m⋆ + 2 magnetic subbands emanating out of the B →
0 energy eigenvalue −(2W3 + ζs

J
2 ). The non-zero

coefficients for the corresponding B → 0 eigenvectors

are c
(3)
3 = 1 for θ3, c

(5)
3 = 1 for θ5, c

(6m)
3 = 1

for θ6m and c
(6m)
4 = 1 for θ6m . We thus have a

total of 2m⋆ + 3 magnetic subbands emanating out of
B → 0 energy −(2W3 + ζs

J
2 ). Including the 2q −

(2m⋆ + 3) decoupled f modes at −
(

4+ζs
2 U1 + 12U2

)
,

we have a total of 2q magnetic subbands in the

energy window
(
−(2W3 + ζs

J
2 ) to − ( 4+ζs

2 U1 + 12U2)
)
,

i.e. −(89.52 to 109.45) meV and −(107.79 to 161.17)
meV for s=↓ and ↑, respectively. Recall that the red
(↓) and blue (↑) bands discussed earlier reside in the
same energy window at B = 0. We thus have a total
of 2q magnetic subbands emerging from the Landau
quantization of single particle charge ±1 excitation bands
at valley sector K, i.e. two states per moiré unit cell for
each. The discussion for sector K′ ↓↑ can be found in
supplementary note 7C.

To better understand the Landau quantization of
the dispersive (light mass) single particle excitations
at ν = −2, i.e. in vicinity of Γ, below we present
an effective model analysis similar to that in previous
sections. As can be seen in the Fig.(5c), the sector K↓
contributes to magnetic subbands in the energy window
−(89.52 to 109.49) meV; adding a particle into any one
of these subbands would move the filling towards CNP.
Same is true for the magnetic subbands contributed by
sectors K′ ↑↓, as can be seen in the supplementary
Fig.(9). Because we wish to focus on light mass
excitations which move the filling away from CNP, we
focus only on the sector K↑.
The effective Hamiltonian at sector K↑ takes the

same form as in Eq.(24). It can be obtained by

FIG. 5. Interacting heavy fermion Hofstadter spectra for
sectors (b) valley k spin (↑) and (c) valley k spin (↓)
contrasted with the (a) zero-field spectrum at filling ν = −2 at
w0/w1 = 0.7 in the flat band limit M = 0 with m⋆ = ⌈ q−3

2
⌉.

The color on panel-(a) labels the spin sector (↑, ↓) at valleyK,
while color labelling for panels-(b,c) denotes the f-character.

replacing −J
2 , ωc and A by −(2W3 +

J
2 ), ω

(↑)
c and A(↑),

respectively in Eq.(24). The effect of M is included by

addingM
(
1− M(↑)

c

ℓ2 (2â†â+ 1)
)
σx to the above obtained

effective Hamiltonian. The coefficients ω
(↑)
c , A(↑) and

M
(↑)
c are provided in the Methods-C. The LLs emanate

out of the energy −(2W3 + J/2) ± M and are singly
degenerate for a general B. In the B → 0 limit, we can
drop the off-diagonal O

(
ℓ−3
)
terms in the above effective

Hamiltonian. Further setting M = 0, we see that the

LL energies take the form −(2W3 + J
2 + nℏω(↑)

c ), with
n ∈ {0, 1, 2 . . .}. Similar to CNP, except the anomalous
mode (n = 0) at energy −(2W3 + J

2 ), every remaining
mode (n > 0) is doubly degenerate. This results in the
LL sequence −1,−3,−5, . . . for M = 0 in the asymptotic
B → 0 limit. This asymptotic degeneracy of the non-
anomalous modes is lifted as B increases, as is seen
when O

(
ℓ−3
)
terms are included. Relaxing the flat band

limit (M ̸= 0) lifts the double degeneracy of the non-
anomalous modes even in the asymptotic B → 0 limit.
Thus forM ̸= 0, we have the LL sequence −1,−2,−3, . . .
for a general B. Contrary to ν = 0, the LL sequence
obtained at ν = −2 differs from the LL filling sequence
‘−2,−4,−6’ reported in the experiment of Ref.[43] at
ν = −2 by the appearance of the sizable gap at −1.
Studying the origin of this difference will be a subject of
future work.

III. DISCUSSION

We have put forward a generalization of THFM in
finite B. Although the formalism applies to any rational
value of ϕ

ϕ0
, the physical nature of hybridization amidst

the heavy f and topological c fermions is particularly
revealing for the 1

q sequence. The finite B analytical
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solution in the flat band limit provides an intuitive
picture of the mechanism for Landau quantization of the
strong coupling spectra of MATBG at integer fillings in
terms of the decoupled f modes and coupled c-f modes,
all the way to zero magnetic field. It also provides a
deeper understanding of the nature of the ±J

2 level at
CNP, observed in numerics before[58], as the anomalous
zero-LL of a massless Dirac particle, a key ingredient
of the topological heavy fermion picture of MATBG.
Although the number of the decoupled f−modes per
unit cell per spin at CNP is dependent on the LL index
upper cutoff, the total number of states in the narrow
band strong coupling window remains pinned to 2 per
unit cell per spin, independent of the upper cutoff, as
expected for a total Chern number 0. Even though
the full M ̸= 0 problem requires numerical analysis, we
are able to probe till fluxes at least as low as 1/700,
which was not possible through the the framework of
strong coupling expansion. We moreover argue that
the overall physical nature of the subbands should stay
unchanged, as M anyways is the smallest energy scale

in the problem. Although we present the Landau
quantization of one-shot HF bands in order to outline the
theoretical procedure, in practice one can use the same
methodology to Landau quantize the self-consistent HF
bands. We argue that it would not drastically alter any
of the interacting Hofstadter spectrum features because
the one-shot states are adiabatically connected to the
self-consistent states, owing to almost identical band
structure features as the self-consistent state at every ν
discussed [37]. Throughout the text we neglected the
spin Zeeman effect as it leads to a much smaller energy
splitting than the orbital effect, the former is only a few
Kelvin at the highest fields considered here while the
latter is several meV, so at least an order of magnitude
larger. The effect of renormalization of mean field
parameters in magnetic field and heterostrain is yet to be
incorporated in our framework. A full analysis for other
integer fillings, translation symmetry broken candidate
ground states and Hofstadter-scale fluxes where reentrant
many-body and topological effects are at play [54, 68–70],
is also left for the future work.
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IV. METHODS

A. Evaluation of the c-f matrix elements at B ̸= 0.

Because ηbτkr′(r) is constructed using repeated
action of MT operators on the Wannier state W0,bτ (r)
as defined in Eq.(3), and because the MT operators
commute with Hτ

BM (p − e
cA), we can reorder them so

that Hτ
BM (p − e

cA) acts directly on W0,bτ (r). Since
Hτ

BM (p− e
cA) is linear in p− e

cA, the vector potential A
now acts on the well localized state W0,bτ (r) centered at
the origin where A vanishes. Therefore, even though A
is large at large x, we can safely neglect its contribution
at low B (confirmed numerically in supplementary
note 4C). Moreover, since Ψ†

aτ (r) is a Bloch state at
Γ, it is invariant under the action of the moiré lattice
translation operators. The c-f coupling hτ[amr],[br′](k)

at low B thus reduces to calculating the integral´
d2r

(
t̂−n
L2
t̂−s
L1
χkrm(r)

)†
Ψ†

aτ (r)H
τ
BM (p)W0,bτ (r),

summed over all integer values of s and n and weighted

by the factor of e2πi(sk1+n(k2+r′/q))/
√
N as follows

from the Eq.(3). The factor Ψ†
aτ (r)H

τ
BM (p)W0,bτ (r)

involves the Hamiltonian as well as the c and f
wavefunctions strictly at B = 0. Its Fourier transform
was calculated in Ref.[37] and sets the c-f coupling

at B = 0 in momentum space, e−
1
2k

2λ2

Hcf,τ (k),
appearing in the Eq.(1). Therefore, inverse Fourier
transforming it gives Ψ†

aτ (r)H
τ
BM (p)W0,bτ (r) =

√
AucH

cf,τ (−i∇r)e
− r2

2λ2 /(2πλ2). The factor
t̂−n
L2
t̂−s
L1
χkrm(r) can be computed by noting that

χkrm(r) is an eigenstate of t̂L1
and t̂−n

L2
χkrm(r) =

e2πin(k2+r/q)χ[k1+n p
q ]1k2m(r). Finally substituting the

explicit expression of χ[k1+n p
q ]1k2m(r) using Eq.(4)

reduces hτ[amr],[br′](k) to sum over integrals of a 2D

gaussian, a plane wave factor along y, and shifted 1D
h.o. wavefunctions along x. We thus have a standard
gaussian integral in y, while the x-integral over the
gaussian and and shifted 1D h.o. wavefunctions can be
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evaluated using results in Ref.[66], (see supplementary
note 4B for details).

It is particularly revealing to analyze the case
p = 1, i.e. the ϕ/ϕ0 = 1/q sequence. Since r ranges
from 0 to p − 1, the 1/q sequence is tantamount to
setting r = 0 in hτ[amr][br′]. Based on the results

from the above discussion, after performing the
summation over n, we find that hτ[am0],[br′](k) reduces

to
´
d2r

(
t̂r

′+jq
L1

Φm(r, k2g2)
)∗
Hcf,τ

ab (−i∇r) e
− r2

2λ2 ,

summed over all integer values of j and weighted by the
factor e−2πi(r′+jq)k1

√
L1x/ℓ/(2πλ

2). For a = b = 1, this
integral can be visualized as an overlap between a 2D
localized heavy state with size λ sitting at the origin
and a 1D h.o. shifted in the x-direction with a plane
wave phase variation in the y-direction that depends on
the shift (see supplementary Fig.(2)). To understand
for what choice of m, r′, j is this integral significant,
note that the h.o. wavefunction is localized in the x
direction about (r′ + jq + k2q)L1x, and its width is
∼ 2

√
2m+ 1

√
q unit cells. In addition, the combination

r′

q + j + k2 controls the period of oscillation in the

y-direction set by 1/( r
′

q + j+ k2) times the unit cell size.

The integer r′+jq thus determines the unit cell to which
the h.o. is shifted, and, because k22πℓ

2/Lm = k2qL1x,
the value of k2q ∈ [0, 1) fine-tunes the shift within
the unit cell. The index j then determines q-unit-cell
periodic revival of the h.o. states, also illustrated in
supplementary Fig.(2). Consider the case r′ = j = 0.
The h.o. is centered at the unit cell containing the
localized heavy state and the period of oscillations
in the y-direction is long compared to the unit cell,
encompassing at least q unit cells. The hybridization
with the localized heavy state proportional to γ is thus
significant. The spatial extent of the h.o. state in
the x-direction is ∼ 2

√
2m+ 1

√
q unit cells, which at

low B is much longer than the localized heavy state.
Thus unless m is close to m⋆ ≲ q/2, even though the
h.o. state oscillates and has m-nodes, the result of the
integration will be approximately given by the value
of the h.o. wavefunction at −k2qL1x, up to an overall
phase. If we keep j = 0 but increase r′ to 1 then the
h.o. is centered at the unit cell adjacent to the one
containing the localized heavy state and the period of
oscillations in the y-direction is still long, between q/2
and q unit cells. The hybridization with the localized
heavy state proportional to γ will still be significant and
the result of the integration will still be approximately
given by the value of the h.o. wavefunction but now
at −(1 + k2q)L1x, up to an overall phase. However
for values of r′ past ∼

√
2m+ 1

√
q, regardless of the

value of qk2, the contribution from the revival copy
j = 0 gets exponentially suppressed, due to the large
off-set with the 2D localized state. So for values of
r′ > q/2, it is the j = −1 revival copy of the h.o.
states which gives the dominant contribution. We
thus neglect all other values of j and only consider the

contribution from h.o. state centered at the unit cell
r′ + jq → sgn+

(
q
2 − r′

)
min[r′, q − r′], where sgn+(x) is

the usual sign function except at 0 where it evaluates to
1. The Fm appearing in the compact expression of c-f
hybridization in Eq.(13) comes from the x-integral, i.e.
overlap of the 2D heavy localized state with harmonic
oscillator wavefunction φm. In the limit λ → 0, the
2D heavy localized state becomes the Dirac δ-function,
and we recover Fm(λ → 0, x0) = φm(−x0) as expected.
We found that keeping the full form of Fm is needed
in order to achieve accurate results even for the low
B range, therefore we do not take this limit when
handling Fm(see also Fig.(4) in supplementary note 5).
The exponential suppression factor multiplying Fm in
Eq.(13) comes from the y-integral; its dependence on r′q
is weaker than Fm, which comes from the x-integral.
The derivatives appearing in case of the matrix

elements hτ[1(2)m0],[2(1)r′], act on the localized heavy

function to change its spatial symmetry from s to px,y-
like. Moreover an integration by parts and expressing
the derivatives via h.o. raising and lowering operators
allows us to relate these cases to the analysis without
derivatives(see supplementary notes 4B2, 4B3 and 4C for
details).

B. Closed form expression for the singular values
of Υ appearing in Eq.18

The fact that U is very close to an identity matrix
allows us to obtain an analytical expression for Σ(m),
which reads

Σ(m) =

(
1√
ξ(κ)

1

2mm!
Hmm

(
0,

κ6

ξ(κ)
; 0,

κ6

ξ(κ)
| 2

ξ(κ)

)) 1
2

,(28)

where κ2 = λ2

ℓ2 = ( ϕ
ϕ0
)2πλ2/(L1xLm), ξ(κ) = (1 + κ2 +

κ4)(1 + κ2) and

Hmn (x, y;w, z|β) =
min(m,n)∑

k=0

m!n!βk

(n− k)!(m− k)!k!
Hm−k(x, y)Hn−k(w, z).

(29)

Further details of the derivation can be found in
supplementary note 5.

C. Effective Hamiltonian Coefficients

The coefficients appearing in the effective Hamiltonian
at CNP in flat band limit presented in Eq.(24) are

ℓ2ℏωc = 4.00 × 105meV Å2 and A = 4.27 × 107 meV Å3.
The coefficient appearing in the mass term for VP and
KIVC states at CNP are Mc = 1.28 × 104Å2 and M ′

c =

2.09 × 104Å2, respectively. The coefficients appearing
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in the effective Hamiltonian given in Eq.(26) are ℓ2ℏω̄c =

6.92×105meV Å2, ℓ2ℏω̃c = 4.22×104meV Å2 , Ā = 6.69×
107 meV Å3, M̄c = 1.54× 104Å2 and M̃c = 2.54× 104Å2.
The coefficients appearing in the effective Hamiltonian
for sector K ↑ at ν = −1 are Ā′ = 6.11 × 107meV Å3

and M̄ ′
c = 1.34 × 104Å2. The coefficients appearing in

the effective Hamiltonian for sector K ↑ at ν = −2 are

ℓ2ℏω(↑)
c = 8.31 × 105meV Å2, A(↑) = 5.79 × 107meV Å3

and M
(↑)
c = 1.32×104Å2. The derivation of the effective

Hamiltonians and full expressions for the coefficients can
be found in supplementary note 10A, 10B and 10C.

ACKNOWLEDGMENTS

The authors thank Xiaoyu Wang and Zhi-da Song
for valuable conversations, and to Dumitru Călugăru
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Supplementary note 1. BISTRITZER-MACDONALD MODEL

The Bistritzer-Macdonald (BM) model of magic-angle twisted bilayer graphene[62] in the valley K(τ = +1) is

HK
BM (p) =

(
vFσ · p T (r)eiq1·r

e−iq1·rT †(r) vFσ · (p+ ℏq1)

)
, (1)

where σ acts in sublattice space and p = 0 denotes the moiré Dirac point KM . The interlayer hopping functions are

T (r) =

3∑
j=1

Tje
−iq1·r, (2)

where q1 = kθ(0,−1), q2,3 = kθ(±
√
3
2 ,

1
2 ), kθ = 8π

3a0
sin θ

2 = 4π
3Lm

, a0 ≈ 0.246nm, Lm = a0

2 sin θ/2 is moiré period.

θ = 1.05◦ in this work.

Tj+1 = w0I2 + w1

(
cos

(
2π

3
j

)
σx + sin

(
2π

3
j

)
σy

)
(3)

where In is the n × n unit matrix. We will present results for the case w0/w1 = 0.7. The BM model is invariant

under translation by integer multiples of moiré lattice vectors L1 = Lm(
√
3
2 ,

1
2 ) and L2 = Lm(0, 1). Thus if f(r) is an

eigenstate, then so is

T̂L1,2
f(r) = f(r− L1,2) (4)

where T̂L1,2
are the usual discrete translation operators.

Supplementary note 2. MAGNETIC TRANSLATION OPERATORS

At B ̸= 0 in the Landau gauge A = (0, Bx), the BM model in flux is found via minimally substitution:
HK

BM

(
p− e

cA
)
= HK

BM

(
px, py − eB

c x
)
. The finite B BM model at K′(τ = −1) can be obtained similarly by applying

time reversal to Eq.(1) followed by the minimal substitution. However at B ̸= 0, Hτ
BM is still invariant under the

translation by L2, but a translation by L1 needs to be accompanied by a gauge transformation as

ei
eB
ℏc L1xyHτ

BM

(
px, py −

eB

c
x+

eB

c
L1x

)
e−i eB

ℏc L1xy = Hτ
BM

(
px, py −

eB

c
x

)
. (5)

In other words if f̃(r) is an eigenstate of Hτ
BM

(
px, py − eB

c x
)
, then so is

f̃(r) → t̂L1 f̃(r) = ei
eB
ℏc L1xy f̃(r− L1) (6)

Thus t̂L1
= ei

eB
ℏc L1xyT̂L1

is the generator of magnetic translation by L1. Note that t̂L1
can alternatively be presented

as

t̂L1
= eiqϕ·rT̂L1

(7)

where the magnetic translation wavevector qϕ is defined as

qϕ =
ϕ

ϕ0

(
1

2
g1 + g2

)
(8)

where g1,2 are corresponding reciprocal lattice vectors to L1,2 and are given as: g1 = 4π√
3Lm

(1, 0) and g2 =

4π√
3Lm

(− 1
2 ,

√
3
2 ). Hence

t̂L1
= e2πi

ϕ
ϕ0

y
L2 T̂L1

, (9)
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where L2 =| L2 |= Lm. Magnetic translation by L2 are generated by t̂L2
f̃(r) = f̃(r− L2). We thus have

t̂L2
t̂L1

f̃(r) = ei
eB
ℏc L1x(y−L2)f̃(r− L1 − L2) (10)

t̂L1 t̂L2 f̃(r) = ei
eB
ℏc L1xy f̃(r− L1 − L2) (11)

⇒ t̂L2 t̂L1 = e−2πi ϕ
ϕ0 t̂L1 t̂L2 (12)

where ϕ0 = hc
e and the flux through the unit cell is ϕ = BL1xL2. If ϕ/ϕ0 = p/q, with p and q relatively prime

integers, [
t̂qL2

, t̂L1

]
= 0 (13)

and [
t̂L1,2 , H

τ
BM

(
px, py −

eB

c
x

)]
= 0. (14)

The simultaneous eigenstates of the magnetic translation operators t̂L1
and t̂qL2

can thus be used to produce a complete
and orthonormal set of basis states for solving the B ̸= 0 BM model. As we will see below, depending on whether
they are conduction or heavy fermions there will be p states or q states per momentum point. It will be helpful to
derive an identity for t̂sL1

which relates it to T̂ s
L1
.

A. Landau gauge magnetic translation group identities

Using Eq.(9), we have

t̂sL1
=
(
e2πi

ϕ
ϕ0

y
L2 T̂L1

)s
=
(
e2πi

ϕ
ϕ0

y
L2 T̂L1

)
. . .
(
e2πi

ϕ
ϕ0

y
L2 T̂L1

)(
e2πi

ϕ
ϕ0

y
L2 T̂L1

)(
e2πi

ϕ
ϕ0

y
L2 T̂L1

)(
e2πi

ϕ
ϕ0

y
L2 T̂L1

)
(15)

=
(
e2πi

ϕ
ϕ0

y
L2 T̂L1

)
. . .
(
e2πi

ϕ
ϕ0

y
L2 T̂L1

)(
e2πi

ϕ
ϕ0

y
L2 T̂L1

)(
e2πi

ϕ
ϕ0

2y−L1y
L2 T̂ 2

L1

)
(16)

=
(
e2πi

ϕ
ϕ0

y
L2 T̂L1

)
. . .
(
e2πi

ϕ
ϕ0

y
L2 T̂L1

)(
e2πi

ϕ
ϕ0

3y−2L1y−L1y
L2 T̂ 3

L1

)
(17)

=
(
e2πi

ϕ
ϕ0

y
L2 T̂L1

)
. . .
(
e2πi

ϕ
ϕ0

y
L2 T̂L1

)(
e2πi

ϕ
ϕ0

4y−3L1y−2L1y−L1y
L2 T̂ 4

L1

)
. (18)

Now, 1 + 2 + 3 + . . .+ (s− 1) = 1
2s(s− 1). Therefore,

t̂sL1
= e−πis(s−1) p

q

L1y
L2 e2πis

p
q

y
L2 T̂ s

L1
(19)

where ϕ/ϕ0 = p/q. Although the above formula was derived for positive s, it also holds for negative s. This can be
seen by noting that (

e−πis(s−1) ϕ
ϕ0

L1y
L2 ei

eB
ℏc sL1xyT̂ s

L1

)(
eπis(−s−1) ϕ

ϕ0

L1y
L2 e−i eB

ℏc sL1xyT̂−s
L1

)
= 1. (20)

So, t̂−1
L1

denotes the inverse of t̂L1
, and t̂−s

L1
=
(
t̂−1
L1

)s
.

Supplementary note 3. FINITE B BASIS FOR THE c AND f FERMIONS

The B = 0 basis for f fermions is constituted by two AA-stacking localised Wannier states per valley per spin [37].
We denote them as W0,bτ (r), for b ∈ {1, 2} and τ = ±1. Using the recently introduced method [64], we can construct
the finite B basis by first building hybrid Wannier states out of the zero field Wannier states followed by projection
onto a representation of magnetic translation group(MTG). For given spin, the hybrid Wannier states read

wbτ (r, k2g2) =
∑
n∈Z

eik2g2·(nL2)t̂nL2
W0,bτ (r) =

∑
n∈Z

e2πik2nW0,bτ (r− nL2). (21)
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where k2 ∈ [0, 1). These hybrid Wannier states although localized along the x direction are Bloch-like extended in
the y direction and thus eigenstates of t̂L2

t̂L2wbτ (r, k2g2) = wbτ (r− L2, k2g2) = e−2πik2wbτ (r, k2g2). (22)

We next construct normalized eigenstates of MTG out of the hybrid Wannier states as

ηbτk1k2(r) =
1√
N
∑
s∈Z

e2πisk1
(
t̂sL1

wbτ (r, k2g2)
)
, (23)

where k1 ∈ [0, 1) and normalization N = ntotstot. Here stot and ntot denote the total count of s and n. Note that
although these summations should be unbounded, we require these cutoffs for defining the normalization of our states
and intermediate steps. They eventually cancel in the final formulas are are not physical. The normalisation is justified
in Eqs.(27)-(29). The domains of k1,2 can be understood via noting that ηbτk1k2

is periodic under k1,2 → k1,2 + 1.

Under magnetic translations t̂L1 and t̂qL2
, we then have

t̂L1
ηbτk1k2

= e−2πik1ηbτk1k2
(24)

t̂qL2
ηbτk1k2 = e−2πiqk2ηbτk1k2 . (25)

Thus states with k2 that differ by 1/q have the same eigenvalue under t̂qL2
. This is because the qL2 translations break

up the k2 domains into units of width 1/q. To make it apparent from the quantum numbers, we relabel the states as

ηbτkr′(r) = ηbτk1k2+
r′
q
(r) , k = (k1, k2) ∈ [0, 1)⊗ [0, 1/q) , r′ = 0, 1 . . . q − 1. (26)

Thus ηbτkr′(r) with different k quantum numbers are guaranteed to be orthogonal. Moreover we have q states for
given k, corresponding to r′ ∈ {0 . . . q − 1} for each b ∈ {1, 2}, i.e. a total of 2q heavy fermion states for given k. For
same k and different r′ the overlaps for given valley are

ˆ
d2rη∗bτkr′1(r)ηb

′τkr′2
(r) =

1

N
∑

s1s2∈Z

∑
n1n2∈Z

e2πi(s2−s1)k1e−2πi(k2+
r′1
q )n1e2πi(k2+

r′2
q )n2eπis1(s1−1) p

q

L1y
L2 e−πis2(s2−1) p

q

L1y
L2

×
ˆ
d2re2πi(s2−s1)

p
q

y
L2W ∗

0bτ (r− s1L1 − n1L2)W0b′τ (r− s2L1 − n2L2). (27)

Now since the B = 0 Wannier states are well localised and orthonormal, we have
ˆ
d2re2πi(s2−s1)

p
q

y
L2W ∗

0bτ (r− s1L1 − n1L2)W0b′τ (r− s2L1 − n2L2) ≈ δbb′δs1s2δn1n2
(28)

and thus,
ˆ
d2rη∗bτkr′1(r)ηb

′τkr′2
(r) ≈ δbb′

1

N
∑
s1∈Z

∑
n1∈Z

e2πi
r′2−r′1

q n1 = δr′1r′2δbb′
stotntot

N = δr′1r′2δbb′ . (29)

Henceforth we have a complete orthonormal basis for the heavy fermions in finite B, constituted by 2q states for given
k, i.e. 2 states per moiré unit cell per valley per spin, which clearly implies that these are total Chern 0 states.

Now let us discuss the basis for c fermions. Remember that at B = 0, the basis for c fermions is constituted by four
k ·p Bloch states at the Γ point in the moiré Brillouin Zone(mBZ), per valley per spin. We denote them by Ψ̃Γaτ for
a ∈ {1 . . . 4} and τ = ±1.

