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On the Eigenvectors of Generalized Circulant Matrices
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Abstract

In this paper, closed formulas for the eigenvectors of a particular class of matrices
generated by generalized permutation matrices, named generalized circulant matrices, are
presented.
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1 Introduction

In [3], Kaddoura and Mourad, in order to widen the scope of the class of circulant matrices,
(see [2]), constructed circulant-like matrices that were called generalized weighted circulant
matrices. These matrices form a class of matrices generated by generalized permutation matri-
ces corresponding to a subgroup of some permutation group. The characteristic polynomials,
eigenvalues and eigenvectors of the generalized permutation matrices corresponding to a family
of permutations were described. Additionally, the eigenvalues of the weighted circulant matri-
ces were given however, its eigenvectors were not studied. Having these results as motivation,
we present, in some cases, explicit formulas for the eigenvectors of the generalized weighted
circulant matrices. In this work, they are simply called generalized circulant matrices.

Notation: C is the field of complex numbers and the imaginary unit is denoted by i. Moreover,
N represents the set of natural numbers. The identity matrix of order m is denoted by I,,, and
diag(aq1, . . ., Gmm) represents the diagonal matrix with diagonal entries aq1, ass, ..., Gmm. For
any square matrix M, o(M) is its spectrum and M ! is its inverse. We denote by e; the i-th
column of the identity matrix. If M is any matrix, M7 is its transpose. The symbol € repre-
sents the direct sum of matrices and, for u = [uy, ..., uy,|" and v = [v1,...,v,])7 the Hadamard
product of u and v is denoted by u ® v = [uyv1, ..., Uyvy|T. Moreover, produ = []}", u;, and
for j € N, prod,(i) = Hi;; Ure(yy- Additionally, F' = (wU=1) 1 < 4,5 < m, is the discrete
Fourier transform, where i(j —1) = r(modm), with 7 =0,1,...,m—1 and w = exp(22). Also,
for a,b € N, ged(a,b) denotes the greatest common divisor between a, b. The symmetric group
of order m is denoted by S,,, and the order of a permutation © € S, is O(m). Additionally,

7Tk:’7TO"'O7T.
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We now present some definitions and results from [3] that will be used in the sequel. Let
m € N and 7 € S,,. Each element 7 € S, corresponds to a permutation matrix Py = (p; ),
where p; ; = 1 if j = 7(4) and zero otherwise. A square matrix having in each row and column
only one non-zero element is called a generalized permutation matrix.
It was stated in [3] that an m x m matrix P(u, ) is a generalized permutation matrix if and
only if

P(u,m) = Dy Py, m € Sy, (1)
where u = [uy, ..., uy]" € C™ and D, = diag(us, . .., tn).
For m € N, let R, = {0,1,...,m — 1} and R}, = R,,\{0}. Moreover, denote by P(R,,) the
group of permutations of R,, and define

[, ={ns € P(Rn),s € R},
where 7, : R,, — R,, and
ms(x) = (z + s)(modm). (2)

Throughout this paper we assume that 7 is defined as in and m is the identity of the group
I',,. Moreover, if k € N, 7rf = Ths.

The following remark shows that for k € N, the matrix P(u, )" is also a generalized per-
mutation matrix.

Remark 1.1. [3] Let P(u, ;) be a generalized permutation matrix where s € R*,. If O(m,) =
m, from [3, Corollary 1.12] we have P(u,ms)"™ = (produ)l,,. Additionally, from [3 Corollary
1.3],if k € N, P(u,7,)* = P(vg, %), and

U, :uQQﬂi(u). (3)

Then, from [3, Corollary 1.13], if £ > m and k = gm + r, for some ¢ € N, such that 0 < r < m,
P(u, )" = (produ)!P(v,, 7").

Definition 1. [3] A generalized circulant matriz corresponding to P(u, ) is

k

Clu,m) =Y e Plu,m,), (4)

r=0
where kK € N and ¢, € C.

The following theorem gives an explicit expression for the eigenvalues of C(u, 7). The formula
has a misprint in the original paper, [3, Theorem 1.17] so, we correct it here.

