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We use the composite operator method (COM) to analyze the strongly correlated repulsive Hub-
bard model, investigating the effect of nearest-neighbor hoppings up to fourth order on a square
lattice. We consider two sets of self-consistent equations, one enforcing the Pauli principle and the
other imposing charge-charge, spin-spin, and pair-pair correlations using a decoupling scheme devel-
oped by L. Roth [Phys. Rev. 184, 451–459, (1969)]. We extract three distinct solutions from these
equations: COM1 and COM2 by imposing the Pauli principle and one from Roth decoupling. An
overview of the method studying the validity of particle-hole symmetry and the Luttinger theorem
for each solution is presented. Additionally, we extend the initial basis to study superconductivity,
concluding that it is induced by the Van Hove singularity. Finally, we include higher-order hop-
pings using realistic estimates for tight binding parameters and compare our results with ARPES
measurements on cuprates.

I. INTRODUCTION

Exotic behavior and multiple phases exhibited
by strongly correlated materials have attracted sig-
nificant interest in the quantum condensed mat-
ter community[1, 2]. One prominent example is
cuprates, where superconductivity survives up to
very high critical temperatures compared to conven-
tional superconductors described by the BCS theory
[3]. Since their discovery in 1987 by G. Bednorz and
K.A. Müller [4], extensive research has focused on
modeling and understanding the pairing mechanism
in these materials to obtain a microscopic theory of
cuprate superconductors. The complexity of their
phase diagram and the numerous unexplained quan-
tum phases [5] have resulted in various theoretical
models [6].

The repulsive Hubbard model remains the
paradigmatic tool for studying strongly correlated
quantum matter even after sixty years of its pro-
posal. It offers a minimal description of such systems
with just two ingredients - hopping of electrons be-
tween lattice sites t and on-site electron repulsion U
creating an energy cost for double occupancy on the

same lattice site. It is given by

H = −
∑
i,jσ

tijc
†
iσcjσ + U

∑
i

ni↑ni↓ − µ
∑
iσ

niσ, (1)

where the chemical potential µ fixes the total num-
ber of electrons. In Eq. (1) tij is such that tij = t
if i and j are nearest neighbouring sites, and zero
otherwise. One can extend the model to longer

ranged hoppings. ciσ/c
†
iσ destroys/creates an elec-

tron on site i with spin σ ∈ {↑, ↓} on the lattice

and niσ = c†iσciσ is the number operator for site i
and spin σ. However, this seemingly straightforward
model has eluded unbiased theoretical solutions.

The Hubbard Hamiltonian is known to be solvable
only in one dimension (1d) and infinite dimensions
[7]. In the intermediate dimensions, the equations
of motion of the electronic Green’s function involve
higher order Green’s function and cannot be solved
exactly [8]. In the past, approximations such as , II
and III [8] have been made to truncate the higher-
order terms and close the equations of motion.

We revisit a perturbative scheme called ”Com-
posite Operators Method” (COM) [9] [10]. This
method originates from the Hubbard II approxima-
tion, where the electronic Green’s function is decom-
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posed into two poles with respective self-energies of
0 and U . Unlike Hubbard I and III approxima-
tions, Hubbard II approximation satisfies particle-
hole symmetry [11]. In contrast to other meth-
ods, such as Kotliar-Ruckenstein approximation of
slave bosons or Gutzwiller’s wavefunction approach
[11], COM is exact in the atomic limit, establishing
an ideal framework for studying strongly correlated
regimes. However, Hubbard II approximation re-
quires self-consistency to establish the effect of elec-
tron hopping, treated as a perturbation. Originally
developed by L. Roth [12], the composite operators
(or Hubbard operators [13]) exactly diagonalize the
Hubbard Hamiltonian in the atomic limit. They are
a good choice to treat the hopping term t as a per-
turbation. The composite operator method starts
from Hubbard II approximation and set-up a self-
consistent scheme to compute the effect of the hop-
ping term.

We consider two sets of such self-consistency equa-
tions. The first enforces charge-charge, spin-spin,
and pair-pair correlations using L. Roth’s decoupling
scheme, and the second imposes the Pauli princi-
ple instead of correlations. We perform a numerical
minimization of these two sets of equations. The
self-consistency equations enforcing the Pauli prin-
ciple yield two distinct solutions named COM1 and
COM2. The other sets of equations using Roth de-
coupling only exhibit one solution, which is referred
to as the Roth solution. The spectral and magnetic
properties of the Roth solution have been studied
in Ref. [14] and Ref. [15]. Despite violating the
Pauli principle [9], the Roth solution shows a band
structure in agreement with quantum Monte-Carlo
simulations [10]. In contrast, COM1 and COM2,
which have been widely studied in Refs. [16] and
[9], exhibit a Fermi surface consistent with cuprate
ARPES experiments only under some approxima-
tions [17]. Furthermore, some extensions of COM
method to the t− J models have been made in Ref.
[18].

Although the self-consistency equations enforcing
the Pauli principle have been previously minimized
with next-nearest neighbor hoppings [19], this is not
the case for the Roth decoupling. The latter has
been studied with next-nearest neighbor hoppings
for a three-band Hubbard model in cuprates [20],
but never for the one-orbital Hubbard model.

Superconductivity has also been studied using the
COM[10]. Past studies indicate that the proxim-
ity to the Van Hove singularity enhances SC within
Roth minimization scheme [21]. The enhancement

of the density of the state associated with this sin-
gularity allows electrons to form more pairs readily.
However, a detailed study comparing and contrast-
ing different self-consistent solutions and including
realistic hopping parameters to model the cuprates
is still lacking.

We aim to compare and contrast the solutions ob-
tained in previous studies using the COM, in order to
benchmark the results for a later study where we will
break translational invariance. We evaluate their
physical consistency with experiments in cuprates by
testing the particle-hole symmetry and the validity
of the Luttinger theorem. This theorem states that
the enclosed volume by the Fermi Surface is propor-
tional to the electron density [22]. It is important to
note that there is no consensus on when this theorem
is expected to be violated, although its violation is
routinely observed [23] [24] [25]. Interestingly, it is
always violated for this method. Our study of Fermi
Surfaces reveal that only Roth solution is close to
the non-interacting Fermi surface, but is enlarged
because of the violation of Luttinger theorem. Fi-
nally, we include the superconductivity with longer-
ranged hoppings. The plan for the rest of the paper
is as follows: Section II details the formalism and
self-consistency we use in the manuscript. In section
III, we restrict to the nearest neighbor hoppings and
compare the solutions obtained by the different mini-
mizations [10] [26] while discussing their physical im-
plications, particularly with regard to particle-hole
symmetry and the Luttinger theorem. Finally, we
allow for the superconductivity in the model, and
in the last section IV, we study the impact of the
longer-ranged hopping orders.

II. COMPOSITE OPERATOR FORMALISM

Composite operators are introduced to solve the
equations of motion of composite Green’s functions
(Green’s functions are composed of two composite
operators) exactly in some limits. Since we are in-
terested in a strongly correlated regime of the Hub-
bard model, we introduce composite operators solv-
ing exactly the Hubbard model in the atomic limit
(no hopping term). This is a good starting point to
treat the hopping term t with a perturbation expan-
sion.
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A. Presentation of the method

We start by introducing the following composite
operators {

ξiσ = ciσ − ciσniσ̄
ηiσ = ciσniσ̄

(2)

Where σ̄ means we take a spin ↑ if σ =↓ and a
spin ↑ if σ =↓. These composite operators represent
respectively the transition from an empty site i to a
site filled with one electron of spin σ, and the transi-
tion from a site i filled with an electron of spin σ̄ to
a doubly occupied state [16]. Indeed, applying ξiσ
to a state with an electron of spin σ at site i will
remove this electron, while applying ηiσ on a doubly
occupied state on site i will only let one electron of
spin σ̄ on site i. We introduce the following spinors

ψiσ =

(
ξiσ
ηiσ

)
(3)

Hereafter, ψ1
iσ = ξiσ and ψ2

iσ = ηiσ denotes the
first and second component of the spinor at site i
and with spin σ.

1. Atomic limit

To illustrate the interest of introducing these op-
erators, we first consider the atomic limit of Eq. (1) :
we put the hopping term t to zero. The Hamiltonian
is now local (ie electrons are not hopping anymore
and each site is independent) and is given by

Hloc = U
∑
i

ni↑ni↓ − µ
∑
iσ

niσ (4)

We introduce the 2×2 composite Green’s function
matrix at sites i and j, with spins σ and σ′ and
defined for an imaginary time τ by

Sloc
ijσσ′(τ, τ ′) = ⟨⟨ψiσ(τ);ψ

†
jσ′(τ

′)⟩⟩loc (5)

Where, for two operators X and Y,

⟨⟨X(τ);Y (τ ′)⟩⟩loc = θH(τ − τ ′)⟨{X(τ);Y (τ ′)}⟩loc
(6)

Where θH(τ − τ ′) is one if τ > τ ′ and zero other-
wise (Heaviside function). ⟨...⟩loc denotes the ther-
mal average taken with the Hamiltonian Hloc and

{X(τ);Y (τ ′)} is the anticommutator of X and Y.

Since we are at equilibrium we have Sloc
ijσσ′(τ, τ ′) =

Sloc
ijσσ′(τ − τ ′). By differentiating with respect to

time, we get the following equations of motion for
the composite Green’s function matrix

d

dτ
Sloc
ijσσ′(τ) =δ(τ)δσσ′⟨{ψiσ(τ);ψ

†
jσ(0)}⟩loc

+ δσσ′⟨⟨[ψiσ(τ);Hloc];ψ
†
jσ(0)⟩⟩loc

(7)

Where [A;B] is the usual commutator between
two operators A and B. We enforce a paramagnetic
solution by adding δσσ′ prefactor. The currents in
the atomic limit are given by

J loc
iσ (τ) =

d

dτ
ψiσ(τ) = [ψiσ(τ);Hloc] = Aψiσ(τ)

(8)

With

A =

(
µ 0
0 U − µ

)
(9)

The equations of motion become

d

dτ
Sloc
ijσσ′(τ) =

δ(τ)δσσ′⟨{ψiσ(τ);ψ
†
jσ(0)}⟩loc −A Sloc

ijσ(τ)

(10)

By time fourier transform we get

Sloc
ijσσ′(ω) = δσσ′(ω −A+ i0+)−1Ilociσ δij (11)

With Ilociσ = ⟨{ψiσ;ψ
†
iσ}⟩loc the normalization ma-

trix and 0+ a small positive parameter used for ana-
lytic continuation since we are working with Matsub-
ara time τ . This matrix can be explicitly computed.
A bit of algebra leads to

Ilociσ =

(
1− ⟨niσ⟩loc 0

0 ⟨niσ⟩loc

)
(12)

We finally obtain

Sloc
ijσσ(ω) = δijδσσ′

(
1−⟨niσ⟩loc
ω−µ+i0+ 0

0 ⟨niσ⟩loc
ω−U+µ+i0+

)
(13)
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In the atomic limit the equations of motion can
therefore be closed. The solution is given in Eq.
(11), and by using the relation between composite
and electronic operators ξiσ + ηiσ = ciσ, we can de-
duce the electronic Green’s function

Gloc
ijσσ′(τ) =δσσ′⟨⟨ciσ(τ); c†jσ′⟩⟩loc

=δσσ′(S11 loc
ijσ (τ) + S12 loc

ijσ (τ)

+ S21 loc
ijσ (τ) + S22 loc

ijσ (τ))

(14)

Where Snm loc
ijσ = ⟨⟨ψn

iσ(τ);ψ
m
jσ(0)⟩⟩loc. Therefore

we have showed that the composite operators we in-
troduced solve the Hubbard model exactly at the
Atomic limit. The electronic Green’s function can
be directly recovered, allowing to extract informa-
tion such as the Fermi surface and the density of
states.