We promote the B = 0 c fermion basis to finite B using a result obtained when the k · p method is extended to
finite B[65], which prescribes the ansatz for finite field k · p states to be Landau level(LL) coefficients on top of the
zero field k · p states. Henceforth, we define the finite B basis for k · p Bloch states as an expansion over product of
LLs and the B = 0 k · p Bloch states at the Γ point in mBZ. However in order to use the same quantum numbers
label as finite B f fermion basis we first project the Landau gauge LL onto the representation of MTG as

χk1k2m(r) =
1√
ℓL2

1√
N
∑
s∈Z

e2πisk1

(
t̂sL1

e2πik2
y
L2 φm

(
x− k2

2πℓ2

L2

))
(30)
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where k1 ∈ [0, 1) and unlike before, k2 ∈ [0, p/q) as justified in Eqs.(33)-(36). The functions φm are mth 1D harmonic
oscillator states that determine the Landau gauge Landau levels

φm(x) =
1

π
1
4

1√
2mm!

e−x2/2ℓ2Hm(x/ℓ) (31)

where Hm is the Hermite polynomial and ℓ2 = ℏc/(eB). The normalization of the LL MTG states is explained in
Eqs.(43)-(48). The domains for the quantum numbers k1,2 can be understood by noting that χk1k2m is periodic under
k1 → k1 + 1 and up to a phase under k2 → k2 + p/q as shown below

χk1k2+
p
qm

=
1√
ℓL2

1√
N
∑
s∈Z

e2πisk1

(
t̂sL1

e2πi(k2+
p
q )

y
L2 φm

(
x− (k2 +

p

q
)
2πℓ2

L2

))
, (32)

now using the fact, 2πℓ2

L2

p
q = L1x we have

χk1k2+
p
qm

=
1√
ℓL2

1√
N
∑
s∈Z

e2πisk1

(
t̂sL1

e2πi(k2+
p
q )

y
L2 φm

(
x− L1x − k2

2πℓ2

L2

))
(33)

= e2πik2
L1y
L2

1√
ℓL2

1√
N
∑
s∈Z

e2πisk1

(
t̂sL1

e2πi
p
q

y
L2 T̂L1

(
e2πik2

y
L2 φm

(
x− k2

2πℓ2

L2

)))
(34)

= e2πik2
L1y
L2

1√
ℓL2

1√
N
∑
s∈Z

e2πisk1

(
t̂s+1
L1

e2πik2
y
L2 φm

(
x− k2

2πℓ2

L2

))
(35)

= e
−2πi

(
k1−k2

L1y
L2

)
χk1k2m (36)

The domain for k2 can also be understood in the context of the fact that χk1k2m are essentially LLs and thus behave
as Chern number +1 states in B ̸= 0. In order to illustrate it, let us discuss the total number of available states for
χk1k2m. We start by noting that under magnetic translations t̂L1

and t̂qL2

t̂L1χk1k2m = e−2πik1χk1k2m, (37)

t̂qL2
χk1k2m = e−2πiqk2χk1k2m. (38)

If we have a system size N1L1 and qN2L2, then

t̂N1

L1
χk1k2m = χk1k2m (39)

⇒ e−2πik1N1 = 1; ⇒ k1 = 0,
1

N1
,
2

N1
, . . . , 1− 1

N1
(40)

Similarly,

t̂qN2

L2
χk1k2m = χk1k2m (41)

⇒ e−2πik2qN2 = 1; ⇒ k2 = 0,
1

qN2
,

2

qN2
, . . . ,

p

q
− 1

qN2
(42)

So, the total number of states is N1
p
q qN2 = Φ

Φ0
N1qN2 = Φ

Φ0
N1qN2

L1xL2

Auc
= Φ

Φ0

Atot

Auc
= B

Φ0
Atot = Φtot

Φ0
. Here

Auc = ẑ · (L1 × L2) denotes the area of moiré unit cell. Thus qAuc is the area of magnetic unit cell and total
area Atot = N1N2qAuc. This is a well known result for the degeneracy of the Landau level. Let us now discuss the
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orthonormalization for the LL MTG eigenstates. The overlaps amidst the MTG LL are given as:

ˆ
d2rχ∗

k1k2m(r)χk′
1k

′
2m

′(r) = (43)

1

ℓL2N
∑
s∈Z

∑
s′∈Z

e
−2πis

(
k1−(k2− p

q )
L1y
L2

)
eiπs(s+1) p

q

L1y
L2 e

2πis′
(
k′
1−(k

′
2−

p
q )

L1y
L2

)
e−iπs′(s′+1) p

q

L1y
L2

ˆ
dye−iy(s p

q+k2) 2π
L2 eiy(s

′ p
q+k′

2) 2π
L2

ˆ
dxφm

(
x−

(
s
p

q
+ k2

)
2π

L2
ℓ2
)
φm′

(
x−

(
s′
p

q
+ k′2

)
2π

L2
ℓ2
)

(44)

=
1

ℓL2N
∑
s∈Z

∑
s′∈Z

e
−2πis

(
k1−(k2− p

q )
L1y
L2

)
eiπs(s+1) p

q

L1y
L2 e

2πis′
(
k′
1−(k

′
2−

p
q )

L1y
L2

)
e−iπs′(s′+1) p

q

L1y
L2

ntotL2δs,s′δk2,k′
2
ℓδm,m′ (45)

=
1

L2N
∑
s∈Z

e2πis(k1−k′
1)ntotL2δk2,k′

2
δm,m′ (46)

=
1

L2N
stotδk1,k′

1
ntotL2δk2,k′

2
δm,m′ (47)

= δk1,k′
1
δk2,k′

2
δm,m′ . (48)

where in Eq.(44)-(45), we have used the fact that y-integral implies k2 − k′2 = (s′ − s)pq . Now since k2, k
′
2 ∈ [0, pq ), the

integral evaluates to ntotL2δk2,k′
2
δs,s′ . Moreover each harmonic oscillator function in the x-integral can be shifted by

the same amount since the arguments coincide. Therefore the x-integral evaluates to ℓδmm′ . Eventually in Eq.(46)-
(47), the s summation implies k1 − k′1 = integer. But since k1, k

′
1 ∈ [0, 1), we must have k1 = k′1 and the summation

evaluates to stotδk1,k′
1
. Therefore χ’s are orthogonal and normalized. To have the same quantum number label as

that of B ̸= 0 f fermion states, we relabel the MTG LLs as

χkrm(r) = χk1k2+
r
qm

(r) , k = (k1, k2) ∈ [0, 1)⊗ [0, 1/q) , r = 0, 1 . . . p− 1. (49)

Thus for given k, we have p states, corresponding to r ∈ {0 . . . p− 1}, i.e. p
q states per moiré unit cell per valley per

spin as expected. Finally we have the finite B c fermion basis states as Ψaτχkrm, where

Ψaτ =
√
NAucΨ̃Γaτ (50)

with N being the total number of moiré unit cells. The
√
NAuc factor is required due to normalization of χ. Note

that since Ψaτ is a Bloch state at Γ,

T̂Li
Ψaτ (r) = Ψaτ (r) (51)

=⇒ t̂Li
(Ψaτ (r)χkrm) (r) = Ψaτ t̂Li

χkrm(r), (52)

where i ∈ {1, 2}. Thus Ψaτχkrm are MTG eigenstates with same eigenvalue as that of χkrm. Now let us discuss
the orthonormalization for these states. Since in this work we focus on 1

q sequence, for the following discussion on

orthonormality we set index r in χkrm to zero and work with χk0m. The Bloch periodicity for ΨΓaτ (r) allows us to
expand it as

ΨΓaτ (r) =
1√
NAuc

∑
G

eiG·rCaτG, (53)

where G = n1g1 + n2g2, n1,2 ∈ Z, denote moiré reciprocal lattice vectors and

CaτG =
1√
NAuc

ˆ
d2re−iG·rΨ̃Γaτ (r) (54)

can be found in [38]. Now using Eq.(50), the overlap matrix can be given as

O
(q,mmax)
[m′,a′][m,a] =

ˆ
d2r (Ψa′τχk′0m′)

∗
Ψaτχk0m =

∑
G1,G2

C∗
a′τG1

CaτG2

ˆ
d2rei(G2−G1)·rχ∗

k′0m′χk0m, (55)
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Supplementary Figure 1. Figures showing the diagonal values of Overlap matrix O
(q,mmax)

[m′,a′][m,a] and frobenius norm of O(q,mmax)−
Immax ∀ mmax = 0 . . . q− 1 at w0/w1 = 0.8 for (a,b) q = 30, (c,d) q = 50, (e,f) q = 60 and (g,h) q = 70 respectively. For higher
values of q, the value of mmax for which diagonal values start deviating from 1 have been (i) plotted using •.

where 1/q is the flux per unit cell per flux quantum Φ0 and mmax denotes the upper cutoff on the indices m and m′.
The integral can be computed as:

ˆ
d2reig·rχ∗

k′0m′(r)χk0m(r) (56)

=
1

ℓL2N
∑

s,s′∈Z
e2πi(k1s−k′

1s
′)

ˆ
d2r(e2πik

′
2

y
L2 φm′(x− k′2

2πℓ2

L2
))∗t−s′

L1
eig·rtsL1

(e2πik2
y
L2 φm(x− k2

2πℓ2

L2
))

= δk1,k′
1

stot
ℓL2N

∑
s∈Z

e2πisk1

ˆ
d2r(e2πik

′
2

y
L2 φm′(x− k′2

2πℓ2

L2
))∗eig·rtsL1

(e2πik2
y
L2 φm(x− k2

2πℓ2

L2
))

= δk1,k′
1

∑
s∈Z

δ
k2+

s
q ,k

′
2−

L2gy
2π

e2πis(k1− k2
2 )e−iπs(s−1) 1

2q
1

ℓ

ˆ
dxφm′(x− k′2

2πℓ2

L2
)eigxxφm(x− (k2 +

s

q
)
2πℓ2

L2
)

The delta function constraint implies

δ
k2+

s
q ,k

′
2−

L2gy
2π

= δk2,k′
2
δs,−qg2 , (57)

where g2 = gy
L2

2π ∈ Z. Note that getting δk1(2),k1′(2′) from the overlap is a direct consequence of Eqs.(37)-(38) for 1
q

sequence. The above integral can be evaluated as



25

=
1

ℓ

ˆ
dxφm′(x− k2

2πℓ2

L2
)eigxxφm(x− (k2 − g2)

2πℓ2

L2
) (58)

=
1

ℓ
eigxk2

2πℓ2

L2

ˆ
dxφm′(x)eigxxφm(x+ g2

2πℓ2

L2
)

=
1

ℓ
eigxk2

2πℓ2

L2

ˆ
dxφm′(x)eigxxeigyℓ

2pxφm(x)

=
1

ℓ
eigxk2

2πℓ2

L2 e−
i
2 gxgyℓ

2

ˆ
dxφm′(x)ec+a†+c−aφm(x)

= eigxk2
2πℓ2

L2 e−
i
2 gxgyℓ

2 ⟨m′| ec+a†+c−a |m⟩ ,

where px is momentum operator along x direction later changed to harmonic oscillator(h.o.) basis: x = ℓ√
2
(a+ a†),

and px = i√
2ℓ
(a† − a). The h.o. kets are defined as ⟨m | x⟩ = 1√

ℓ
φm(x), such that ⟨m | n⟩ = δm,n. Eventually we use

the BCH formula, eXeY = eX+Y+ 1
2 [X,Y ]+... , and

c± =
iℓ√
2
(gx ± igy). (59)

We also know the identity

⟨m′| ec+a†+c−a |m⟩ =

e
1
2 c+c−

√
m!
n! (c+)

n−mLn−m
m (−c+c−) for n ≥ m,

e
1
2 c+c−

√
n!
m! (c−)

m−nLm−n
n (−c+c−) for n < m,

(60)

where Lm−n
n (x) is the associated Laguerre polynomial,

Lm
N (x) =

N∑
k=0

(N +m)!

(N − k)!(m+ k)!k!
(−x)k. (61)

As shown in Eq.(60), the overlaps are exponentially small in (c+c−), i.e. (gℓ)
2, and thus negligible. However, beyond

an upper-bound on m, the orthonormality begins to fail. Supplementary Fig.(1-a)-(1-h) show that the diagonal values
of overlap matrix in Eq.(55) start deviating from 1 beyond some upper-bound on m exactly when the Frobenius
norm of O − I, with I being identity matrix of dimension same as that of O, starts deviating from 0. Thus the
deviation of diagonal values from 1 is a good indicative of the breaking up of orthonormality. In this work we choose
mmax = ⌈ q−3

2 ⌉, which is well below the upper-bound as shown in Supplementary Fig.(1-i).

Supplementary note 4. COMPUTATION OF MATRIX ELEMENTS

A. c-c Coupling

The c− c coupling is given as

Hτ
cc =

∑
k∈[0,1)⊗[0, 1q )

4∑
a,a′=1

ma,τ∑
m=0

ma′,τ∑
m′=0

p−1∑
r,r̃=0

h̃τ[amr],[a′m′r̃](k)c
†
aτkrmca′τkr̃m′ , (62)

where

h̃τ[amr],[a′m′r′](k1, k2) =

ˆ
d2rΨ∗

aτ (r)χ
∗
krm(r)Hτ

BM

(
px, py −

eB

c
x

)
Ψa′τ (r)χkr′m′(r). (63)

Since the BM Hamiltonian is linear in p− e
cA, we can write it as

Hτ
BM

(
p− e

c
A
)
= Mτ

µ

(
pµ − e

c
Aµ(r)

)
+ T τ (r) (64)
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where M+1
µ = vF I2 ⊗ σ, M−1

µ = −vF I2 ⊗ σ̄ with σ = (σx, σy) and σ̄ = (σx,−σy). T τ denotes the remaining factors
in BM Hamiltonian. So,

Hτ
BM

(
p− e

c
A
)
Ψa′τ (r)χkr′m′(r) = Mτ

µ

(
pµ − e

c
Aµ(r)

)
Ψa′(r)χk1,k2+

r′
q ,m′(r) + T τ (r)Ψa′τ (r)χkr′m′(r) (65)

=
(
Mτ

µpµΨa′τ (r) + T τ (r)Ψa′τ (r)
)
χkr′m′(r) +Mτ

µΨa′τ (r)
((
pµ − e

c
Aµ(r)

)
χkr′m′(r)

)
(66)

= ετa′′a′Ψa′′τ (r)χkr′m′(r) +Mτ
µΨa′τ (r)

(
pµ − e

c
Aµ(r)

)
χkrm′(r), (67)

where the matrix ετ is given in Eq.(76) is k independent because Ψaτ is defined at Γ. So,

h̃τ[amr],[a′m′r′](k1, k2) =

ˆ
d2rΨ∗

aτ (r)ε
τ
a′′a′Ψa′′τ (r)χ

∗
krm(r)χkr′m′(r) (68)

+

ˆ
d2rΨ∗

aτ (r)Mτ
µΨa′τ (r)χ

∗
krm(r)

(
pµ − e

c
Aµ(r)

)
χkr′m′(r) (69)

Since the factors ετa′′a′Ψ∗
aτ (r)Ψa′′τ (r) and Ψ∗

aτ (r)Mτ
µΨa′τ (r) are periodic with respect to primitive moiré lattice vectors

L1 and L2, we can perform a Fourier expansion as

ετa′′a′Ψ∗
aτ (r)Ψa′′τ (r) = ετa′′a′

∑
g

eig·r
(

1

Atot

ˆ
d2r′e−ig·r′Ψ∗

aτ (r
′)Ψa′′τ (r

′)

)
(70)

Ψ∗
aτ (r)Mτ

µΨa′τ (r) =
∑
g

eig·r
(

1

Atot

ˆ
d2r′e−ig·r′Ψ∗

aτ (r
′)Mτ

µΨa′τ (r
′)

)
(71)

As shown in previous section, at small B the overlaps of the MTG LL with eig·r are suppressed by a factor of
exp

(
−g2ℓ2/4

)
. So at small enough B (large enough ℓ) the overlaps with non-zero g components are negligible.

Keeping only the g = 0 Fourier component then gives

h̃τ [amr],[a′m′r′](k1, k2) ≈
(

1

Atot

ˆ
d2rΨ∗

aτ (r)ε
τ
a′′a′Ψa′′τ (r)

)(ˆ
d2rχ∗

km(r)χkr′m′(r)

)
+(

1

Atot

ˆ
d2rΨ∗

aτ (r)Mτ
µΨa′τ (r)

)(ˆ
d2rχ∗

krm(r)
(
pµ − e

c
Aµ(r)

)
χkr′m′(r)

)
+O

(
exp

(
−g2ℓ2/4

))
(72)

= ετaa′δrr′δmm′ +Mτ,µ
aa′

(ˆ
d2rχ∗

krm(r)
(
pµ − e

c
Aµ(r)

)
χkr′m′(r)

)
+O

(
exp

(
−g2ℓ2/4

))
, (73)

where

Mτ,µ
aa′ =

1

Atot

ˆ
d2rΨ∗

aτ (r)Mτ
µΨa′τ (r) (74)

The matrices ϵτa,a′ and Mτ,µ
aa′ can be obtained from the zero field cc coupling matrix

Hc,τ
aa′(k) =

(
02×2 v∗(τkxσ0 + ikyσz)

v∗(τkxσ0 − ikyσz) Mσx

)
(75)

as

Mτ,x
aa′ =

τv∗
ℏ

(
0 σ0
σ0 0

)
aa′

, Mτ,y
aa′ =

iv∗
ℏ

(
0 σz

−σz 0

)
aa′

, ετaa′ =M

(
0 0
0 σx

)
aa′

. (76)

where the Pauli matrices σ act in the orbital space of c fermions. Since
[
t̂L1,2

, pµ − e
cAµ(r)

]
= 0, we have

(
pµ − e

c
Aµ(r)

)
χkr′m′(r) =

1√
ℓL2N

∑
s∈Z

e2πisk1

(
t̂sL1

(
pµ − e

c
Aµ(r)

)
e
2πi

(
k2+

r′
q

)
y
L2 φm′

(
x−

(
k2 +

r′

q

)
2πℓ2

L2

))
.

(77)
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The action of the two components of pµ − e
cAµ(r) in Landau gauge can be calculated as

ℏ
i

∂

∂x
e
2πi

(
k2+

r′
q

)
y
L2 φm′

(
x−

(
k2 +

r′

q

)
2πℓ2

L2

)
=

ℏ
i

1

ℓ
e
2πi

(
k2+

r′
q

)
y
L2 ℓ

∂

∂x
φm′

(
x−

(
k2 +

r′

q

)
2πℓ2

L2

)
=

ℏ
i

1

ℓ
e
2πi

(
k2+

r′
q

)
y
L2
â− â†√

2
φm′

(
x−

(
k2 +

r′

q

)
2πℓ2

L2

)
=

ℏ
i

1√
2ℓ
e
2πi

(
k2+

r′
q

)
y
L2

(√
m′φm′−1

(
x−

(
k2 +

r′

q

)
2πℓ2

L2

)
−
√
m′ + 1φm′+1

(
x−

(
k2 +

r′

q

)
2πℓ2

L2

))
(78)

and

(
ℏ
i

∂

∂y
− eB

c
x

)
e
2πi

(
k2+

r′
q

)
y
L2 φm′

(
x−

(
k2 +

r′

q

)
2πℓ2

L2

)
=

ℏ
ℓ

((
k2 +

r′

q

)
2πℓ

L2
− x

ℓ

)
e
2πi

(
k2+

r′
q

)
y
L2 φm′

(
x−

(
k2 +

r′

q

)
2πℓ2

L2

)
= (79)

−ℏ
ℓ
e
2πi

(
k2+

r′
q

)
y
L2
a+ a†√

2
φm′

(
x−

(
k2 +

r′

q

)
2πℓ2

L2

)
= (80)

− ℏ√
2ℓ
e
2πi

(
k2+

r′
q

)
y
L2

(√
m′φm′−1

(
x−

(
k2 +

r′

q

)
2πℓ2

L2

)
+
√
m′ + 1φm′+1

(
x−

(
k2 +

r′

q

)
2πℓ2

L2

))
. (81)

Substituting back to χ, and using the orthogonality of χ’s and Eq.(76), we finally have,

h̃+1
[amr],[a′m′r̄](k1, k2) ≈ δrr̄


0 0 −i

√
2v∗
ℓ

√
m′δm+1,m′ 0

0 0 0 i
√
2v∗
ℓ

√
mδm,m′+1

i
√
2v∗
ℓ

√
mδm,m′+1 0 0 Mδmm′

0 −i
√
2v∗
ℓ

√
m′δm+1,m′ Mδmm′ 0


aa′

,(82)

h̃−1
[amr],[a′m′r̄](k1, k2) ≈ δrr̄


0 0 −i

√
2v∗
ℓ

√
mδm,m′+1 0

0 0 0 i
√
2v∗
ℓ

√
m′δm+1,m′

i
√
2v∗
ℓ

√
m′δm+1,m′ 0 0 Mδmm′

0 −i
√
2v∗
ℓ

√
mδm,m′+1 Mδmm′ 0


aa′

.

(83)

Note that a straightforward canonical substitution in Eq.(75), kx + iky →
√
2Bâ, would yield us the same finite field

c− c coupling, where â denotes the LL lowering operator for the corresponding c fermion LLs.

B. c-f Coupling

The c− f coupling at finite B is given as

Hτ
cf =

∑
k∈[0,1)⊗[0, 1q )

4∑
a=1

2∑
b=1

ma,τ∑
m=0

p−1∑
r=0

q−1∑
r′=0

hτ[amr],[br′](k)c
†
aτkrmfbτkr′ , (84)
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where

hτ[amr],[br′](k1, k2) =

ˆ
d2rΨ∗

aτ (r)χ
∗
krm(r)Hτ

BM

(
px, py −

eB

c
x

)
ηbτkr′(r) (85)

=
1√
N
∑
s∈Z

e2πisk1

ˆ
d2rΨ∗

aτ (r)χ
∗
k1,k2+

r
q ,m

(r)Hτ
BM

(
px, py −

eB

c
x

)
t̂sL1

wbτ (r,

(
k2 +

r′

q

)
g2) (86)

=
1√
N
∑
s∈Z

e2πisk1

ˆ
d2rΨ∗

aτ (r)χ
∗
krm(r)t̂sL1

Hτ
BM

(
px, py −

eB

c
x

)
wbτ (r,

(
k2 +

r′

q

)
g2) (87)

=
stot√
N

ˆ
d2rΨ∗

aτ (r)χ
∗
krm(r)Hτ

BM

(
px, py −

eB

c
x

)
wbτ

(
r,

(
k2 +

r′

q

)
g2

)
(88)

=
stot√
N
∑
n∈Z

e
2πi

(
k2+

r′
q

)
n
ˆ
d2rΨ∗

aτ (r)χ
∗
krm(r)Hτ

BM

(
px, py −

eB

c
x

)
t̂nL2

W0,bτ (r) (89)

=
stot√
N
∑
n∈Z

e
2πi

(
k2+

r′
q

)
n
ˆ
d2rΨ∗

aτ (r)
(
t̂−n
L2
χkrm(r)

)∗
Hτ

BM

(
px, py −

eB

c
x

)
W0,bτ (r) (90)

=
stot√
N
∑
n∈Z

e
2πi

(
k2+

r′
q

)
n
ˆ
d2rΨ∗

aτ (r)
(
t̂−n
L2
χkrm(r)

)∗
Hτ

BM (px, py)W0,bτ (r)

− stot√
N
∑
n∈Z

e
2πi

(
k2+

r′
q

)
n
ˆ
d2rΨ∗

aτ (r)
(
t̂−n
L2
χkrm(r)

)∗(eBx
c

Mτ
y

)
W0,bτ (r) (91)

Note that the B-field term eventually turns out negligible because it acts on a well localized function and so at
small B it is exponentially suppressed in the region where the vector potential is appreciable.

Using the fact t̂−1
L2
t̂L1

= e2πi
p
q t̂L1

t̂−1
L2

, we have

t̂−n
L2
χkrm(r) =

1√
ℓL2N

∑
s∈Z

e2πisk1 t̂−n
L2
t̂sL1

e2πi(k2+
r
q )

y
L2 φm

(
x−

(
k2 +

r

q

)
2πℓ2

L2

)
(92)

= e2πi(k2+
r
q )n 1√

ℓL2N
∑
s∈Z

e2πisk1e2πisn
p
q t̂sL1

e2πi(k2+
r
q )

y
L2 φm

(
x−

(
k2 +

r

q

)
2πℓ2

L2

)
(93)

= e2πi(k2+
r
q )nχmod(k1+n p

q ,1)k2rm
(r) (94)

Therefore,

hτ[amr],[br′](k1, k2) =
stot√
N
∑
n∈Z

e2πin
r′−r

q

ˆ
d2rχ∗

mod(k1+n p
q ,1),k2rm

(r)Ψ∗
aτ (r)H (px, py)W0,bτ (r) (95)

−
(
eB

c

)
stot√
N
∑
n∈Z

e2πin
r′−r

q

ˆ
d2r

(
xχ∗

mod(k1+n p
q ,1),k2rm

(r)

)
Ψ∗

aτ (r)Mτ
yW0,bτ (r) (96)

In order to proceed we use the fact that [37]

ˆ
d2re−ik′·rΨ∗

aτ (r)H
τ
BM (px, py)W0bτ (r) ≈

√
Auce

−k′2λ2/2Hcf,τ
ab (k′), (97)

which is
√
NAuc bigger than in [37] because of choice of normalisation of χ discussed in previous section. Using

Hcf,τ
ab (k′) =

(
γσ0 + v′∗(ηvkxσx + kyσy)

02×2

)
ab

, (98)
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we have

Ψ∗
aτ (r)H

τ
BM (px, py)W0,bτ (r) =

ˆ
d2k′

(2π)2
eik

′·r
ˆ
d2r′e−ik′·r′Ψ∗

aτ (r
′)Hτ

BM

(
p′x, p

′
y

)
W0,bτ (r

′) (99)

≈
√
Auc

ˆ
d2k

(2π)2
eik·re−k2λ2/2Hcf,τ

ab (k) (100)

=
√
AucH

cf,τ
ab

(
1

i

∂

∂r

)ˆ
d2k

(2π)2
eik·re−k2λ2/2 (101)

=
√
AucH

cf,τ
ab

(
1

i

∂

∂r

)
1

2πλ2
e−r2/(2λ2). (102)

Moreover since Hτ
BM (p) is linear in p, we can approximate

ˆ
d2re−ik′·rΨ∗

aτ (r)Mτ
yW0,bτ (r) ≈

√
Auce

−k′2λ2/2Mτ
ab, (103)

where Mτ
ab can be read of from Eq.(98) to be

Mτ
ab = − iv

′
∗
ℏ

 0 1
−1 0
0 0
0 0


(ab)

=Mab. (104)

Thus we have

Ψ∗
aτ (r)Mτ

yW0,bτ (r) =

ˆ
d2k′

(2π)2
e−ik′·r

ˆ
d2r′e−ik′·r′Ψ∗

aτ (r
′)Mτ

yW0,bτ (r
′) (105)

≈
√
Auc

ˆ
d2k′

(2π)2
e−ik′·re−

k′2λ2

2 Mab (106)

=
√
Auce

−r2/(2λ2) 1

2πλ2
Mab. (107)

Therefore,

hτ[amr],[br′](k1, k2) ≈
stot

√
Auc√
N

∑
n∈Z

e2πin
r′−r

q

ˆ
d2rχ∗

mod(k1+n p
q ,1)k2rm

(r)Hcf,τ
ab

(
1

i

∂

∂r

)
1

2πλ2
e−r2/(2λ2)

−eB
c

stot
√
Auc√
N

∑
n∈Z

e2πin
r′−r

q

ˆ
d2rxχ∗

mod(k1+n p
q ,1)k2rm

(r)Mab
1

2πλ2
e−r2/(2λ2) (108)

=
stot

√
Auc√
N

∑
n∈Z

e2πin
r′−r

q

ˆ
d2r

(
Hcf,τ

ab

(
1

i

∂

∂r

)
χmod(k1+n p

q ,1)k2rm
(r)

)∗
1

2πλ2
e−r2/(2λ2)

−eB
c

stot
√
Auc√
N

∑
n∈Z

e2πin
r′−r

q

ˆ
d2r

(
xχmod(k1+n p

q ,1)k2rm
(r)
)∗ 1

2πλ2
e−r2/(2λ2)Mab. (109)

Using t̂sL1
= e−πis(s−1) p

q

L1y
L2 e2πis

p
q

y
L2 T̂ s

L1
, derived in the Supplementary note 2A, we have

χmod(k1+n p
q ,1),k2rm

(r) =
1√
ℓL2N

∑
s∈Z

e2πisn
p
q e2πisk1 t̂sL1

e2πi(k2+
r
q )

y
L2 φm

(
x− (k2 +

r

q
)
2πℓ2

L2

)
(110)

=
1√
ℓL2N

∑
s∈Z

e2πisn
p
q e2πisk1e−πis(s−1) p

q

L1y
L2 e2πis

p
q

y
L2 T̂ s

L1
e2πi(k2+

r
q )

y
L2 φm

(
x− (k2 +

r

q
)
2πℓ2

L2

)
(111)

=
1√
ℓL2N

∑
s∈Z

e2πisn
p
q e2πisk1e−πis(s−1) p

q

L1y
L2 e2πis

p
q

y
L2 e2πi(k2+

r
q )

y−sL1y
L2 φm

(
x− sL1x − (k2 +

r

q
)
2πℓ2

L2

)
(112)

=
1√
ℓL2N

∑
s∈Z

e2πisn
p
q e2πisk1e−2πis(k2+

r
q )

L1y
L2 e−πis(s−1) p

q

L1y
L2 e2πi(k2+

r
q+s p

q )
y
L2 φm

(
x− sL1x − (k2 +

r

q
)
2πℓ2

L2

)
(113)
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Supplementary Figure 2. Schematic representation of the cf coupling for ϕ/ϕ0 = 1/q discussed in the methods section A of
main text. Each tick represents (the 1D projection of) a moire unit cell, illustrating the overlap between a 2D localized heavy
state with size λ siting at the origin (red) and a Landau level (LL) i.e. a 1D harmonic oscillator (h.o.) shifted in the x-direction,
its wavefunctions sketched by blue, with a plane wave phase variation in the y-direction (not shown) that depends on the shift.
The r′ determines the momentum absorbed by the LL as well as the unit cell to which the h.o. is shifted and k2q fine tunes
the shift within the unit cell. The index j then determines q-unit-cell periodic revival of the h.o. The black parabolas mimic a
quadratic potential to accompany the h.o. wavefunctions.

Substituting Eq.(113) back in Eq.(109), we have

hτ[amr],[br′](k1, k2) ≈
stot

√
Auc

N
√
ℓL2

∑
n∈Z

∑
s∈Z

e2πin
r′−r

q e−2πisn p
q e−2πisk1e2πis(k2+

r
q )

L1y
L2 eπis(s−1) p

q

L1y
L2

[ ˆ
d2re−2πi(k2+

r
q+s p

q )
y
L2 φm

(
x− sL1x −

(
k2 +

r

q

)
2πℓ2

L2

)
Hcf,τ

ab

(
1

i

∂

∂r

)
1

2πλ2
e−r2/(2λ2)

−eB
c

ˆ
d2re−2πi(k2+

r
q+s p

q )
y
L2 xφm

(
x− sL1x −

(
k2 +

r

q

)
2πℓ2

L2

)
Mab

1

2πλ2
e−r2/(2λ2)

]
(114)

≈ stotntot
√
Auc

N
√
ℓL2

∑
j∈Z

∑
s∈Z

δr′−r,jq+spe
−2πisk1e2πis(k2+

r
q )

L1y
L2 eπis(s−1) p

q

L1y
L2

[ˆ
d2re−2πi(k2+

r
q+s p

q )
y
L2 φm

(
x− sL1x −

(
k2 +

r

q

)
2πℓ2

L2

)
Hcf,τ

ab

(
1

i

∂

∂r

)
1

2πλ2
e−r2/(2λ2)

−eB
c

ˆ
d2re−2πi(k2+

r
q+s p

q )
y
L2 xφm

(
x− sL1x −

(
k2 +

r

q

)
2πℓ2

L2

)
Mab

1

2πλ2
e−r2/(2λ2)

]
(115)

where the sum over n above led to the Diophantine equation

r′ − r − sp

q
= integer ≡ j. (116)

Plugging in the normalization factors results in

hτ[amr],[br′](k1, k2) ≈
√
L1x√
ℓ

∑
j∈Z

∑
s∈Z

δr′−r,jq+spe
−2πisk1e2πis(k2+

r
q )

L1y
L2 eπis(s−1) p

q

L1y
L2

1

2πλ2

[ ˆ
d2re−2πi(k2+

r
q+s p

q )
y
L2 φm

(
x− sL1x −

(
k2 +

r

q

)
2πℓ2

L2

)
Hcf,τ

ab

(
1

i

∂

∂r

)
e−r2/(2λ2)

− ℏ
ℓ2

ˆ
d2re−2πi(k2+

r
q+s p

q )
y
L2 xφm

(
x− sL1x −

(
k2 +

r

q

)
2πℓ2

L2

)
Mabe

−r2/(2λ2)

]
. (117)

Note that the y integrals are elementary. At small B and not too large m, the x integrals we be performed by taking
the advantage of the mismatch in length scales i.e. ℓ≫ λ and Taylor expand the harmonic oscillator functions about
the origin. However at larger B we may need to obtain the integrals with higher accuracy. To this end we will find
it useful to employ two-variable Hermite polynomial Hn(x, y) result from [66]. It will be useful to first discuss the
integrals required for casting Eq.(117) into a closed form.
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We start by defining the two-variable Hermite polynomial as

Hn(x, y) = n!

[n2 ]∑
k=0

xn−2kyk

(n− 2k)!k!
, (118)

where [n] denotes the floor function at n. The two-variable Hermite polynomials are related to the Hermite polynomial
in harmonic oscillator wavefunction as Hm(x) = Hm(2x,−1). The required x integral in Eq.(117) then reads

Am (λ, x0) =

ˆ ∞

−∞
dxe−x2/(2λ2)φm (x− x0) =

1

π
1
4

1√
2mm!

ˆ ∞

−∞
dxe−x2/(2λ2)e−(x−x0)

2/2ℓ2Hm((x− x0)/ℓ) (119)

Let y = x/ℓ and y0 = x0/ℓ. Then,

Am (λ, ℓy0) =
ℓ

π
1
4

1√
2mm!

ˆ ∞

−∞
dye−

ℓ2

2λ2 y2

e−
1
2 (y−y0)

2

Hm(y − y0) (120)

=
ℓ

π
1
4

e−
1
2y

2
0

√
2mm!