Theorem 1.2. [3] Let C = C(u, ) be as in ({)), wheres € R}, .|, d = O(x,), and g =ged(m, s).
Then, the eigenvalues of C' are given by:

r 2 1
¢, (prod,(t))d exp( 7?;“) (5)

M»

Ay (C

r=0

where p =0,1,...,d—1and t = 1,2,...,¢. In particular if O(mr,) = m, the eigenvalues of C
are simply given by

k .
T 2mpri
M(C) = ;0 ¢, (prod u))mexp ( - )

with p=0,1,...,m — 1.



Additionally, from [3| Theorem 1.14] for a generalized permutation matrix P(u, ), d = O(7;)
and g =ged(m, s), the eigenvalues of P(u,m,)? are given by

Ni(P(u, 7)) = prod,(i), for i=1,2,...,9,
where each ); is repeated d times, and its corresponding eigenvectors Vi(t), are the following:

VAP ") = (prod,(i)) e, 0
foreacht=1,...,d.

The aim of this paper is to present explicit formulas for the eigenvectors of C'(u, ), for the
cases:

e 1, €1, when s = 1; for any k£ € N.
e 7, € I'y,, when s > 2 and ged(m, s) = 1; for any k € N.

e 7, € '), whens|m.

2 Eigenvectors of C(u, )

In this section, explicit formulas for the eigenvectors of C'(u, 7), are given for the cases presented
in the end of previous section. Throughout this text we assume that all v;, ¢ = 1,...,m, are
nonzero. Note that, if u; = 0 for some i = 1,2,...,m, then the matrix P(u,7s) would not be
a generalized permutation matrix.

2.1 Case s=1.

The eigenvectors of C(u, ) are presented next.

Proposition 2.1. Let uy,...,u, # 0, C(u,m) be the matriz of order m as in (l) corresponding
by )\2 M= 1

to P(u,m). Let A\ = X/produ, Ay = diag ( o , ) and F' be the
um ulum UUg * + * Um—2Um

discrete Fourier transform. Then, the columns of the matrix AiF form a basis of eigenvectors

of C(u,m).
Proof. By Theorem [1.2]

o(C(u,m)) = {Z CT)\T,ZCT (Aw)" ’ZCT (Aw™1) } (7)

r=0 r=0 r=

Note that the matrix P(u, ) is diagonalizable since its eigenvalues are distinct ([3, Corollary
1.15]). Let
N

U —1Um

T:AJ:(M’U—U ) 1<i4,j<m.
U1U9

For j =1,2,...,m, let t(j) be the j-th column of the matrix 7" as follows:

w(J_l)L

Um

. 2
w2(]71) )‘_

UL Um,

w(m—l)(j—l)&

ULU2 " Um—2Um

1




Thus,
P(u,m)t(j) = )\w(jfl)t(j).

Consequently, ¢(j), is an eigenvector of P(u, 71 )" associated to A"w =17, Then the claim follows
easily. l

In the next example, using Theorem , we present the eigenvalues and eigenvectors of P(u, 1),
with u = [u1, us, us)'. Additionally, from Proposition[2.1]the eigenvectors of a particular C(u, )
are given.

0 (751 0
Example 1. Let u = [uy, ug, us]? with uy, ug,us # 0, and P(u,m) = [ 0 0 wuy |, bea
Uus 0 0

matrix as in . Using Theorem , its spectrum is

1 1
{\3/ Ui1U2Us, —5(1 + 1\/§) \3/ U1U2Us, —5(1 — l\/§) \3/ U1U2U3},

and the corresponding eigenvectors are:

\3/1!‘11;;% <1+1\/_) u1u2u ( 1\/_> u1u2u
1) _ Jutuzuz)? 1) _ uuu 1) _ UL U2U3
e e E e —-<1—1f> i |y = | (i)
1
respectively.