2. General case

Let us consider the full Hamiltonian Eq. (1) that
includes both the local term Hloc and the hopping
term t. We consider the limit U ≫ t and we build
an approximation from the atomic limit. From now
on, ⟨...⟩ are the thermal averages taken with the full
Hamiltonian. We then introduce

δJiσ = [ψiσ, H −Hloc] = Jiσ − J loc
iσ (15)

Where the current operator in the atomic limit is
given by Eq. (8) and Jiσ = [ψiσ, H] is the current
operator taken with the full Hubbard Hamiltonian
Eq. (1). Because of the tight-binding term, higher
order Green’s functions will appear in the equations
of motion of the composite Green’s function. We
will not be able to solve the problem exactly as in
the atomic limit. We thus need to do an approxi-
mation to be able to obtain the composite Green’s
function by truncating the equations of motion. In-
deed, let us consider the composite Green’s functions
2×2 matrix Sijσσ′(τ) = δσσ′⟨⟨ψiσ(τ);ψjσ′(0)⟩⟩ with
thermal average on the full Hamiltonian. Its equa-
tions of motion can be written as

d

dτ
Sijσσ′(τ) =δσσ′(δ(τ)δijIiσ + θH(τ)Mijσ(τ))

(16)

Where we introduced the normalization matrix I
and the overlap matrix M respectively as

Iiσ =⟨{ψiσ, ψ
†
iσ}⟩ = δij

(
1− ⟨niσ⟩ 0

0 ⟨niσ⟩

)
Mijσ =⟨{Jiσ, ψ†

jσ}⟩ =
(
m11

ij m12
ij

m12
ij m22

ij

) (17)

To solve the equations of motion for the composite
Green’s function matrix, we need to compute the I
and M matrix. We directly computed the I matrix.
The current of the total Hamiltonian is given by

Jiσ =
∑
l

Eilσψlσ + δϕiσ

Eilσ =Aδil +Pilσ

(18)

The E matrix contains all the terms proportional
to ψ, and δϕiσ contains all terms which are not. The
A matrix appearing in E is the contribution of the
atomic limit terms. It is given by

A =

(
µ 0
0 U − µ

)
(19)

The P matrix appearing in E is defined by

Pijσ = ⟨{δJiσ;ψ†
jσ}⟩I

−1
jσ (20)

P is the contribution of the terms proportional to
ψ in δJiσ.
With this rewriting, the M matrix is now given

by the following expression

Milσ(τ) =
∑
j

Eijσ⟨{ψjσ(τ);ψ
†
lσ}⟩

+ ⟨{δϕiσ(τ);ψ†
lσ}⟩

(21)

The first term is proportional to Sjlσσ′ . However
the second term is not and will introduce higher-
order Green’s function in the equations of motion

d

dτ
Sijσσ′(τ) = δσσ′(δ(τ)δijIiσ +

∑
l

EilσSljσ(τ)

+ θH(τ)⟨{δϕiσ(τ);ψ†
lσ}⟩

(22)

An approximation is needed: we will assume that
δϕiσ is negligible. Therefore, after a time Fourier
transform, Eq. (22) becomes:
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∑
l

((ω + i0+)Id2δil − δσσ′Eilσ)Sljσσ′ = δσσ′δijIiσ

(23)

One can perform a spatial Fourier transform and
use translational invariance in order to have diagonal
elements only in the momentum space. Therefore,
in Fourier space inverting Eq. (23) leads to:

Skσσ′(ω) ≈ δσσ′((ω + i0+)Id2 −Ekσ)
−1Iσ (24a)

Jiσ(τ) ≈
∑
l

Eilσψlσ(τ) (24b)

Ekσ ≈ Mkσ(0)I
−1
σ (24c)

These three equations are a direct consequence
of the COM approximation (neglecting δϕi in the
U ≫ t limit). The first one has been derived from
the equation of motion. The second equation is the
current from Eq. (18) and the last equation is Eq.
(21) at τ = 0(notice that Sijσ(τ = 0) = δijIiσ), af-
ter a spatial Fourier transform in order to have only
diagonal elements in momentum space using trans-
lational invariance.
In appendix A, this approximation is studied in

depth and we detail the physical consequences of
neglecting δϕ. E acts as an effective energy matrix.
Note that Eq. (24b) is similar to a Schrödinger equa-
tion for the composite operators.We can also include
higher order terms in the basis to go further in the
approximation. This has been done in Ref. [26].
The equations of motion of the composite Green’s

function only depend on the E and I matrices un-
der our approximation. In order to perform a self-
consistent scheme, we introduce the 2×2 correlation
function matrix

Cijσ = ⟨ψiσψ
†
jσ⟩ (25)

We want to find an expression of Cijσσ′ as a func-
tion of the eigenvalues of the E matrix. We use the
spectral representation to get

Cijσ =

∫
dωd2k eik(ri−rj)(1− fD(ω))

(
− 1

π

)
Im(Skσ(ω))

(26)

With fD = 1
Exp(βω)+1 the Fermi Dirac distribution.

From there, we can use Eq. (24a) to apply the
residue theorem on S and express it as a function of

the eigenvalues of the E matrix (proof in appendix
B)

Skσ(ω) =

2∑
a=1

κa
kσ

(ω − ϵak + i0+)
(27)

With

κa
kσ =

(−1)a+1Com(ϵakσId2 −Ekσ)
T Iσ

(ϵ1kσ − ϵ2kσ)
(28)

Where Com(A) is the cofactor matrix of A, and A′

is the matrix that results from deleting row i and
column j of A. In these equations, a ∈ {1, 2} and ϵ1k
and ϵ2k are the two eigenvalues of the energy matrix
Ekσ. Finally, combining Eq. (26) and (27) leads to
an expression of the correlation function as a func-
tion of ϵa

Ckσ =
1

2

(
1 + tanh

βϵ1kσ
2

)
κ1
kσ

1

2

(
1 + tanh

βϵ2kσ
2

)
κ2
kσ

(29)

Where β = 1
kBT comes from the Fermi Dirac dis-

tribution. To summarize, from theM and Imatrices
we can obtain the energy matrix E. We showed that
its eigenvalues are directly related to the composite
correlation function Cijσσ. To close the system, in
the next section we explicitly compute the M and
I matrices and express them as a function of the
correlation functions.

B. Self-consistent scheme

We can compute the algebra associated with our
composite operators defined in Eq. (2). We assume
spin rotational symmetric solutions,, allowing us to
have δσσ′ in our Green’s and correlation functions.
This implies

⟨ni↑⟩ = ⟨ni↓⟩ =
ni
2

(30)

We compute explicitly the currents

j1iσ =− µξiσ −
∑
l

til

(
clσ − niσ̄clσ + S

sign(σ̄)
i clσ̄ + sign(σ̄)∆ic

†
lσ̄

)
j2iσ =− (µ− U)ηiσ +

∑
l

til

(
−niσ̄clσ + S

sign(σ̄)
i clσ̄ + sign(σ̄)∆ic

†
lσ̄

)
(31)
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With S−
i = c†i↓ci↑, S

+
i = c†i↑ci↓ and ∆i = ci↑ci↓.

We take the following convention: sign(↑) = 1 and
sign(↓) = −1.
The coefficients of the M matrix are (some details

of the algebra can be found in appendix C) :

m11
ij =− µ

(
1− ni

2

)
δij − δij

∑
l

tα1
ileil − tα1

ij(1−
ni + nj

2
+ pij)

m12
ij =δij

∑
l

tα1
ileil − tα1

ij

(nj
2

− pij

)
m22

ij =− (µ− U)
ni
2
δij − δij

∑
l

tα1
ileil − tα1

ijpij

(32)

With

eij = ⟨ξjσξ†iσ⟩ − ⟨ηjση†iσ⟩+ ⟨ξiση†jσ⟩ − ⟨ξjση†iσ⟩
pij = ⟨niσnjσ⟩+ ⟨S−

i S
+
j ⟩ − ⟨∆i∆

∗
j ⟩

(33)

α1
il =

til
t is equal to 1 if i and l are nearest neighbors,

and 0 otherwise.
The parameter e contains correlations between

neighboring composite operators and will mainly re-
normalize the chemical potential because it always
appear in M in front of a δij . The p parameter con-
tains charge-charge, spin-spin and pair-pair correla-
tions and will affect the bandwidth.
We now assume translational invariance and lat-

tice inversion and rotation (C4) symmetries in order
to take n, p and e as constants. Under these as-
sumptions the coefficients of the M matrix become

m11
ij =− µ

(
1− n

2

)
δij − δij4te− tα1

ij(1− n+ p)

m12
ij =δij4te− tα1

ij

(n
2
− p
)

m22
ij =− (µ− U)

n

2
δij − δij4te− tα1

ijp

(34)

And the E matrix defined by Eq. (24c) is given
by

Eij =

( 2
2−nm

11
ij

2
nm

12
ij

2
2−nm

12
ij

2
nm

22
ij

)
(35)

This matrix is diagonalizable and Eq. (29) allows

to express the correlation function Cijσ = ⟨ψiσψ
†
jσ⟩

as a function of its eigenvalues. Thus in order
to close the system and be able to solve it self-
consistently we need to express the parameters in

the M matrix as a function of the correlation func-
tions. A diagram of the self-consistent loop is given
in Fig. 1 for clarity.

Since e and n are one-body parameters, therefore
they can directly be expressed as

n =2(1− C11
0 − 2C12

0 − C22
0 )

e =C11
ij − C22

ij

(36)

In this equation C0 = Cii are constants by trans-
lational invariance. and C = Cij = Ci−j is treated
as e and p using lattice inversion and rotation (C4)
symmetry, so it is also a constant but different from
C0.
Expressing p as a function of the correlations func-

tions is not so direct since p is composed of two-
bodies operators while e, n and C are one-body oper-
ators. A full detailed computation of p using Roth’s
decoupling scheme can be found in appendix D.