ˆ ∞

−∞
dye

− 1
2

(
ℓ2

λ2 +1
)
y2

ey0yHm(y − y0) (121)

=
ℓ

π
1
4

e−
1
2y

2
0

√
2mm!

ˆ ∞

−∞
dye

− 1
2

(
ℓ2

λ2 +1
)
y2

ey0yHm(2y − 2y0,−1). (122)

Now, using the formula in [66]

ˆ ∞

−∞
dxHn(ax+ b, y)e−cx2+αx =

√
π

c
e

α2

4c Hn

(
b+

α

2

a

c
, y +

a2

4c

)
(123)

we finally have

Am (λ, x0) =
π

1
4√

2m−1m!

√
λ2ℓ2

ℓ2 + λ2
e−

1
2x

2
0/(ℓ

2+λ2)Hm

(
−2x0

ℓ

ℓ2 + λ2
,

2λ2

ℓ2 + λ2
− 1

)
. (124)

Note that

Am (λ→ 0, x0) =
√
2πλ

π− 1
4√

2mm!
e−

1
2x

2
0/ℓ

2Hm

(
−2

x0
ℓ
,−1

)
=

√
2πλφm(−x0) (125)

as expected because in the limit λ → 0, the harmonic oscillator wavefunction does not vary significantly within the
spatial extent of the heavy fermion gaussian, which is set by λ.

Now, let

Fm(λ, x0) =
1√
2πλ

Am(λ, x0) (126)

=
1

π
1
4

√
2mm!

√
ℓ2

ℓ2 + λ2
e−

1
2x

2
0/(ℓ

2+λ2)Hm

(
−2x0

ℓ

ℓ2 + λ2
,

2λ2

ℓ2 + λ2
− 1

)
(127)

Fm(λ→ 0, x0) = ϕm (−x0) . (128)

The y integrals in Eq.(117) can be performed using

ˆ ∞

−∞
dye−2πik y

L2 e−y2/2λ2

=
√
2πλe−2π2k2λ2/L2

2 . (129)

Using the integrals provided in Eq.(127) and Eq.(129), we now proceed to evaluate Eq.(117).
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1. Non-derivative or the zeroth-order coupling γ

I0[mr],[r′](k1, k2) =

√
L1x√
ℓ

∑
j∈Z

∑
s∈Z

δr′−r,jq+spe
−2πisk1e2πis(k2+

r
q )

L1y
L2 eπis(s−1) p

q

L1y
L2

1

2πλ2

ˆ
d2re−2πi(k2+

r
q+s p

q )
y
L2 φm

(
x− sL1x −

(
k2 +

r

q

)
2πℓ2

L2

)
e−r2/(2λ2) = (130)

√
L1x√
ℓ

∑
j∈Z

∑
s∈Z

δr′−r,jq+spe
−2πisk1e2πis(k2+

r
q )

L1y
L2 eπis(s−1) p

q

L1y
L2 e

−2π2(k2+
r
q+s p

q )
2 λ2

L2
2 Fm

(
λ,

(
s+

r

p
+ k2

q

p

)
L1x

)
(131)

2. kx coupling

Ix[mr],[r′](k1, k2) =

√
L1x√
ℓ

∑
j∈Z

∑
s∈Z

δr′−r,jq+spe
−2πisk1e2πis(k2+

r
q )

L1y
L2 eπis(s−1) p

q

L1y
L2

1

2πλ2

ˆ
d2re−2πi(k2+

r
q+s p

q )
y
L2 φm

(
x− sL1x −

(
k2 +

r

q

)
2πℓ2

L2

)(
1

i

∂

∂x

)
e−r2/(2λ2) (132)

=

√
L1x√
ℓ

∑
j∈Z

∑
s∈Z

δr′−r,jq+spe
−2πisk1e2πis(k2+

r
q )

L1y
L2 eπis(s−1) p

q

L1y
L2

1

2πλ2
i

ℓ

ˆ
d2re−2πi(k2+

r
q+s p

q )
y
L2

(
ℓ
∂

∂x
φm

(
x− sL1x −

(
k2 +

r

q

)
2πℓ2

L2

))
e−r2/(2λ2) (133)

=

√
L1x√
ℓ

∑
j∈Z

∑
s∈Z

δr′−r,jq+spe
−2πisk1e2πis(k2+

r
q )

L1y
L2 eπis(s−1) p

q

L1y
L2

1

2πλ2
i
√
m√
2ℓ

ˆ
d2re−2πi(k2+

r
q+s p

q )
y
L2 φm−1

(
x− sL1x −

(
k2 +

r

q

)
2πℓ2

L2

)
e−r2/(2λ2)

−
√
L1x√
ℓ

∑
j∈Z

∑
s∈Z

δr′−r,jq+spe
−2πisk1e2πis(k2+

r
q )

L1y
L2 eπis(s−1) p

q

L1y
L2

1

2πλ2
i
√
m+ 1√
2ℓ

ˆ
d2re−2πi(k2+

r
q+s p

q )
y
L2 φm+1

(
x− sL1x −

(
k2 +

r

q

)
2πℓ2

L2

)
e−r2/(2λ2) (134)

=

√
L1x√
ℓ

∑
j∈Z

∑
s∈Z

δr′−r,jq+spe
−2πisk1e2πis(k2+

r
q )

L1y
L2 eπis(s−1) p

q

L1y
L2

i
√
m√
2ℓ
e
−2π2(k2+

r
q+s p

q )
2 λ2

L2
2 Fm−1

(
λ,

(
s+

r

p
+ k2

q

p

)
L1x

)
−
√
L1x√
ℓ

∑
j∈Z

∑
s∈Z

δr′−r,jq+spe
−2πisk1e2πis(k2+

r
q )

L1y
L2 eπis(s−1) p

q

L1y
L2

i
√
m+ 1√
2ℓ

e
−2π2(k2+

r
q+s p

q )
2 λ2

L2
2 Fm+1

(
λ,

(
s+

r

p
+ k2

q

p

)
L1x

)
(135)

So, finally

Ix[mr],[r′](k1, k2) =
i√
2ℓ

√
L1x√
ℓ

∑
j∈Z

∑
s∈Z

δr′−r,jq+spe
−2πisk1e2πis(k2+

r
q )

L1y
L2 eπis(s−1) p

q

L1y
L2 e

−2π2(k2+
r
q+s p

q )
2 λ2

L2
2

×
(√

mFm−1

(
λ,

(
s+

r

p
+ k2

q

p

)
L1x

)
−
√
m+ 1Fm+1

(
λ,

(
s+

r

p
+ k2

q

p

)
L1x

))
(136)
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3. ky coupling

Iy[mr],[r′](k1, k2) =

√
L1x√
ℓ

∑
j∈Z

∑
s∈Z

δr′−r,jq+spe
−2πisk1e2πis(k2+

r
q )

L1y
L2 eπis(s−1) p

q

L1y
L2

1

2πλ2

ˆ
d2re−2πi(k2+

r
q+s p

q )
y
L2 φm

(
x− sL1x −

(
k2 +

r

q

)
2πℓ2

L2

)(
1

i

∂

∂y

)
e−r2/(2λ2) (137)

=

√
L1x√
ℓ

∑
j∈Z

∑
s∈Z

δr′−r,jq+spe
−2πisk1e2πis(k2+

r
q )

L1y
L2 eπis(s−1) p

q

L1y
L2

(
k2 +

r

q
+ s

p

q

)
2π

L2

×e−2π2(k2+
r
q+s p

q )
2 λ2

L2
2 Fm

(
λ,

(
s+

r

p
+ k2

q

p

)
L1x

)
(138)

4. Minimal coupling

The minimal coupling term, eMuAµ/c, can be expressed in terms of the non-derivative coupling I0[mr],[r′](k1, k2)

and ky coupling Iy[mr],[r′](k1, k2) as shown in this section. Let us call this term IA, given as

IA = −
√
L1x√
ℓ

∑
j∈Z

∑
s∈Z

δr′−r,jq+spe
−2πisk1e2πis(k2+

r
q )

L1y
L2 eπis(s−1) p

q

L1y
L2

× 1

2πλ2
ℏ
ℓ2

ˆ
d2re−2πi(k2+

r
q+s p

q )
y
L2 xφm

(
x− sL1x −

(
k2 +

r

q

)
2πℓ2

L2

)
e−r2/(2λ2) (139)

We can re-express the factor xφ(x− x0) as

xφm(x− x0) =
1

π
1
4

1√
2mm!

e−(x−x0)
2/2ℓ2xHm((x− x0)/ℓ)

= ℓ
1

π
1
4

1√
2mm!

e−(x−x0)
2/2ℓ2(

x− x0
ℓ

)Hm((x− x0)/ℓ) + x0ϕm(x− x0). (140)

Moreover, using recursion relation for Hermite polynomials

xHm(x) =
1

2
Hm+1(x) +mHm−1(x) (141)

we have

xφm(x− x0) = ℓ
1

π
1
4

1√
2mm!

e−(x−x0)
2/2ℓ2

(
1

2
Hm+1((x− x0)/ℓ) +mHm−1((x− x0)/ℓ)

)
+ x0φm(x− x0)

= ℓ

√
m+ 1

2
φm+1(x− x0) + ℓ

√
m

2
ϕm−1(x− x0) + x0φm(x− x0) (142)

Substituting Eq.(142) into Eq.(139), we have:

IA = −
√
L1x√
ℓ

∑
j∈Z

∑
s∈Z

δr′−r,jq+spe
−2πisk1e2πis(k2+

r
q )

L1y
L2 eπis(s−1) p

q

L1y
L2

× 1

2πλ2
ℏ
ℓ

ˆ
d2re−2πi(k2+

r
q+s p

q )
y
L2

[√
m+ 1

2
φm+1(x− sL1x −

(
k2 +

r

q

)
2πℓ2

L2
)

+

√
m

2
φm−1(x− sL1x −

(
k2 +

r

q

)
2πℓ2

L2
)

+
1

ℓ
(sL1x +

(
k2 +

r

q

)
2πℓ2

L2
)φm(x− sL1x −

(
k2 +

r

q

)
2πℓ2

L2
)

]
e−r2/(2λ2). (143)
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Using the fact ℓ2 = qL1xL2

2πp , note that

1

ℓ2
(sL1x +

(
k2 +

r

q

)
2πℓ2

L2
) =

2π

L2
(k2 +

r

p
+ s

p

q
). (144)

Thus we have

IA = −ℏ
[

1√
2ℓ

(√
mI0[m−1r],[r′](k1, k2) +

√
m+ 1I0[m+1r],[r′](k1, k2)

)
+ Iy[mr],[r′](k1, k2)

]
(145)

5. Closed form expression for c-f coupling at finite field

The closed form expression for the c-f coupling at finite B then reads

Hcf,τ ≈
∑

k∈[0,1)⊗[0,1/q)]

4∑
a=1

2∑
b=1

ma,τ∑
m=0

p−1∑
r=0

q−1∑
r′=0

[(
γI0[mr],[r′](k)σ0 + v′∗(τI

x
[mr],[r′](k)σx + Iy[mr],[r′](k)σy)

02×2

)
ab

+

(146)

(
−v′∗ 1√

2ℓ

(√
mI0[m−1r],[r′](k) +

√
m+ 1I0[m+1r],[r′](k)

)
σy − v′∗I

y
[mr],[r′](k)σy

02×2

)
ab

]
c†aτkrmfbτkr. (147)

C. Low field Analysis of c-f coupling

For analyzing the low B structure for c-f hybridization matrix, given in Eq.(147), we will find it useful to first
discuss recursion relations for Fm(λ, x0) defined in Eq.(127). We start by considering the generating function for
Hm(x, y) (defined in Eq.(118))

ext+yt2 =

∞∑
n=0

tn

n!
Hn (x, y) . (148)

Using the generating function, we can derive the following recursion relations

∂

∂t
ext+yt2 = (x+ 2yt) ext+yt2 ⇒

∞∑
n=1

tn−1

(n− 1)!
Hn (x, y) =

∞∑
n=0

tn

n!
xHn (x, y) +

∞∑
n=0

tn+1

n!
2yHn (x, y) (149)

∞∑
n=0

tn

n!
Hn+1 (x, y)−

∞∑
n=1

tn

(n− 1)!
2yHn−1 (x, y) =

∞∑
n=0

tn

n!
xHn (x, y) (150)

n = 0 : H1 (x, y) = xH0 (x, y) (151)

n > 0 : Hn+1 (x, y)− 2ynHn−1 (x, y) = xHn (x, y) (152)

Therefore

n = 0 :
√
2F1 (λ, x0) = −2x0

ℓ

ℓ2 + λ2
F0 (λ, x0) (153)

n > 0 :
√

2n+1(n+ 1)!Fn+1 (λ, x0) + 2

(
1− 2λ2

ℓ2 + λ2

)
n
√
2n−1(n− 1)!Fn−1 (λ, x0) = −2x0

ℓ

ℓ2 + λ2

√
2nn!Fn (λ, x0)

=⇒
(
1 +

λ2

ℓ2

)
1√
2

(√
n+ 1Fn+1 (λ, x0) +

(
1− 2λ2

ℓ2 + λ2

)√
nFn−1 (λ, x0)

)
= −x0

ℓ
Fn (λ, x0)

=⇒
(
1 +

λ2

ℓ2

)√
n+ 1

2
Fn+1 (λ, x0) +

(
1− λ2

ℓ2

)√
n

2
Fn−1 (λ, x0) = −x0

ℓ
Fn (λ, x0) . (154)
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From Eq.(138), we have

Iy[mr],[r′] =

√
L1x√
ℓ

∑
j∈Z

∑
s∈Z

δr′−r,jq+spe
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p
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q
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)
L1x

)
(155)

=
p

q

2πℓ2

ℓL1xL2

√
L1x√
ℓ

∑
j∈Z

∑
s∈Z

δr′−r,jq+spe
−2πisk1e2πis(k2+

r
q )

L1y
L2 eπis(s−1) p

q

L1y
L2 (qk2 + r + sp)

L1x

p
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q+s p

q )
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L2
2 Fm

(
λ, (sp+ r + qk2)

L1x

p

)
. (156)

. Now using the fact 2πpℓ2

qL1xL2
= 1 and the recursion relation given in Eq.(154), we have

Iy[mr],[r′](k) =
−1

ℓ

√
L1x√
ℓ

∑
j∈Z

∑
s∈Z

δr′−r,jq+spe
−2πisk1e2πis(k2+

r
q )

L1y
L2 eπis(s−1) p

q

L1y
L2

×e−2π2(k2+
r
q+s p

q )
2 λ2

L2
2

((
1 +

λ2

ℓ2

)√
m+ 1

2
Fm+1

(
λ, (sp+ r + qk2)

L1x

p

)
+

(
1− λ2

ℓ2

)√
m

2
Fm−1

(
λ, (sp+ r + qk2)

L1x

p

))
(157)

= − 1√
2ℓ

((
1 +

λ2

ℓ2

)√
m+ 1I0[m+1r],[r′](k) +

(
1− λ2

ℓ2

)√
mI0[m−1r],[r′](k)

)
. (158)

where I0[mr],[r′] is defined in Eq.(131). Using the above derived form for Iy[mr],[r′] in Eq(158), the minimal coupling

term, given in Eq.(145), can be rewritten as

−IA
ℏ

=
λ2

ℓ2
1√
2ℓ

(√
mI0[m−1r],[r′](k)−

√
m+ 1I0[m+1r],[r′](k)

)
(159)

Note that this is an O(λ
2

ℓ2 ) term. At low B, i.e λ2 ≪ ℓ2, this term is negligible as anticipated. This is confirmed

numerically as shown in Supplementary Fig.(3a). Note that we however still need to keep the full λ2

ℓ2 dependence
within Fm for accuracy in low B range as shown discussed in Supplementary Fig.(4). Keeping this in mind, let us

now dwell into a low B limit wherein we can drop the O(λ
2

ℓ2 ) term in the recursion relation Eq.(154), i.e.√
n+ 1

2
Fn+1 (λ, x0) +

√
n

2
Fn−1 (λ, x0) = −x0

ℓ
Fn (λ, x0) . (160)

Moreover using Eq.(158), Iy[mr],[r′] in this limit reads

Iy[mr],[r′](k) = − 1√
2ℓ

(√
m+ 1I0[m+1r],[r′](k) +

√
mI0[m−1r],[r′](k)

)
. (161)

Now using the above and Eq.(136), we have

Ix[mr],[r′](k) + iIy[mr],[r′](k) ≈ −i
√
2

ℓ

√
m+ 1I0[m+1r],[r′](k) (162)

Ix[mr],[r′](k)− iIy[mr],[r′](k) ≈ i

√
2

ℓ

√
mI0[m−1r],[r′](k). (163)

Then at low field we can re-express the c-f coupling as

h+1
[amr][br′](k) =


γI0[mr],[r′](k) i

√
2v′

∗
ℓ

√
mI0[m−1r],[r′](k)

−i
√
2v′

∗
ℓ

√
m+ 1I0[m+1r],[r′](k) γI0[mr],[r′](k)

0 0
0 0

 , (164)
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Supplementary Figure 3. These figures justify dropping O(λ
2

ℓ2
) in the prefactor of I0,x,y in the c-f hybridization

matrix.(a)Comparison of the unapproximated Hamiltonian spectrum which includes the minimal coupling to the one without
minimal coupling at valley K′ at CNP.(b)Comparison of the unapproximated Hamiltonian spectrum to the one obtained using
low field c-f coupling at valleyK′ at CNP. These figures correspond to parameters w0/w1 = 0.7,J = 18.27meV , U1 = 51.72meV ,

γ = −39.11meV , v′∗ = 1.624eV.Å, v∗ = −4.483eV.Å, M = 3.248meV and λ = 0.3792Lm. We set k1,2 = 0 and mmax = ⌈ q−3
2

⌉.

h−1
[amr][br′](k) =


γI0[mr],[r′](k) i

√
2v′

∗
ℓ

√
m+ 1I0[m+1r],[r′](k)

−i
√
2v′

∗
ℓ

√
mI0[m−1r],[r′](k) γI0[mr],[r′](k)

0 0
0 0

 . (165)

Supplementary Fig.(3b) shows that dropping O(λ
2

ℓ2 ) in Eq.(154) is indeed an excellent approximation. It is thus
justified to study the low field c-f hybridization matrix, given in Eq.(164) and Eq.(165), in pursuit of obtaining an
analytical solution.

Supplementary note 5. SINGULAR VALUES FOR I0

In this section, we study the singular values of I0m,r′(k) = I0[m0],[r′](k), where I
0
[m0],[r′](k) is defined in Eq.(131). As

discussed in the main text, these singular values controls the hybridization strength between the heavy and conduction
fermions in finite B. Let us start by considering the singular value decomposition of I0m,r′(k):

I0m,r′(k) = Umm′Σm′r̃Vr̃r′ , (166)

where U, V are are (ma,τ +1)× (ma,τ +1) and q× q unitary matrices respectively, and the (ma,τ +1)× q rectangular
matrix Σ contains the singular values along the main diagonal and zeros elsewhere, where summation convention on
repeated indices is implied. The columns of matrix U are the eigenvectors of the following matrix

Λ0
mm′(k) =

q−1∑
r′=0

I0mr′(k)I
0∗

m′r′(k). (167)

Since r′ is being summed over, we are allowed to shift its range to −⌊ q
2⌋,−⌊ q

2⌋+1, . . . , q− 1−⌊ q
2⌋ and thus set j = 0

in Eq.(131) based on the discussion in main text. Since Fm in Eq.(131) decays exponentially at ±⌊ q
2⌋, in the low field

limit, we can replace the bounds of this sum by ±∞ and have

Λ0
mm′(k) ≈ L1x

ℓ

∞∑
r′=−∞

e
−4π2 λ2

L2
2

(
k2+

r′
q

)2

Fm (λ, (r′ + k2q)L1x)Fm′ (λ, (r′ + k2q)L1x) . (168)
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Supplementary Figure 4. These figures illustrate the importance of including the O(λ
2

ℓ2
) in Fm(λ, x0) for obtaining the correct

interacting heavy fermion Hofstadter spectrum. (a) The comparison of numerically obtained singular values for I0 with the
ones obtained numerically post setting λ

ℓ
= 0 in Fm(λ, x0) . (b) The figure comparing unapproximated Hamiltonian spectrum

with the one calculated using singular values marked in red from the left panel at w0/w1 = 0.7 in flat band limit at valley K′

at CNP. mmax is set to 5 for illustration.

Using the Dirac comb identity,
∑

r′∈Z δ(ρ− r′) =
∑

t∈Z e
2πitρ, we can convert this summation to an integral as

Λ0
mm′(k) ≈ L1x

ℓ

∑
t∈Z

ˆ ∞

−∞
dρei2πtρe

−4π2 λ2

L2
2
(k2+

ρ
q )

2

Fm (λ, (ρ+ k2q)L1x)Fm′ (λ, (ρ+ k2q)L1x)

=
1

ℓ

∑
t∈Z

e−i2πtk2q

ˆ ∞

−∞
dρei2πtρ/L1xe−

λ2

ℓ2
ρ2

ℓ2 Fm (λ, ρ)Fm′ (λ, ρ) . (169)

Because 2πt/L1x is a large wavevector compared to the length scale at which the h.o. wavefunctions vary, ∼ ℓ, i.e.
L1x

2πt ≪ ℓ at low field, the overlaps are exponentially suppressed in ( 2πtℓL1x
)2. We can thus set t = 0 in the above sum.

Moreover since the exponential factor contains λ2

ℓ2 , the off-diagonal terms can be neglected and thus Λ0
mm′ is diagonal

up to a good approximation. This implies that the matrix U is close to identity and the low B singular values
can be approximated as Σm =

√
Λ0
mm. Note that the information of magnetic quantum number k gets dissolved

automatically due to the low field limit where the magnetic sub-bands are not k dispersive. We thus have

Σ2
m =

1

ℓ

ˆ ∞

−∞
dρe−

λ2

ℓ2
ρ2

ℓ2 Fm (λ, ρ)Fm (λ, ρ) (170)

Fm(λ, ρ) defined in Eq.(127) can re-expressed as:

Fm(λ, ρ) =
1

π
1
4

√
2mm!

√
1

1 + (λℓ )
2
e−

1
2 (

ρ
ℓ )

2/(1+(λ
ℓ )

2)Hm

(
−2(ρℓ )

1 + (λℓ )
2
,

2(λℓ )
2

1 + (λℓ )
2
− 1

)
(171)

Naively one would expect that dropping O(λ
2

ℓ2 ) in Fm(λ, x0), i.e. replacing Fm(λ, x0) by φ(−x0), to be good enough
approximation at low field. However as discussed in main text, the fairly strong m dependence of singular values gets
compromised under such an approximation, as shown in Supplementary Fig.(4a).

Let ρ/ℓ = x and κ = λ/ℓ. Then

Σ2
m =

1√
π

1

2mm!

1

1 + κ2

ˆ ∞

−∞
dxe

−
(
κ2+ 1

1+κ2

)
x2

H2
m

( −2

1 + κ2
x,
κ2 − 1

κ2 + 1

)
(172)

Now, using the result from [66], we have
ˆ ∞

−∞
dxHm(ax+ b, y)Hn(cx+ d, y)e−fx2+αx =

√
π

f
e

α2

4f Hm,n

(
b+

aα

2f
, y +

a2

2f
; d+

cα

2f
, z +

c2

2f
| ac
2f

)
(173)
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where

Hm,n (x, y;w, z|β) =
min(m,n)∑

k=0

m!n!

(n− k)!(m− k)!k!
βkHm−k(x, y)Hn−k(w, z), (174)

and the two variable Hermite polynomial Hn(x, y) is defined in Eq.(118), we have

Σ2
m =

1√
ξ(κ)

1

2mm!
Hmm(0,

κ6

ξ(κ)
; 0,

κ6

ξ(κ)
| 2

ξ(κ)
), (175)

where ξ(κ) is given as

ξ(κ) = (1 + κ2 + κ4)(1 + κ2). (176)

Thus

Σm =

(
1√
ξ(κ)

1

2mm!
Hmm(0,

κ6

ξ(κ)
; 0,

κ6

ξ(κ)
| 2

ξ(κ)
)

) 1
2

. (177)

Note that

κ2 =
λ2

ℓ2
=

2πλ2

Auc

p

q
=

2πλ2

Auc

ϕ

ϕ0
(178)

where Auc is moire unit cell area. Since Σ2
m is an analytic function in κ2, we have an expression for the singular values

continuously down to zero flux. Also note that as ϕ
ϕ0

→ 0 =⇒ κ2 → 0 =⇒ ξ(κ) → 1 =⇒ Hmm(0, κ6

ξ(κ) ; 0,
κ6

ξ(κ) |
2

ξ(κ) ) → 2mm! =⇒ Σm → 1, consistent with numerical results. At extremely low flux, we can approximate the

singular values as

ltκ→0Σm(κ) = 1−
(
m+

1

2

)
κ2, (179)

i.e. approaching 1 at zero flux with a negative slope slope of
(
m+ 1

2

)
2πλ2

Auc
as shown in Supplementary Fig.(5c). Note

that even at extremely low flux, the m dependence of singular values grow linearly.
It would prove feasible to discuss the asymptote of Σ2

m for large values of m. Let us start expanding the four
variable Hermite polynomial in Eq.(175).

Σ2
m =

1√
ξ(κ)

1

2mm!

[ m∑
k=0

m!m!τk

(m− k)!(m− k)!k!
Hm−k(0, y)Hm−k(0, y)

]
(180)

where for brevity we denote κ6

ξ(κ) and 2
ξ(κ) by y and β respectively. Then

Σ2
m =

1√
ξ(κ)

1

2m

[ 1

m!
Hm(0, y)Hm(0, y)

]
(181)

+
1√
ξ(κ)

1

2m

[m−1∑
k=1

m!βk

(m− k)!(m− k)!k!
Hm−k(0, y)Hm−k(0, y)

]
(182)

+
1√
ξ(κ)

1

2m
βm, (183)

where we divided the sum over k into k = 0, k = 1 . . .m− 1 and k = m, shown in Eq.(181), Eq.(182) and Eq.(183)
respectively. Now note that Hm(0, y) is non-zero only if m is even, so

Hm(0, y) = (1−mod(m, 2))m!
y

m
2

m
2 !

(184)

=⇒ H2
m(0, y) = (1−mod(m, 2))

m!m!ym

m
2 !

m
2 !

. (185)
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Supplementary Figure 5. (a) The comparison of first 25 numerically obtained singular values with the ones obtained using the
analytical asymptotes for singular values. (b) The comparison of asymptotes with exact expression for singular values. (c)
Comparing 1− (m+ 1

2
)κ2 with analytically computed singular values at extremely low field.

Using Eq.(185), we have

Σ2
m =

1√
ξ(κ)

(
(1−mod(m, 2))

(y
2

)m m!
m
2 !

m
2 !

+

(
β

2

)m)

+
1√
ξ(κ)

1

2m

[m−1∑
k=1

(1−mod(m− k, 2))
m!βkym−k

(m−k
2 )!(m−k

2 )!k!

]
. (186)

Now consider

Ā(m) =
m!

(m2 )!(
m
2 )!

(187)

=⇒ ln(Ā(m)) = ln(m!)− 2ln
((m

2

)
!
)
≈ mln(2) (188)

=⇒ Ā(m) = 2m, (189)
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where in Eq.(188), we use the Stirling’s approximation for large m, i.e. ln(m!) = mln(m)−m. Similarly consider

B̄k(m) =
m!

(m−k
2 )!(m−k

2 )!
(190)

=⇒ ln(B̄k(m)) = ln(m!)− 2ln

((
m− k

2
!

))
− ln(k!) (191)

≈ mln(m)−mln

(
m− k

2

)
+ kln

(
m− k

2

)
− kln(k) (192)

= mln

(
2m

m− k

)
+ kln

(
m− k

2k

)
(193)

=⇒ B̄k(m) = 2m−kemln( m
m−k )+kln(m−k

k ) (194)

where in Eq.(192) we again have used the Stirling’s approximation. Now substituting back Eq.(189) and Eq.(194) in
Eq.(186) we have the following asymptote:

• If m is even

Σ2
m =

1√
ξ(κ)

[(
1

ξ(κ)

)m

+

(
κ6

ξ(κ)

)m

+

m−2∑
k=2,4,6,...

emln( m
m−k )+kln(m−k

k )

(
1

ξ(κ)

)k (
κ6

ξ(κ)

)m−k ]
. (195)

• If m is odd

Σ2
m =

1√
ξ(κ)

[(
1

ξ(κ)

)m

+

m−1∑
k=1,3,5,...

emln( m
m−k )+kln(m−k

k )

(
1

ξ(κ)

)k (
κ6

ξ(κ)

)m−k ]
. (196)

Supplementary Fig.(5b) shows that the asymptotic expression for singular values, given in Eq.(195) and Eq.(195)
, exactly matches the analytical singular values, given in Eq.(177), for all m ̸= 0 (since the asymptotic formulation
does not hold for m = 0). In the Supplementary Fig.(5b), m = 0 singular value on the asymptotic branch has been
calculated using the analytical value, i.e. Σ0 = 1√√

ξ(κ)
.

Supplementary note 6. DISCUSSION FOR VALLEY K

In this section we discuss finite B THFM at valley K, i.e. τ = +1. Note that summation convention on repeated
indices is implied unless explicitly stated. Using the SVD decomposition discussed we can re-write the matrix elements
as

h1[1m0],[1r′]c
†
11k0msf11kr′s = γΣm′,r̄c

†
11k0msUmm′Vr̄,r′f11kr′s =

m1,+1∑
m=0

m1,+1∑
r̄=0

γΣmδmr̄c
†
11k0msf̄11kr̄s, (197)

where we used the fact that U is an identity matrix and the rectangular matrix Σm,r′ is non-zero only along its main
diagonal.

h1[2m0],[1r′]c
†
21k0mf11kr′s = −i

√
2
v′∗
ℓ

m2,+1∑
m=0

√
m+ 1c†21k0mΣm+1,r̄Vr̄,r′f11kr′s

= −i
√
2
v′∗
ℓ

m2,+1∑
m=0

m2,+1+1∑
r̄=0

√
m+ 1Σm+1δm+1,r̄c

†
21k0msf̄11kr̄s (198)

Because m2,+1 + 1 = m1,+1 = mmax + 1, the upper bound on the r̄ summation is the same in (197) and (198).
Similarly

h1[1m0],[2r′]c
†
11k0msf21kr′s = i

√
2
√
m
v′∗
ℓ

m1,+1∑
m=0

m1,+1−1∑
r̄=0

Σr̄δm−1,r̄c
†
11k0msf̄21kr̄s, (199)
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h1[2m0],[2r′]c
†
21k0msf21kr′s = γ

m2,+1∑
m=0

m2,+1∑
r̄=0

Σmδm,r̄c
†
21k0msf̄21kr̄s. (200)

Because m1,+1 − 1 = m2,+1 = mmax, the upper bound on r̄ summation is the same in Eq.(199) and Eq.(200). Thus
for a given k, out of the available 2q f−modes, only 2mmax + 3 couple; recall that mmax ≲ q/2.