Now, let us consider
. 0 1 2 1. 5, 1 g 1 5
C(u,m) :1P(u,7r1) —P<U,7T1) +3P(u,7’l’1) —EIP(U,TH) +§P(u,ﬂ'1) - EP(U,ﬂj) s
when u; = —2; us = —3; uz =1 and k = 5. That is,
0 —4 0
Clu,m)=1]1 0 0 —6
2 0 0

Then, from Theorem|1.2, o(C(u, 7)) = {2v/6, —(1+iv/3)/6, —(1—iv/3)3/6}. From Proposition
2.1} the columns #(1),¢(2),#(3) below form a basis of eigenvectors for C(u,m) :

()= ¥ |; (2)=| CVBVE | ¢(3)= | 0rivBVE
2 ) 4 ) 4
1 1 1

Note that, the spectrum of C'(u, ) coincide with the one determined in Theorem [1.2| however,
the explicit expression for the eigenvectors is given here. 0

Proposition 2.2. Let C(u,m) be as in for s = 1. Then, C(u,m) can be expressed as a
linear combination of the matrices

I, P(u, ), P(u,m)?, ..., P(u,m)™ "

4



Proof. We split the proof into two cases.
Case k <m — 1: Then, C(u,m) = Z::Ol ¢, P(u,m)", where ¢xy1 = cpo =+ = 1 = 0.
Case k > m: In this case we start to consider £k = gm — 1, with ¢ > 1. Thus,

m—1 2m—1 3m—1
C(u,m) = ey P(u,m)" + Z ¢ P(u,m)" + Z e P(u,m)" + ...
r=0 r=m r=2m
qgm—1
+ Z ey P(u,m)"
r=(g—1)m
Therefore,
m—1 m—1 m—1
C(u,m) = e P(u,m)" + Z Conr P (u, 1) + Z Comar P (u,m1)?" "
r=0 r=0 r=0
m—1 m—1
+ Camur P, m > o Clg—1ym+rP(u, ) mtr,
r=0 r=0

From Remark , as P(u,m; )" = (prod u)? P(u, 71)", 0 € N we have:

3

m—1
Clu,m) = ¢ P(u,m)" + Z prod w) ¢, P(u, m)"
r=0

3 5
- o

—1
+ Y (produ)’comir P(u,m) 4 -+ Y (produ)? " cig—1ymrP(u, m)"

T

3

ﬁ
Il
o
Il
o

3
L

(¢, + (prod w)cpyr + - - - + (prod u)q_lc(q,l)mH)P(u, )"

<
[e=]

-1

3
. JL
Q

-1
= Cimtr(Prodw)’)P(u,m)" =Y (p"" (prod u))P(u, m)",
]:O T

3

<
o

Il
o

where 3 %7 s Cjmir(produ) = P (prod w).

Thus, if £ > m then k = gm+1, with ¢ € N, and 0 <[ < m. Note that gm+1 = (gm—1)+1+1.
If l+1=mthen gm+1 = (¢g+ 1)m — 1 and from above the result follows. If [ + 1 < m, we
take Cymii42 =+ = Cym(m—1) = 0, and the result is also obtained. O

Remark 2.3. From [2, p. 68] the circulant

m—1
circ(cg, ..., Cme1) = Z e Py (8)
r=0
Then, from Proposition the circulant can be written as a generalized circulant, as the
expression in is precisely C(u,m) for k=m — 1, u = (uw;), w; =1, foralli =1,...,m, and
P, = P(u,m).

2.2 Case s > 2 with gcd(s,m) = 1.

In the next proposition we study the eigenvectors of C(u,7s) when s > 2 and ged(m, s) = 1.



Proposition 2.4. Let uy,..

U, # 0, and C = C(u,ms) be the matriz of order m as in (),

where s > 2 and ged(s,m) = 1. Let A = {/prod u. Then the columns of the matrix below,

151
12
l3

tm

2

tlw tlw
t2w2 t2w2'2
t3w3 t3w3'2

tm b

tm—l tm—lw(mil) tm—lw(mil).2

tlwmil
t2w2(m71)

t3w3(m71)

m—1)(m—1)

b

tm_lw(

: (9)

form a basis of eigenvectors for C(u, ;) where, the first column of the matrix in (9) is an
eigenvector of P(u, ) associated with A.

Proof.

P(u,7)T = AT, where T = [t,t0,13,...