Finally, the expressions for the parameters ap-
pearing in M and I as a function of the Cnm

ij =

⟨ψn
i (ψ

m
j )†⟩ are the following


e = C11 − C22

n = 2(1− C11
0 − 2C12

0 − C22
0 )

p = n2

4 − ρ1

1−ϕ2 − ρ1

1−ϕ − ρ3

1+ϕ

(37)

With
ϕ = − 2

2−n (C
11
0 + C12

0 ) + 2
n (C

12
0 + C22

0 )

ρ1 = 2
2−n (C

11 + C12)2 + 2
n (C

22 + C12)2

ρ3 = 4
n(2−n) (C

11 + C12)(C22 + C12)

(38)

With the self consistent equations Eq. (37) on the
parameters n, e and p we just closed the system. In
Fig. 1, we represented the self-consistency pattern.
Starting from initial guess for e, n and p, we com-
pute the M and I matrices. We can then obtain E
and diagonalize it. Then, using Eq. (29), we can ex-
press the correlation functions from its eigenvalues.
Finally, using the self consistent Eq. (37), we com-
pute again e, p and n. We stop when f(x) − x < δ
where x = (e, p, µ) and f are given in Eq. (37). We
chose δ = 10−8. Once the system converges, we use
the parameters (e, p, µ) to compute the electronic
Green’s function

Gk(ω) =S
11
k (ω) + S12

k (ω) + S21
k (ω) + S22

k (ω)

=

2∑
l=1

(κl)11k + (κl)12k + (κl)21k + (κl)22k
ω − ϵlk + i0+

(39)
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Figure 1: The self consistency loop. Our hypothesis on the currents allows us to get a relation between the
M and I matrices (Eq. (24c)). The energy matrix E is diagonalizable. We can express correlation

functions as a function of its eigenvalues with Eq. (29). Then, we can rewrite the M and I matrices in
term of these correlations functions and do a self-consistency (Eq. (37)).

Where the κ act as spectral weights and are de-
fined in Eq. (28) and ϵ1, ϵ2 are the eigenvalues of
the E matrix, and can be built from the parameters
(e, p, µ).

III. NEAREST-NEIGHBORS STUDY

This self-consistent scheme has a drawback. With
the numerical solution of the self consistent equa-
tions we obtain a non vanishing C12

0 . However, ana-
lytically this correlation function is zero because of
the Pauli principle.

C12
0 = ⟨ξiση†iσ⟩

= ⟨ciσc†iσniσ̄ + ciσc
†
iσ̄c

†
iσciσ̄niσ̄⟩

= ⟨−ciσ(c†iσ̄)
2c†iσ(ciσ̄)

2⟩
= 0

(40)

This numerical violation of the Pauli principle gets
smaller as U becomes larger than t [9].

It is possible to solve a different set of self-
consistent equations by imposing C12

0 = 0 [26] as
the third self consistent equation instead of p in Eq.
(37). From now on, we will call the minimization
with p the “Roth minimization” since it uses the de-
coupling formalized by L. Roth and the minimiza-
tion with C12

0 the “Pauli minimization”.
In the following section we consider both mini-

mizations and discuss the bands and Fermi surfaces
obtained for each solution we found. We compare to
the non interacting tight-binding model, and study
the particle-hole symmetry, the Luttinger theorem
as well as superconductivity.

A. Comparison of Pauli and Roth
minimization

By varying the initial conditions and using a min-
imizer, we isolate two distinct solutions with the
Pauli minimization and one unique solution with the
Roth minimization. Following notations from Ref
[9], we call these three solutions COM1, COM2, and
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(a) First Pauli Solution (COM1) (b) Second Pauli solution (COM2) (c) Roth Minimization.

Figure 2: Bands along high symmetry points with t = 1, U = 8t, T = 0, n = 0.8. The non interacting (NI)
band (red line) is splitted into 2 Hubbard bands obtained for every solutions with the composite operator
method (blue lines). Therefore at half filling the chemical potential lies in between the two Hubbard bands
and we get a Mott insulator. (a) One of the two solutions obtained with Pauli minimization (using Eq.

(40) instead of the p parameter in Eq. (37)). It has no renormalization from the interaction since the shape
of the Hubbard bands is similar to the non-interacting band. (b) The second solution obtained with the
Pauli minimization. It has a minimum at M=(π, π) and exhibits two hole pockets. The two dispersions
obtained from the Pauli minimization we obtain are analogous to Ref. [9] (c) The solution obtained with

the Roth minimization. We observe a flattening of the bands around X=(π, 0).

Roth solutions. In Fig. 2, we plot the bands along
high symmetry points for these solutions.

These bands correspond to the eigenvalues of the
E matrix and act as the poles of the electronic
Green’s function (cf Eq. (39)). The solutions have
two bands associated with the two eigenvalues of the
energy matrix, split by the interaction strength U .
The COM2 and Roth solutions exhibit Mott insu-
lator physics at half-filling as the chemical potential
resides between the two bands. In contrast, contrary
to the conventional understanding, the COM1 so-
lution represents a metallic phase at half-filling for
t = 1, U = 8t. Consequently, COM1 cannot be
deemed a physically viable solution for the Hubbard
model in strong coupling regimes.

The COM2 solution is very different from the non
interacting case (Fig. 2b), but always presents two
holes pockets, leading to two Fermi Surfaces in Fig.
3. This is unexpected, as this has never been ob-
served by ARPES experiments for strongly corre-
lated materials such as cuprates where this treat-
ment of the Hubbard model is relevant. However, in
Ref. [26] the basis has been extended to take into
account dynamical corrections of the self-energy (cf

appendix A for details). The lifetime of the sec-
ond hole pocket is then computed and happens to
be small, which can explain why it is not observed
experimentally. Finally, the Roth solution (Fig. 2c)
has a very different shape from the non-interactive
solution. It also has the advantages of presenting
only one hole pocket and a maximum at (π, π).

Note we plotted the bands we obtained at half fill-
ing for the Roth solution in appendix E, on Fig. 17.
Close to half filling (around 3% hole doping), the
Roth solution exhibits a second small hole pocket at
(π, π) (In appendix E we plot the bands and Fermi
Surface of Roth decoupling at 2% hole doping in
Fig. 16). This second hole pocket around (π, π) may
be the consequence of our paramagnetic assumption
⟨ni↑⟩ = ⟨ni↓⟩ = n

2 . It appears around half filling
where we know the antiferromagnetic phase domi-
nates [27]. The wave-vector (π, π) is also associated
with antiferromagnetism, so this second hole pocket
might be an instability of the system because we
neglected it.

For comparison, in the Hubbard I approximation
(the first and simplest approximation developed by
Hubbard in Ref. [8]) a simple factorization proce-
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Figure 3: Fermi Surfaces obtained from the
spectral function (imaginary part of Eq. (39)) at
ω = 0, associated to the bands depicted in (2). The
parameters are t = 1, n = 0.8, U = 8t and T = 0.
top left: COM1, top right: COM2, bottom left:

Roth, bottom right: Non interacting (tight binding)

dure of the 2-bodies Green functions is used. Ac-
cording to Ref. [9], Hubbard I approximation in the
composite operator framework would be equivalent
to set

e = 0

p =
n2

4

(41)

It is known that the Hubbard I approximation
does exhibit a Mott-insulator transition as long as
U ̸= 0 (cf Ref. [8]). However this approximation
only treat the currents partially compared to the
Composite operator Method. Therefore the compos-
ite operator method is a more refined approximation
than Hubbard I.
It is also instructive to consider the density of

states. In Fig. 4, we plot it as a function of en-
ergy for several doping with the Roth solution. Only
Roth solution is considered because its Fermi surface
is the closest to the non-interacting one, but similar
behaviors are expected for COM1 and COM2. The
density of states has been computed from the spec-
tral function using the following formula

D(ω) =
1

N2
k

Nk∑
kx,ky=1

(
− 1

2π

)
Im(G(k, ω)) (42)

Where Nk denotes the number of considered points
for sampling kx and ky. At half filling we do not
have any states at the Fermi energy, since the model
leads to an insulator for this doping. Around the
gap two peaks can be distinguished. For every dop-
ing except half-filling, a third peak is observable and
corresponds to the Van Hove singularity. It is associ-
ated to a flattening of the bands, meaning there are
a lot of states associated to this energy. In term of
Fermi surface for a square lattice the Van Hove sin-
gularity corresponds to the doping below which the
Fermi Surface is centered on (0, 0) and above which
it is centered on (π, π), as shown in Fig. 5. On Fig.
2, this flatness of the bands can be found for every
solutions around (π, 0). The Fermi energy is exactly
at the Van Hove singularity for the Roth solution
at n=0.8 or n=1.2. On Fig. 2, the Roth solution
is plotted exactly at this doping and we can check
the flat band around (π, 0) lies exactly at the Fermi
energy (corresponding to the dotted black line).

Regarding the Mott transition, we see at half fill-
ing no quasiparticle peak is observed around the
Fermi energy. Instead, the density of states is closer
to what was observed with determinantal quan-
tum Monte Carlo simulation (DQMC) in Ref. [28].
DQMC is a stochastic algorithm which allows under
some limitations to perform direct studies of com-
plex condensed matter problems. As predicted by
DQMC in Ref [28], at high doping we have only
one peak corresponding to a Van Hove singularity
(Fermi liquid behavior), and when approaching the
Mott transition a transfer of spectral weight occurs,
changing the density of states, without creating a
quasiparticle peak at the Fermi energy at half filling.
Therefore in this regime where U ≫ t the density of
states of the lower and upper Hubbard bands are the
only contribution.

B. Particle-hole symmetry and Luttinger
theorem

1. Particle-hole symmetry

It is well known that the Hubbard model with
nearest neighbour hoppings only is particle-hole
symmetric. This symmetry exchanges particles and
holes with the transformation

ciσ → (−1)ic†iσ c†iσ → (−1)iciσ (43)

We could also have taken another convention for
this transformation without any (−1)i, as long as
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Figure 4: Density of states in energy with parameters t = 1, U = 8t and T = 0, using Roth minimization
with nearest neighbors. From top to bottom the filling is respectively: n=0.75, 0.88, 0.93, 0.98, 1 (half

filling), 1.07 and 1.25. The blue line on each panel corresponds to the chemical potential.