A. CNP

The mean-field interactions for f -fermion modes at CNP in f̄ basis is given as

V f,τ=+1,s =
∑

k∈[0,1)⊗[0, 1q )

V f,τ=+1,s
coupled + V f,τ=+1,s

decoupled , (201)

V f,τ=+1,s
coupled = −U1

2

(
mmax+1∑

m=0

f̄†11kmsf̄11kms +

mmax∑
m=0

f̄†21kmsf̄21kms

)
(202)

V f,τ=+1,s
decoupled = −U1

2

2∑
b=1

q−1∑
m′=mmax+b̄

f̄†b1km′sf̄b1km′s, (203)

where 1̄(2̄) = 2(1). Note that there are 2q − (2mmax + 3) decoupled f modes for each k. The coupled modes
The coupled modes can then be described as

Hτ=+1,s
coupled =

∑
k

6∑
α,α′=1

mα∑
m=0

mα′∑
m′=0

Ξmα,m′α′d†mαs(k)dm′α′s(k), (204)

where mα=1,...,4 = mα,+1, m5 = mmax + 1 and m6 = mmax, and

d†mαs(k) =
(
c†11k0ms, c

†
21k0ms, c

†
31k0ms, c

†
41k0ms, f̄

†
11kms, f̄

†
21kms

)
α
. (205)

We now define an operator

ĥ+1
α,α′ =



0 0 −i
√
2 v∗

ℓ â 0 γΣ(â†â) i
√
2
v′
∗
ℓ â

†Σ(â†â)

0 0 0 i
√
2 v∗

ℓ â
† −i

√
2
v′
∗
ℓ âΣ(â

†â) γΣ(â†â)

i
√
2 v∗

ℓ â
† 0 −J

2 M 0 0

0 −i
√
2 v∗

ℓ â M −J
2 0 0

γΣ(â†â) i
√
2
v′
∗
ℓ Σ(â

†â)â† 0 0 −U1

2 0

−i
√
2
v′
∗
ℓ Σ(â

†â)â γΣ(â†â) 0 0 0 −U1

2


α,α′

, (206)

where â is a simple h.o. lowering operator in terms of which matrix Ξmα,m′α′ can be expressed as

Ξmα,m′α′ = ⟨m|ĥ+1
α,α′ |m′⟩. (207)

Here |m⟩ is a simple h.o. eigenstate and Σ(m) = Σm. The non-interacting Hofstadter spectrum can be obtained by
solving Eq.(206) after setting the mean field terms J, U1 to zero. The spectrum forM ̸= 0 including the 2q−(2mmax+3
zero modes (contributed by decoupled fs) is shown in Fig.(10) with 2q modes at each k, i.e. 2 modes per moiré unit
cell per valley for each spin projection.

We now discuss the exact solutions to the eigenstates of the operator in Eq.(206) in the flat band limit M = 0. The
B field independent −J/2 Landau level energy shown in main-text Fig.(1) comes from the anomalous c-mode

θ1 = [0, 0, |0⟩ , 0, 0, 0]T . (208)
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The rest of the problem can be solved using the following ansätze:

θ3 =
[
c
(3)
1 |0⟩ , 0, c(3)3 |1⟩ , 0, c(3)5 |0⟩ , 0

]T
, (209)

θ5 =
[
c
(5)
1 |1⟩ , c(5)2 |0⟩ , c(5)3 |2⟩ , 0, c(5)5 |1⟩ , c(5)6 |0⟩

]T
, (210)

θ6m =
[
c
(6m)
1 |m⟩ , c(6m)

2 |m− 1⟩ , c(6m)
3 |m+ 1⟩ , c(6m)

4 |m− 2⟩ , c(6m)
5 |m⟩ , c(6m)

6 |m− 1⟩
]T
, (211)

where m ∈ {2, . . . ,mmax + 1}. c(β)α denotes the coefficient of corresponding h.o state at index α in the 6-component
spinor in Eq.(205) and β labels the ansatz index θβ . Using the above, we can set up the eigen-equation and solve for
the corresponding coefficients.

The ansätze θ3 and θ5 yield the 3×3 and 5×5 Hermitian matrices, whose eigenvectors are c
(3)
α and c

(5)
α , respectively:

h+1
3 =

 0 −i
√
2v∗
ℓ γΣ0

i
√
2v∗
ℓ −J

2 0
γΣ0 0 −U1

2

 , (212)

h+1
5 =


0 0 −i 2v∗ℓ γΣ1 i

√
2v′

∗
ℓ Σ0

0 0 0 −i
√
2v′

∗
ℓ Σ1 γΣ0

i 2v∗ℓ 0 −J
2 0 0

γΣ1 i
√
2v′

∗
ℓ Σ1 0 −U1

2 0

−i
√
2v′

∗
ℓ Σ0 γΣ0 0 0 −U1

2

 . (213)

Similarly, the ansatz θm6 yields the following 6× 6 Hermitian matrix for each m, whose eigenvectors are c
(6,m)
α :

h+1,m
6 =



0 0 −i
√
2m+ 2 v∗

ℓ 0 γΣm i
√
2m

v′
∗
ℓ Σm−1

0 0 0 i
√
2m− 2 v∗

ℓ −i
√
2m

v′
∗
ℓ Σm γΣm−1

+i
√
2m+ 2 v∗

ℓ 0 −J
2 0 0 0

0 −i
√
2m− 2 v∗

ℓ 0 −J
2 0 0

γΣm i
√
2m

v′
∗
ℓ Σm 0 0 −U1

2 0

−i
√
2m

v′
∗
ℓ Σm−1 γΣm−1 0 0 0 −U1

2


. (214)

The magnetic subbands within the narrow bands from the coupled modes emanate out of the B → 0 energy eigenvalue
of the above decoupled matrices, −J

2 , which is 2 fold degenerate for matrix in Eq.(214)∀m and singly degenerate for
matrices in Eq.(212) and Eq.(213). Including the decoupled c mode, we have 2mmax + 3 magnetic modes emanating
out of this 2mmax +3 fold degenerate B → 0 energy eigenvalue. Now recall that we have 2q− (2mmax +3) decoupled
f modes with energy −U1

2 . Thus in total we have 2q magnetic modes within the narrow bands, which corresponds to
2 states per moiré unit cell per spin. The spectrum for flat band limit has been shown in the main text Fig.(2). Note
that the B → 0 energies recovered by the decoupled matrices are the corresponding zero field energies of THFM at Γ
in mBZ.

B. ν = ±1, Spin ↑

Here we discuss the finite B THFM for valley K spin ↑. The interactions read as [37]

V τ=+1,s=↑
ν=±1 = ν

∑
k

( 4∑
a=1

ma,+1∑
m=0

p−1∑
r=0

Wac
†
a1krm↑ca1krm↑ +

∑
a=3,4

ma,−1∑
m=0

p−1∑
r=0

J

2
c†a1krm↑ca1krm↑

+
∑
b=1,2

q−1∑
r′=0

(
3U1

2
+ 6U2

)
f†b1kr′↑fb1kr′↑

)
. (215)
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The interaction for f modes in the f̄ basis can then be given as

V f,τ=+1,↑
ν=±1 =

∑
k∈[0,1)⊗[0, 1q )

V f,τ=+1,↑,ν=±1
coupled + V f,τ=+1,↑,ν=±1

decoupled (216)

where

V f,τ=+1,↑,ν=±1
coupled = ν

(
3U1

2
+ 6U2

)(mmax+1∑
m=0

f̄†11kmsf̄11km↑ +

mmax∑
m=0

f̄†21km↑f̄21km↑

)
, (217)

V f,τ=+1,s,ν=±1
decoupled = ν

2∑
b=1

q−1∑
m′=mmax+b̄

(
3U1

2
+ 6U2

)
f̄†b1km′↑f̄b1km′↑. (218)

where 1̄(2̄) = 2(1). Yet again there are 2q − (2mmax + 3) decoupled f modes for each k. Physically this corresponds
to 2− (2mmax + 3)/q per moiré unit cell. The coupled modes can then be described by

Hτ=+1,↑,ν=±1
coupled =

∑
k

6∑
α,α′=1

mα∑
m=0

mα′∑
m′=0

Ξ↑,ν=±1
mα,m′α′d

†
mα↑(k)dm′α′↑(k), (219)

where mα=1,...,4 = mα,+1, m5 = mmax + 1 and m6 = mmax, and

d†mα↑(k) =
(
c†11k0m↑, c

†
21k0m↑, c

†
31k0m↑, c

†
41k0m↑, f̄

†
11km↑, f̄

†
21km↑

)
α
, (220)

with

Ξ↑,ν=±1
mα,m′α′ = ⟨m|ĥ+1,↑,ν=±1

α,α′ |m′⟩, (221)

where the operators ĥ+1,↑,ν=±1
α,α′ are given as

ĥ+1,↑,ν=±1
α,α′ =



νW1 0 −i
√
2 v∗

ℓ â 0 γΣ(â†â) i
√
2
v′
∗
ℓ â

†Σ(â†â)

0 νW1 0 i
√
2 v∗

ℓ â
† −i

√
2
v′
∗
ℓ âΣ(â

†â) γΣ(â†â)

i
√
2 v∗

ℓ â
† 0 ν(W3 +

J
2 ) M 0 0

0 −i
√
2 v∗

ℓ â M ν(W3 +
J
2 ) 0 0

γΣ(â†â) i
√
2
v′
∗
ℓ Σ(â

†â)â† 0 0 ν( 3U1

2 + 6U2) 0

−i
√
2
v′
∗
ℓ Σ(â

†â)â γΣ(â†â) 0 0 0 ν( 3U1

2 + 6U2)


α,α′

,(222)

where â is a simple h.o. lowering operator with |m⟩ being a simple h.o. eigenstate and Σ(m) = Σm. The exact
eigenstates for the above operator are exactly solvable in flat band limit, M = 0. The B field independent level
ν(W3 + J/2) is formed by the anomalous c-mode in Eq.(208). The rest of the problem can be solved using the

ansätze: Eq.(209)-Eq.(211). The corresponding coefficients c
(3)
α , c

(5)
α and c

(6,m)
α can thus be solved as eigenvectors of

the following 3× 3, 5× 5 and mmax 6× 6 Hermitian matrices respectively:

h+1,ν=±1
3 =

 νW1 −i
√
2v∗
ℓ γΣ0

i
√
2v∗
ℓ ν(W3 +

J
2 ) 0

γΣ0 0 ν( 32U1 + 6U2)

 , (223)

h+1,ν=±1
5 =


νW1 0 −i 2v∗

ℓ γΣ1 i
√
2v′

∗
ℓ Σ0

0 νW1 0 −i
√
2v′

∗
ℓ Σ1 γΣ0

i 2v∗ℓ 0 ν(W3 +
J
2 ) 0 0

γΣ1 i
√
2v′

∗
ℓ Σ1 0 ν( 3U1

2 + 6U2) 0

−i
√
2v′

∗
ℓ Σ0 γΣ0 0 0 ν( 3U1

2 + 6U2)

 , (224)
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h+1,m,ν=±1
6 =



νW1 0 −i
√
2m+ 2 v∗

ℓ 0 γΣm i
√
2m

v′
∗
ℓ Σm−1

0 νW1 0 i
√
2m− 2 v∗

ℓ −i
√
2m

v′
∗
ℓ Σm γΣm−1

+i
√
2m+ 2 v∗

ℓ 0 ν(W3 +
J
2 ) 0 0 0

0 −i
√
2m− 2 v∗

ℓ 0 ν(W3 +
J
2 ) 0 0

γΣm i
√
2m

v′
∗
ℓ Σm 0 0 ν( 3U1

2 + 6U2) 0

−i
√
2m

v′
∗
ℓ Σm−1 γΣm−1 0 0 0 ν( 3U1

2 + 6U2)


.(225)

The magnetic subbands within the narrow bands from the coupled modes emanate out of the B → 0 energy eigenvalue
of the above decoupled matrices, ν(W3+

J
2 ), which is 2 fold degenerate for matrix in Eq.(225)∀m and singly degenerate

for matrices in Eq.(223) and Eq.(224). Including the decoupled c mode, we have 2mmax+3 magnetic modes emanating
out of this B → 0 energy eigenvalue. Now recall that we have 2q − (2mmax + 3) decoupled f modes with energy
ν( 3U1

2 + 6U2). Thus in total we have 2q magnetic modes within the narrow bands, which corresponds to 2 states per
moiré unit cell. The spectrum for flat band limit has been shown in Supplementary Fig.(8b). Note that the B → 0
energies recovered by the decoupled matrices are the corresponding zero field energies of THFM at Γ in mBZ.

C. ν = ±1, Spin ↓

Here we discuss the finite B THFM at ν = ±1 for τ = +1 and spin ↓. The interactions read as[37]

V τ=+1,↓
ν=±1 = ν

∑
k

( 4∑
a=1

ma,+1∑
m=0

p−1∑
r=0

Wac
†
a1krm↓ca1krm↓ +

∑
a=3,4

ma,+1∑
m=0

p−1∑
r=0

(−1)a+1 J

2
c†a1krm↓ca1krm↓

+
∑
b=1,2

q−1∑
r′=0

(
2 + (−1)b+1

2
U1 + 6U2

)
f†b1kr′↓fb1kr′↓

)
. (226)

Here Wa∈{1...4} and U2 are mean field coefficients with W1 = W2 and W3 = W4 [37]. In the f̄ basis we can re-write
the interaction for f -fermion modes as

V f,τ=+1,↓
ν=±1 =

∑
k∈[0,1)⊗[0, 1q )

V f,τ=+1,↓,ν=±1
coupled + V f,τ=+1,↓,ν=±1

decoupled (227)

where

V f,τ=+1,↓,ν=±1
coupled = ν

(
3

2
U1 + 6U2

)(mmax+1∑
m=0

f̄†11km↓f̄11km↓

)
+ ν

(
1

2
U1 + 6U2

)(mmax∑
m=0

f̄†21kmsf̄21km↓

)
, (228)

V f,τ=+1,s,ν=±2
decoupled = ν

2∑
b=1

q−1∑
m′=mmax+b̄

(
2 + (−1)b+1

2
U1 + 6U2

)
f̄†b1km′↓f̄b1km′↓, (229)

where 1̄(2̄) = 2, 1. Note that out of the available 2q f modes, q−(mmax+2) are decoupled with energy ν
(
3
2U1 + 6U2

)
and q − (mmax + 1) are decoupled with energy ν

(
1
2U1 + 6U2

)
, i.e. a total of 2− (2mmax + 3)/q decoupled f modes

per moiré unit cell. The coupled modes can then be described by

Hτ=+1,↓,ν=±1
coupled =

∑
k

6∑
α,α′=1

mα∑
m=0

mα′∑
m′=0

Ξ↓,ν=±1
mα,m′α′d

†
mα↓(k)dm′α′↓(k), (230)

where mα=1,...,4 = mα,+1, m5 = mmax + 1 and m6 = mmax, and

d†mα↓(k) =
(
c†11k0m↓, c

†
21k0m↓, c

†
31k0m↓, c

†
41k0m↓, f̄

†
11km↓, f̄

†
21km↓

)
α
, (231)

with

Ξ↓,ν=±1
mα,m′α′ = ⟨m|ĥ+1,↓,ν=±1

α,α′ |m′⟩, (232)



45

where the operators ĥ+1,↓,ν=±1
α,α′ are given as

ĥ+1,↓,ν=±1
α,α′ =



νW1 0 −i
√
2 v∗

ℓ â 0 γΣ(â†â) i
√
2
v′
∗
ℓ â

†Σ(â†â)

0 νW1 0 i
√
2 v∗

ℓ â
† −i

√
2
v′
∗
ℓ âΣ(â

†â) γΣ(â†â)

i
√
2 v∗

ℓ â
† 0 ν(W3 +

J
2 ) M 0 0

0 −i
√
2 v∗

ℓ â M ν(W3 − J
2 ) 0 0

γΣ(â†â) i
√
2
v′
∗
ℓ Σ(â

†â)â† 0 0 ν( 32U1 + 6U2) 0

−i
√
2
v′
∗
ℓ Σ(â

†â)â γΣ(â†â) 0 0 0 ν( 12U1 + 6U2)


α,α′

.(233)

The eigenstates of the above operator are exactly solvable for the flat band limit, i.e. M = 0. The decoupled c
fermion given in Eq.(208) forms the field independent ν(W3 +

J
2 ) level. The remaining eigenstates can be obtained

using the ansätze given in Eqs.(209)-(211). Setting up eigen-equation for these ansätze yield us the following 3 × 3,
5× 5 and mmax 6× 6 matrices:

h+1,ν=±1
3 =

 νW1 −i
√
2v∗
ℓ γΣ0

i
√
2v∗
ℓ ν(W3 +

J
2 ) 0

γΣ0 0 ν( 32U1 + 6U2)

 , (234)

h+1,ν=±1
5 =


νW1 0 −i 2v∗ℓ γΣ1 i

√
2v′

∗
ℓ Σ0

0 νW1 0 −i
√
2v′

∗
ℓ Σ1 γΣ0

i 2v∗ℓ 0 ν(W3 +
J
2 ) 0 0

γΣ1 i
√
2v′

∗
ℓ Σ1 0 ν( 3U1

2 + 6U2) 0

−i
√
2v′

∗
ℓ Σ0 γΣ0 0 0 ν(U1

2 + 6U2)

 , (235)

h+1,m,ν=±1
6 =



νW1 0 −i
√
2m+ 2 v∗

ℓ 0 γΣm i
√
2m

v′
∗
ℓ Σm−1

0 νW1 0 i
√
2m− 2v∗

ℓ −i
√
2m

v′
∗
ℓ Σm γΣm−1

+i
√
2m+ 2 v∗

ℓ 0 ν(W3 +
J
2 ) 0 0 0

0 −i
√
2m− 2v∗

ℓ 0 ν(W3 − J
2 ) 0 0

γΣm i
√
2m

v′
∗
ℓ Σm 0 0 ν( 3U1

2 + 6U2) 0

−i
√
2m

v′
∗
ℓ Σm−1 γΣm−1 0 0 0 ν(U1

2 + 6U2)


,(236)

where m ∈ {2 . . .mmax + 1}. The magnetic subbands within the narrow bands from the coupled modes emanate out
of the B → 0 energy eigenvalue of the above decoupled matrices, ν(W3 ± J

2 ). ν(W3 +
J
2 ) here is singly degenerate

for each of the above matrices and thus in total mmax + 2 fold degenerate. On the other hand ν(W3 − J
2 ) is in

total mmax fold degenerate for the matrix in Eq.(236) including all values of m. Including the anomalous c mode
and 2q − (2mmax + 3) decoupled f modes, we have a total of 2q magnetic modes within the narrow bands, which
corresponds to 2 states per moiré unit cell per spin. The spectrum for flat band limit has been shown in the main
text Fig.(5-b). Note that the B → 0 energies recovered by the decoupled matrices are the corresponding zero field
energies of THFM at Γ in mBZ.

D. ν = ±2, Spin ↑↓

In this section we discuss the finite B THFM at ν = ±2, Valley K and spin ↑↓ sectors. The mean field interaction
at filling ν = ±2 for VP state at τ = +1 for spin sector s reads[37]

V τ=+1,s
ν=±2 = ν

∑
k

( 4∑
a=1

ma,+1∑
m=0

p−1∑
r=0

Wac
†
a1krmsca1krms + σs

∑
a=3,4

ma,+1∑
m=0

p−1∑
r=0

J

4
c†a1krmsca1krms

+
∑
b=1,2

q−1∑
r′=0

(
4 + σs

4
U1 + 6U2

)
f†b1kr′sfb1kr′s

)
, (237)
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Supplementary Figure 6. Interacting heavy fermion Hofstadter spectra for valley K (a) spin ↑ and (b) spin ↓ at filling ν = −2
at w0/w1 = 0.7 in the flat band limit M = 0. mmax = ⌈ q−3

2
⌉.

where σs = ±1 for s =↑↓ respectively. In the f̄ basis we can re-write the interaction for f -fermion modes as

V f,τ=+1,s
ν=±2 =

∑
k∈[0,1)⊗[0, 1q )

V f,τ=+1,s,ν=±2
coupled + V f,τ=+1,s,ν=±2

decoupled (238)

where

V f,τ=+1,s,ν=±2
coupled = ν

(
4 + σs

4
U1 + 6U2

)(mmax+1∑
m=0

f̄†11kmsf̄11kms +

mmax∑
m=0

f̄†21kmsf̄21kms

)
, (239)

V f,τ=+1,s,ν=±2
decoupled = ν

(
4 + σs

4
U1 + 6U2

) 2∑
b=1

q−1∑
m′=mmax+b̄

f̄†b1km′sf̄b1km′s, (240)

where 1̄(2̄) = 2, 1. Note that we have 2−(2mmax+3)/q decoupled f states per moiré unit cell for each spin projection.
The coupled modes can then be described by

Hτ=+1,s,ν=±2
coupled =

∑
k

6∑
α,α′=1

mα∑
m=0

mα′∑
m′=0

Ξs,ν=±2
mα,m′α′d

†
mαs(k)dm′α′s(k), (241)

where mα=1,...,4 = mα,+1, m5 = mmax + 1 and m6 = mmax, and

d†mαs(k) =
(
c†11k0ms, c

†
21k0ms, c

†
31k0ms, c

†
41k0ms, f̄

†
11kms, f̄

†
21kms

)
α
, (242)

with

Ξs,ν=±2
mα,m′α′ = ⟨m|ĥ+1,s,ν=±2

α,α′ |m′⟩, (243)

where the operators ĥ+1,s,ν=±2
α,α′ are given as

ĥ+1,s,ν=±2
α,α′ =



νW1 0 −i
√
2 v∗

ℓ â 0 γΣ(â†â) i
√
2
v′
∗
ℓ â

†Σ(â†â)

0 νW1 0 i
√
2 v∗

ℓ â
† −i

√
2
v′
∗
ℓ âΣ(â

†â) γΣ(â†â)

i
√
2 v∗

ℓ â
† 0 ν(W3 + σs

J
4 ) M 0 0

0 −i
√
2 v∗

ℓ â M ν(W3 + σs
J
4 ) 0 0

γΣ(â†â) i
√
2
v′
∗
ℓ Σ(â

†â)â† 0 0 ν( 4+σs

4 U1 + 6U2) 0

−i
√
2
v′
∗
ℓ Σ(â

†â)â γΣ(â†â) 0 0 0 ν( 4+σs

4 U1 + 6U2)


α,α′

,(244)
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where â is a simple h.o. lowering operator, |m⟩ is a simple h.o. eigenstate and Σ(m) = Σm. The exact eigenstates for
the above operator are exactly solvable in flat band limit, M = 0. The field independent ±(2W3+

J
2 ) and ±(2W3− J

2 )
levels at fillings ν = ±2 and τ = +1 for spin ↑↓ sectors respectively is formed by the anomalous c-mode in Eq.(208).

The rest of the problem can be solved using the ansätze: Eq.(209)-Eq.(211). The corresponding coefficients c
(3)
α ,

c
(5)
α and c

(6,m)
α can thus be solved as eigenvectors of the following 3 × 3, 5 × 5 and mmax 6 × 6 Hermitian matrices

respectively:

h+1,s,ν=±2
3 =

 νW1 −i
√
2v∗
ℓ γΣ0

i
√
2v∗
ℓ ν(W3 + σs

J
4 ) 0

γΣ0 0 ν( 4+σs

4 U1 + 6U2)

 , (245)

h+1,s,ν=±2
5 =


νW1 0 −i 2v∗

ℓ γΣ1 i
√
2v′

∗
ℓ Σ0

0 νW1 0 −i
√
2v′

∗
ℓ Σ1 γΣ0

i 2v∗ℓ 0 ν(W3 + σs
J
4 ) 0 0

γΣ1 i
√
2v′

∗
ℓ Σ1 0 ν( 4+σs

4 U1 + 6U2) 0

−i
√
2v′

∗
ℓ Σ0 γΣ0 0 0 ν( 4+σs

4 U1 + 6U2)

 , (246)

h+1,m,s,ν=±2
6 =



νW1 0 −i
√
2m+ 2 v∗

ℓ 0 γΣm i
√
2m

v′
∗
ℓ Σm−1

0 νW1 0 i
√
2m− 2v∗

ℓ −i
√
2m

v′
∗
ℓ Σm γΣm−1

+i
√
2m+ 2 v∗

ℓ 0 ν(W3 + σs
J
4 ) 0 0 0

0 −i
√
2m− 2 v∗

ℓ 0 ν(W3 + σs
J
4 ) 0 0

γΣm i
√
2m

v′
∗
ℓ Σm 0 0 ν( 4+σs

4 U1 + 6U2) 0

−i
√
2m

v′
∗
ℓ Σm−1 γΣm−1 0 0 0 ν( 4+σs

4 U1 + 6U2)


.(247)

The magnetic subbands within the narrow bands from the coupled modes emanate out of the B → 0 energy eigenvalue
of the above decoupled matrices, ν(W3 + σs

J
4 ), which is 2 fold degenerate for matrix in Eq.(247)∀m and singly

degenerate for matrices in Eq.(245) and Eq.(246), for each spin projection. Including the decoupled c mode, we have
2mmax+3 magnetic modes emanating out of this B → 0 energy eigenvalue. Now recall that we have 2q−(2mmax+3)
decoupled f modes with energy ν( 4+σs

4 U1+6U2). Thus in total we have 2q magnetic modes within the narrow bands,
which corresponds to 2 states per moiré unit cell for each spin projection. The spectrum for flat band limit has
been shown in Supplementary Fig.(6). Note that the B → 0 energies recovered by the decoupled matrices are the
corresponding zero field energies of THFM at Γ in mBZ.

Supplementary note 7. DISCUSSION FOR VALLEY K′

In this section we discuss finite B THFM at valley K′, i.e τ = −1. Note that summation convention on repeated
indices is implied unless explicitly stated. Using the SVD decomposition discussed we can re-write the matrix elements
as

h−1
[1m0],[1r′]c

†
1−1k0msf1−1kr′s = γΣm′,r̄c

†
1−1k0msUmm′Vr̄,r′f1−1kr′s =

m1,−1∑
m=0

m1,−1∑
r̄=0

γΣmδmr̄c
†
1−1k0msf̄1−1kr̄s, (248)

where we used the fact that U is an identity matrix and the rectangular matrix Σm,r′ is non-zero only along its main
diagonal. Similarly

h−1
[2m0],[1r′]c

†
2−1k0msf1−1kr′s = −i

√
2
v′∗
ℓ

m2,−1∑
m=0

√
mc†2−1k0msΣm−1,r̄Vr̄,r′f1−1kr′s

= −i
√
2
v′∗
ℓ

m2,−1∑
m=0

m2,−1−1∑
r̄=0

√
mΣr̄δm−1,r̄c

†
2−1k0msf̄1−1kr̄s. (249)
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Supplementary Figure 7. Interacting heavy fermion Hofstadter spectra for (b) CNP at K′ contrasted with (a) corresponding
zero-field spectra at w0/w1 = 0.7 in the flat band limit M = 0. mmax = ⌈ q−3

2
⌉.

Because m2,−1 − 1 = m1,−1 = mmax, the upper bound on the r̄ summation is the same in Eq.(248) and Eq.(249).
Similarly

h−1
[1m0],[2r′]c

†
1−1k0msf2−1kr′s = i

√
2
v′∗
ℓ

m1,−1∑
m=0

√
m+ 1c†1−1k0msΣm+1,r̄Vr̄,r′f2−1kr′s

= i
√
2
v′∗
ℓ

m1,−1∑
m=0

m1,−1+1∑
r̄=0

√
m+ 1c†1−1k0msf̄2−1kr̄s (250)

h1[2m0],[2r′]c
†
2−1k0msf2−1kr′s =

m2,−1∑
m=0

m2,−1∑
r̄=0

γΣmδm,r̄c
†
2−1k0msf̄2−1kr̄s. (251)

Because m1,−1 + 1 = m2,−1 = mmax + 1, the upper bound on r̄ summation is the same in Eq.(250) and Eq.(251).
Thus for a given k, out of the available 2q f−modes, only 2mmax + 3 couple.