From Theorem the eigenvalues of C' are as in . Consider the eigenequation
,tm]T. From [3, Theorem 1.4] det(P(u,ms) — A) =

Ul * - Uy, — A™ = 0 and then the rank of the matrix P(u,ms) — Al is less than m. Thus, the
eigenequation have a nontrivial solution T. Let

Then

P(u,mo)t(j)

Note that,

P(u, )

AS = dlag (tl,tQ, ce ,tm)

AF = (W Yt),1 <45 <m.
Let t(j) be the j-th column the AjF matrix, with j = 1,...m. Then

tle_l

b m9G-D)
by FG-D)

tm
Aty (s+DGD)

Aty (#2961

Mpm—s
Mg g1w? ™!

)\tmw'S(j—l)

— AU

Uty HDGD)

U2t5+2w(8+2)(‘j_1)

Up—stm
j—1
um—s—l—ltle

umtsws(jfl)

tm—s—i—l(fu

tm

b m9G-1)
(m—s+1)(j-1)

(10)

(11)

)\ws(j—l)tm_sw(m—S)(j—l) — )\tm_sw(m—S)(j—l)+8(j—1) — )\tm_swm(j_l) = Mms

and

AWl Dsg L ms G g mGIDRG) g

Thus, the column j of A;F corresponds to the eigenvector of P(u, ) associated to eigenvalue

MoU=Ds for j=1,2,...,m.

The next corollary gives closed expressions for the entries of the eigenvector T = [ty, - - -

associated to A = ¥/prod u when s = 2 and ged(m, 2) = 1.

[

9 zSmfla tm

]T



Corollary 2.5. Let uy,...,u, # 0, and C = C(u,ms) with gcd(m,2) = 1, and A = {/produ.
Then’, the columns of the matrix as in @D form a basis of eigenvectors of the matrix C'(u, ),
where

N .
tyjr1 = = —t1, J=1,....¢
1—0 U20+1
\a+J
tgj: — tl;j:17---7q
[Ti—o u2es Hé:é Uze
with ug = 1.
Proof.
It is clear that m > 2 and m is odd, because ged(2,m) = 1. Let m = 2¢+ 1, ¢ < m. Let us

consider P(u,ms), with u = [uy, ..., u,]T, and the eigenequation

P(u,m)T = AT. (13)
It is easy to show that generates a system with the following pair of equations:

Urtojlo(jr1)+1 = Mojp1;  Usyojtagipr)+2 = Agjqo, (14)

for j=0,1,2...q — 2 for ¢ > 2, and the three additional ones:

Uryo(g-lagr1 = Mag-1)41
Um—1tt = My
Umtg = )\tm

When ¢ = 1, the equations in do not exist. Note that the indices are calculated mod m.
Solving the system based on t;, we have:

M\
t2j+1 = —1y, j: 17"'>q
Hz:é U241
NI
q j—1 ’ 9 y U
—0 —
’ He U041 Hz o U2¢
where ug = 1.
Therefore, from the Proposition [2.4] the result follows. l

Example 2. Consider in this example the case s = 2, m = 5. Thus, from Proposition [2.4] and
Corollary consider:

A3 A A4 A2
A2 = dlag (tl, tl, —tl tl tl) .

UuU3zUs Uy ’U1U2U3U5 ’UIUS

Then, taking t; =1,



1 ,?3 0 0 0 1 w w: w w
2 4 3
0 Uiusts E\) 0 0 1 w w* w w
A F = 0 O o 0 0 1w w wt w?
4
0 0 0 A 0 1 w* w w? w
U1uU2U3 U5 9
0 0 0 A 11 1 1 1
uius
1 w w? w? w?
3 5 3 3 3
A w22 w2 w2 3 A
uULUIUS uLUIUS UIU3U5 uluU3zUuUs Ul1U3U4
_ A Wi w Wi w2
Ul Ul ul ul ul
4 4 4 4 4
A wh—A w3 — w2 w2
UL ULUIUS UL UUIUS UL ULUIUS UL ULUIUS UL ULUIUS
A2 A2 A2 A2 A2
uiug uiug uLug uiug uius
= [t1) t?2) t3) t4) t()],
where for j = 1,2,...,5, t(j) denotes the column j of the previous matrix. Doing some

computations, and following the formulas in it is easy to check that

P(u,m)T(1) = AT(1),

Plu,m)T(2) = (w?)T(2),
P(u,m)T(3) = (\w')T(3),
P(u,m)T(4) = (w)T(4),
P(u,m)T(5) = (Aw*)T(5)

2.3 Case s|m.

In this subsection we study the eigenvectors of C'(u,ms) when s|m. In this case, there exists
ko € N such that m = kys.