Figure 5: Fermi Surface obtained with Roth
solution, at n=0.7 and n=0.9.The chemical

potential or the Fermi energy coincides with the
Van Hove singularity for some specific electron
density (here n=0.8). Below the singularity the

Fermi surface is centered around (0, 0), and above
the singularity it is centered around (π, π)

we change t to -t to keep the Hamiltonian invariant.
Applied to the composite operators one can show
that it becomes

ηiσ → (−1)iξ†iσ ξiσ → (−1)iη†iσ (44)

Let us study the behaviour of the parameters µ,
p and e under the particle-hole symmetry. With the
paramagnetic assumption, the particle-hole transfor-
mation is rewritten

⟨c†iσciσ⟩ → ⟨ciσc†iσ⟩

⇔ n

2
→ 1− n

2

(45)

Hence applying the particle-hole transformation on
electronic filling gives n→ 2−n. The transformation
changes p and e (Eq. (33)) as follow (details are
given in appendix G)

e(2− n) =− e(n)

p(2− n) =p(n) + (1− n)

µ(2− n) =U − µ(n)

(46)

The relation of the chemical potential can be ob-
tained by using the fact that the Hubbard Hamil-
tonian must stay invariant under this symmetry for
nearest-neighbour hoppings. Finally, applying this
transformation on the composite bands ϵ1 and ϵ2
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(a) Chemical potential (b) Parameter e

(c) Parameter p (d) Luttinger Violation

Figure 6: (a), (b) and (c): parameters as a function of doping for each solution. The dash lines in the
electron dope (n >1) region are the particle-hole symmetric (46) of their equivalent in the hole doped
region. Bottom right: area of Fermi surface as a function of doping. It is computed using Eq. (49). We
observe a violation of Luttinger theorem for all solutions. All of these figures are obtained at T = 0K

(β ≈ 105t) and U = 8t.

leads to

ϵ1k(2− n) =− ϵ2k+(π,π)(n)

ϵ2k(2− n) =− ϵ1k+(π,π)(n)
(47)

In Fig. 6a, 6b and 6c we plot e, p and µ as a
function of doping for the three solutions we stud-
ied (COM1, COM2 and Roth). The dashed-lines on
the electron-doped region is the value the parame-
ter must have to satisfy the particle-hole relations
Eq. (46). We see that particle-hole symmetry is re-
spected for every parameters for the three solutions.
The chemical potential presents a jump of the order
of U at half filling for the COM2 and Roth solutions.
This is because the lower Hubbard band is filled and
the upper Hubbard band starts to be occupied at
half filling. COM1 does not exhibit this feature.

We obtain a different result from Ref. [9]. It is
possible to have a particle-hole symmetric solution
which violates Pauli principle. This is indeed the
case of the Roth solution which has a non vanishing
C12

0 despite the fact it is zero analytically. The solu-
tion is particle-hole symmetric as long as C12

0 is not
put to zero by hand in the self-consistent equations
it must appear both in the equation of n and in the
ϕ term in the equation of p.

2. Luttinger theorem

We now turn our attention to the Luttinger theo-
rem. This theorem states that the volume enclosed
by the Fermi surface is proportional to the electron
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Figure 7: Luttinger violation as a function of
electron density. The parameters are with β = 2t
and U=10t. The solutions are proportional to the
electron density only asymptotically (the curves
and the black dotted line “FS=n” associated to

Luttinger theorem are not parallel). The system is
in a “Luttinger breaking phase”. These behaviors
are similar to what was obtained in Ref. [28] from

Determinantal Monte Carlo.

density [29]. The regime of validity of Luttinger the-
orem is still a very debated topic [23] [24] [25]. To
compute the volume enclosed by the Fermi surface,
we need to remember the relation between the com-
posite and electronic Green’s function Eq. (39) The
κ act as spectral weights of the electronic Green’s
function. The Fermi surface is given by the imagi-
nary part of this electronic Green’s function at the
Fermi energy

Ak(ω = 0) =− 1

π
Im(Gk(ω = 0))

=
∑
l

[(κl)11k + (κl)12k + (κl)21k + (κl)22k ]δ(ϵlk)

(48)

Thus, the Fermi contour is the set of points associ-
ated to a vanishing ϵlij . Therefore a way to compute
the enclosed area AFS is simply by considering the
following equation

Al
FS =

1

N2

N∑
kx,ky=1

θH(ϵlk) (49)

Note in this last equation we do not have the sum
over the two eigenvalues. Indeed, one must only
consider the bands that are not completely filled
or empty, so l has to been chosen accordingly. For
instance, in the hole-doped regime the upper band
is going to be empty, so l must correspond to the
eigenvalue of the lower upper band. Fig. 6d reveals
that the Luttinger theorem is violated. This viola-
tion is analogous to what was observed by Ref. [28]
using determinantal quantum Monte-Carlo simula-
tions. In Fig. 7, we plot Luttinger violation ob-
served with the same parameters as in Ref. [28]
(U=10t and β=2). We obtain analogous results:
while none of the solutions we considered are pre-
cisely similar to what was observed with determinan-
tal quantum Monte-Carlo, we have the same over-
all behavior. Our curves are not parallel to the
black dotted line representing the Luttinger theorem
(where Fermi surface area equals electron density).
The system is in a “Luttinger breaking phase”. Ref.
[28] claimed this phase is a consequence of a topo-
logical order because of the proximity to the Mott
transition. Contrary to their results, Luttinger theo-
rem with composite operators seems broken at every
doping and verified only asymptotically at maximum
and minimum doping.

C. Superconductivity and Van Hove
singularity

1. Method

Superconductivity can be studied by extending
the initial basis. The new spinor ψ to consider is

ψ =


ξiσ
ηiσ
ξ†iσ̄
η†iσ̄

 (50)

The method described before remains the same
except for the I and M matrix which are now 4× 4
matrices. Since we are interested in cuprates, we
consider only the case of d-wave superconductivity.
Therefore, ⟨ci↑ci↓⟩ = 0. The expression of the M and
I matrices can be found in appendix C. It is impor-
tant to note that a new superconducting parameter,
γijθij will now appear in the M matrix.

γij is a d-wave coefficient such that γi,i±δy =
−γi±δx,i = 1 and δx/δy is the lattice constant along
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(a) Bands for the Roth solution (b) Bands for the COM2 solution

(c) Fermi Surface for the Roth solution (d) Fermi Surface for the COM2 solution

Figure 8: Bands and Fermi Surface with superconductivity at t = 1, U = 8t and T = 0. The plots on the
left correspond to the Roth solution at n = 0.8, whereas the plot on the right correspond to COM2 at

n = 0.9. These are the respective doping at which superconductivity is maximum. We observe a doubling
of the bands associated to the doubling of the basis. The insets on the top plots correspond to a zoom
around zero energy of the bands: we see a gap opening at k=(π, 0). There is no gap opening between

k=(0, 0) and k=(π, π) because of d-wave symmetry. Both Fermi surfaces on the bottom plots have a loss of
spectral weight around k=(π, 0).

x/y axis. The parameter θ is given by

θij = ⟨ciσciσ̄njσ⟩ (51)

θij can be expressed in several symmetry channels.
For the sake of giving an intuition of this, we apply
Wick theorem on θij (this cannot be done since Wick
theorem is only valid for weak correlations but it will
give an insight of the physics)

θij =⟨ciσciσ̄⟩njσ − ⟨ciσc†jσ⟩ciσ̄cjσ
+ ⟨ciσcjσ⟩ciσ̄c†jσ − ⟨ciσ̄cjσ⟩ciσc†jσ + ...

(52)

There is more to θij than just superconductivity.
Namely, it has a charge and a spin sector too. But,

because of the d-wave form factor we impose, we will
focus only on superconductivity. θij can therefore
been seen as an anomalous d-wave superconductiv-
ity mean field parameter. Since we consider singlet
pairing, we have

⟨ciσciσ̄njσ⟩ = ⟨c†iσ̄c
†
iσnjσ⟩ (53)

We can still apply translationnal invariance to
treat p, n and e as a constant. We can do the same
for θ, but because of d-wave symmetry θ is not the
same along the x and y axis (θx = −θy). We will
therefore only average on one axis in order to have a
non zero θ. The self-consistent equations remain the
same for n and e since they are only one body cor-
relations. However extending the basis changes the
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(a) θ and ∆d parameters as a function of electron
density n (b) Density of states at the Fermi Energy

Figure 9: (a): Anomalous superconducting mean field parameter θ as a function of doping for Roth
minimization and Pauli minimization (COM2 solution). θ satisfy particle-hole symmetry in both cases.

The dashed lines corresponds to the d-wave superconducting order parameter ∆d. (b): Density of states at
the Fermi energy with no superconductivity. We see a clear correlation between enhancement of the

density of states and superconductivity. θ and ∆d are maximum at the Van Hove singularity. It lies at
n=0.8 for Roth and around n=0.9 for COM2, as shown in Fig. 8.

self-consistent equations of pij and θij . We obtain
(cf appendix F for details)

{
p = n2

4 − ρ1+ϕρ2

1−ϕ2 − ρ1−ρ2

1−ϕ − ρ3

1+ϕ

θ = ζ
1+ϕ

(54)

With

ϕ = − 2
2−n (C

11
0 + C12

0 ) + 2
n (C

12
0 + C22

0 )

ρ1 = 2
2−n (C

11 + C12)2 + 2
n (C

22 + C12)2

ρ2 = 2
2−n (C

13 + C14)2 + 2
n (C

23 + C24)2

ρ3 = 4
n(2−n) (C

11 + C12)(C22 + C12)

ζ = 2
2−n (C

11 + C12)(C13 + C14)

+ 2
n (C

12 + C22)(C23 + C24)

(55)

Let us note that this decoupling is not unique.
Several choices can be made. These choices give
similar results but tend to overestimate or underes-
timate some quantities, depending on which regime
we consider [4]. Except for the largerM and Imatri-
ces and these changes in the self-consistent equation,
everything else remains the same. The expression of
κ from Eq. (28) remains unchanged, but will involve
4× 4 matrices.

2. Results

On Fig. 8 we plot the bands for the Roth and
COM2 solutions. There is a doubling of the bands
due to the particle-hole symmetry of the basis: we
have four distincts eigenvalues ϵl of the E matrix
verifying the property ϵ1 = −ϵ3 and ϵ2 = −ϵ4. Be-
side this doubling, the bands are almost unmodified
compared to what we have without superconductiv-
ity. Only one difference can be seen: a gap opening
at (π, 0). We performed a zoom around zero energy
in order to see the gap better on the insets. The
presence of the gap also appears on the Fermi sur-
face: there is less weight near the (π, 0) compared to
what we had in Fig. 2 without superconductivity.

On Fig. 9a, we plot the parameter θ as a func-
tion of the electron density n for the COM2 and
the Roth solutions. The dashed-line corresponds to
the usual d-wave superconducting order parameter
∆d

ij = ⟨ciσcjσ̄⟩. We can recover it directly from
the correlation functions involving nearest-neighbors
Cnm

ij = ⟨ψn
i (ψ

m
j )†⟩ using the following equation

∆d
ij = C13

ij + C14
ij + C23

ij + C24
ij (56)
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The maximum of θ and ∆d are at the same elec-
tron density. For the Roth solution this corresponds
to n=0.8, while for the COM2 solution it is around
n=0.9. We already showed that n=0.8 corresponds
to the Van Hove singularity for the Roth solution
in the discussion of Fig. 4 and 5. This is in agree-
ment with other studies [21] [10]. We claim the same
phenomenon occurs for the COM2 solution. In Fig.
8 we plotted the bands and Fermi surfaces for the
COM2 solution at n=0.9 where superconductivity
is maximum. Beside the gap opening, the band for
COM2 exhibits some flatness at (π, 0) (it is at least
flatter than the Roth solution) and its Fermi Sur-
face is almost diamond-like. We justified this claim
by plotting the density of states at the Fermi energy
as a function of electron density on Fig. 9b. Let
us note we did not considered superconductivity to
compute this density of states (in order to see the
Van Hove singularity): this is why we do not have
any superconducting gap. The density of states was
computed using Eq. (42) at ω = 0. The maximum
of the density of states can be seen at n=0.9 for the
COM2 solution. For the Roth solution a maximum
can be found near half-filling but this maximum is
associated with the extremum of the band and does
not improve superconductivity because it is too close
to half-filling. Another maximum is found at n=0.8
and corresponds to the flatness at (π, 0) we already
associated this with the Van Hove singularity. This
is in agreement with our physical intuition: a high
density of states means there are a lot of available
electrons available to form Cooper pairs.