A. CNP

The interactions in f̄ basis at CNP [37] can be given as

V f,τ=−1,s =
∑

k∈[0,1)⊗[0, 1q )

V f,τ=−1,s
coupled + V f,τ=−1,s

decoupled , (252)

V f,τ=−1,s
coupled =

U1

2

(
mmax∑
m=0

f̄†1−1kmsf̄1−1kms +

mmax+1∑
m=0

f̄†2−1kmsf̄2−1kms

)
,

(253)

V f,τ=−1,s
decoupled =

U1

2

2∑
b=1

q−1∑
m′=mmax+b

f̄†b−1km′sf̄b−1km′s, (254)

Note that there are 2q− (2mmax+3) decoupled f modes for each k. Physically this corresponds to 2− (2mmax+3)/q
states per moiré unit cell. The coupled modes can then be described as



49

Hτ=−1,s
coupled =

∑
k

6∑
α,α′=1

mα∑
m=0

mα′∑
m′=0

Ξ̄mα,m′α′ d̄†mαs(k)d̄m′α′s(k), (255)

where mα=1,...,4 = mα,−1, m5 = mmax and m6 = mmax + 1, and

d̄†mαs(k) =
(
c†1−1k0ms, c

†
2−1k0ms, c

†
3−1k0ms, c

†
4−1k0ms, f̄

†
1−1kms, f̄

†
2−1kms

)
α
. (256)

The following operator can be defined for τ = −1

ĥ−1
α,α′ =



0 0 −i
√
2 v∗

ℓ â
† 0 γΣ(â†â) i

√
2
v′
∗
ℓ âΣ(â

†â)

0 0 0 i
√
2 v∗

ℓ â −i
√
2
v′
∗
ℓ â

†Σ(â†â) γΣ(â†â)

i
√
2 v∗

ℓ â 0 J
2 M 0 0

0 −i
√
2 v∗

ℓ â
† M J

2 0 0

γΣ(â†â) i
√
2
v′
∗
ℓ Σ(â

†â)â 0 0 U1

2 0

−i
√
2
v′
∗
ℓ Σ(â

†â)â† γΣ(â†â) 0 0 0 U1

2


α,α′

, (257)

where â is a simple h.o. lowering operator in terms of which matrix Ξ̄mα,m′α′ can be expressed as

Ξ̄mα,m′α′ = ⟨m|ĥ−1
α,α′ |m′⟩. (258)

Here |m⟩ is a simple h.o. eigenstate and Σ(m) = Σm. We now discuss the the exact solutions to the eigenstates of the
operator in Eq.(257) in flat band limit, M = 0. The B field independent J/2 Landau level comes from the anomalous
c-mode

θ1 = [0, 0, 0, |0⟩ , 0, 0]T . (259)

The rest of the problem can be solved using the following ansätze:

θ̄3 =
[
0, c

(3)
2 |0⟩ , 0, c(3)4 |1⟩ , 0, c(3)6 |0⟩

]T
, (260)

θ̄5 =
[
c
(5)
1 |0⟩ , c(5)2 |1⟩ , 0, c(5)4 |2⟩ , c(5)5 |0⟩ , c(5)6 |1⟩

]T
,

(261)

θ̄6m =
[
c
(6m)
1 |m− 1⟩ , c(6m)

2 |m⟩ , c(6m)
3 |m− 2⟩ , c(6m)

4 |m+ 1⟩ , c(6m)
5 |m− 1⟩ , c(6m)

6 |m⟩
]T
, (262)

where m ∈ {2, . . . ,mmax + 1}. c(β)α denotes the coefficient of corresponding h.o state at index α in the 6-component
spinor in Eq.(256) and β labels the ansatz index θβ . Using the above, we can set up the eigen-equation and solve for
the corresponding coefficients.

The ansätze θ̄3 and θ̄5 yield the 3×3 and 5×5 Hermitian matrices, whose eigenvectors are c
(3)
α and c

(5)
α , respectively:

h−1
3 =

 0 i
√
2v∗
ℓ γΣ0

−i
√
2v∗
ℓ

J
2 0

γΣ0 0 U1

2

 , (263)

h−1
5 =


0 0 0 γΣ0 i

√
2v′

∗
ℓ Σ1

0 0 i 2v∗ℓ −i
√
2v′

∗
ℓ Σ0 γΣ1

0 −i 2v∗ℓ J
2 0 0

γΣ0 i
√
2v′

∗
ℓ Σ0 0 U1

2 0

−i
√
2v′

∗
ℓ Σ1 γΣ1 0 0 U1

2

 . (264)

Similarly, the ansatz θ̄m6 yields the following 6× 6 Hermitian matrix for each m, whose eigenvectors are c
(6,m)
α :

h−1,m
6 =



0 0 −i
√
2m− 2v∗

ℓ 0 γΣm−1 i
√
2m

v′
∗
ℓ Σm

0 0 0 i
√
2m+ 2 v∗

ℓ −i
√
2m

v′
∗
ℓ Σm−1 γΣm

+i
√
2m− 2v∗

ℓ 0 J
2 0 0 0

0 −i
√
2m+ 2 v∗

ℓ 0 J
2 0 0

γΣm−1 i
√
2m

v′
∗
ℓ Σm−1 0 0 U1

2 0

−i
√
2m

v′
∗
ℓ Σm γΣm 0 0 0 U1

2


. (265)



50

Supplementary Figure 8. Interacting heavy fermion Hofstadter spectra for (a) valley K′ spin ↑↓ (degenerate) and (b) valley
K spin ↑ at filling ν = −1 at w0/w1 = 0.7 in the flat band limit M = 0. The value of parameters used are W1 = 44.05meV ,
W3 = 49.33meV and U2 = 2.656meV . mmax = ⌈ q−3

2
⌉.

The magnetic subbands within the narrow bands from the coupled modes emanate out of the B → 0 energy eigenvalue
of the above decoupled matrices, J

2 , which is 2 fold degenerate for matrix in Eq.(265)∀m and singly degenerate for
matrices in Eq.(263) and Eq.(264). Including the decoupled c mode, we have 2mmax + 3 magnetic modes emanating
out of this B → 0 energy eigenvalue. Now recall that we have 2q − (2mmax + 3) decoupled f modes with energy U1

2 .
Thus in total we have 2q magnetic modes within the narrow bands, which corresponds to 2 states per moiré unit cell
per spin. The spectrum for flat band limit has been shown in Supplementary Fig.(7b). Note that the B → 0 energies
recovered by the decoupled matrices are the corresponding zero field energies of THFM at Γ in mBZ.

B. ν = ±1 Spin ↑↓

The interactions at ν = ±1 for valley K′ spin ↑↓[37] is given as

V τ=−1,s=↑↓
ν=±1 = ν

∑
k

( 4∑
a=1

ma,−1∑
m=0

p−1∑
r=0

Wac
†
a−1krmsca−1krms −

∑
a=3,4

ma,−1∑
m=0

p−1∑
r=0

J

2
c†a−1krmsca−1krms

+
∑
b=1,2

q−1∑
r′=0

(
1

2
U1 + 6U2

)
f†b−1kr′sfb−1kr′s

)
, (266)

Wa∈{1...4} and U2 are mean field coefficients with W1 =W2 and W3 =W4 [37]. The interaction for f modes in the f̄
basis can then be given as

V f,τ=−1,s
ν=±1 =

∑
k∈[0,1)⊗[0, 1q )

V f,τ=−1,s,ν=±1
coupled + V f,τ=−1,s,ν=±1

decoupled (267)

where

V f,τ=−1,s,ν=±1
coupled = ν

(
1

2
U1 + 6U2

)(mmax∑
m=0

f̄†1−1kmsf̄1−1kms +

mmax+1∑
m=0

f̄†2−1kmsf̄2−1kms

)
, (268)

V f,τ=−1,s,ν=±1
decoupled = ν

2∑
b=1

q−1∑
m′=mmax+b

(
1

2
U1 + 6U2

)
f̄†b−1km′sf̄b−1km′s. (269)

Yet again there are 2q− (2mmax+3) decoupled f modes for each k. Physically this corresponds to 2− (2mmax+3)/q
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states per moiré unit cell for each spin projection. The coupled modes can then be described by

Hτ=−1,s,ν=±1
coupled =

∑
k

6∑
α,α′=1

mα∑
m=0

mα′∑
m′=0

Ξ̄s,ν=±2
mα,m′α′ d̄

†
mαs(k)d̄m′α′s(k), (270)

where mα=1,...,4 = mα,−1, m5 = mmax and m6 = mmax + 1, and

d̄†mαs(k) =
(
c†1−1k0ms, c

†
2−1k0ms, c

†
3−1k0ms, c

†
4−1k0ms, f̄

†
1−1kms, f̄

†
2−1kms

)
α
. (271)

with

Ξ̄s,ν=±1
mα,m′α′ = ⟨m|ĥ−1,s,ν=±1

α,α′ |m′⟩. (272)

where the operators ĥ−1,s,ν=±1
α,α′ are given as

ĥ−1,s,ν=±1
α,α′ =



νW1 0 −i
√
2v∗

ℓ â
† 0 γΣ(â†â) i

√
2
v′
∗
ℓ âΣ(â

†â)

0 νW1 0 i
√
2 v∗

ℓ â −i
√
2
v′
∗
ℓ â

†Σ(â†â) γΣ(â†â)

i
√
2 v∗

ℓ â 0 ν(W3 − J
2 ) M 0 0

0 −i
√
2 v∗

ℓ â
† M ν(W3 − J

2 ) 0 0

γΣ(â†â) i
√
2
v′
∗
ℓ Σ(â

†â)â 0 0 ν(U1

2 + 6U2) 0

−i
√
2
v′
∗
ℓ Σ(â

†â)â† γΣ(â†â) 0 0 0 ν(U1

2 + 6U2)


α,α′

,(273)

where â is a simple h.o. lowering operator with |m⟩ being a simple h.o. eigenstate and Σ(m) = Σm. The exact
eigenstates for the above operator are exactly solvable in flat band limit, M = 0. The field independent ν(W3 − J

2 )
level is formed by the decoupled anomalous c level given in Eq.(259). The rest of eigenstates can be solved using the

ansätze given in Eq.(260)-Eq.(262). The corresponding coefficients c
(3)
α , c

(5)
α and c

(6,m)
α can be solved as eigenvectors

of the following 3× 3, 5× 5 and mmax 6× 6 Hermitian matrices respectively:

h−1,ν=±1
3 =

 νW1 i
√
2v∗
ℓ γΣ0

−i
√
2v∗
ℓ ν(W3 − J

2 ) 0
γΣ0 0 ν(U1

2 + 6U2)

 , (274)

h−1,ν=±1
5 =


νW1 0 0 γΣ0 i

√
2v′

∗
ℓ Σ1

0 νW1 i 2v∗ℓ −i
√
2v′

∗
ℓ Σ0 γΣ1

0 −i 2v∗ℓ ν(W3 − J
2 ) 0 0

γΣ0 i
√
2v′

∗
ℓ Σ0 0 ν(U1

2 + 6U2) 0

−i
√
2v′

∗
ℓ Σ1 γΣ1 0 0 ν(U1

2 + 6U2)

 . (275)

h−1,m,ν=±1
6 =



νW1 0 −i
√
2m− 2v∗

ℓ 0 γΣm−1 i
√
2m

v′
∗
ℓ Σm

0 νW1 0 i
√
2m+ 2 v∗

ℓ −i
√
2m

v′
∗
ℓ Σm−1 γΣm

+i
√
2m− 2v∗

ℓ 0 ν(W3 − J
2 ) 0 0 0

0 −i
√
2m+ 2 v∗

ℓ 0 ν(W3 − J
2 ) 0 0

γΣm−1 i
√
2m

v′
∗
ℓ Σm−1 0 0 ν(U1

2 + 6U2) 0

−i
√
2m

v′
∗
ℓ Σm γΣm 0 0 0 ν(U1

2 + 6U2)


.(276)

The magnetic subbands within the narrow bands from the coupled modes emanate out of the B → 0 energy eigenvalue
of the above decoupled matrices, ν(W3− J

2 ), which is 2 fold degenerate for matrix in Eq.(276)∀m and singly degenerate
for matrices in Eq.(274) and Eq.(275). Including the decoupled c mode, we have 2mmax+3 magnetic modes emanating
out of this B → 0 energy eigenvalue. Now recall that we have 2q − (2mmax + 3) decoupled f modes with energy
ν(U1

2 + 6U2). Thus in total we have 2q magnetic modes within the narrow bands, which corresponds to 2 states per
moiré unit cell for each spin projection. The spectrum for flat band limit has been shown in Supplementary Fig.(8a).
Note that the B → 0 energies recovered by the decoupled matrices are the corresponding zero field energies of THFM
at Γ in mBZ.
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Supplementary Figure 9. Interacting heavy fermion Hofstadter spectra for (b) valley K′ spin ↑↓ (degenerate) contrasted with
(a) corresponding zero-field spectra at filling ν = −2 at w0/w1 = 0.7 in the flat band limit M = 0. mmax = ⌈ q−3

2
⌉.

C. ν = ±2 Spin ↑↓

The interactions at ν = ±2 for valley K′ spin ↑↓[37] is given as

V τ=−1,s=↑↓
ν=±2 = ν

∑
k

( 4∑
a=1

ma,−1∑
m=0

p−1∑
r=0

Wac
†
a−1krmsca−1krms −

∑
a=3,4

ma,−1∑
m=0

p−1∑
r=0

J

4
c†a−1krmsca−1krms

+
∑
b=1,2

q−1∑
r′=0

(
3

4
U1 + 6U2

)
f†b−1kr′sfb−1kr′s

)
. (277)

The interaction for f modes in the f̄ basis can then be given as

V f,τ=−1,s
ν=±1 =

∑
k∈[0,1)⊗[0, 1q )

V f,τ=−1,s,ν=±2
coupled + V f,τ=−1,s,ν=±2

decoupled (278)

where

V f,τ=−1,s,ν=±2
coupled = ν

(
3

4
U1 + 6U2

)(mmax∑
m=0

f̄†1−1kmsf̄1−1kms +

mmax+1∑
m=0

f̄†2−1kmsf̄2−1kms

)
, (279)

V f,τ=−1,s,ν=±2
decoupled = ν

2∑
b=1

q−1∑
m′=mmax+b

(
3

4
U1 + 6U2

)
f̄†b−1km′sf̄b−1km′s. (280)

Yet again there are 2q−(2mmax+3) decoupled f modes for each k. Physically this corresponds to 2−(2mmax+3)/q
states per moiré unit cell for each spin projection. The coupled modes can then be described by

Hτ=−1,s,ν=±2
coupled =

∑
k

6∑
α,α′=1

mα∑
m=0

mα′∑
m′=0

Ξ̄s,ν=±1
mα,m′α′ d̄

†
mαs(k)d̄m′α′s(k), (281)

where mα=1,...,4 = mα,−1, m5 = mmax and m6 = mmax + 1, and

d̄†mαs(k) =
(
c†1−1k0ms, c

†
2−1k0ms, c

†
3−1k0ms, c

†
4−1k0ms, f̄

†
1−1kms, f̄

†
2−1kms

)
α
. (282)

with

Ξ̄s,ν=±2
mα,m′α′ = ⟨m|ĥ−1,s,ν=±2

α,α′ |m′⟩, (283)
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where the operators ĥ−1,s,ν=±2
α,α′ are given as

ĥ−1,s,ν=±2
α,α′ =



νW1 0 −i
√
2v∗

ℓ â
† 0 γΣ(â†â) i

√
2
v′
∗
ℓ âΣ(â

†â)

0 νW1 0 i
√
2 v∗

ℓ â −i
√
2
v′
∗
ℓ â

†Σ(â†â) γΣ(â†â)

i
√
2 v∗

ℓ â 0 ν(W3 − J
4 ) M 0 0

0 −i
√
2 v∗

ℓ â
† M ν(W3 − J

4 ) 0 0

γΣ(â†â) i
√
2
v′
∗
ℓ Σ(â

†â)â 0 0 ν( 3U1

4 + 6U2) 0

−i
√
2
v′
∗
ℓ Σ(â

†â)â† γΣ(â†â) 0 0 0 ν( 3U1

4 + 6U2)


α,α′

,(284)

where â is a simple h.o. lowering operator with |m⟩ being a simple h.o. eigenstate and Σ(m) = Σm. The exact
eigenstates for the above operator are exactly solvable in flat band limit, M = 0. The field independent ν(W3 − J

4 )
level is formed by the decoupled anomalous c level given in Eq.(259). The rest of eigenstates can be solved using the

ansätze given in Eq.(260)-Eq.(262). The corresponding coefficients c
(3)
α , c

(5)
α and c

(6,m)
α can be solved as eigenvectors

of the following 3× 3, 5× 5 and mmax 6× 6 Hermitian matrices respectively:

h−1,ν=±2
3 =

 νW1 i
√
2v∗
ℓ γΣ0

−i
√
2v∗
ℓ ν(W3 − J

4 ) 0
γΣ0 0 ν( 3U1

4 + 6U2)

 , (285)

h−1,ν=±2
5 =


νW1 0 0 γΣ0 i

√
2v′

∗
ℓ Σ1

0 νW1 i 2v∗
ℓ −i

√
2v′

∗
ℓ Σ0 γΣ1

0 −i 2v∗ℓ ν(W3 − J
4 ) 0 0

γΣ0 i
√
2v′

∗
ℓ Σ0 0 ν( 3U1

4 + 6U2) 0

−i
√
2v′

∗
ℓ Σ1 γΣ1 0 0 ν( 3U1

4 + 6U2)

 . (286)

h−1,m,ν=±2
6 =



νW1 0 −i
√
2m− 2 v∗

ℓ 0 γΣm−1 i
√
2m

v′
∗
ℓ Σm

0 νW1 0 i
√
2m+ 2 v∗

ℓ −i
√
2m

v′
∗
ℓ Σm−1 γΣm

+i
√
2m− 2 v∗

ℓ 0 ν(W3 − J
4 ) 0 0 0

0 −i
√
2m+ 2 v∗

ℓ 0 ν(W3 − J
4 ) 0 0

γΣm−1 i
√
2m

v′
∗
ℓ Σm−1 0 0 ν( 3U1

4 + 6U2) 0

−i
√
2m

v′
∗
ℓ Σm γΣm 0 0 0 ν( 3U1

4 + 6U2)


.(287)

The magnetic subbands within the narrow bands from the coupled modes emanate out of the B → 0 energy eigenvalue
of the above decoupled matrices, ν(W3− J

4 ), which is 2 fold degenerate for matrix in Eq.(287)∀m and singly degenerate
for matrices in Eq.(285) and Eq.(286). Including the decoupled c mode, we have 2mmax+3 magnetic modes emanating
out of this B → 0 energy eigenvalue. Now recall that we have 2q − (2mmax + 3) decoupled f modes with energy
ν( 3U1

4 + 6U2). Thus in total we have 2q magnetic modes within the narrow bands, which corresponds to 2 states per
moiré unit cell for each spin projection. The spectrum for flat band limit has been shown in Supplementary Fig.(9b).
Note that the B → 0 energies recovered by the decoupled matrices are the corresponding zero field energy of THFM
at Γ in mBZ.

Supplementary note 8. NAIVE MINIMAL SUBSTITUTION

Including both the c-c and c-f coupling in Eq.(2) of main-text, the zero B field THFM can be written as a 6 × 6
matrix, say at τ = +1

hτ=1
0 =



0 0 v∗k 0 e−
k2λ2

2 γ e−
k2λ2

2 v′∗k̄

0 0 0 v∗k̄ e−
k2λ2

2 v′∗k e−
k2λ2

2 γ
v∗k̄ 0 0 M 0 0
0 v∗k M 0 0 0

e−
k2λ2

2 γ e−
k2λ2

2 v′∗k̄ 0 0 0 0

e−
k2λ2

2 v′∗k e−
k2λ2

2 γ 0 0 0 0


α,α′

, (288)

(289)
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Supplementary Figure 10. The spin valley degenerate non-interacting Hofstadter spectrum for M ̸= 0 at ω0/ω1 = 0.7 (a)
obtained using naive minimal coupling compared to the (b) spectrum obtained using the formalism constructed in the paper
for B ̸= 0 THFM. The magnetic subbands within the narrow bands are spread in the energy window of |2M |, which also sets
the bandwidth of narrow bands at B = 0 in THFM. The total number of subbands within the narrow bands i.e. in the energy
widow [-M,M] at flux 1/q in (a) is (2m∗ + 1) while in (b) is correctly 2q. We use mmax = m∗ = ⌊ q−3

2
⌋

.

where k = kx + iky and k̄ = kx − iky. Following a naive minimal substitution, we promote kx + iky → −i
√
2â/ℓ,

where â is the Landau level (LL) lowering operator. Although it is completely unclear on how to perform the minimal

substitution on e−
1
2k

2λ2

, if we were to Taylor expand it as 1− 1
2k

2λ2 + . . . = 1− 1
2
kk̄+k̄k

2 λ2 + . . . and use the finite B

substitution for k and k̄ mentioned above we get 1 − (a†a + 1
2 )

λ2

ℓ2 + . . .. If this operator acts on LL state |m⟩, upto
O(λ

2

ℓ2 ), we get 1− (m+ 1
2 )

λ2

ℓ2 . But recall that this is same as the B → 0 limit of Σm as given in Eq.(179). Based on

this assumption, we thus promote e−
1
2k

2λ2

to Σa†a = Σ(a†a) at finite B. We thus have

ĥτ=1
B =



0 0 −i
√
2 v∗

ℓ â 0 γΣ(â†â) i
√
2
v′
∗
ℓ â

†Σ(â†â)

0 0 0 i
√
2 v∗

ℓ â
† −i

√
2
v′
∗
ℓ âΣ(â

†â) γΣ(â†â)

i
√
2 v∗

ℓ â
† 0 0 M 0 0

0 −i
√
2 v∗

ℓ â M 0 0 0

γΣ(â†â) i
√
2
v′
∗
ℓ Σ(â

†â)â† 0 0 0 0

−i
√
2
v′
∗
ℓ Σ(â

†â)â γΣ(â†â) 0 0 0 0


α,α′

, (290)

where we assume that the correct way of ordering Σ(a†a) with respect to the operators a and a† (coming from the
promotion of k and k̄ respectively) is the one we have in Eq.(206). The Hofstadter spectrum based on the naive

minimal substitution approach can thus be obtained by solving the eigenstates of ĥτ=1
Bα,α′ in the LL basis. The LL

basis |m⟩ used for computing the matrix elements for index α ∈ {1, 6} are: m ∈ {0,m∗} for index α = 1 (a = 1
c-fermion), m ∈ {0,m∗ − 1} for index α = 2 (a = 2 c-fermion), m ∈ {0,m∗ + 1} for index α = 3 (a = 1 c-fermion),
m ∈ {0,m∗−2} for index α = 4 (a = 1 c-fermion), m ∈ {0,m∗} for index α = 5 (b = 1 f -fermion) and m ∈ {0,m∗−1}
for index α = 6 (b = 2 f -fermion). The spectrum is shown in Fig.(10a). Although the magnetic subbands within
the narrow bands are well separated from the remote bands, the total number of states within the narrow bands
is (2m⋆ + 1)ϕ/ϕ0 per moié unit cell per spin per valley (same as the number of zero modes for M = 0, shown in
main-text), which of course is incorrect as the total number of states should rather be 2 per moiré unit cell per spin
per valley, independent of B.

Supplementary note 9. PARENT KRAMERS INTER-VALLEY COHERENT STATE

In this section, we discuss the Landau quantization of the one-shot Hartree Fock (HF) bands obtained for a parent
Kramers inter-valley coherent (KIVC) state at fillings ν = 0 (CNP) and ν = −2.
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Supplementary Figure 11. Spin degenerate (b) interacting heavy fermion Hofstadter spectrum for KIVC state at CNP contrasted
with (a) corresponding zero-field spectrum at w0/w1 = 0.7. mmax = ⌈ q−3

2
⌉.

A. CNP

The spin degenerate B = 0 one-shot Hartree-Fock (HF) mean-field (MF) Hamiltonian for parent KIVC state at
ν = 0 is given as[37]

Hν=0,s=↑,↓
0,KIVC (k) =

 0 v⋆(kxσ0τz + ikyσzτ0) e−
k2λ2

2 (γσ0τ0 + v′⋆(kxσxτz + kyσyτ0))
−J

2 σyτy +Mσxτ0 0
h.c. U1

2 σyτy

 , (291)

where k = (kx, ky) ∈moiré BZ, the Pauli matrices σ and τ act in the orbital and valley space respectively and h.c.
represents hermitian conjugate.

Let us begin the discussion by first analyzing the decoupled f̄ modes at B ̸= 0. Recall that at every k ∈magnetic
BZ, q − (mmax + 2) of f̄11kr′s and f̄2−1kr′s modes, i.e. the ones with r′ ≥ mmax + 1 decouple from the cs. Similarly
q−(mmax+1) of f̄21kr′s and f̄1−1kr′s modes, i.e. the ones with r′ ≥ mmax decouple from the c’s at every k ∈magnetic
BZ. We see that even for the KIVC state, the decoupled f̄ modes contribute to 2q − (2mmax + 3) B independent
energy levels at ±U1/2. Physically, these modes are the linear combination 1√

2

(
f̄11kr′s ± f̄2−1kr′s

)
with r′ ≥ mmax+1

and 1√
2

(
f̄21kr′s ± f̄1−1kr′s

)
with r′ ≥ mmax, which contribute q − (mmax + 2) and q − (mmax + 1) modes at ±U1/2,

respectively. We thus have 2q − (2mmax + 3) modes at ±U1/2 as motivated above.

Before discussing the Hofstadter spectrum for the coupled modes, we first perform a U(4) rotation (ei
π
2 Σ̂x0 , where

Σ̂x0 is defined in Eq.(4) of Ref.[37]) ) on the zero magnetic field Hamiltonian in Eq.(291) to re-write it in a much
familiar form as

H̃ν=0,s=↑,↓
0,KIVC (k) =

 0 v⋆(kxσ0τz + ikyσzτ0) e−
k2λ2

2 (γσ0τ0 + v′⋆(kxσxτz + kyσyτ0))
−J

2 σ0τz −Mσzτx 0
h.c. −U1

2 σ0τz

 , (292)

If we were to set M = 0 the two valleys in the above Hamiltonian decouple (the model becomes identical to that for
VP state due to the U(4) symmetry in flat band limit [37]). Using the results in Sections.(Supplementary note 6A)
and (Supplementary note 7A), we know how to promote each of the valley block to B ̸= 0. The role of M is to couple
both the valleys. Hence the Hofstadter spectrum for the coupled modes of c and f̄ , for the KIVC state at ν = 0, can
be obtained by solving the eigenvalues of the operator

ĥKIVC,ν=0
α,α′ =

(
ĥ+1,ν=0 ĥM
ĥM ĥ−1,ν=0

)
α,α′

, (293)
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Supplementary Figure 12. The (b) interacting heavy fermion Hofstadter spectrum for KIVC state at ν = −2 spin ↑ sector
contrasted with (a) corresponding zero-field spectrum at w0/w1 = 0.7. mmax = ⌈ q−3

2
⌉.

The intra-valley operator ĥτ,ν=0 can be obtained by setting M = 0 in operators given in Eqs.(206) and (257) for
τ = +1 and −1, respectively. The inter-valley part is given as

ĥM =

 0 0 0
−Mσz 0

h.c. 0

 (294)

The Hofstadter spectrum is shown in Fig.(11).

B. ν = −2

1. Spin ↑

For filling ν = −2, in this section we discuss the Landau quantization of spin flavor s =↑ of the B = 0 one-shot HF

MF Hamiltonian obtained for the parent KIVC state The B = 0 Hamiltonian upto a U(4) rotation ((ei
π
2 Σ̂x0 , where

Σ̂x0 is defined in Eq.(4) of Ref.[37]) ) can be given as[37]

Hν=−2↑
0,KIVC(k) =

 −2W1 v⋆(kxσ0τz + ikyσzτ0) e−
k2λ2

2 (γσ0τ0 + v′⋆(kxσxτz + kyσyτ0))
−2W3σ0τ0 − J

2 σ0τz −Mσzτx 0
h.c. −(2U1 + 12U2)σ0τ0 − U1

2 σ0τz

 , (295)

where k = (kx, ky) ∈moiré BZ, the Pauli matrices σ and τ act in the orbital and valley space respectively and h.c.
represents hermitian conjugate. The intra-valley terms in Eq.(295) can be promoted to B ̸= 0 using the results in
Sections.(Supplementary note 6D) and (Supplementary note 7C). The two valleys can then be coupled by M . Hence
the Hofstadter spectrum for the coupled modes of c and f̄ , for the KIVC state at ν = −2 spin sector ↑, can be
obtained by solving the eigenvalues of the operator

ĥKIVC,↑,ν=−2
α,α′ =

(
ĥ+1,ν=−2,↑ ĥM

ĥM ĥ−1,ν=−2,↑

)
α,α′

, (296)

where the operator ĥτ,ν=−2,↑ can be obtained by setting M = 0 and s =↑ in operators given in Eqs.(244) and (284)

for τ = +1 and −1, respectively. The inter-valley coupling ĥM is given in Eq.(294). As argued in the previous
section, the decoupled f̄ modes give rise to the 2q − (2mmax + 3) B independent energy levels at −12U2 − 2U1 ± U1

2 ,

which physically are linear combinations 1√
2

(
f̄11kr′s ± f̄2−1kr′s

)
and 1√

2

(
f̄21kr′s ± f̄1−1kr′s

)
, with r′ ≥ mmax +1 and

r′ ≥ mmax, respectively. The Hofstadter spectrum is shown in Fig.(12b)
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Supplementary note 10. EFFECTIVE HAMILTONIANS FOR LANDAU QUANTIZATION OF LIGHT
MODES

In order to better understand the Landau quantization of the zero B bands of interacting THFM in vicinity of
Γ ∈mBZ, i.e. where the lowest energy single particle excitations (light modes) reside, we derive an effective low energy
Hamiltonian for THFM at B ̸= 0 in this section. Such an analysis offers us with a deeper qualitative understanding of
not only the low energy but also the low B physics of THFM. As discussed in the main text, the decoupled f̄ modes
are only responsible for forming the B independent higher energy level (heavy modes) and it is rather the coupled
modes of c and f fermions which dictate the Hofstadter spectrum of THFM. Thus the results obtained for coupled
modes in previous sections serves as the starting point for the following analysis.