From [3, Corollary 1.15] the eigenvalues of P(u,7), with g =gcd(m,s), and d = O(my), are
given by
2mi\”
exp (%) (15)

Note that, as m = kgs, for some ky € N, by [3, Lemma 1.6], g = s and d = kg. Thus, the
expression in can be written as:

ul

Atp = (prod,(t))

wheret =1,2,...,gand p=0,1,...,d — 1.

2m

Aip = (prodko(t))% exp (k_0> = (prodko(t))% wP (16)

wheret =1,2,...,sand p=20,1,..., kg — 1.



In this case P(u, ) can be written by blocks in the following form:

o v, o 0 --- 0
o o0 U, 0o --- 0
o 0 0 Uz --- 0
P(u,ns) = ) ] ) , (17)
0O 0 0 0 - Ug-
U, 0 0 0 --- 0
where
Uk = dia‘g<u1+(k—1)87 u2+(k—1)57 L 7u8+(k—l)s)7 k - 17 DR kOa
and the blocks 0 are s-by-s matrices. Let
-[I—l)\t,O
At,0
-[l—)‘t,O = —l]—2 y
—I]—]j;t,o
where
-[|—1>\t,0 - et7
At.0 )\t 0
‘I]’ ) )
? prod, (t) i
)\2
At.0 t,0
‘I]’ ) )
P 7 brody(6) "
R ko—1
0
kot’o = : )

prOdko -1 (t)

where e; is the t-th column of the identity matrix. Then, P(u, 7, )T = \; T as, for each
k=1,2,...,ky, we have

A Ao Ao Ao! A
U —l]— t,0 — s 5 — ) — )\ 3 — )\ —l]' t,O) 18
I e s G o M o ) T e

with the sub indices taken (mod) k¢ and prod,(t) = 1.

Now, for each £ = 0,1,...,ky — 1, let us define the vectors:
[ wZTf\t’O
w2£-|]-2)\t,0

-I]—)\t’o (wé) — w3£ 3>\t,0

A
wko[‘ﬂ'k t,0
0




Lemma 2.6. For eacht =1,...,s, the vectors
—l]—/\t’o (WO), 'I]—)\t,o (wl)’ '[[‘)\ty() ((UQ), e ‘[]'>\t,0 (wk()—l)
are the eigenvectors of P(u,ms), corresponding to the eigenvalues
ko—1

0 2
/\t,o = )\t,Ow ;)\t,l = /\t,0w7 )\t,2 = /\t,Ow Yy /\t,ko—l = )\t,()w s

respectively.

Proof. As proven before, we have P(u,m )T 0 (w?) = A\ g T (w0).
For £ = 1,...,ky — 1 and, from the expressions in (18], assuming that prod,(t) = 1 and
wh =1, we have:

PO ] [ WA ]
WSZUQ—H—;\t’O w3£/\t70—|]—2)\t,0
P(u,m) T (W) = : = :
wkerko—l—u—]j:)m wk(%)‘to-ﬂ—k)\otf1
A A
I Wi U, T | I WA T
i A
W T
wQZ-l]—;\t,O
= Ao’ | w¥ ?:\t’O = (Arow") T (w").
k e. At,
| @ ’ —I]—kot0 i
Then, the result follows. 0
Proposition 2.7. The set
(T . t=1,2,...,s and L =0,1,..., ko — 1}
forms a basis of eigenvectors of P(u, ).
Proof. This result is a consequence of Lemma 2.6 0

Example 3. In this example, for m = 9 and s = 3, the eigenvectors of P(u,s) corresponding
to the list of eigenvalues A\, t = 1,2,3,¢ = 0, 1,2 are presented. By the previous proposition
the eigenvectors are given by:

‘ﬂ')q,o '[|'>\1,1 ‘]]')\1,2 ‘]]')\2,0 ‘H‘A2,1 ‘H‘/\z,z ‘H‘A3,o ‘I]'A3,1 ‘|]'>\3,2
) ) ) ) ) ) ) )

TAho = TAo(?)
Tt = TAuo (1)
TAz = TAo(y2)
Tr20 — Th2o0 (w)
Th21 = Th2o(yl)
Th22 = TA2o(y2)
TA0 = TAa0((,0)
TAer = Thao ()
The2 = TAao(2)



and the columns of the following matrix form a basis of eigenvectors of P(u,73),

1 w w? 0 0 0 0 0 0
0 0 0 1 w w? 0 0 0
0 0 0 0 0 0 1 w w?
A1,0 A1, 0w? A1, 0w
prod,(1) prod, (1) prod,(1) 0 0 . 0 0 0 0
A2,0 A2,0w A2,0w
0 0 0 prod,(2) prod,(2) prod,(2) 0 0 0
A3.,0 A3,ow? A3,0w
(2) 20 \ S 0 0 0 prod,3) prod,3) prod,(3)
Ao AL ow Mo
prod,(1) prod,(1) prod,() 0 0 0 0 0 0
A%,o )‘3,0“’3 )‘3,0
0 0 0 tod@ prode prodm O 0 0
A2 A2 wd A2
0 0 0 0 0 0 2 - o
prod,3) prod,@3) prod,@)
(19)
l
Proposition 2.8. The set
(T t=1,2,....,s and £ =0,1,..., ks — 1}
forms a basis of eigenvectors of C(u, ).
Proof. Consider the matrix 7" with columns
TAvO L Tkt A0 TA2kot o TA0 L TAekot
respectively. Then we have:
k
T7'C(u,m)T = T " P(u,7,)'T
r=0
k
= ZCT(T_lp(u, 7s)T)"
r=0
k
= @ ZCT dlag(()\t 0) ) (At 1) ’ 9 (At ko—l)T)
1<t<s r=0
k k k
= @ dlag (Z Cr)‘:,[b CT‘()\t Owy? 7ZCT<>\t,OW(k01))T)
1<t<s r=0 r=0 r=0
l

Example 4. Let m = 9,5 = 3, and C(u,m3) = So_, ¢, P(u,m,)" where ¢, = 1 — (r — 1),
r=20,1,2,3. and u = (i, —1, —i,1,4,—1, —i,1,47). Then

2+1 0 0 1 0 0 —-1+41 0 0
0 3-21 O 0 -1 0 0 1—1 0
0 0 —3i 0 0 —1 0 0 —1+1
1—-1 0 0 241 0 0 1 0 0
C(u,m3) = 0 —-1+1 O 0 3-21 O 0 { 0
0 0 1—-1 0 0 —31 0 0 -1
—i 0 0 1+1 0 0 2+1 0 0
0 1 0 0O —-1—-1 O 0 3—2i 0
0 0 0 0 1+1 0 0 —31

11



Let T be the matrix as in (19), that is:

1 w w 0 0 0 0 0 0
0 0 0 1 w w0 0 0
0 0 0 0 0 0 1 w w?
—i —iw? —iw 0 0 0 0 0 0
T = 0 0 0 —i —iw? —iw 0 0 0
0 0 0 0 0 0 —i —iw? —iw
-1 —i -1 0 0 0 0 0 0
0 0 0 —-i —i -1 0 0 0

Then,
T'C(u,m3)T = Wy & Wy @& W,

with

3 3 3
Wy = diag Zcr()\l,0>r>Zcr()\l,OW)T:ZCT()\LOWQ)T )
r=0

T

Il
o
Il
=)

r
3

W2 = dlag Z CT()\QVO)T,

r=0 r

T

CT<)\270C{}) s Cr(/\Z,OWQ)T ’

-
INgE

r

w |l
w ||

3
W3 = diag Zcr()\3,o)r> Cr()\a,ow)T, Cr()\g,ow2)r )
r=0

r=

o
o

r=

where co =1—1i4,¢c1 =1,c0 =1—1i,c3 =1 —2i, and

Al =prods(1) = wugur =1
A3 =prods(2) = ugusus = —i
A3 =prods(3) = ugugug = —1.
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