We checked that the θ parameter also verifies the
following particle-hole symmetry

θ → θ∗ (57)

In order to satisfy particle-hole symmetry, there
must be another maximum of θ, therefore another
Van Hove singularity in the electron doped regime.
On Fig. 9b, we indeed see another peak both for
superconductivity and the density of states in the
n > 1 area. They correspond to the particle-hole
symmetric of the peaks in the hole doped region.

In this method, the gap opening observed on the
bands in Fig. 8 is of the order of ∆d, as it is expected.
The value of θ affects both superconductivity and
the density n, since θ involves both quantities.

Figure 10: Square lattice with the considered
hopping. We will consider long ranged hoppings up
to t5. The associated values of these hoppings can

be found in Table. I

IV. FURTHER HOPPINGS STUDY

We now want to consider the effect of higher hop-
ping terms in order to get closer to more realistic
materials. We want to see if the results we had with
nearest-neighbours hoppings on the bands, the valid-
ity of the Luttinger theorem and superconductivity
are modified by further hoppings. Including at least
next nearest neighbors in the model is enough to
break the particle-hole symmetry. We will only con-
sider the Roth solution in this section, since COM2
and COM1 solutions have been studied with next-
nearest neighbors in Ref. [19], and Roth presents
Fermi surface closer to what is observed by ARPES
for cuprates.

A. Effect of further nearest neighbours and
bands analysis

From now on we will consider four different sets
of tight-binding parameters all corresponding to a
square lattice as in Fig. 10.

These tight-binding parameters correspond to
cuprates Bi2212 and LSCO, which are strongly cor-
related. Their values, taken from Ref. [30],are given
in Table I. They are such that the energy for a tight
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(a) tb1: ARPES fit Bi2212 (b) tb2: fit of bonding surface of Bi2212

(c) tb 3: Modified tb2 to get better incommensurability (d) tb 4: underdoped LSCO

Figure 11: Bands renormalization using Roth minimization with hoppings up to order 5. The tight
bindings parameters are taken from Ref [30] and are given in table I. The red line is the non-interactive,

tight binding dispersion. We are at 20% hole doping.

binding model of a square lattice is given by

ϵtb(k) = 2t(cos(kx) + cos(ky))

+ 4t2cos(kx)cos(ky)

+ 2t3(cos(2kx) + cos(2ky))

+ 4t4(cos(kx)cos(2kx) + cos(2kx)cos(ky))

+ 4t5cos(2kx)cos(2ky)

(58)

In the following we will normalize every plots so
we have t=1 (we will divide every tight binding pa-
rameter by t in absolute value).

In this section we include hoppings up to t5 and
study the bands and Fermi surface behavior. With
additional hopping terms, only the expression of the
matrix M changes. In addition to the α1

il parameter
appearing in Eq. (32) higher hopping terms will
appear in the M matrix. It becomes
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t t2 t3 t4 t5
tb1 -0.2956 0.0818 -0.0260 -0.0280 0.0255
tb2 -0.3399 0.1184 -0.0397 0.0086 0.0006
tb3 -0.2941 0.0731 0.0048 -0.0325 0.0035
tb4 -0.3912 0.0370 -0.0294 -0.0350 -0.0087

Table I: Values of the 4 tight bindings we are going
to consider. tb1 is based on an ARPES fit of

Bi2212. tb2 corresponds to the bonding surface of
Bi2212, tb3 is a modified version of tb2 to get a
flatter band and tb4 corresponds to underdoped

LSCO.

m11
ij =− µ(1− ni

2
)δij −

N∑
k=1

t

[
αk
ij(1−

ni + nj
2

+ pij) + δij
∑
l

αk
ileil

]

m12
ij =

N∑
k=1

t

[
αk
ij(
nj
2

− pij)− δij
∑
l

αk
ileil

]

m22
ij =− (µ− U)

ni
2
δij +

N∑
k=1

t

[
αk
ijpij − δij

∑
l

αk
ileil

]
(59)

whereαN
il = 1 if i and l are

N−1 times︷ ︸︸ ︷
next-... -nearest neighbour

αN
il = 0 Otherwise

(60)

Each new hopping considered adds a term in the
tight-binding Hamiltonian which is then added in
the M matrix. The parameters p and e depend on
i-j, so we should make a distinction between e1ij with

i and j nearest neighbors (NN), e2ij with i and j next
nearest neighbors (NNN)... enij and pnij will be asso-
ciated with their corresponding hopping as in Fig.
10. Translationnal invariance still allows us to treat
e1, e2,...,e5, p1, p2,...,p5 as constants. Correlation

functions Cij = ⟨ψi;ψ
†
j ⟩ are at different sites too,

so we will also have to make a distinction in the
self-consistent equations between C1 for NN, C2 for
NNN and so on.
Fig. 11 presents the bands we obtain for Roth so-

lutions for the four sets of tight-binding parameters
in Table. (I). In Fig. 12 and 13 we plotted respec-
tively the Fermi surfaces obtained with the method
and the Fermi surfaces of the non-interactive tight-
binding dispersions (corresponding to Eq. (58)).
In the hole doped regime, the Fermi surface we ob-

tained from the Roth solution has the same general
shape as the non interacting Fermi Surface. The

Figure 12: Fermi Surfaces renormalized by the
composite operator methods using Roth

minimization with the parameters of Ref [30]. We
are at 20% hole doping. Top left: tb1, top right:

tb2, bottom left: tb3, bottom right: tb4.

Figure 13: Non interacting (NI) Fermi Surfaces for
the parameters of Ref [30] at 20% hole doping. Top
left: tb1, top right: tb2, bottom left: tb3, bottom

right: tb4.

composite operators method produces Fermi sur-
faces that appear to be smaller/larger than the tight-
binding ones. This is in agreement with the viola-
tion of the Luttinger theorem observed with nearest-
neighbour hopping, and indicates that it is still vi-
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(a) Chemical potential (b) Parameters e

(c) Parameters p (d) Luttinger Violation

Figure 14: (a), (b) and (c) :Parameters as a function of doping for each tight binding with next nearest
neighbors. The circles corresponds to p1 and e1 (NN) while the squares corresponds to p2 and e2 (NNN).

(d) : Luttinger violation for each tight binding.

olated with further hoppings. We checked the op-
posite situation is accordingly observed in electron
doped area: the Fermi Surface obtained with the
method is at a lower doping than the non interact-
ing one. In the following we study the particle-hole
symmetry and the Luttinger theorem violation with
next-nearest neighbours.

B. Particle-hole symmetry and Luttinger
theorem with further neighbours

For the sake of simplicity we restrict ourselves to
next-nearest neighbors in this part. In order to keep
the full Hamiltonian invariant under particle-hole
symmetry the following relation is needed

t2 → −t2 (61)

This is because the hopping term of the Hamilto-

nian
∑
ij

tijc
†
iσcjσ transforms into

∑
ij

tij(−1)i+jciσc
†
jσ.

For i and j next-nearest neighbour we have



19

(a) θ and ∆d (b) Density of states at the Fermi energy

(c) Bands for tb3 at n=0.6 with no superconductivity (d) Bands for tb3 at n=0.6 with superconductivity

Figure 15: (a): Anomalous superconducting order parameter θ as a function of doping for the four sets of
tight bindings parameters with Roth minimization. The dashed line corresponds to the usual d-wave

superconducting order parameter we rebuilt from the correlation function. We are at U=8t. (b): Density of
states (with no superconductivity in order to see the peaks) at the Fermi energy. The 2 peaks corresponds
to the 2 Van Hove singularity in hole and electron doping respectively. To illustrate this the bottom plots

(c) and (d) are the bands at the Van Hove singularity with tight binding parameters tb3 at n=0.6
respectively with: (c) no superconductivity, where we clearly see the flat band associated to Van Hove

singularity (d) with superconductivity, where we see on the zoom in the inset the gap of the order of ∆d.

(−1)i+j = 1. We obtain −
∑

⟨⟨i,j⟩⟩
t2c

†
jσciσ, which has

an additional minus sign, breaking the symmetry un-
less t2 changes its sign with the transformation.

Hence, we know that at least next-nearest neigh-
bors will break particle-hole symmetry (because t2
is an external parameter that will always keep the

same sign, therefore we do not verify Eq. (61)). The
particle-hole transformation works the same for n
and µ

n→ 2− n

µ→ U − µ
(62)
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The main difference with the nearest-neighbors
case comes from the necessity to differentiate the
e and p parameters depending on the considered
hopping. We already know the transformation for
p1 and e1. The only difference for p2 and e2 is
(−1)i+j = 1. p2 will not be affected by the (−1)i+j

coming from the transformation because it involves
only two bodies operators. Thus only e2 has an ad-
ditional minus sign under the transformation, and
we obtain the following relations

p1 → 1− n+ p1

p2 → 1− n+ p2

e1 → −e1

e2 → e2

(63)

In Figs. 14a, 14b and 14c we plot the parameters
µ, e and p as a function of doping for the four
considered tight-binding parameters of Table. (I),
only considering t and t2. Parameters e2 and p2

indeed break the particle-hole symmetry from Eq.
(63). The chemical potential, as well as e1 and p1

behave as in the nearest neighbor case. We also
checked that Eq. (63) is respected if we impose
t2 → −t2 when n→ 2− n.

Finally we can again study the Luttinger the-
orem. In Fig. 14d, the area of the Fermi surface is
plotted as a function of electron density. Interest-
ingly we observe an analogous behavior as in the
nearest-neighbor case. The Luttinger violation does
not seem to be modified by next-nearest neighbors
hoppings and is barely affected when we modify
tight-binding parameters. As already mentioned
before, the Luttinger theorem is strongly violated
around half filling and is recovered further away.
This confirms why in the previous section the Fermi
surfaces seemed to be at a higher doping than
the electron density we considered when we are in
the hole doped regime (and conversely, at a lower
doping in the electron doped regime).