A. CNP

In the flat band limit M = 0, THFM is U(4) symmetric[37]. The coupled modes at CNP can be described by 6× 6
operators given in Eq.(206) and Eq.(257) with M set to zero, for τ = ±1 respectively. The magnetic subbands within
the narrow bands emanate out of the B → 0 energy ∓J/2, while the remote subbands emanate out of B → 0 energy

−τU1/4−
√
U2
1 /16 + γ2 and −τU1/4 +

√
U2
1 /16 + γ2, for τ = ±1 and marked by ±E∓τ in main text Fig.(2). These

energies correspond to the eigenvalues of the B = 0 flat band THFM at Γ obtained for the parent VP state. Recall

that it has the form[37]

(
F τ=+1

F τ=−1

)
at Γ, where F τ =

 0 0 γσ0
−τJ/2σ0 0

h.c. −τU1/2σ0

, where Pauli matrix σ0

acts in orbital space. The corresponding eigenstates, labelled by |ρ, j, τ⟩ with ρ ∈ {1, 2, 3} and j ∈ {1, 2} are given as

|1, 1, τ = +1⟩ = (0, 0, 0, 1, 0, 0, 06×1)
T
; |1, 1, τ = −1⟩ = (06×1, 0, 0, 0, 1, 0, 0)

T
(297)

|1, 2, τ = +1⟩ = (0, 0, 1, 0, 0, 0, 06×1)
T
; |1, 2, τ = −1⟩ = (06×1, 0, 0, 1, 0, 0, 0)

T
(298)

|2, 1, τ = +1⟩ = 1√
NX1

(0, X1, 0, 0, 0, 1, 06×1)
T
; |2, 1, τ = −1⟩ = 1√

NX−1

(06×1, 0, X−1, 0, 0, 0, 1)
T

(299)

|2, 2, τ = +1⟩ = 1√
NX1

(X1, 0, 0, 0, 1, 0, 06×1)
T
; |2, 2, τ = −1⟩ = 1√

NX−1

(06×1, X−1, 0, 0, 0, 1, 0)
T

(300)

|3, 1, τ = +1⟩ = 1√
NY 1

(0, Y1, 0, 0, 0, 1, 06×1)
T
; |3, 1, τ = −1⟩ = 1√

NY−1

(06×1, 0, Y−1, 0, 0, 0, 1)
T

(301)

|3, 2, τ = +1⟩ = 1√
NY 1

(Y1, 0, 0, 0, 1, 0, 06×1)
T
; |3, 2, τ = −1⟩ = 1√

NY−1

(06×1, Y−1, 0, 0, 0, 1, 0)
T

(302)

where (06×1) represent 6 zero entries (0, . . . , 0),

Xτ = −−τU1/4 +
√
U2
1 /16 + γ2

γ
, (303)

Yτ = −−τU1/4−
√
U2
1 /16 + γ2

γ
, (304)

The normalizations NXτ = 1 +X2
τ and NY,τ = 1 + Y 2

τ . The energy of state |ρ, j, τ⟩ can be labelled as Eρ,j,τ , where

E1jτ = −τJ/2 ≡ Eτ , (305)

E2jτ = −τU1/4−
√
U2
1 /16 + γ2 ≡ EXτ (306)

E3jτ = −τU1/4 +
√
U2
1 /16 + γ2 ≡ EY τ . (307)

As shown in the section(Supplementary note 8), theB ̸= 0 THFM for the coupled modes, upto the ambiguity of correct
ordering of singular values, is the same as having naively minimally substituted in B = 0 THFM. Hence, throughout
the discussion we consider the B ̸= 0 basis to be the finite B k · p basis, i.e. given as |ρ, j, τ,m⟩ = |ρ, j, τ⟩|m⟩, where
|m⟩ is the mth LL.
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Supplementary Figure 13. The comparison of (b) LL spectrum obtained using the effective Hamiltonian (·) with the exact
calculation (·) contrasted with the corresponding comparison at (a) B = 0 for valley K′ at CNP. The spectrum at valley K is
related by particle hole symmetry. For the comparison to be tractable we set mmax = 26. Note that the above figure is spin
degenerate.

1. Parent Valley Polarized State

Clearly the subspace of interest, for which we want to derive an effective Hamiltonian, is the one spanned by states
|ρ = 1, j, τ,m⟩, i.e. the a = {3, 4} c fermions for each τ = ±1. To obtain the effective Hamiltonian we eliminate
all the terms in operator Eqs.(206) and (257) (i.e. at τ = +1,−1 respectively) which can mix the subspaces using
Schrieffer Wolff Transformation (SWT). We moreover omit the contributions to effective Hamiltonian of order greater
than B3/2, i.e. 1/ℓ3. Below, we discuss the SWT scheme followed to obtain the effective Hamiltonian. We first rewrite
the operators in Eqs.(206) and (257) with respect to the B = 0 eigenstates at Γ, |ρ, j, τ⟩, given in Eqs.(297)-(302) as

H = H0 +∆V, (308)

where ∆ is an artificial parameter that helps us keeping track of the order in perturbation, to which we compute
the effective Hamiltonian and is later set to 1. Along with M , we treat all the terms in operator in Eqs.(206) and
(257) (i.e. at τ = +1,−1 respectively) which can mix the subspaces as perturbation V . The unperturbed part

H0 =

(
Hτ=+1

0

Hτ=−1
0

)
where

Hτ
0 =

 Eτσ0 0 0
0 EXτσ0 0
0 0 EY τσ0

 . (309)

The Pauli matrix σ0 above acts in the j ∈ {1, 2} space of for each ρ, and the energies E, EXτ , EY τ are given in

Eqs.(305)-(307). The perturbation is given as V =

(
V τ=+1 0

0. V τ=−1

)
, where

V τ=+1 =



0 M −i
√
2
ℓ

X1v⋆√
NX1

a 0 −i
√
2
ℓ

Y1v⋆√
NY 1

a 0

0 0 i
√
2
ℓ

X1v⋆√
NX1

a† 0 i
√
2
ℓ

Y1v⋆√
NY 1

a†

0 −i 2
√
2

ℓ
X1v

′
⋆

NX1
a 0 −i

√
2
ℓ

(X1+Y1)v
′
⋆√

NX1NY 1
a

0 i
√
2
ℓ

(X1+Y1)v
′
⋆√

NX1NY 1
a† 0

0 −i 2
√
2

ℓ
Y1v

′
⋆

NY 1
a

h.c. 0


, (310)

where h.c. represents hermitian conjugate. In above matrix, the terms of O( 1
ℓ2 ) have been opted out as they contribute

terms of O( 1
ℓ4 ) to the effective Hamiltonian. V τ=−1 can be obtained by replacing X1, Y1 → X−1, Y−1, NX1, NY 1 →
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NX−1, NY−1 and a↔ a† in Eq.(310). Let us now consider the SWT, generated by S = S†, such that it decouples the
three subspaces in the transformed Hamiltonian. The transformed Hamiltonian is given as

H ′ = eiSHe−iS (311)

= H + i[S,H] +
i2

2!
[S, [S,H]] +

i3

3!
[S, [S, [S,H]]] + . . . . (312)

The generator of the transformation can be expanded in orders of ∆ as

S = ∆S1 +∆2S2 +∆3S3 + . . . (313)

Substituting Eq.(313) into Eq.(312) gives us

H ′ = H0 +∆(V + i[S1, H0]) + ∆2

(
i[S2, H0] + i[S1, V ] +

i2

2!
[S1, [S1, H0]]

)
+ (314)

∆3

(
i[S3, H0] + i[S2, V ] +

i2

2!
[S2, [S1, H0]] +

i2

2!
[S1, [S2, H0]] +

i2

2!
[S1, [S1, V ]]] +

i3

3!
[S1, [S1, [S1, H0]]

)
(315)

+O(∆4) + . . . (316)

= H0 +∆H ′
1 +∆2H ′

2 +∆3H ′
3 +O(∆4) + . . . (317)

Recall that the generator S is defined by the condition that the SWT decouples the three subspaces. Since the two
valleys are decoupled, for either valley τ , we have

⟨ρ, j, τ,m|H ′
n|ρ′, j′, τ,m′⟩ = δρ,ρ′⟨ρ, j, τ,m|H ′

n|ρ, j′, τ,m′⟩. (318)

We thus have, for ρ ̸= ρ′ and n = 1 in above

⟨ρ, j, τ,m| (V + i[S1, H0]) |ρ′, j′, τ,m′⟩ = 0 (319)

=⇒ ⟨ρ, j, τ,m|S1|ρ′, j′, τ,m′⟩ =
{
i ⟨ρ,j,τ,m|V |ρ′,j′,τ,m′⟩

Eρ′j′τ−Eρjτ
for ρ ̸= ρ′,

0 for ρ = ρ′,
(320)

Similarly, for ρ ̸= ρ′ and n = 2, we have

⟨ρ, j, τ,m|
(
i[S2, H0] + i[S1, V ] +

i2

2!
[S1, [S1, H0]]

)
|ρ′, j′, τ,m′⟩ = 0 (321)

=⇒ ⟨ρ, j, τ,m|S2|ρ′, j′, τ,m′⟩ = 1

Eρjτ − Eρ′j′τ

 ∑
ρ̸̃=ρ;j̃;m̃

⟨ρ, j, τ,m|S1|ρ̃, j̃, τ, m̃⟩⟨ρ̃, j̃, τ, m̃|V |ρ′, j′, τ,m′⟩−

∑
ρ̸̃=ρ′;j̃;m̃

⟨ρ, j, τ,m|V |ρ̃, j̃, τ, m̃⟩⟨ρ̃, j̃, τ, m̃|S1|ρ′, j′, τ,m′⟩

−
∑

ρ̸̃=ρρ′;j̃,m̃

(
Eρ̃j̃τ − Eρjτ + Eρ′j′τ

2

)
⟨ρ, j, τ,m|S1|ρ̃, j̃, τ, m̃⟩⟨ρ̃, j̃, τ, m̃|S1|ρ′, j′, τ,m′⟩

 for ρ ̸= ρ′,

= 0 for ρ = ρ′, (322)

were j̃ is summed over {1, 2}, i.e. the two states constituting each subspace. We further assume that∑
m̃

|ρ̃, j̃, τ, m̃⟩⟨ρ̃, j̃, τ, m̃| = |ρ̃, j̃, τ⟩⟨ρ̃, j̃, τ |, (323)

which is justified in the (k ·p) continuum limit, as the upper cutoff on LLs in such a limit is unbounded. The effective
Hamiltonian for either subspace ρ, can now be deduced in orders of ∆. The O(∆0) contribution to the effective
Hamiltonian in subspace ρ is trivially Eρjτδjj′ and O(∆1) terms are

⟨ρ, j, τ,m|H ′
1|ρ, j′, τ,m′⟩ = ⟨ρ, j, τ,m|V |ρ, j′, τ,m′⟩. (324)
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The O(∆2) terms are found out to be

⟨ρ, j, τ,m|H ′
2|ρ, j′, τ,m′⟩ = 1

2

∑
ρ̃ ̸=ρ;j̃

⟨ρ, j, τ,m|V |ρ̃, j̃, τ⟩⟨ρ̃, j̃, τ |V |ρ, j′, τ,m′⟩
(

1

Eρjτ − Eρ̃j̃τ

+
1

Eρ̃j̃τ − Eρj′τ

)
.(325)

The O(∆3) terms are found out to be

⟨ρ, j, τ,m|H ′
3|ρ, j′, τ,m′⟩ = i

2

∑
ρ̸̃=ρ;j̃

[
⟨ρ, j, τ,m|S2|ρ̃, j̃, τ⟩⟨ρ̃, j̃, τ |V |ρ, j′, τ,m′⟩ − ⟨ρ, j, τ,m|V |ρ̃, j̃, τ⟩⟨ρ̃, j̃, τ |S2|ρ, j′, τ,m′⟩

]
− 1

12

∑
ρ̃ ̸=ρ;j̃

∑
ρ̸̄=ρρ̃;j̄

[
⟨ρ, j, τ,m|S1|ρ̄, j̄, τ⟩⟨ρ̄, j̄, τ |S1|ρ̃, j̃, τ⟩⟨ρ̃, j̃, τ |V |ρ, j′, τ,m′⟩+

⟨ρ, j, τ,m|V |ρ̄, j̄, τ⟩⟨ρ̄, j̄, τ |S1|ρ̃, j̃, τ⟩⟨ρ̃, j̃, τ |S1|ρ, j′, τ,m′⟩ − 2⟨ρ, j, τ,m|S1|ρ̄, j̄, τ⟩⟨ρ̄, j̄, τ |V |ρ̃, j̃, τ⟩⟨ρ̃, j̃, τ |S1|ρ, j′, τ,m′⟩
]

(326)

Substituting Eqs.(320) and (322) in Eqs.(325) and (326) and further substituting them and Eq.(309) in Eq.(317),
upto O(∆3), the effective Hamiltonian for ρ = 1 is given as

Heff =

(
Hτ=+1

V P 0
0 Hτ=−1

V P

)
, (327)

where

Hτ=+1 =

(
−J

2 + ℏω(1)
c aa† iA

(1)

ℓ3 a3

−iA(1)

ℓ3 a†
3 −J

2 + ℏω(1)
c a†a

)
+M

(
1 +

M
(1)
c

ℓ2
(aa† + a†a)

)
σx, (328)

where the Pauli matrix acts in the orbital space of a ∈ {4, 3} c-fermions. The cyclotron frequency ωτ
c and the other

coefficients above are

ℏω(τ)
c =

2v2⋆
ℓ2

(
X2

τ

NXτ (Eτ − EXτ )
+

Y 2
τ

NY τ (Eτ − EY τ )

)
, (329)

A(τ) = 4
√
2v2⋆v

′
⋆

(
XτYτ (Xτ + Yτ )

NXτNY τ (Eτ − EXτ )(Eτ − EY τ )
+

X3
τ

N2
Xτ (Eτ − EXτ )2

+
Y 3
τ

N2
Y τ (Eτ − EY τ )2

)
, (330)

M (τ)
c = −v2⋆

(
X2

τ

NXτ (Eτ − EXτ )2
+

Y 2
τ

NY τ (Eτ − EY τ )2

)
. (331)

Hτ=−1
V P can be obtained by replacing a ↔ a†, ω

(1)
c , A(1),M

(1)
c → ω

(−1)
c , A(−1),M

(−1)
c and −J

2 → J
2 in

Eq.(328). Substituting Eqs.(303)-(307) in the coefficients, we have ℓ2ℏω(τ)
c = −τ(399586.49352)meV Å2, A(τ) =

−τ(42668446.86852) meV Å3 and M
(τ)
c = −12847.14767Å2.

The above effective HamiltoniansHτ describe the Landau quantization of the light single particle excitations towards
CNP obtained for parent VP state. Clearly, the LLs emanate out of −τJ/2±M . For the U(4) symmetric THFM (i.e.

M = 0), in the B → 0 limit, we can the drop off-diagonal O(ℓ−3) terms in Hτ . Then apart from the mode (0, |0⟩)T and

(|0⟩, 0)T at τ = +1 and −1, respectively, all other LLs come in degenerate pair of two. This degeneracy at B → 0 limit
gets split as we tune back M . The comparison of the LL spectrum obtained using the above effective Hamiltonian
with the one obtained via the exact calculation for valley sector K′ is shown in Fig.(13). The LL basis used to
generate the plot is (0, |m1⟩, |m1⟩, 0)T , (|m2⟩, |m2 + 3⟩, |m2 + 3⟩, |m2⟩)T and (|m3⟩, 0, 0, |m3⟩)T , where m1 ∈ {0, 1, 2},
m2 ∈ {0, . . . ,mmax − 4} and m3 ∈ {mmax − 3,mmax − 2,mmax − 1} respectively. We use (|m3⟩, 0, 0, |m3⟩)T rather
than (|m3⟩, |m3 +3⟩, |m3 +3⟩, |m3⟩)T in order to avoid three modes emanating out of spurious B → 0 energy −τJ/2,
for each τ . These three spurious modes are present in the exact calculation, as can be seen in Fig.(13). However,
recall that in practice we use mmax = ⌈ q−3

2 ⌉, so these three LLs are lost as B(q) increases(decreases).

2. Parent Kramers Intervalley Coherent State

In the case of the parent Kramers intervalley coherent (KIVC) state, the coupled c and f modes are described by
the operator in Eq.(293). Unlike in previous section, we now break the B = 0 Hilbert space at Γ into 5 subspaces.



61

Supplementary Figure 14. The comparison of (b) LL spectrum obtained using the effective Hamiltonian (·) with the exact
calculation (·) contrasted with the corresponding comparison at (a) B = 0 for KIVC state above CNP. The spectrum below
CNP is related by particle hole symmetry. For the comparison to be tractable we set mmax = 11. Note that the above figure
is spin degenerate.

The subspace of interest is the one spanned by states |1, j, τ⟩ with j ∈ {1, 2} and τ = ±1, i.e. the one spanned
by a = {3, 4} c fermions at each valley. The remaining four subspaces are spanned by |2, j,+1⟩, |2, j,−1⟩, |3, j,+1⟩
and |3, j,−1⟩, where j ∈ {1, 2}. These states are given in Eqs.(297)-(302). In the following discussion, we refer to
these states and their energies by |ϵ, l⟩ and Eϵl, respectively. Here ϵ ∈ {1, . . . , 5} labels the 5 subspaces. The index
l ∈ {1, . . . , 4} for ϵ = 1 and l ∈ {1, 2} for ϵ = {3, 4, 5}, labels the states spanning the subspace ϵ. We promote these
states to B ̸= 0 as |ϵ, l,m⟩ = |ϵ, l⟩|m⟩, where |m⟩ is the mth LL, i.e. the finite B k ·p basis. Using the SWT procedure
introduced in the previous section, we eliminate the terms in the operator given in Eq.(293) which can mix between
these subspaces to obtain an effective Hamiltonian for the subspace spanned by by states |ϵ = 1, l,m⟩.

To begin with, we re-write the operator in Eq.(293) with respect to the above B = 0 eigenstates at Γ as

H = H0 +∆V, (332)

where H0 =

(
Hτ=+1

0

Hτ=−1
0

)
and V =

(
V̄ τ=+1 VM
h.c. V̄ τ=−1

)
. Hτ

0 is given in Eq.(309). The intra-valley perturbation

V̄ τ=+1 can be obtained by setting M = 0 in Eq.(310). We can obtain V̄ τ=−1 by replacing X1, Y1 → X−1, Y−1,
NX1, NY 1 → NX−1, NY−1 and a↔ a† in V τ=+1. The inter-valley perturbation VM is given as

VM =

 Mσz 0 0
0 0 0
0 0 0

 (333)

The effective Hamiltonian can then be expanded in orders of ∆, as given in Eq.(317). Following the condition that
the transformation decouples each subspace, we have

⟨ϵ, l,m|H ′
n|ϵ′, l′,m′⟩ = δϵ,ϵ′⟨ϵ, l,m|H ′

n|ϵ, l′,m′⟩ (334)

For ϵ ̸= ϵ′ and substituting n = 1 in H ′
n gives

⟨ϵ, l,m| (V + i[S1, H0]) |ϵ′, l′,m′⟩ = 0 (335)

=⇒ ⟨ϵ, l,m|S1|ϵ′, l′,m′⟩ =
{
i ⟨ϵ,l,m|V |ϵ′,l′,m′⟩

Eϵ′l′−Eϵl
for ϵ ̸= ϵ′,

0 for ϵ = ϵ′,
(336)
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For ϵ ̸= ϵ′ and substituting n = 2 in H ′
n gives

⟨ϵ, l,m|
(
i[S2, H0] + i[S1, V ] +

i2

2!
[S1, [S1, H0]]

)
|ϵ′, l′,m′⟩ = 0 (337)

=⇒ ⟨ϵ, l,m|S2|ϵ′, l′,m′⟩ = 1

Eϵl − Eϵ′l′

 ∑
ϵ̃ ̸=ϵ;l̃;m̃

⟨ϵ, l,m|S1|ϵ̃, l̃, m̃⟩⟨ϵ̃, l̃, m̃|V |ϵ′, l′,m′⟩−

∑
ϵ̃ ̸=ϵ′;l̃;m̃

⟨ϵ, l,m|V |ϵ̃, l̃, m̃⟩⟨ϵ̃, l̃, m̃|S1|ϵ′, l′,m′⟩

−
∑

ϵ̸̃=ϵϵ′;l̃,m̃

(
Eϵ̃l̃ −

Eϵl + Eϵ′l′

2

)
⟨ϵ, l,m|S1|ϵ̃, l̃, , m̃⟩⟨ϵ̃, l̃, m̃|S1|ϵ′, l′,m′⟩

 for ϵ ̸= ϵ′,

= 0 for ϵ = ϵ′, (338)

As in the previous section, we further assume that∑
m̃

|ϵ̃, l̃, m̃⟩⟨ϵ̃, l̃, m̃| = |ϵ̃, l̃⟩⟨ϵ̃, l̃|, (339)

which is justified in the (k ·p) continuum limit, as the upper cutoff on LLs in such a limit is unbounded. Substituting
Eqs.(336) and (338) into the expansion in Eq.(317), we can now obtain the effective Hamiltonian in orders of ∆. The
O(∆0) contribution to the effective Hamiltonian in subspace ϵ is trivially Eϵlδll′ and O(∆1) terms are

⟨ϵ, l,m|H ′
1|ϵ, l′,m′⟩ = ⟨ϵ, l,m|V |ϵ, l′,m′⟩. (340)

The O(∆2) terms are found out to be

⟨ϵ, l,m|H ′
2|ϵ, l′,m′⟩ = 1

2

∑
ϵ̃ ̸=ϵ;l̃

⟨ϵ, l,m|V |ϵ̃, l̃⟩⟨ϵ̃, l̃|V |ϵ, l′,m′⟩
(

1

Eϵl − Eϵ̃l̃

+
1

Eϵ̃l̃ − Eϵl′

)
. (341)

The O(∆3) terms are found out to be

⟨ϵ, l,m|H ′
3|ϵ, l′,m′⟩ = i

2

∑
ϵ̃ ̸=ϵ;l̃

[
⟨ϵ, l,m|S2|ϵ̃, l̃⟩⟨ϵ̃, l̃|V |ϵ, l′,m′⟩ − ⟨ϵ, l,m|V |ϵ̃, l̃⟩⟨ϵ̃, l̃|S2|ϵ, l′,m′⟩

]
− 1

12

∑
ϵ̃ ̸=ϵ;l̃

∑
ϵ̄ ̸=ϵϵ̃;l̄

[
⟨ϵ, l,m|S1|ϵ̄, l̄⟩⟨ϵ̄, l̄|S1|ϵ̃, l̃⟩⟨ϵ̃, l̃|V |ϵ, l′,m′⟩+

⟨ϵ, l,m|V |ϵ̄, l̄⟩⟨ϵ̄, l̄|S1|ϵ̃, l̃⟩⟨ϵ̃, l̃|S1|ϵ, l′,m′⟩ − 2⟨ϵ, l,m|S1|ϵ̄, l̄⟩⟨ϵ̄, l̄|V |ϵ̃, l̃⟩⟨ϵ̃, l̃|S1|ϵ, l′,m′⟩
]

(342)

Up to the O( 1
ℓ3 ), the effective Hamiltonian for subspace ϵ = 1 is found to be

Heff =

(
Hτ=+1

KIVC HM

h.c. Hτ=−1
KIVC

)
, (343)

where Hτ
KIVC can be obtained by setting M = 0 in the expressions for Hτ

V P in Eq.(327). The matrix HM couples
both the valleys and is given as

HM =M

(
1 +

Mc1

ℓ2
a†a+

Mc2

ℓ2
aa†
)
σz (344)

where the Pauli matrix acts in the orbital space of a ∈ {4, 3} c-fermions and

Mc1 = v2⋆

(
X2

−1

NX−1(E1 − EX−1)(EX−1 − E−1)
+

Y 2
−1

NY−1(E1 − EY−1)(EY−1 − E−1)

)
, (345)

Mc2 = v2⋆

(
X2

1

NX1(E1 − EX1)(EX1 − E−1)
+

Y 2
1

NY 1(E1 − EY 1)(EY 1 − E−1)

)
. (346)
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Supplementary Figure 15. The comparison of (b,c) LL spectrum obtained using the effective Hamiltonian (·) with the exact
calculation (·) contrasted with the corresponding comparison at (a) B = 0 for valley spin sector K ↓ at ν = −1. For the
comparison to be tractable we set an upper-cutoff of 25 on the LL index. Note that the above figure is spin degenerate.

Substituting Eqs.(303)-(307) above we get Mc1 = Mc2 = −20880.79644Å2. Clearly the LLs emanate out of B → 0

energy ±
√
M2 + J2/4. In the B → 0 limit, we can drop the O( 1

ℓ3 ) terms in the effective Hamiltonian. The LL

energies in this limit take the form ±E±
n , where E±

n =

√
(J2 + ℏω(−1)

c (n+ 1
2 ))

2 +M2(1 + Mc1

ℓ2 (2n+ 1))2± ℏω(−1)
c

2 , and

n ∈ {0, 1, 2, . . . }. For small LL index n, we further have E−
n+1 ≈ E+

n . Thus except the anomalous mode ±E−
0 , the

leading LLs appear in pairs approaching double degeneracy, as can be seen in Fig.(14) where we compare the LL
spectrum obtained using the above effective Hamiltonian with the one obtained via the exact calculation. Note that
such an approximate degeneracy is absent in the spectrum for VP state (see Fig.(13)).

The LL basis used to generate the plot is (0, |m1⟩, |m1⟩, 0)T , (|m2⟩, |m2+3⟩, |m2+3⟩, |m2⟩)T and (|m3⟩, 0, 0, |m3⟩)T ,
where m1 ∈ {0, 1, 2}, m2 ∈ {0, . . . ,mmax − 4} and m3 ∈ {mmax − 3,mmax − 2,mmax − 1} respectively. We use
(|m3⟩, 0, 0, |m3⟩)T rather than (|m3⟩, |m3 + 3⟩, |m3 + 3⟩, |m3⟩)T in order to avoid three modes emanating out of
spurious B → 0 energy ±J/2. These six spurious modes are present in the exact calculation, as can be seen in Fig.(18).
However, recall that in practice we use mmax = ⌈ q−3

2 ⌉, so these three LLs are lost as B(q) increases(decreases).

B. ν = −1

1. Parent Valley Polarized State

K↓ : In this section we discuss the derivation of the B ̸= 0 effective Hamiltonian for the spin and valley sector ↓, K
for the case of parent VP state at ν = −1. The coupled modes of c and f fermions are described by the operator in
Eq.(233). As discussed in main text and Section(Supplementary note 6C), for the above mean-field sector in flat band
limitM = 0, the magnetic subbands within the narrow bands emanate out of the B → 0 energy −W3∓ J

2 . The remote

subbands on the other hand emanate out of the B → 0 energy 1
2

(
−W1 − (6U2 +

U1

2 )±
√

4γ2 + (W1 − (6U2 +
U1

2 ))2
)

and 1
2

(
−W1 − (6U2 +

3U1

2 )±
√
4γ2 + (W1 − (6U2 +

3U1

2 ))2
)
. These energies correspond to the eigenvalues of the

flat band B = 0 THFM at Γ at ν = −1, for the same mean-field sector. Recall that at Γ, it has the form[37] −W1σ0 0 γσ0
−W3σ0 − J

2 σz 0
h.c. −(6U2 + U1)σ0 − U1

2 σz

, where Pauli matrix σ acts in orbital space. The corresponding
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eigenvectors can be listed as

|1⟩ = (0, 0, 1, 0, 0, 0)
T

(347)

|2⟩ = (0, 0, 0, 1, 0, 0)
T

(348)

|3⟩ = 1√
NX

(X, 0, 0, 0, 1, 0) (349)

|4⟩ = 1√
NY

(Y, 0, 0, 0, 1, 0) (350)

|5⟩ = 1√
NV

(0, V, 0, 0, 0, 1) (351)

|6⟩ = 1√
NZ

(0, Z, 0, 0, 0, 1) (352)

where the normalizations are NX = 1 +X2, NY = 1 + Y 2, NV = 1 + V 2 and NZ = 1 + Z2 and

X = − 1

2γ

(
W1 − (6U2 +

3U1

2
) +

√
4γ2 + (W1 − (6U2 +

3U1

2
))2

)
(353)

Y = − 1

2γ

(
W1 − (6U2 +

3U1

2
)−

√
4γ2 + (W1 − (6U2 +

3U1

2
))2

)
(354)

V = − 1

2γ

(
W1 − (6U2 +

U1

2
) +

√
4γ2 + (W1 − (6U2 +

U1

2
))2

)
(355)

Z = − 1

2γ

(
W1 − (6U2 +

U1

2
)−

√
4γ2 + (W1 − (6U2 +

U1

2
))2

)
. (356)

The energy of the state |j⟩ where j ∈ {1, . . . , 6}, labelled by Ej is given as

E1 = −W3 −
J

2
(357)

E2 = −W3 +
J

2
(358)

E3 =
1

2

(
−W1 − (6U2 +

3U1

2
)−

√
4γ2 + (W1 − (6U2 +

3U1

2
))2)

)
≡ EX (359)

E4 =
1

2

(
−W1 − (6U2 +

3U1

2
) +

√
4γ2 + (W1 − (6U2 +

3U1

2
))2

)
≡ EY (360)

E5 =
1

2

(
−W1 − (6U2 +

U1

2
)−

√
4γ2 + (W1 − (6U2 +

U1

2
))2

)
≡ EV (361)

E6 =
1

2

(
−W1 − (6U2 +

U1

2
) +

√
4γ2 + (W1 − (6U2 +

U1

2
))2

)
≡ EZ (362)

We break the B = 0 Hilbert space at Γ into 5 subspaces. These five subspaces are spanned by the states {|1⟩, |2⟩},
|3⟩, |4⟩, |5⟩ and |6⟩ respectively. We can relabel these states by |ϵ, l⟩, where ϵ labels the subspace and l labels the state
spanning the subspace, with l ∈ {1, 2} and l = 1 for ϵ = 1 and ϵ ∈ {2, . . . , 5}, respectively. We promote these states
to B ̸= 0 as |ϵ, l,m⟩ = |ϵ, l⟩|m⟩, where |m⟩ is the mth LL, i.e. the finite B k · p basis. Now using the SWT procedure
introduced in previous section, we eliminate terms in the operator in Eq.(233) which can mix the subspaces, to obtain
an effective Hamiltonian for subspace ϵ = 1.
To begin with, we rewrite the operators in Eqs.(233) with respect to the states given in Eqs.(297)-(302) as

H = H0 +∆V, (363)

where ∆ is an artificial parameter that helps us keeping track of the orders in perturbation, to which we compute the
effective Hamiltonian and is later set to 1. Along with M , we treat all the terms in operator in Eq.(233) which can
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mix the subspaces as perturbation V . The unperturbed part is given as

H0 =


E1 0 0 0 0 0
0 E2 0 0 0 0
0 0 EX 0 0 0
0 0 0 EY 0 0
0 0 0 0 EV 0
0 0 0 0 0 EZ

 . (364)

The perturbation V is given as

V =



0 M i
√
2
ℓ

Xv⋆√
NX

a† i
√
2
ℓ

Y v⋆√
NY

a† 0 0

0 0 0 −i
√
2
ℓ

V v⋆√
NV

a −i
√
2
ℓ

Zv⋆√
NZ

a

0 0 i
√
2
ℓ

(X+V )v′
⋆√

NXNV
a† i

√
2
ℓ

(X+Z)v′
⋆√

NXNZ
a†

0 i
√
2
ℓ

(Y+V )v′
⋆√

NY NV
a† i

√
2
ℓ

(Y+Z)v′
⋆√

NY NZ
a†

0 0
h.c. 0


, (365)

Following the SWT procedure in Sec.(Supplementary note 10A2), i.e. the steps from Eq.(334)-(342), upto O( 1
ℓ3 ),

the effective Hamiltonian for subspace ϵ = 1 is found to be

Hν=−1,V P
eff =

( −W3 +
J
2 + ℏω̃caa

† i Aℓ3 a
3

−i Aℓ3 a†
3 −W3 − J

2 + ℏω̄ca
†a

)
+M

(
1 +

M̄c

ℓ2
aa† +

M̃c

ℓ2
a†a

)
σx, (366)

where the Pauli matrix acts in the orbital space of a ∈ {4, 3} c-fermions. The cyclotron frequencies and the coefficients
accompanying M above are

ℏω̄c =
2v2⋆
ℓ2

(
X2

NX(E1 − EX)
+

Y 2

NY (E1 − EY )

)
(367)

ℏω̃c =
2v2⋆
ℓ2

(
V 2

NV (E2 − EV )
+

Z2

NZ(E2 − EZ)

)
(368)

M̄c = v2⋆

(
Z2

NZ(EZ − E2)(E1 − EZ)
+

V 2

NV (EV − E2)(E1 − EV )

)
(369)

M̃c = v2⋆

(
X2

NX(E1 − EX)(EX − E2)
+

Y 2

NY (E1 − EY )(EY − E2)

)
. (370)

The coefficient for O( 1
ℓ3 ) term is

A = 2
√
2v2⋆v

′
⋆

(
XV (X + V )

12NXNV

(
1

(EV − EX)(E2 − EV )
+

1

(EV − EX)(EX − E1)
− 2

(EX − E1)(E2 − EV )

))
+

2
√
2v2⋆v

′
⋆

(
Y V (Y + V )

12NYNV

(
1

(EV − EY )(E2 − EV )
+

1

(EV − EY )(EY − E1)
− 2

(EY − E1)(E2 − EV )

))
+

2
√
2v2⋆v

′
⋆

(
XZ(X + Z)

12NXNZ

(
1

(EZ − EX)(E2 − EZ)
+

1

(EZ − EX)(EX − E1)
− 2

(EX − E1)(E2 − EZ)

))
+

2
√
2v2⋆v

′
⋆

(
Y Z(Y + Z)

12NYNZ

(
1

(EZ − EY )(E2 − EZ)
+

1

(EZ − EY )(EY − E1)
− 2

(EY − E1)(E2 − EZ)

))
+

−
√
2v2⋆v

′
⋆XV (X + V )

NXNV (E1 − EV )

(
1

EX − E1
− 1

EV − EX
+

EX − E1+EV

2

(EX − E1)(EV − EX)

)
+
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Supplementary Figure 16. The comparison of (b) LL spectrum obtained using the effective Hamiltonian (·) with the exact
calculation (·) contrasted with the corresponding comparison at (a) B = 0 for VP state at ν = −1 for sector K ↑. For the
comparison to be tractable we set mmax = 25.

−
√
2v2⋆v

′
⋆Y V (Y + V )

NYNV (E1 − EV )

(
1

EY − E1
− 1

EV − EY
+

EY − E1+EV

2

(EY − E1)(EV − EY )

)
+

−
√
2v2⋆v

′
⋆XZ(X + Z)

NXNZ(E1 − EZ)

(
1

EX − E1
− 1

EZ − EX
+

EX − E1+EZ

2

(EX − E1)(EZ − EX)

)
+

−
√
2v2⋆v

′
⋆Y Z(Y + Z)

NYNZ(E1 − EZ)

(
1

EY − E1
− 1

EZ − EY
+

EY − E1+EZ

2

(EY − E1)(EZ − EY )

)
+

√
2v2⋆v

′
⋆XV (X + V )

NXNV (EX − E2)

(
1

EV − EX
− 1

E2 − EV
+

EV − E2+EX

2

(EV − EX)(E2 − EV )

)
+

√
2v2⋆v

′
⋆XZ(X + Z)

NXNZ(EX − E2)

(
1

EZ − EX
− 1

E2 − EZ
+

EZ − E2+EX

2

(EZ − EX)(E2 − EZ)

)
+

√
2v2⋆v

′
⋆Y V (Y + V )

NYNV (EY − E2)

(
1

EV − EY
− 1

E2 − EV
+

EV − E2+EY

2

(EV − EY )(E2 − EV )

)
+

√
2v2⋆v

′
⋆Y Z(Y + Z)

NYNZ(EY − E2)

(
1

EZ − EY
− 1

E2 − EZ
+

EZ − E2+EY

2

(EZ − EY )(E2 − EZ)

)
. (371)

Substituting Eqs.(353)-(362) in the coefficients, we have ℓ2ℏω̄c = −692364.83538meV Å2, ℓ2ℏω̃c = −42241.47578,

A = −66946640.13364 meV Å3, M̄c = −15377.73807Å2 and M̃c = −25351.10053Å2. The comparison of the LL
spectrum obtained using the above effective Hamiltonian with the one obtained via the exact calculation is shown in
Fig.(15). The LL basis used to generate the plot is (0, |m1⟩)T , (|m2⟩, |m2 +3⟩)T and (|m3⟩, 0)T , where m1 ∈ {0, 1, 2},
m2 ∈ {0, . . . ,mmax − 4} and m3 ∈ {mmax − 3,mmax − 2,mmax − 1} respectively. We use (|m3⟩, 0)T rather than
(|m3⟩, |m3 + 3⟩)T in order to avoid three modes emanating out of spurious B → 0 energy −(W3 + J/2). These three
spurious modes are present in the exact calculation, as can be seen in Fig.(15). However, recall that in practice we
use mmax = ⌈ q−3

2 ⌉, so these three LLs are lost as B(q) increases(decreases).

K↑ : In this section we discuss the derivation of B ̸= 0 effective Hamiltonian for the spin and valley sector
s =↑ K for the case of parent VP state at ν = −1. As discussed in Sec.(Supplementary note 6B), for the
above mean-field sector in flat band limit M = 0, the magnetic subbands within the narrow bands emanate
out of the B → 0 energy −W3 − J

2 . The remote subbands on the other hand emanate out of the B → 0

energy 1
2

(
−W1 − (6U2 + 3U1/2)±

√
4γ2 + (W1 − (6U2 + 3U1/2))2

)
. These energies correspond to the eigenvalues

of the flat band B = 0 THFM at Γ at ν = −1 for the same sector. Recall that at Γ, it has the form[37]



67 −W1σ0 0 γσ0
−(W3 + J/2)σ0 0

h.c. −(6U2 + 3U1/2)σ0

, where Pauli matrix σ0 acts in orbital space. The corresponding

eigenvectors can be listed as

|1, 1⟩ = (0, 0, 0, 1, 0, 0)
T
, (372)

|1, 2⟩ = (0, 0, 1, 0, 0, 0)
T
, (373)

|2, 1⟩ = 1√
NX

(0, X, 0, 0, 0, 1)
T
, (374)

|2, 2⟩ = 1√
NX

(X, 0, 0, 0, 1, 0)
T
, (375)

|3, 1⟩ = 1√
NY

(0, Y, 0, 0, 0, 1)
T
, (376)

|3, 2⟩ = 1√
NY

(Y, 0, 0, 0, 1, 0)
T
, (377)

where

X = − 1

2γ

(
W1 − (6U2 + 3U1/2) +

√
4γ2 + (W1 − (6U2 + 3U1/2))2

)
, (378)

Y = − 1

2γ

(
W1 − (6U2 + 3U1/2)−

√
4γ2 + (W1 − (6U2 + 3U1/2))2

)
, (379)

and normalizations NX = 1 +X2, NY = 1 + Y 2. The energy of state ρ, j with ρ ∈ {1, 2, 3} and j ∈ {1, 2}, Eρ,j , are
given as

E1,j = −(W3 +
J

2
) ≡ E, (380)

E2,j =
1

2

(
−W1 − (6U2 + 3U1/2)−

√
4γ2 + (W1 − (6U2 + 3U1/2))2

)
≡ EX , (381)

E3,j =
1

2

(
−W1 − (6U2 + 3U1/2) +

√
4γ2 + (W1 − (6U2 + 3U1/2))2

)
≡ EY . (382)

We break the B = 0 Hilbert space at Γ into 3 subspaces. These three subspaces are spanned by the states |1, j⟩,
|2, j⟩ and |3, j⟩, respectively. We promote these states to B ̸= 0 as |ρ, j,m⟩ = |ρ, j⟩|m⟩, where |m⟩ is the mth LL, i.e.
the finite B k · p basis. Using the SWT procedure introduced in Sec.(Supplementary note 10A1), we eliminate all
the terms in the operator in Eq.(222) that can mix the subspaces to obtain an effective Hamiltonian for the subspace
spanned by states |1, j,m⟩, i.e. the one spanned by a = {3, 4} c fermions. We first re-write the operator in Eq.(222)
with respect to the eigenstates in Eqs.(372)-(377) as

H = H0 +∆V, (383)

where

H0 =

 Eσ0 0 0
0 EXσ0 0
0 0 EY σ0

 , (384)

where Pauli matrix σ0 acts in the j space for each ρ. Along with M , we treat all the terms in operator in Eq.(222)
which can mix the subspaces as perturbation V . ∆ is an artificial parameter that helps us keeping track of the orders
in perturbation, to which we compute the effective Hamiltonian and is later set to 1. The matrix V can be obtained
by replacing X1, Y1, NX1 and NY 1 in Eq.(310) by X, Y , NX and NY respectively. Following the procedure for SWT
in Sec.(Supplementary note 10A1), i.e. from Eq.(312)-(326) and replacing |ρ, j, τ,m⟩ by |ρ, j,m⟩ in these steps, the
effective Hamiltonian for ρ = 1 and spin s is found to be

Hτ=1,s=↑,ν=−1
V P =

( −(W3 +
J
2 ) + ℏωcaa

† i Aℓ3 a
3

−i Aℓ3 a†
3 −(W3 +

J
2 ) + ℏωca

†a

)
+M

(
1 +

Mc

ℓ2
(aa† + a†a)

)
σx, (385)
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Supplementary Figure 17. (i)Left Panel - a,b : The comparison of (b) LL spectrum obtained using the effective Hamiltonian
(·) with the exact calculation (·) contrasted with the corresponding comparison at (a) B = 0 for valley K spin ↓ at ν = −2.
(ii) Right Panel - a,b : The comparison of (b) LL spectrum obtained using the effective Hamiltonian (·) with the exact
calculation (·) contrasted with the corresponding comparison at (a) B = 0 for valley K spin ↑ at ν = −2. For the comparison
to be tractable we set an upper-cutoff of 25 on the LL index.

where the Pauli matrix acts in the orbital space of a ∈ {4, 3} c-fermions. The cyclotron frequency ωc and the other
coefficients above are

ℏωc =
2v2⋆
ℓ2

(
X2

NX(E − EX)
+

Y 2

NY (E − EY )

)
, (386)

A = 4
√
2v2⋆v

′
⋆

(
XY (X + Y )

NXNY (E − EX)(E − EY )
+

X3

N2
X(E − EX)2

+
Y 3

N2
Y (E − EY )2

)
, (387)

Mc = −v2⋆
(

X2

NX(E − EX)2
+

Y 2

NY (E − EY )2

)
. (388)

Substituting Eqs.(378)-(379) in the coefficients, we have ℓ2ℏωc = −692364.83538meV Å2, A =

−61125292.83865meV Å3 and Mc = −13387.26641Å2. For the U(4) symmetric THFM (i.e. M = 0), in the
B → 0 limit, we can the drop off-diagonal O(ℓ−3) terms in in the above effective Hamiltonian. Then apart from the

mode (0, |0⟩)T , all other LLs come in degenerate pair of two. This degeneracy at B → 0 limit gets split as we tune
back M . The comparison of the LL spectrum obtained using the above effective Hamiltonian with the one obtained
via the exact calculation is shown in Fig.(16). The LL basis used to generate the plot is (0, |m1⟩)T , (|m2⟩, |m2 +3⟩)T
and (|m3⟩, 0)T , where m1 ∈ {0, 1, 2}, m2 ∈ {0, . . . ,mmax−4} and m3 ∈ {mmax−3,mmax−2,mmax−1} respectively.
We use (|m3⟩, 0)T rather than (|m3⟩, |m3 + 3⟩)T in order to avoid three modes emanating out of spurious B → 0
energy −(W3 + J/2). These three spurious modes are present in the exact calculation, as can be seen in Fig.(16).
However, recall that in practice we use mmax = ⌈ q−3

2 ⌉, so these three LLs are lost as B(q) increases(decreases).

C. ν = −2

1. Parent Valley Polarized State

In this section we discuss the derivation of the case of B ̸= 0 effective Hamiltonian for the spin and valley sector
s =↑, ↓, K for the case of parent VP state at ν = −2. As discussed in Sec.(Supplementary note 6D), for the above
mean-field sector in flat band limitM = 0, the magnetic subbands within the narrow bands emanate out of the B → 0
energy −2W3−ζs J

2 , where ζs = 1,−1 for s =↑, ↓ respectively. The remote subbands on the other hand emanate out of

the B → 0 energy 1
2

(
−2W1 − (12U2 +

4+ζs
2 U1)±

√
4γ2 + (2W1 − (12U2 +

4+ζs
2 U1))2

)
. These energies correspond

to the eigenvalues of the flat band B = 0 THFM at Γ at ν = −2 for the same mean-field sector. Recall that at

Γ, it has the form[37]

 −2W1σ0 0 γσ0
−(2W3 + ζsJ/2)σ0 0

h.c. −(12U2 +
4+ζs
2 U1)σ0

, where Pauli matrix σ0 acts in orbital
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space. The corresponding eigenvectors for given spin s can be listed as

|1, 1, s⟩ = (0, 0, 0, 1, 0, 0)
T
, (389)

|1, 2, s⟩ = (0, 0, 1, 0, 0, 0)
T
, (390)

|2, 1, s⟩ = 1√
NXs

(0, Xs, 0, 0, 0, 1)
T
, (391)

|2, 2, s⟩ = 1√
NXs

(Xs, 0, 0, 0, 1, 0)
T
, (392)

|3, 1, s⟩ = 1√
NY s

(0, Ys, 0, 0, 0, 1)
T
, (393)

|3, 2, s⟩ = 1√
NY s

(Ys, 0, 0, 0, 1, 0)
T
, (394)

where

Xs = − 1

2γ

(
2W1 − (12U2 +

4 + ζs
2

U1) +

√
4γ2 + (2W1 − (12U2 +

4 + ζs
2

U1))2

)
, (395)

Ys = − 1

2γ

(
2W1 − (12U2 +

4 + ζs
2

U1)−
√
4γ2 + (2W1 − (12U2 +

4 + ζs
2

U1))2

)
, (396)

and normalizations NXs = 1+X2
s , NY s = 1+ Y 2

s . The energy of state ρ, j, s with ρ ∈ {1, 2, 3} and j ∈ {1, 2}, Eρ,j,s,
are given as

E1,j,s = −(2W3 + ζs
J

2
) ≡ Es, (397)

E2,j,s =
1

2

(
−2W1 − (12U2 +

4 + ζs
2

U1)−
√
4γ2 + (2W1 − (12U2 +

4 + ζs
2

U1))2

)
≡ EXs, (398)

E3,j,s =
1

2

(
−2W1 − (12U2 +

4 + ζs
2

U1) +

√
4γ2 + (2W1 − (12U2 +

4 + ζs
2

U1))2

)
≡ EY s. (399)

We break the B = 0 Hilbert space at Γ into 3 subspaces for each s. These three subspaces are spanned by the states
|1, j, s⟩, |2, j, s⟩ and |3, j, s⟩, respectively. We promote these states to B ̸= 0 as |ρ, j, s,m⟩ = |ρ, j, s⟩|m⟩, where |m⟩ is
the mth LL, i.e. the finite B k · p basis. Using the SWT procedure introduced in Sec.(Supplementary note 10A1),
we eliminate all the terms in the operator in Eq.(244) that can mix the subspaces to obtain an effective Hamiltonian
for the subspace spanned by states |1, j, s,m⟩, i.e. the one spanned by a = {3, 4} c fermions.
We first re-write the operator in Eq.(244) with respect to the eigenstates in Eqs.(389)-(394) as

H = H0 +∆V, (400)

where

H0 =

 Esσ0 0 0
0 EXsσ0 0
0 0 EY sσ0

 , (401)

where Pauli matrix σ0 acts in the j space for each ρ. Along with M , we treat all the terms in operator in Eq.(244)
which can mix the subspaces as perturbation V . ∆ is an artificial parameter that helps us keeping track of the orders
in perturbation, to which we compute the effective Hamiltonian and is later set to 1. The matrix V can be obtained
by replacing X1, Y1, NX1 and NY 1 in Eq.(310) by Xs, Ys, NXs and NY s respectively. Following the procedure for
SWT in Sec.(Supplementary note 10A1), i.e. from Eq.(312)-(326) and replacing |ρ, j, τ,m⟩ by |ρ, j, s,m⟩ in these
steps, the effective Hamiltonian for ρ = 1 and spin s is found to be

Hτ=1,s=↑,↓,ν=−2
V P =

(
−(2W3 + ζs

J
2 ) + ℏω(s)

c aa† iA
(s)

ℓ3 a3

−iA(s)

ℓ3 a†
3 −(2W3 + ζs

J
2 ) + ℏω(s)

c a†a

)
+M

(
1 +

M
(s)
c

ℓ2
(aa† + a†a)

)
σx,(402)
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Supplementary Figure 18. The comparison of (b,c) LL spectrum obtained using the effective Hamiltonian (·) with the exact
calculation (·) contrasted with the corresponding comparison at (a) B = 0 for spin sector ↑ for the KIVC state at ν = −2. For
the comparison to be tractable we set an upper-cutoff of 10 on the LL index.

where the Pauli matrix acts in the orbital space of a ∈ {4, 3} c-fermions. The cyclotron frequency ω
(s)
c and the other

coefficients above are

ℏω(s)
c =

2v2⋆
ℓ2

(
X2

s

NXs(Es − EXs)
+

Y 2
s

NY s(Es − EY s)

)
, (403)

A(s) = 4
√
2v2⋆v

′
⋆

(
XsYs(Xs + Ys)

NXsNY s(Es − EXs)(Es − EY s)
+

X3
s

N2
Xs(Es − EXs)2

+
Y 3
s

N2
Y s(Es − EY s)2

)
, (404)

M (s)
c = −v2⋆

(
X2

s

NXs(Es − EXs)2
+

Y 2
s

NY s(Es − EY s)2

)
. (405)

Substituting Eqs.(395)-(399) in the coefficients, we have ℓ2ℏω(↑)
c = −831301.40524meV Å2, ℓ2ℏω(↓)

c = −514097.23133

meV Å2, A(↑) = −57864769.72509meV Å3, A(↓) = −59278877.34125 meV Å3, M
(↑)
c = −13211.61944Å2 and M

(↓)
c =

−15952.11343Å2. For the U(4) symmetric THFM (i.e. M = 0), in the B → 0 limit, we can the drop off-diagonal

O(ℓ−3) terms in in the above effective Hamiltonian. Then apart from the mode (0, |0⟩)T , all other LLs come in
degenerate pair of two. This degeneracy at B → 0 limit gets split as we tune back M . The comparison of the LL
spectrum obtained using the above effective Hamiltonian with the one obtained via the exact calculation is shown in
Fig.(17). The LL basis used to generate the plot is (0, |m1⟩)T , (|m2⟩, |m2 +3⟩)T and (|m3⟩, 0)T , where m1 ∈ {0, 1, 2},
m2 ∈ {0, . . . ,mmax − 4} and m3 ∈ {mmax − 3,mmax − 2,mmax − 1} respectively. We use (|m3⟩, 0)T rather than
(|m3⟩, |m3 + 3⟩)T in order to avoid three modes emanating out of spurious B → 0 energy −(2W3 + ζsJ/2), for each
s. These three spurious modes are present in the exact calculation, as can be seen in Fig.(17). However, recall that
in practice we use mmax = ⌈ q−3

2 ⌉, so these three LLs are lost as B(q) increases(decreases).

2. Parent Kramers Intervalley Coherent State

In this section, we discuss the derivation of B ̸= 0 effective Hamiltonian for the spin sector s =↑ for the case of
parent KIVC state at ν = −2. The exact B = 0 THFM for the spin sector s =↑ at ν = −2 for the parent KIVC
state is presented in Eq.(295). The coupled modes of c and f fermions at B ̸= 0 are described by the operator

in Eq.(296). In the flat band limit at Γ, the B = 0 THFM has the form

(
Hτ=1,ν=−2 0

0 Hτ=−1,ν=−2

)
, where −2W1σ0 0 γσ0

−(2W3 + τJ/2)σ0 0
h.c. −(12U2 +

4+τ
2 U1)σ0

, where the Pauli matrix σ0 acts in the orbital space. The
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corresponding eigenstates, labelled by |ρ, j, τ⟩ with ρ ∈ {1, 2, 3} and j ∈ {1, 2} are given as

|1, 1, τ = +1⟩ = (0, 0, 0, 1, 0, 0, 06×1)
T
; |1, 1, τ = −1⟩ = (06×1, 0, 0, 0, 1, 0, 0)

T
(406)

|1, 2, τ = +1⟩ = (0, 0, 1, 0, 0, 0, 06×1)
T
; |1, 2, τ = −1⟩ = (06×1, 0, 0, 1, 0, 0, 0)

T
(407)

|2, 1, τ = +1⟩ = 1√
NX1

(0, X1, 0, 0, 0, 1, 06×1)
T
; |2, 1, τ = −1⟩ = 1√

NX−1

(06×1, 0, X−1, 0, 0, 0, 1)
T

(408)

|2, 2, τ = +1⟩ = 1√
NX1

(X1, 0, 0, 0, 1, 0, 06×1)
T
; |2, 2, τ = −1⟩ = 1√

NX−1

(06×1, X−1, 0, 0, 0, 1, 0)
T

(409)

|3, 1, τ = +1⟩ = 1√
NY 1

(0, Y1, 0, 0, 0, 1, 06×1)
T
; |3, 1, τ = −1⟩ = 1√

NY−1

(06×1, 0, Y−1, 0, 0, 0, 1)
T

(410)

|3, 2, τ = +1⟩ = 1√
NY 1

(Y1, 0, 0, 0, 1, 0, 06×1)
T
; |3, 2, τ = −1⟩ = 1√

NY−1

(06×1, Y−1, 0, 0, 0, 1, 0)
T

(411)

where the normalizations are NXτ = 1 +X2
τ , NY s = 1 + Y 2

τ and

Xτ = − 1

2γ

(
2W1 − (12U2 +

4 + τ

2
U1) +

√
4γ2 + (2W1 − (12U2 +

4 + τ

2
U1))2

)
, (412)

Yτ = − 1

2γ

(
2W1 − (12U2 +

4 + τ

2
U1)−

√
4γ2 + (2W1 − (12U2 +

4 + τ

2
U1))2

)
, (413)

The energy of state ρ, j, τ with ρ ∈ {1, 2, 3} and j ∈ {1, 2}, Eρ,j,τ , are given as

E1,j,τ = −(2W3 + τ
J

2
) ≡ Eτ (414)

E2,j,τ =
1

2

(
−2W1 − (12U2 +

4 + τ

2
U1)−

√
4γ2 + (2W1 − (12U2 +

4 + τ

2
U1))2

)
≡ EXτ (415)

E3,j,τ =
1

2

(
−2W1 − (12U2 +

4 + τ

2
U1) +

√
4γ2 + (2W1 − (12U2 +

4 + τ

2
U1))2

)
≡ EY τ (416)

We break the B = 0 Hilbert space at Γ into 5 subspaces. The subspace of interest is the one spanned by states
|1, j, τ⟩ with j ∈ {1, 2} and τ = ±1, i.e. the one spanned by a = {3, 4} c fermions at each valley. The remaining
four subspaces are spanned by |2, j,+1⟩, |2, j,−1⟩, |3, j,+1⟩ and |3, j,−1⟩, respectively with j ∈ {1, 2}. These states
and their energies can now be relabelled by |ϵ, l⟩ and Eϵl, respectively. Here ϵ ∈ {1, . . . , 5} labels the 5 subspaces,
l ∈ {1, . . . , 4} for ϵ = 1 and l ∈ {1, 2} for ϵ = {3, 4, 5} labels the states spanning the subspace ϵ. We promote these
states to B ̸= 0 as |ϵ, l,m⟩ = |ϵ, l⟩|m⟩, where |m⟩ is the mth LL, i.e. the finite B k · p basis.
To begin with, we re-write the operator in Eq.(296) with respect to the above B = 0 eigenstates at Γ as

H = H0 +∆V, (417)

where H0 =

(
H0

τ=+1
KIV C

H0
τ=−1
KIV C

)
and V =

(
V̄ τ=+1
KIV C VM
h.c. V̄ τ=−1

KIV C

)
. H0

τ
KIV C can be obtained by replacing ζs by τ

in Eq.(401). The intra-valley perturbation V̄ τ=+1
KIV C can be obtained by setting M = 0 in Eq.(310) and V̄ τ=−1

KIV C can
be obtained by replacing X1, Y1 → X−1, Y−1, NX1, NY 1 → NX−1, NY−1 and a ↔ a† in V τ=+1. However note that
the values of Yτ and Yτ are changed for ν = −2 and given in Eq.(412) and Eq.(413) respectively. The inter-valley
perturbation VM is given in Eq.(333). Following the SWT procedure in Sec.(Supplementary note 10A2), i.e. the
steps from Eq.(334)-(342), upto O( 1

ℓ3 ), the effective Hamiltonian for subspace ϵ = 1 is found to be

Heff =

(
Hτ=+1,ν=−2

KIVC Hν=−2
M

h.c. Hτ=−1,ν=−2
KIVC

)
, (418)

where

Hτ=+1,ν=−2
KIVC =

(
−(2W3 +

J
2 ) + ℏω(1)

c aa† iA
(1)

ℓ3 a3

−iA(1)

ℓ3 a†
3 −(2W3 +

J
2 ) + ℏω(1)

c a†a

)
. (419)
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Hτ=−1,ν=−2
KIVC can be obtained by replacing a ↔ a† and ω

(1)
c , A(1), J2 → ω

(−1)
c , A(−1),−J

2 in Eq.(419). The cyclotron

frequency ω
(τ)
c and coefficient Aτ are

ℏω(τ)
c =

2v2⋆
ℓ2

(
X2

τ

NXτ (Eτ − EXτ )
+

Y 2
τ

NY τ (Eτ − EY τ )

)
, (420)

A(τ) = 4
√
2v2⋆v

′
⋆

(
XτYτ (Xτ + Yτ )

NXτNY τ (Eτ − EXτ )(Eτ − EY τ )
+

X3
τ

N2
Xτ (Eτ − EXτ )2

+
Y 3
τ

N2
Y τ (Eτ − EY τ )2

)
, . (421)

The matrix HM couples both the valleys and is given as

HM =M

(
1 +

Mc1

ℓ2
a†a+

Mc2

ℓ2
aa†
)
σz (422)

where the Pauli matrix acts in the orbital space of a ∈ {4, 3} c-fermions and

Mc1 = v2⋆

(
X2

−1

NX−1(E1 − EX−1)(EX−1 − E−1)
+

Y 2
−1

NY−1(E1 − EY−1)(EY−1 − E−1)

)
, (423)

Mc2 = v2⋆

(
X2

1

NX1(E1 − EX1)(EX1 − E−1)
+

Y 2
1

NY 1(E1 − EY 1)(EY 1 − E−1)

)
. (424)

Substituting Eqs.(412)-(399) in the coefficients, we have ℓ2ℏω(1)
c = −831301.40524meV Å2, ℓ2ℏω(−1)

c = −514097.23133

meV Å2, A(1) = −57864769.72509meV Å3, A(−1) = −59278877.34125 meV Å3, Mc1 = −12902.68825Å2 and Mc2 =
−25550.93059Å2. The comparison of the LL spectrum obtained using the above effective Hamiltonian with the one
obtained via the exact calculation is shown in Fig.(18). The LL basis used to generate the plot is (0, |m1⟩, |m1⟩, 0)T ,
(|m2⟩, |m2 + 3⟩, |m2 + 3⟩, |m2⟩)T and (|m3⟩, 0, 0, |m3⟩)T , where m1 ∈ {0, 1, 2}, m2 ∈ {0, . . . ,mmax − 4} and m3 ∈
{mmax − 3,mmax − 2,mmax − 1} respectively. We use (|m3⟩, 0, 0, |m3⟩)T rather than (|m3⟩, |m3 +3⟩, |m3 +3⟩, |m3⟩)T
in order to avoid three modes emanating out of spurious B → 0 energy −2W3 ± J/2. These six spurious modes
are present in the exact calculation, as can be seen in Fig.(18b) and (18c). However, recall that in practice we use
mmax = ⌈ q−3

2 ⌉, so these three LLs are lost as B(q) increases(decreases).

Supplementary note 11. REVIEW OF MAGNETIC BLOCH’S THEOREM AT 2π FLUX

In the following two appendices we detail the gauge-invariant technique of calculating the strong-coupling spectrum
of TBG in flux. We first review our technique of calculating the band structures and topology of twisted bilayer
graphene with 2π flux per unit cell, as derived in [59, 60], with the eventual goal of extending the 2π formalism to
rational flux ϕ = 2πp/q. Compared to other techniques, our method explicitly defines gauge-invariant momentum
eigenstates |k,m⟩ that are simultaneous eigenkets of magnetic translation operators with the same formal properties
as Bloch states. By keeping the full momentum quantum numbers and manifestly preserving the lattice symmetries,
we are able to leverage the machinery of band topology, such as Wilson loops and the quantum metric tensor as will
be explored in future work, in Hofstadter systems at rational flux.

To add nonzero flux to the BM model, we perform canonical substitution: −i∂ → π, with π the canonical
momentum yielding the operators

πµ = −i∂µ − eAµ, Qµ = πµ − eBϵµνxν . (425)

where A is the vector potential ∇∇∇×A = Bẑ, and Qµ is the guiding center operator obeying [πµ, Qν ] = 0. We define
the Landau level operators a, b as

a =
πx + iπy√

2B
, a† =

πx − iπy√
2B

, [a, a†] = 1, (426)

b =
(L1 − iL2) ·Q√

2ϕ
, b† =

(L1 + iL2) ·Q√
2ϕ

, [b, b†] = 1 . (427)

In magnetic flux, the translation operators TR which commute with the Hamiltonian are

t̂R = eiR·Q (428)
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where R is a lattice vector. Because at 2π flux the magnetic translation operators TL1
, TL2

commute with each other
and the Hamiltonian HBM, one can label the eigenstates of HBM by the momentum carried by the operators TL1

, TL2
.