C. Superconductivity, Van Hove singularity
and density of states

Superconductivity can also be included in the
model with more hoppings. In this section we in-
clude hoppings up until t5. We assume again a d-
wave symmetry and only consider nearest-neighbor
pairing. As before, the M and I matrices become

4x4 and have the same symmetries as the near-
est neighbours case. The I matrix is independent
of t and t’ and is thus the same as before. The
main difference is that the coefficients m11

ij , m
12
ij and

m22
ij are now given by Eq. (59). m13

ij stays iden-
tical to its expression in the nearest neighbor case
since we only consider superconductivity for near-
est neighbors. Therefore m13

ij is proportionnal to
the θ parameter, defined the same way as before
(θij = ⟨ci↑ci↓njσ⟩).
In Fig. 15a, the θ and ∆d parameters are plotted

as a function of electron density for the four tight-
binding parameters with the Roth solution. Since we
have included further neighbors, θ is not particle-
hole symmetric anymore. In Fig. 15b, we plotted
the density of states at the Fermi energy without
superconductivity using Eq. (42) at ω = 0 (in order
to see the peaks with no superconducting gap). In
Fig. 15c and 15d, we plotted without and with su-
perconductivity the bands at electron densities cor-
responding to the maximum of the density of states
for tb3 when the system is hole doped (n ≈ 0.6). The
bands with no superconductivity on 15c are flats at
the Fermi energy. This proves that the maximum
of Fig. 15b correspond to the Van Hove singularity.
On 15d we see in the inset the gap at (π, 0) is again
of the order of 2∆d. The maximum of the θ and
∆d parameters are thus at the same electron density
as the Van Hove singularity. Hence, the situation is
the same as in the nearest-neighbor case. In Table II
we give the electron densities associated to the Van
Hove singularities for the four sets of tight-binding
parameters. Let us note there is no proportional-
ity between the peak in the density of states and
∆d: it is different for every set of tight-binding pa-
rameters. This is seemingly a consequence of the
electronic correlations which are treated differently
for each tight-binding parameters as a consequence
of the main approximation of the method Eq. (24b).

tb1 tb2 tb3 tb4
Van Hove (electron) 1.04 1.05 1.10 1.11
Van Hove (hole) 0.57 0.45 0.6 0.58

Table II: Electron density at which there is a Van
Hove singularity at the chemical potential. At this
values a flat band lies at the Fermi energy and the
associated Fermi surface is diamond like. These
singularities occur both in electron and in hole.

The most striking feature is that superconduc-
tivity in the method seems to be induced by the
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proximity of the Van Hove singularity. This was al-
ready the case with nearest neighbors but this prop-
erty seems unaffected by further hopping terms. For
cuprates there exist a consensus that antiferromag-
netism is the interaction necessary to explain the
pairing mechanism [31]. This has also the advan-
tage to explain why experimentally superconduc-
tivity is observed around 15% hole doping. Since
this method predicts superconductivity only close
to the Van Hove singularity, it is non zero at some
doping values which does not correspond to what
is expected. This flaw is maybe a consequence of
the main hypothesis of the method (detailed in Ap-
pendix A): it is maybe necessary to consider dynam-
ical corrections to the self-energy in order to observe
a different behavior for superconductivity.

V. CONCLUSION

Considering only nearest neighbors first, three
solutions have been isolated and studied: COM1,
COM2 and Roth solutions. The Roth solution is
the unique solution obtained if the self-consistency
is performed on a parameter we called p and which
enforced charge-charge, spin-spin and pair-pair cor-
relations. This solution violates the Pauli princi-

ple because the correlation function C12
0 = ⟨ξi↑η†i↑⟩

obtained after convergence is numerically non zero,
even though it should be analytically because of the
Pauli principle. COM1 and COM2 are two inde-
pendant solutions obtained by performing a self-
consistency imposing the correlation function C12

0

instead of the parameter p to enforce the Pauli prin-
ciple.
We have performed a systematic comparison of

the bands and Fermi surfaces for these three so-
lutions. The three solutions present two Hub-
bard bands associated to the two eigenvalues of the
method. COM1 is not renormalized by the inter-
actions. COM2 has two hole pockets whatever the
doping. Roth only has one hole pocket but a sec-
ond small one appears close to half filling at (π, π),
possibly because antiferromagnetism has been ne-
glected. Both Roth and COM2 solutions are insu-
lators at half filling because the chemical potential
lies in between the two Hubbard bands. The den-
sity of states for the Roth solution does not present
the usual quasiparticle peak at ω = 0 at half-filling
and is in agreement with Determinantal quantum
Monte-Carlo simulations.
The particle-hole symmetry is respected with

nearest-neighbour hoppings: we checked that all so-
lutions verify particle-hole relations, including the
Roth solution. This result is different from what
was predicted by ref. [9]: a solution of this method
can violate the Pauli principle and still be particle-
hole symmetric. All solutions break the Luttinger
close to half filling. This results is also in agreement
with the determinantal quantum Monte-Carlo sim-
ulation [28]. The Luttinger theorem is only proven
for weakly interacting systems. We think the Roth
solution is the most physical. Although there is
a violation of the Pauli principle, this solution ex-
hibits Fermi surfaces typical of strongly correlated
materials such as cuprates, contrary to COM1 and
COM2. The COM2 solution presents a second hole
pocket for every value of the electron density which
is not observed in ARPES experiments for Bi2212
and LSCO.

We extended the method to study d-wave super-
conductivity. Four composite operators are neces-
sary to perform this study. The doubling of the ba-
sis leads to four eigenvalues, which are particle-hole
symmetric because of the symmetry of the basis. We
observed a gap opening at (π, 0) for the COM2 and
Roth solutions, of the order of the usual d-wave su-
perconducting order parameter ∆d

ij = ⟨ci↑cj↓⟩. We
only observe non zero superconductivity close to the
Van Hove singularity. While this has already been
predicted for the Roth solution [21], we showed that
the COM2 solution behaves the same. We observed
two Van Hove singularities for the COM2 and Roth
solutions: one in the hole-doped and one in the
electron-doped regime. Both singularities are a con-
sequence of a flat band at (π, 0). Lastly we noticed
∆d = ⟨ci↑cj↓⟩ is three or four times bigger than θ.
θ has no proportionnality to ∆d because it includes
both a superconducting and a charge channel when
we try to decouple it.

We studied the effect of longer ranged tight-
binding parameters fitted from ARPES experiments
on cuprates Bi2212 and LSCO from ref.[30], with
the Roth minimization. If hole doped, the Fermi
surfaces obtained with the method are similar to
the non interacting Fermi surface, but at a higher
doping. The opposite situation happens if the sys-
tem is doped in electron: the Fermi surfaces appear
similar but at a lower doping than the non inter-
acting one. This is in agreement with the viola-
tion of the Luttinger theorem we still observe around
the Mott transition. Adding further hoppings does
not seem to modify this property. We checked that
adding further hoppings breaks particle-hole symme-
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try. Finally, superconductivity also behaves mostly
the same with further neighbors compared to the
nearest neighbor case. The main difference is that
Van Hove singularities as well as superconductivity
peaks are moved at different electron density com-
pared to the nearest-neighbors case. While this re-
sult is not at all in agreement with what was ob-

served experimentally [5], it may be an indication
that the main approximation done in this scheme
needs to be refined. The dynamical corrections to
the self-energy need to be considered in order to
maybe have a behavior for superconductivity which
is more in agreement with experimental observa-
tions.
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APPENDIX A : PHYSICAL MEANING OF
THE APPROXIMATION ON THE CURRENT

In order to be able to compute the M matrix
with the full Hubbard Hamiltonian in the strongly
coupled regime, we neglected all terms in the
current (Eq. (8)) that are not along ψ. Though
afterwards we computed explicitly the currents, the
terms orthogonal to ψ are neglected through the self
consistency because we use the relation M = EI,
which is a consequence of our hypothesis.

To better understand the consequences of such
approximation we need to consider the self energy.
To do so, we follow the step of Ref. [17]. Let’s
therefore consider the full expression of the current

Ji =
∑
l

Eilψl + δϕi (64)

Our approximation, ⟨{δϕi, ψ†
j}⟩ = 0 allows us

to write Ek = Mk · I−1
k . From this, we know the

0-th order Green’s function is defined for δϕ = 0 by
S0 = I

ω−E .

Without this approximation, the full equations
of motion for the composite Green’s function is

d

dτ
Sij(τ) = δ(τ)⟨{ψi(τ);ψ

†
j}⟩+ θH(τ)⟨{Ji(τ);ψ†

j}⟩
(65)

In Fourier space, and with Eq. (64), this becomes

Sk(ω) = S0
k(ω) + I−1S0

k(ω)⟨{δϕk(ω);ψ†(ω)}⟩ (66)

Now we know that

d

dτ
ψ†
i =

∑
l

Eilψ
†
l + δϕi (67)

Therefore in Fourier space

ψ†
k(ω) = (ω −Ek + i0+)−1δϕk = S0

k(ω)I
−1δϕk

(68)

Hence we can inject this in the equations of motion
on Sk to get

Sk(ω) = S0
k(ω) + S0

k(ω)I
−1⟨{δϕk; δϕ†}⟩I−1S0

k(ω)
(69)

We can introduce the scattering matrix T

T = I−1⟨{δϕ; δϕ†}⟩I−1 (70)

We therefore obtain the familiar form

S = S0 + S0TS0 (71)

We can introduce the self-energy through the re-
lation TS0 = I−1ΣS, and obtain in reciprocal space
the Dyson equation

S(k, ω) =
I

ω −E(k)−Σ(k, ω) + i0+
(72)

From this equation we clearly see the conse-
quences of our approximation. Neglecting δϕ in the
current, which are all the contributions orthogonal
to ψ, is equivalent to neglecting Σ(k, ω), therefore
working with a static self energy. This approxima-
tion neglects all dynamical dependencies of the self
energy.
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APPENDIX B : SPECTRAL
REPRESENTATION AND RESIDUE

THEOREM OF THE COMPOSITE GREEN’S
FUNCTION

We start from the following expression for the
composite Green’s function

Sk(ω) =
I

ω −Ek + i0+
(73)

E is diagonalizable, its eigenvalues are called ϵ1

and ϵ2, and we can rewrite this as

Sij(ω) =
I Com(ω −Ek + i0+)T

det(ω −Ek + i0+)

=
I Com(ω −Ek + i0+)T

(ω − ϵ1k + i0+)(ω − ϵ2k + i0+)

(74)

Where Com(A) is the cofactors matrix of A. We
now want to apply residue theorem.

We consider the function
Sij(z)

z−ω+iη with η small.

Since we know any Green’s functions, including S,
is analytical on the upper half-circle of the complex
plane we integrate over this contour Cu. The poles
of S are real and we have another pole at z = ω− iη,
which is on the lower half-circle of the complex plane.
Therefore no poles lies in Cu and we have

∮
Cu

Sk(z)

z − ω − iη
dz = 0 (75)

We now use the previous expression of S to get

∮
Cu

I Com(z −Ek)
T

det(z −Ek)(z − ω − iη)
dz = 0 (76)

Replacing the integrals by the sum of all the
residues, we obtain

∑
z0∈P

Res

(
I Com(z −Ek)

T

(z − ϵ1k)(z − ϵ2k)(z − ω − iη)
, z → z0

)
= 0

(77)

In this equation, P denotes the poles of Sk(z)
z−ω+iη .

It has three poles

z1 = ω + iη

z2 = ϵ1k

z3 = ϵ2k

(78)

These poles are all non degenerated, meaning the
residue can easily be computed using

Res(f(z), z → z0) = lim
z→z0

(z − z0)f(z) (79)

Doing so leads to

0 =
I Com(ω −Ek + iη)T

(ω − ϵ1k + iη)(ω − ϵ2k + iη)

+
I Com(ϵ1k −Ek)

T

(ϵ1k − ϵ2k)(ϵ
1
k − ω − iη)

+
I Com(ϵ2k −Ek)

T

(ϵ2k − ϵ1ikj)(ϵ
2
k − ω − iη)

(80)

We recognize the first term can be rewritten as

I Com(ω −Ek + iη)T

det(ω −Ek + iη)
= I(ω −Ek + iη)−1 = Sk(ω + iη)

(81)

Finally we rearrange the equation (and evaluate
S in ω − iη to get retarded composite Green’s func-
tions) to recover the desired decomposition (replac-
ing η by 0+)

Sk(ω) =
I Com(ϵ2k −Ek)

T

(ϵ1k − ϵ2k)(ω − ϵ2k + i0+)

− I Com(ϵ1k −Ek)
T

(ϵ1k − ϵ2k)(ω − ϵ1k + i0+)

(82)

We pose

κa
k = (−1)a+1 Iij Com(ϵak −Ek)

T

(ϵ1k − ϵ2k)
(83)

With a ∈ {1, 2} to obtain the form given in Eq.
(27).

APPENDIX C : COMPUTATIONS OF M
AND I MATRICES

In this section we first derive from the composite
operator algebra the currents, then we use them to
obtain the M and I matrices. Let us start by writing
few of the most useful commutation relation that we
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used for the computations

{ηiσ; η†jσ′} =δij(δσσ′niσ̄ − δσσ̄′c
†
iσciσ̄)

{ξiσ; ξ†jσ′} =δij(δσσ′(1− niσ̄) + δσσ̄′c
†
iσciσ̄)

{ξiσ; η†jσ′} =0

{ciσ; ξ†jσ′} =δij(δσσ′(1− njσ) + δσσ̄′c
†
iσ′ciσ̄′)

{ciσ; η†jσ′} =δij(δσσ′niσ̄ − δσσ̄′c
†
iσ′ciσ̄′)

{ciσ; ξjσ′} =δijδσσ̄′ciσ′ciσ̄′

{ciσ; ηjσ′} =− δijδσσ̄′ciσ′ciσ̄′

(84)

From this we can explicitly compute the commu-
tators of the composite operators ψ with the hamil-
tonian to get the following currents

j1i =− µξiσ −
∑
l

til

(
clσ − niσ̄clσ + S−

i clσ̄ −∆ic
†
lσ̄

)
j2i =− (µ− U)ηiσ +

∑
l

til

(
−niσ̄clσ + S−

i clσ̄ −∆ic
†
lσ̄

)
(85)

The I = ⟨{ψ;ψ†}⟩ and M = ⟨{j;ψ†}⟩ matrices
can be explicitly computed from these expressions.
Note that

I12ij =I21ij

M12
ij =M12

ij

(86)

In the extended ψi basis with superconductivity,
the M and I matrices are 4x4 matrices and take the
following form: In this framework, the M and I ma-
trices are given by

Ii =

1− ni

2 0 0 0
0 ni

2 0 0
0 0 1− ni

2 0
0 0 0 ni

2

 (87)

Mij =


m11

ij m12
ij m13

ij −m13
ij

m12
ij m22

ij −m13
ij m13

ij

m13
ij −m13

ij −m11
ij −m12

ij

−m13
ij m13

ij −m12
ij −m22

ij

 (88)

The expression of m11
ij , m

12
ij and m22

ij are the same
as before (cf Eq. (32)). The off diagonal coefficient
is given by

m13
ij = −tγijθij (89)

APPENDIX D : ROTH DECOUPLING AND
COMPUTATION OF P

In this appendix we derive the self-consistent
equation of

p(i− j) = ⟨ni↑nj↑⟩+ ⟨S+
i S

−
j ⟩ − ⟨∆i∆

∗
j ⟩ (90)

Pair-pair term

Following the step of L. Roth [12], we express p
as a function of correlation functions by mean of
equations of motion.

First, notice we can write

⟨∆i∆
∗
j ⟩ = ⟨ξi↑ci↓∆∗

j ⟩+ ⟨ηi↑ci↓∆∗
j ⟩ (91)

Note we illustrate this decoupling with ξi↑ and
ηi↑ but the idea is exactly the same with ψi↓. We
introduce the following Green’s functions{

Fijl(τ) = ⟨⟨ξi↑(τ); cj↓∆∗
l ⟩⟩

Gijl(τ) = ⟨⟨ηi↑(τ); cj↓∆∗
l ⟩⟩

(92)

We then consider the equations of motion for these
Green’s functions

∂τ

(
Fijl(τ)
Gijl(τ)

)
= θH(τ)

(
⟨{∂tξi↑(τ); cj↓∆∗

l }⟩
⟨{∂τηi↑(τ); cj↓∆∗

l }⟩

)
+ δ(τ)

(
f1ijl
f2ijl

) (93)

where fnijl = ⟨{ψn
i ; cj↓∆

∗
l }⟩. We now use Eq.

(24b) to obtain

∂τ

(
Fijl(τ)
Gijl(τ)

)
=
∑
k

Eik

(
Fkjl(τ)
Gkjl(τ)

)
+ δ(τ)

(
f1ijl
f2ijl

)
(94)

We then time and space Fourier transform asso-
ciating the Fourier variable k1 to ri − rl and k2 to
ri − rj . The equation becomes

(
Fk1k2

(ω)
Gk1k2

(ω)

)
= (ωId2 − Ek1+k2)

−1

(
f1k1k2

f2k1k2

)
(95)

Finally we use Eq. (24a) to obtain
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(
Fk1k2(ω)
Gk1k2(ω)

)
= Sk1+k2

(ω)I−1

(
f1k1k2

f2k1k2

)
(96)

Finally, we can extract ⟨∆i∆
∗
j ⟩ by summing F and

G, integrating over ω and taking the imaginary part
to use Eq. (26) in order to replace the composite
Green’s functions by correlation functions. We get

TF [⟨ciσcjσ̄∆∗
l ⟩](k1, k2) =

2

2− n

∑
k

(C11
k1+k2

+ C12
k1+k2

)f1k1k2

+
2

n

∑
k

(C12
k1+k2

+ C22
k1+k2

)f2k1k2

(97)

We compute fnkjl = ⟨{ψn
k ; cj↓∆

∗
l }⟩ using the alge-

braic relations given in appendix C leads to

f1ijl =δij⟨∆i∆
∗
l ⟩+ δil(C

21
ij + C22

ij )

f2ijl =− δij⟨∆i∆
∗
l ⟩+ δil(C

11
ij + C12

ij )
(98)

Performing a Fourier transform of f1ijl and f
2
ijl and

setting i=j by integrating on k2, then finally inverse
Fourier transform on k1 leads to:

⟨∆i∆
∗
l ⟩ =

4

n(2− n)

(C11
il + C12

il )(C
22
il + C21

il )

1− 2
2−n (C

11
0 + C12

0 ) + 2
n (C

21
0 + C22

0 )

(99)

Which is the form in the main text. We pose

ϕ = − 2

2− n
(C11

0 + C12
0 ) +

2

n
(C21

0 + C22
0 ) (100)

Replacing C11
0 and C22

0 by their definitions allows
us to express these correlations function explicitly
as a function of n. We don’t explicit C12

0 however,
else it will be zero while it is not numerically: C12

0

should stay in the numerical minimization process to
obtain our results. Doing so leads to the following
expression for ϕ

ϕ =
n2 − 4(n2 − ⟨ni↑ni↓⟩ − C12

0 )

n(2− n)
(101)

With our notations the pair-pair term becomes

⟨∆i∆
∗
l ⟩ =

ρ3
1 + ϕ

(102)

A. Spin-Spin term

The spin-spin term is defined as ⟨S+
i S

−
l ⟩ =

⟨c†i↑ci↓c
†
l↓cl↑⟩. In order to have our basis element

as the first term, we rewrite it as

⟨S+
i S

−
l ⟩ = −⟨c†i↑ci↓cl↑c

†
l↓⟩ = −⟨cl↑c†l↓c

†
i↑ci↓⟩ (103)

We therefore introduce the following Green’s func-
tions (setting τ ′ = 0){

Fijl(τ) = ⟨⟨ξi↑(τ); c†j↓S
+
l ⟩⟩

Gijl(τ) = ⟨⟨ηi↑(τ); c†j↓S
+
l ⟩⟩

(104)

The next steps are the same as with the pair-pair
term. The only difference lies in the definition of
fn in the resulting equations of motion. For the

spin-spin term it is defined as fnijl = ⟨{ψn
i ; c

†
j↓S

+
l }⟩.

Hence we arrive at the following equation

TF (⟨ci↑c†j↓S
+
l ⟩)(k1, k2) =

2

2− n
(C11

k1+k2
+ C12

k1+k2
)f1k1k2

+
2

n
(C12

k1+k2
+ C22

k1+k2
)f2k1k2

(105)

A computation of the fn leads to

f1ijl = δij⟨S−
i S

+
l ⟩ − δkl(C

11
ij + C12

ij )

f2ijl = −δij⟨S−
i S

+
l ⟩ − δkl(C

12
ij + C22

ij )
(106)

Therefore by Fourier transform the expression of f,
then by integrating over k2 to set i=j and by inverse
Fourier transform on k1, we obtain

⟨S−
i S

+
l ⟩ = −

2
2−n (C

11
il + C12

il )
2 + 2

n (C
12
il + Cil

22)
2

1 + 2
2−n (C

11
0 + C12

0 )− 2
n (C

12
0 + C22

0 )

(107)

Which become with our notations

⟨S−
i S

+
l ⟩ = ρ1

1− ϕ
(108)

B. Charge-Charge term

As we did for the ⟨S−
i S

+
l ⟩ term we need to com-

mute the charge charge term so the first element can
be decomposed using our spinor. We then rewrite

⟨c†i↑ci↑nl↑⟩ =
n

2
− ⟨ci↑c†i↑nl↑⟩ (109)
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We introduce the following Green’s functions

{
Fijl(τ) = ⟨⟨ξi↑(τ); c†j↑nl↑⟩⟩
Gijl(τ) = ⟨⟨ηi↑(τ); c†j↑nl↑⟩⟩

(110)