A gauge-invariant definition of the momentum eigenstates was given in [59] as

|k,m⟩ = 1√
N (k1, k2)

∑
R

e−2πik·RTR1

L1
TR2

L2
|m⟩ , ⟨k,m|k′, n⟩ = δ(k− k′)δmn . (429)

Here momentum is k = k1g1 + k2g2, ki = k · Li ∈ [0, 1), and R = R1L1 + R2L2 is summed over all integers R1, R2.
The ket |m⟩ is the mth Landau level

|m⟩ = 1√
m!
a†m |0⟩ (430)

and N (k1, k2) is the normalization factor, worked out to be [59]

N (k1, k2) = ϑ

(
k1, k2

∣∣∣∣Φ) =
√
2e−π(k2

1+k2
2−2ik1k2)θ

(
ik1 + k2

∣∣∣∣i) θ(k1 + ik2

∣∣∣∣i) . (431)

Here ϑ denotes the Siegel theta function and Φ the Riemann matrix given by

ϑ(k|M) =
∑
R

e2π
2k·M ·k+2πik·R, Φ =

i

2

[
1 i
i 1

]
. (432)

In Eq.(431), we have simplified the Siegel theta into a product of Jacobi theta functions θ. There is a zero in the
normalization at k = (π, π) which is protected by the Chern number of the Landau level states |k,m⟩.
Within this basis, one may calculate the matrix elements at momentum k. The matrix elements read [59]

⟨k,m|a†a|k′, n⟩ = δ(k− k′)nδmn (433)

⟨k,m|e−iq·r|k′, n⟩ = δ(k− k′ − q)eiξq(k)Hq
mn, (434)

where the form factor matrix and phases are defined as

eiξq(k) =

e−
qq̄
4ϕϑ

(
(k1 − q/2, k2 + iq/2)

2π

∣∣∣∣Φ)√
ϑ

(
(k1, k2)

2π

∣∣∣∣Φ)ϑ( (k1 − q1, k2 − q2)

2π

∣∣∣∣Φ)
, q = q1 + iq2, qj = q · Lj (435)

Hq
mn = ⟨m|ei

γqa+γ̄qa†
√

2ϕ |n⟩, γq = ϵijqiz̄j , z̄j =
(x̂− iŷ) · Lj√

Ω
, (436)

with Ω = |a1 × a2| the area of the unit cell. These matrix elements have been worked out in detail in [59], and
the momentum Landau levels form a complete orthonormal basis. To evaluate the band structure of the BM model
in flux, one simply evaluates the matrix elements of the Hamiltonian with respect to this basis at any momentum.
Being able to block diagonalize the Hamiltonian by momentum allows for efficient calculations as well as access to
the Wilson loop and quantum geometric tensor.

Supplementary note 12. RATIONAL FLUX

To solve the Bistritzer MacDonald model (or other continuum models) at rational flux ϕ = 2πp/q, we will create new
momentum eigenstates that reflect the projective representation of the translation group in flux. At flux ϕ = 2πp/q,
we generalize Eq.(427) to the following raising and lowering operators

a =
πx + iπy√

2B
, a† =

πx − iπy√
2B

(437)

b =
(L1/p− iqL2) ·Q√

4π
, b† =

(L1/p+ iqL2) ·Q√
4π

(438)
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The a, a† operators are unchanged and obey [a, a†] = 1, and we verify that [b, b†] = 1 holds:

[b, b†] = 2i
1

4π

q

p
[L1 ·Q,L2 ·Q] = eBΩ

1

2π

q

p
= 1 (439)

since eBΩ = ϕ. The translation operators TR = eiR·Q now obey

t̂L1
t̂L2

= e−[L1·Q,L2·Q]t̂L2
t̂L1

= eiϕt̂L2
t̂L1

. (440)

These magnetic translation operators commute with the Hamiltonian, but do not commute with each other. However,
the operators t̂L1 , t̂qL2 form a commuting subgroup, [t̂L1 , t̂qL2 ] = 0 and so label the magnetic Brillouin zone (MBZ):

k ∈ MBZ, MBZ = {k|k = 2πk1g1 + 2πk2g2, k1 ∈ [0, 1), k2 ∈ [0, 1/q)}. (441)

We will now provide a complete basis of states which carry the momentum quantum number k ∈ MBZ. This is
accomplished by adapting the basis states in 2π flux in Eq.(429). The completeness and orthogonality of the basis in
Eq.(429) is an algebraic property that relies on the fact that t̂L1

and t̂L2
enclose 2π flux and therefore commute. So in

rational flux ϕ = 2πp
q , we consider the operators t̂a1/p, t̂qL2

which also enclose 2π flux and commute. Notably, t̂L1/p is

not a symmetry of the Hamiltonian because it is a translation by a partial lattice vector (although it is a well-defined
operator). Thus we are led to consider the orthonormal states∣∣∣k̃,m〉 =

1√
N (k̃1, k̃2)

∑
R1,R2∈Z

e−2πi(k̃1R1+k̃2R2)t̂R1

L1/p
t̂R2

qL2
|m⟩ , |m⟩ = 1√

m!
a†m |0⟩ (442)

which are parameterized by k̃ ∈ [0, 1) × [0, 1). To understand the physical meaning of k̃ in terms of the momentum
quantum number k ∈ MBZ, we compute

t̂a1

∣∣∣k̃,m〉 = t̂pa1/p

∣∣∣k̃,m〉 = e2πipk̃1

∣∣∣k̃,m〉 , =⇒ pk̃1 = k1 mod 1 (443)

t̂qa2

∣∣∣k̃,m〉 = e2πik̃2

∣∣∣k̃,m〉 , =⇒ k̃2 = qk2 mod 1 (444)

(445)

and thus we identify k̃1 = k1+κ
p , κ = 0, . . . , p − 1 and k̃2 = qk2. Plugging into Eq.(442), we arrive at the following

basis of magnetic translation group eigenstates

|k, κ,m⟩ = 1√
N ((k1 + κ)/p, qk2)

∑
R1,R2∈Z

e−2πi
(

k1+κ
p R1+qk2R2

)
t̂R1

L1/p
t̂R2

qL2
|m⟩ ,

k ∈ MBZ, κ = 0, . . . , p− 1 mod p . (446)

We see that the basis of states are labeled by k in the MBZ and an additional flavor index κ = 0, . . . , p − 1. This
index has a simple physical interpretation: consider the Landau level limit of zero crystalline potential so that each
momentum in the MBZ is p-fold degenerate due to κ. This means there are p states per magnetic unit cell a1 × qa2,
leading to an electron density of p/q = ϕ/2π per unit cell. This is expected because Landau levels have a density of

ν = p/q = ϕ
2π . For later reference, we remark that the eigenstates Eq.(446) obey the embedding property∣∣∣∣k+

1

2π
g1, κ,m

〉
= |k, κ+ 1,m⟩ ,

∣∣∣∣k+
1

2πq
g2, κ,m

〉
= |k, κ,m⟩ (447)

over the MBZ. These eigenstates are similar to the light fermions used to describe the conduction electrons in flux,
Eq.(30). The orthonormality ⟨k̃,m|k̃′, n⟩ = δ(k̃− k̃′)δmn of the states Eq.(442) is used to calculate the orthonormality
of the new states |k, κ,m⟩ by employing the previously derived identification

k̃1 =
k1 + κ

p
, κ = 0, . . . , p− 1, k̃2 = qk2, (448)

δ(k̃1 − k̃′1)δ(k̃2 − k̃′2) = δ(
k1 + κ

p
− k′1 + κ′

p
)δ(qk2 − qk′2) =

p

q
δ(k1 − k′1)δ(k2 − k′2)δκκ′ , (449)
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giving overlap

⟨k, κ,m|k′, κ′, n⟩ = δ((k1 − k′1)/p)δκκ′δ(q(k2 − k′2))δmn =
p

q
δ(k1 − k′1)δ(k2 − k′2)δκκ′δmn (450)

where the factor of p/q = ϕ/2π shows that the density of the states changes with flux. This dependence of density of

states on flux is equivalent to the Streda formula ν = C ϕ
2π with C = 1 for the Landau level state |k, κ,m⟩.

Given a periodic Hamiltonian in magnetic flux,

H = h(π) + V (r), V (r+ ai) = V (r) (451)

where h is the kinetic energy, a function of canonical momentum, and V is the lattice-periodic potential energy, one

can compute the matrix elements of this Hamiltonian Hϕ
mκ,nκ′(k) in the basis Eq.(446):

⟨k, κ,m|H(r)|k′, κ′, n⟩ = p

q
δ(k1 − k′1)δ(k2 − k′2)H

ϕ
mκ,nκ′(k). (452)

The kinetic term h(πππ) has a simple action on the |k, κ, n⟩ states because it is k-independent:

h(π) = ℏvF
√
2B

[
0 a†

a 0

]
(453)

⟨k′, κ′,m|a†|k, κ, n⟩ = p

q
δ(k1 − k′1)δ(k2 − k′2)

√
n+ 1δκκ′δmn, (454)

calculated by observing that a† commutes with the magnetic translation operators:

a† |k, κ,m⟩ = 1√
N ((k1 + 2πκ)/p, qk2)

∑
R1,R2∈Z

e−i
(

k1+2πκ
p R1+qk2R2

)
TR1

L1/p
TR2

qL2
a† |m⟩ , (455)

=
1√

N ((k1 + 2πκ)/p, qk2)

∑
R1,R2∈Z

e−i
(

k1+2πκ
p R1+qk2R2

)
TR1

L1/p
TR2

qL2

√
m+ 1 |m+ 1⟩ (456)

=
√
m+ 1 |k, κ,m+ 1⟩ . (457)

We now move on to the an explicit expression for the potential term V (r) containing e2πib·r operators. Let us first
focus on the case where p = 1, where many of the formulae simplify greatly. We recall the formula at ϕ = 2π [59]:

⟨k,m|e−2πib·r|k′, n⟩ = (2π)2δ(k− k′) exp{(−iπb1b2 − iϵijbikj)}[exp
(
iϵij2πbiZ̃j

)
]mn, (458)

where the matrix Z̃ on the Landau level indices (derived for all ϕ in [59]) is

Zj =
z̄ja+ zja

†
√
2ϕ

, [Z̃j ]mn = ⟨m|Zj |n⟩, zj =
(x̂+ iŷ) · aj
|a1 × a2|

. (459)

Note that Z̃j is a sparse matrix since a, a† are sparse (each row has only one nonzero element). At ϕ = 2π
q , we take

a2 → qa2 in Eq.(458), again employing our identification k1 → k1, k2 → qk2, G1 → G1, G2 → qG2 to obtain

⟨k,m|e−iG·r|k′, n⟩ = (2π)2

q
δ(k1 − k′1)δ(k2 − k′2) exp

{(
−i q

2π
(
1

2
G1G2 + ϵijGikj)

)}
[eiϵijGiZ̃j ]mn,

k ∈ MBZ, G · ai = 0 mod 2π (460)

= (2π)2
ϕ

2π
δ(k1 − k′1)δ(k2 − k′2) exp

(
− i

ϕ
(
1

2
G1G2 + ϵijGikj)

)
[eiϵijGiZ̃j ]mn (461)

Note that from Eq.(460), Hϕ(k1, k2) = Hϕ(k1 + 1, k2) = Hϕ(k1, k2 + 1/q) is explicitly periodic across the magnetic
BZ, and additionally Hϕ(k1, k2) = Hϕ(k1 + 1/q, k2) which proves immediately that ϵn(k) = ϵn(k + 1

qbi) as follows

from the properties of the magnetic translation group [71, 72].
The simple form for the potential for p = 1 becomes significantly more complex when p ̸= 1. One replaces the

formula Eq.(434) as L1 → L1/p,L2 → qL2, to yield the overlap
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Supplementary Figure 19. Band structures of the BM model at flux ϕ = 2π/3, calculated with our momentum eigenstates.
Left. The Hofstadter bands show significant flattening over the MBZ, leading to pronounced peaks in the density of states
(Center). Right. Zoom-in of the Hofstadter splitting of the flat bands.

⟨k′, κ′,m|e−iq·r|k, κ, n⟩ = p

q
δ(k1 − k′1 − q1/2π + κ− κ′)δ(k2 − k′2 − q2/2π)

× eiξq1/p+iqq2
((k1+κ)/p,qk2)exp

(
iϵijqiZ̃j

)
mn
. (462)

where the phase factor is

eiξq1/p+iqq2
((k1+κ)/p,qk2) =

e−
q̃q̄
8π ϑ

(
(k1 + κ)/p− q̃/4π, qk2 + iq̃/4π

∣∣∣∣Φ)√
ϑ

(
(k1 + κ)/p, qk2

∣∣∣∣Φ)ϑ((k1 + κ− q1/2π)/p, q(k2 − q2/2π)

∣∣∣∣Φ)
, q̃ = q1/p+ iqq2.

(463)

In practice, we will not need to full expression for the phase in Eq.(462). To evaluate the Hamiltonian, we only
need an expression for the overlap at q = G, a reciprocal lattice vector. In this case, the expression simplifies to

⟨k′, κ′,m|e−iG·r|k, κ, n⟩ =
p

q
δ(k1 − k′1)δκ,κ′+G1

δ(k2 − k′2)

×eiξG1/p+iqG2
((k1+κ)/p,qk2)exp

(
iϵijGiZ̃j

)
mn

(464)

To calculate the matrix elements of the BMmodel, we first perform a gauge transformation to recast the Hamiltonian
into an explicitly translation-symmetric form. Because q1,q2,q3 are not reciprocal lattice vectors, the BM model
is only periodic up to a gauge transformation. Conjugating HBM by e−iπq3·r restores translation symmetry, giving
Hamiltonian

H̃BM = eπiq3·rHBMe
−πiq3·r =

[
−iℏvFσσσ · ∇∇∇− πℏvFq3 · σσσ T̃ †(r)

T̃ (r) −iℏvFσσσ · ∇∇∇+ πℏvFq3 · σσσ

]
, (465)

T̃ (r) =

3∑
j=1

e2πig1·rT1 + e2πig2·rT2 + T3, Tj+1 = w0σ0 + w1

(
σ1 cos

2πj

3
+ σ2 sin

2πj

3

)
. (466)

. Upon canonical substitution, the Hamiltonian in flux reads

H̃BM(ϕ) =

[
ℏvFσσσ · π − πℏvFq3 · σσσ T̃ †(r)

T̃ (r) ℏvFσσσ · π + πℏvFq3 · σσσ

]
, (467)

An example band structure at flux ϕ = 2π/3 calculated with our technique is depicted in Supplementary Fig.(19).
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A. Groundstate Charge Density

A key feature of the HF model of TBG is the concentration of charge at the moiré unit cell center in the non-
interacting model. This is one indication that the Wannierization must contain orbitals at the 1a position. To check
the validity of the HF approximation in small flux, we will compute the charge density of the groundstate in flux
ϕ = 2π

q , for this section restricting to p = 1 for convenience. We will compute the quantity

⟨GS|n(r)|GS⟩ =
∑

l,α,η,s

⟨GS|c†l,α,η,s(r)cl,α,η,s(r)|GS⟩ (468)

=
1

qΩ

∑
Gq

ˆ 2π

q1=0

ˆ 2π/q

q2=0

d2q

(2π)2/q
ei(q+Gq)·r⟨GS|ρq+Gq |GS⟩ (469)

where |GS⟩ =
∏

j

∏
k,n,ηj ,sj

γ†k,n,ηj ,sj
|0⟩ is the Slater determinant state filling all the 2q Hofstadter flat bands and

n(r) =
∑

l,α,η,s c
†
l,α,η,s(r)cl,α,η,s(r) is the local charge operator summed over layer l, sublattice α, valley η, and spin s.

The vectors Gq = 2πZg1+2πZg2/q are the reciprocal lattice vectors of the MBZ (note that Gq ·a2 can be fractional).
The momentum space density operator ρ is defined as

ρq+Gq
=

ˆ
d2re−i(q+Gq)·r

∑
l,α,η,s

c†l,α,η,s(r)cl,α,η,s(r). (470)

We first find the matrix elements of this operator in terms of Landau levels. Define the creation operator ψ†
k,m,α,l,η,s

as the operator that creates the state |k,m, α, l, η, s⟩. Following the calculations from Ref. [59] gives the following
relations:

⟨k′, α, l,m, η, s|c†l,α,η,s(r)cl,α,η,s(r)|k, α, l, n, η, s⟩ = ⟨0|ψk′,α,l,m,η,sc
†
l,α,η,s(r)cl,α,η,s(r)ψ

†
k,α,l,n,η,s|0⟩ (471)

= ⟨0|ψk′,α,l,m,η,sc
†
l,α,η,s(r)|0⟩⟨0|cl,α,η,s(r)ψ

†
k,α,l,n,η,s|0⟩ (472)

= ψk′,α,l,m,η,s(r)ψ
∗
k,α,l,n,η,s(r), (473)

where ψk′,α,l,m,η,s(r) is the real-space wavefunction corresponding to the momentum ket |k′, α, l,m, η, s⟩. These
wavefunctions are orthonormal, and integrating over r gives

ˆ
d2re−iq·rψk′,α,l,m,η,s(r)ψ

∗
k,α,l,n,η,s(r) = ⟨k′, α, l,m, η, s|e−iq·r|k, α, l, n, η, s⟩ (474)

The density operator becomes

ρq+Gq
=

ˆ
d2r

∑
α,l,η,s

∑
mn

ˆ
d2kd2k′

1/q2
e−i(q+Gq)·r

× ⟨k′, α, l,m, η, s|c†l,α,η,s(r)cl,α,η,s(r)|k, α, l, n, η, s⟩ψ
†
k′,α,l,m,η,sψk,α,l,n,η,s

=
∑

α,l,η,s

∑
mn

ˆ
d2kd2k′

1/q2
⟨k′,m, α, l, η, s|e−i(q+Gq)·r|k, n, α, l, η, s⟩ψ†

k′,α,l,m,η,sψk,α,l,n,η,s, (475)

where the form factor ⟨k′,m|e−i(q+Gq)·r|k, n⟩ has been defined in Eq.(462). The factor of 1/q2 in the integrand arises
from the fact that working at ϕ = 2π/q, the Brillouin zone size has reduced by a factor of q.

We project into the flat bands, defining the eigenoperators γ†k,M,η,s as the operators that create the Mth energy
eigenstate at momentum k, with M ranging from 1 to 2q. To do this, expand the eigenoperators as

γk,N,η,s =
∑
α,l,m

[U (η,s)]Nα,l,m(k)ψk,α,l,m,η,s, (476)

so upon projection

ψ†
k′,α,l,m,η,sψk,α,l,n,η,s →

∑
MN

[U (η,s)∗]Mα,l,m(k′)[U (η,s)]Nα,l,n(k)γ
†
k′,M,η,sγk,N,η,s (477)
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The projected form factors read

ρq → ρq+Gq
=

ˆ
[0,1)×[0,1/q)

d2k

1/q

∑
MN

M (η,s)
mn (k,q+Gq)γ

†
k−q/2π,M,ηj ,sj

γk,N,ηj ,sj , (478)

where M (η,s)(k,q) are the form factor matrices given by

M
(η,s)
MN (k,q+Gq) =

∑
α,l,η,s,mn

eiξq+Gq (k)[U (η,s)†
α,l,n(k− q)Hq+Gq

mn U
(η,s)
α,l,n(k)]MN , (479)

1

q
δ(k1 − k′1)δ(k2 − k′2)e

iξq+Gq (k)Hq+Gq
mn = ⟨k′,m|e−i(q+Gq)·r|k, n⟩ (480)

with [U (η,s)]Nα,l,m(k) the wavefunction of the Nth energy band in themth Landau level, with repeated indices summed.

We have suppressed the indices α, l, η, s in the ket |k,m⟩ as they are unchanged by the operator e−iq·r.
When computing many-body overlaps, it is more convenient to discretize the magnetic BZ and work with Kronecker

delta normalized fermion operators instead of Dirac delta normalized operators. To do so, we discretize according to
the normalization

{ 1√
N
γk,m,ηj ,sj ,

1√
N
γ†k′,n,ηj′ ,sj′

} =
1

N

1

q
δ(k− k′)δmnδjj′ → δkk′δmnδjj′ (481)

where N → δ2(0) is the number of unit cells. Equivalently, N is the number of magnetic unit cells which is equal to
the number of k-points in the magnetic BZ. Working in momentum space, we discretize the momentum

ρq+Gq
=

ˆ
[0,1)×[0,1/q)

d2k

1/q

∑
MN

M
(η,s)
MN (k,q/2π +Gq)γ

†
k−q/2π,M,ηj ,sj

γk,N,ηj ,sj

→
∑
kMN

M
(η,s)
MN (k,q/2π +Gq)γ

†
k−q/2π,M,ηj ,sj

γk,N,ηj ,sj (482)

where M,N sum over all the Hofstadter bands and the arrow indicates a discretization of the the magnetic BZ.

Supplementary Figure 20. Real space cuts along the L1 lattice vector. All fluxes have many-body charge densities that are
peaked at the 1a location, but the 0 flux is the most peaked while the 2π is the most spread. As flux is increased, the
wavefunction weight is increasingly spread, but remains strongly localized at 1a. This validates the use of the HF Hamiltonian
in flux.

Acting on the groundstate, we have

⟨GS| ρq+Gq
|GS⟩ = δq,0 ⟨GS| ρGq

|GS⟩ = δq,0
∑
k

TrM(k,Gq) (483)

⟨GS| ρq+Gq |GS⟩ =
(2π)2

q
δ(q1)δ(q2)

ˆ
[0,1)×[0,1/q)

d2k

1/q
TrM(k,Gq) (484)
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switching back to the continuum normalization in the second line. As q ranges over the MBZ, the continuum delta
function δ(q1)δ(q2) appears with a prefactor of (2π)2/q, so that the following integral over the MBZ is normalized to
1: ˆ

[0,2π)×[0,2π/q)

d2q

(2π)2/q

(2π)2

q
δ(q1)δ(q2) = 1. (485)

We now prove that only ⟨GS| ρGq
|GS⟩ is nonzero, for Gq a reciprocal lattice vector of the zero-flux (non-magnetic)

BZ: that is, ⟨GS| ρGq
|GS⟩ is nonzero only if Gq = 2πZg1 + 2πZg2. This follows from the periodicity of the form

factors:

Mmn(k+ b1/q,Gq) = eiGq·a2Mmn(k,Gq) (486)

which is derived from the form factor definition:

1

q
δ(k1 − k′1)δ(k2 − k′2)e

iξGq (k+g1/2πq)HGq
mn = ⟨k+ g1/2πq,m|e−2πiGq·r|k′ + g1/2πq, n⟩ (487)

=
1

q
δ(k1 − k′1)δ(k2 − k′2)e

−iq(π(Gq)1(Gq)2+ϵij(Gq)ikj−2π(Gq)2/q)[eiϵij2π(Gq)iZ̃j ]mn (488)

= e2πiGq·L2⟨k,m|e−2πiGq·r|k′, n⟩, (489)

or

⟨k+ g1/2πq,m|e−2πiGq·r|k′ + g1/2πq, n⟩ = e2πiGq·L2⟨k,m|e−2πiGq·r|k′, n⟩ (490)

so that
ˆ
d2k

1/q
TrM(k,Gq) =

ˆ 1

0

dk1
2π

ˆ 1/q

0

dk2
1/q

TrM(k,Gq) (491)

=

q−1∑
j=0

eijG·a2

ˆ 1/q

0

dk1

ˆ 1/q

0

dk2
1/q

TrM(k,G) (492)

= δGq,G

ˆ 1/q

0

dk1
1/q

ˆ 1/q

0

dk2
1/q

TrM(k,Gq) (493)

because
∑q−1

j=0 e
ijGq·a2 = q if Gq · L2 ∈ Z, and otherwise vanishes: that is, only if Gq is a reciprocal lattice vector.

This observation allows significant speedup in numerical calculations, as Gq vectors that are not reciprocal lattice
vectors do not need to be calculated in the expression for the many-body charge density. The integrals in Eq.(483)
will appear throughout the many-body calculations, so we find it convenient to define

nG =

ˆ
[0,1)×[0,1/q)

d2k

1/q

1

q
TrM(k,G), G ∈ 2πb1Z+ 2πb2Z (494)

which is the average of the form factor over the magnetic BZ and (the 2q) occupied Hofstadter bands. Physically, nG̃
are the Fourier modes of the charge distribution, which we see from plugging into Eq.(468):

⟨GS|n(r)|GS⟩ =
∑
G̃

eiG·r
ˆ

d2k

(2π)2Ω/q

1

q
TrM(k,G) =

∑
G

eiG·r
ˆ

d2k

Ω/q

1

q
TrM(k,G) =

1

Ω

∑
G

eiG·rnG . (495)

By proving that nG vanishes if G is not a reciprocal lattice vector, we have shown that the charge distribution at
rational flux is periodic over the physical unit cell, not just over the (extended) magnetic unit cell. A figure illustrating
the expectation value over a slice in real space along the L1 direction is depicted in Supplementary Fig.(20). We see
that even in the presence of flux, the charge density remains localized at the 1a position, though the spread does
increase slightly with flux.

B. Many-body Charge Excitations

It was realized in [58] that the double commutator calculation could be extended to TBG in flux. In this appendix,
we detail a variation of this calculation using our gauge invariant formalism [59, 60], which makes the derivation of



80

Supplementary Figure 21. Charge +1 excitations above the ν = 0 VP state in flux, calculated via the strong coupling technique.

the charge excitations very simple. First we recall some basic results from the strong coupling theory of TBG: the
double-commutator technique of [18, 25] will be used extensively in this section, along with results from [24, 59].
Starting with a filled-band groundstate ansatz [10, 17, 19] at filling ν (ν = 0 is the charge neutrality point) given by

|Ψν⟩ =
∏
k,n

ν+4∏
j=1

γ†k,n,ηj ,sj
|0⟩ (496)

in spin-valley flavors {sj}, {ηj}, we compute the excitations of the Coulomb Hamiltonian projected into 2q flat bands
(per spin-valley) defined by

Hint =
1

2

ˆ
d2q

(2π)2
V (q)ρ̄qρ̄−q =

1

2

q−1∑
G,j=0

ˆ
(0,2π)×(0,2π/q)

d2q

(2π)2

V (q+ 2πj
q b2 +G)

Ω
ρ̄q+ 2πj

q b2+Gρ̄−(q+ 2πj
q b2+G)(497)

ρ̄q =
∑

k,MN,ηs

M
(η,s)
MN (k,q)(γ†k−q,M,η,sγk,N,η,s −

1

2
δq,0δMN ). (498)

Working at p = 1, the equation breaks up the momentum q by restricting q into a vector in the MBZ, then adding a
multiple of g2/q, and a reciprocal lattice vector G, so that the total momentum q+ 2πj

q g2 +G.

At charge neutrality, ν = 0, |Ψν⟩ is a groundstate of Hint because Hint is positive semi-definite and

ρ̄q+ 2π
q jb2+G |Ψν⟩ =

ν

2

(2π)2

q
δ(q1)δ(q2)δj,0qnG |Ψν⟩ (499)

and thus Hint |Ψν=0⟩ = 0. This convention justifies the choice of the projected interaction Hamiltonian. More
generally, we observe that

Hint |Ψν⟩ =
1

2

q−1∑
G,j=0

ˆ
(0,2π)×(0,2π/q)

d2q

(2π)2

V (q+ 2πj
q b2 +G)

Ω
(
ν

2
)2((2π)2δ(q1)δ(q2))

2δj,0|nG|2 |Ψν⟩ (500)

= (2π)2δ2(0)

(
ν2

8

∑
G

V (G)

Ω
|nG|2

)
|Ψν⟩ (501)

(502)

where (2π)2δ2(0) is the total number of unit cells. Thus the many-body energy density of |Ψν⟩ is given by the quantity
in parentheses in Eq.(500).

A double-commutator calculation [18, 25] gives the charge ±1 excitations in terms of the following 2q× 2q effective
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Hamiltonians (the ϕ = 2π/q dependence is suppressed in M(k,q) and nG):

R+
MN (k) =

1

N

∑
q,G

1

2

V (q+G)

Ω
[M†(k,q+G)M(k,q+G)]MN +

ν

2

∑
G

V (G)

Ω
[M(k,G)]MNn

∗
G − µδMN (503)

R−
MN (k)∗ =

1

N

∑
q,G

1

2

V (q+G)

Ω
[M†(k,q+G)M(k,q+G)]MN − ν

2

∑
G

V (G)

Ω
[M(k,G)]MNn

∗
G + µδMN (504)

(505)

where q sums over the N states in the full Brillouin zone, and the chemical potential µ = (Emin,+1 − Emin,−1)/2
is chosen so that the minima of the charge ±1 spectra at µ = 0, denoted Emin,+±, are the same. Physically, this
choice of µ corresponds to setting zero energy in the middle of the excitation gap. We refer to the first term in
R±(k) as the Fock term. Since V (q) > 0 and M†M is a positive-semi-definite matrix, the Fock term is positive
semi-definite. It also does not depend on the filling ν. Note that the phase eiξq(k) in the form factors M(k,q) cancels
in the M†M product, and so does not need to be evaluated. To further speed up the numerical calculations, nG
can be precomputed since it does not depend on k. Most importantly, the computation of M(k,q) can be carried

out with sparse matrix multiplication of eiϵijqiZ̃j on U(k). We find that even for very large q, the computations of
R±(k) are feasible taking the Landau level cutoff to be 30q and truncating the G sum after three shells. A plot of the
many-body charge excitations calculated with strong coupling is shown in Supplementary Fig.(21); this is compared
to the spectrum obtained via heavy fermions to excellent agreement in the main text.

Supplementary note 13. NOTATIONAL CHANGES

• The notation I0[m,r′] is used in the supplementary to represent the c-f hybridization matrix (see Eq.(131)). In

the main text, we use the notation Υ[m,r′] for the same. It is defined in Eq.(13) of main-text.

• The notation mmax is used in the supplementary to represent the upper cut-off on c-LL index. In the main
text, we use the notation m⋆ for the same.
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