Once again the general form of the equation for

⟨ciσc†iσnlσ⟩ will be the same as for the other 2 terms.
However the definition of the involved fnijl will not

be the same. We compute fnijl = ⟨{ψn
i ; c

†
j↑nl↑}⟩

f1ijl = δij(
n

2
− ⟨ni↓nl↑⟩) + δil(C

11
ij + C12

ij )

f2ijl = δij⟨ni↓nl↑⟩+ δil(C
12
ij + C22

ij )
(111)

We hence obtain

⟨ni↑nl↑⟩ =
n

2
− ρ1 − ϕ⟨ni↑nl↓⟩+

n

2− n
(C11

0 + C12
0 )

(112)

We don’t know how to express ⟨ni↓nl↑⟩ as a func-
tion of the correlations functions. So we need to redo
this decoupling on this term. This time we use

⟨ni↓nl↑⟩ =
n

2
− ⟨cl↑c†l↑ni↓⟩ (113)

We therefore introduce{
Fijl(τ) = ⟨⟨ξi↑(τ); c†j↑nl↓⟩⟩
Gijl(τ) = ⟨⟨ηi↑(τ); c†j,↑nl↓⟩⟩

(114)

The fnijl = ⟨ψn
i , c

†
j↑nl↓⟩ are given by

f1ijl = δij(
n

2
− ⟨ni↓nl↓⟩)

f2ijl = δij⟨ni↓nl↓⟩
(115)

Using the paramagnetic assumption we have
⟨ni↑nl↑⟩ = ⟨ni↓nl↓⟩, leading to

⟨ni↑nl↓⟩ =
n

2
− ϕ⟨ni↑nl↑⟩+

n

2− n
(C11

0 + C12
0 )

(116)

If we inject this in the equation of ⟨ni↑nl↑⟩, we
obtain

⟨ni↑nl↑⟩ = −ρ1 + ϕ2⟨ni↑nl↑⟩+
n

2− n
(C11

0 + C12
0 )(1− ϕ)

(117)

The last term can be simplified. An explicit com-
putations of the C0 leads to C11

0 + C12
0 = 1 − n +

⟨ni↑ni↓⟩, allowing us to show the last term is in fact

just equal to n2

4 . We therefore obtain

⟨ni↑nl↓⟩ =
n2

4
− ρ1

1− ϕ2
(118)

Which is the self consistent equation we have.
Combining the three terms, since p = ⟨ni↑nl↑⟩ +
⟨S+

i S
−
l ⟩ − ⟨∆i∆

∗
l ⟩, we obtain the following self con-

sistent equation

p =
n2

4
− ρ1

1− ϕ2
− ρ1

1− ϕ
− ρ3

1 + ϕ
(119)

APPENDIX E: BANDS AT AND AROUND
HALF-FILLING

Here we plot the bands for nearest-neighboors at
half filling for the 3 minimization. We see the Fermi
energy in between the two bands therefore we have
an insulator. Note we get the same result with next-
nearest neighboors. We plot the bands for Roth so-
lution at 2% hole doping with its Fermi Surface: we
see the formation of a small hole pocket at (π, π)
when approaching half filling. This can be inter-
preted as a magnetic instability [27], our assumption
of paramagnetism becomes invalid.

Figure 17: Band at half filling with t=1, U=8t. Note
that both COM2 and Roth are alike.
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Figure 16: Fermi Surfaces and bands obtained by Roth minimization in the neighboorhood of half filling.
Top row: 2% hole doped. Bottom row: 2% electron doped.

APPENDIX F: ROTH DECOUPLING WITH
SUPERCONDUCTIVITY

In this appendix we show how Roth decoupling
changes when we include superconductivity with 4x4
basis. We will redo one of the terms of p as an exam-
ple, and perform the decoupling for the θ parameter.
Let us start by considering ⟨S−

i S
+
l ⟩ in p for example.

The superconducting basis is of size 4 and define by

ψ =


ξi↑
ηi↑
ξ†i↓
η†i↓

 (120)

To include the full basis we need to introduce 4
Green’s functions now

Aijl =⟨⟨ξi↑; c†j↓S
+
l ⟩⟩

Bijl =⟨⟨ηi↑; c†j↓S
+
l ⟩⟩

Fijl =⟨⟨ξ†i↓; c
†
j↓S

+
l ⟩⟩

Gijl =⟨⟨η†i↓; c
†
j↓S

+
l ⟩⟩

(121)

Now the equations of motion has to be defined for
the 4 Green’s functions. Hence

∂τ

Aijl

Bijl

Fijl

Gijl

 (τ) =
∑
k

Eik

Aijl

Bijl

Fijl

Gijl

 (τ) + δ(τ)


f1ijl
f2ijl
f3ijl
f4ijl


(122)

With fnijl = ⟨{ψn
i ; c

†
j↓S

+
l }⟩. As before we can use
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(ω − Ek) = Sk(ω)I
−1 after a space Fourier trans-

form and integrate over ω after we took the imagi-
nary part to replace the composite Green’s function
matrix by a correlation function matrix. Thus

−TF [⟨c†j↓ci↑S
+
l ⟩](k1, k2) =

2

2− n
[(C11

k1+k2
+ C12

k1+k2
)f1k1k2

+ (C12
k1+k2

+ C22
k1+k2

)f2k1k2

+ (C13
k1+k2

+ C23
k1+k2

)f3k1k2
+ (C14

k1+k2
+ C24

k1+k2
)f4k1k2

]

(123)

In the last equation, the first line is the same as
before, while the second line are additionnal terms
appearing with the superconducting basis. A bit of
algebra yields to

f3ijl =δil(C
13
ij + C14

ij )

f4ijl =δil(C
23
ij + C24

ij )
(124)

Finally the spin-spin term in p becomes

⟨S−
i S

+
l ⟩ =− ρ1 + ρ2

1− ϕ
(125)

With ρ2 = 2
2−n (C

13
il + C14

il )
2 + 2

n (C
23
il + C24

il )
2.

Now we move on to the Roth decoupling for
θ. As Beenen and Edwards [10] have mentioned,
we have several ways of decoupling θ depending
on whether we consider ⟨ci↑ci↓nlσ⟩ or for example

⟨c†i↓c
†
i↑nlσ⟩. Depending on the decoupling scheme we

will over estimate or underestimate the real value of
θ but the behaviour will remain globally the same
[32]. Here we consider a decoupling starting from

⟨⟨c†i↓, c
†
i↑nlσ⟩⟩. We introduce the following Green’s

functions 
Aijl = ⟨⟨ξi↑; c†j↑nl↑⟩⟩
Bijl = ⟨⟨ηi↑; c†j↑nl↑⟩⟩
Fijl = ⟨⟨ξ†i↓; c

†
j↑nl↑⟩⟩

Gijl = ⟨⟨η†i↓; c
†
j↑nl↑⟩⟩

 (126)

The decoupling is identical and by considering
F+G we arrive to

TF [⟨c†i↓c
†
j↑nlσ⟩](k1, k2) =

2

2− n
[(C13

k1+k2
+ C14

k1+k2
)f1k1k2

+ (C33
k1+k2

+ C44
k1+k2

)f3k1k2
]

+
2

n
[(C23

k1+k2
+ C24

k1+k2
)f2k1k2

+ (C34
k1+k2

+ C44
k1+k2

)f4k1k2
]

(127)

With fnijl = ⟨{ψn
i ; c

†
j↑nlσ}⟩. Computing the f gives

f1ijl =δij(
n

2
− ⟨ni↑nl↑⟩) + δil(C

11
ij + C12

ij )

f2ijl =δij⟨ni↑nl↑⟩+ δil(C
12
ij + C22

ij )

f3ijl =− δij
θil
2

f4ijl =δij
θil
2

(128)

We therefore obtain

θ

2
=
⟨ni↑nl↑⟩[ 2n (C

23
0 + C24

0 )− 2
2−n (C

13
0 + C14

0 )] + ζ

1 + ϕ

+
n

2

C13
0 + C14

0

1 + ϕ
(129)

With ζ = 2
2−n (C

11
il +C12

il )(C
13
il +C14

il ) +
2
n (C

12
il +

C22
il )(C

23
il +C

24
il ). Finally by noting that C23

0 +C24
0 =

0 and C13
0 +C14

0 = 0, we obtain the equation we used

θ

2
=

ζ

1 + ϕ
(130)

APPENDIX G: EFFECTS OF
PARTICLE-HOLE TRANSFORMATION

In this appendix we give some details on how we
derived the particle-hole relations in Eq. (46). The
relation for the chemical potential is obtained by us-
ing the fact that the Hubbard hamiltonian stays in-
variant under this transformation.

H =
∑
ijσ

tijc
†
iσcjσ + U

∑
ni↑ni↓ + µ

∑
iσ

niσ

→
∑
ijσ

tij(−1)i+jciσc
†
jσ + U

∑
i

(−1)4ici↑c
†
i↑ci↓c

†
i↓

− µ
∑
iσ

(−1)2iciσc
†
iσ

= −
∑
ijσ

tijciσc
†
jσ + U

∑
i

(
ci↓c

†
i↓ − ni↑ci↓c

†
i↓

)
+ µ

∑
iσ

niσ

=
∑
ijσ

tijc
†
jσciσ + U

∑
i

(1− ni↓ − ni↑ + ni↑ni↓) + µ
∑
iσ

niσ

=
∑
ijσ

tijc
†
iσcjσ + U

∑
i

ni↑ni↓ + (µ− U)
∑
iσ

niσ + cste

(131)

Thus, to keep the Hamiltonian invariant and
therefore have under the particle-hole transforma-
tion H → H, we need to impose

µ(2− n) = −(µ(n)− U) (132)
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Which is the relation we get in the main text. For
e and p we work directly with their definitions

e =⟨ξiσξ†jσ⟩ − ⟨ηiση†jσ⟩
p =⟨niσnjσ⟩+ ⟨S+

i S
−
j ⟩ − ⟨∆i∆

∗
j ⟩

(133)

Under the particle-hole transformation we have

ξiσ → (−1)iη†iσ ηiσ → (−1)iξ†iσ (134)

Hence

e(2− n) → (−1)i+j(⟨η†iσηjσ⟩ − ⟨ξ†iσξjσ⟩)

= ⟨ηjση†iσ⟩ − ⟨ξjσξ†iσ⟩

= −(⟨ξiσξ†jσ⟩ − ⟨ηiση†jσ⟩)
= −e(n)

(135)

We didn’t kept the terms with δij because e and
p always appear with a tij prefactor and tij = 0 if
i = j. We used the fact that i and j are always
nearest neighbours to get (−1)i+j = −1. For p, we
have

p→ (−1)2i+2j⟨ciσc†iσcjσc
†
jσ + ci↑c

†
i↓cj↓c

†
j↑

− c†i↑c
†
i↓cj↓cj↑⟩

= ⟨cjσc†jσ − niσcjσc
†
jσ + S−

i S
+
j −∆∗

j∆i⟩
= ⟨1− njσ − niσ + niσnjσ + S+

j S
−
i −∆i∆

∗
j ⟩

= 1− n

2
− n

2
+ p(n)

= (1− n) + p(n)

(136)

Which is the other relation we had.
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