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Abstract

In this paper, closed formulas for the eigenvectors of a particular class of matrices
generated by generalized permutation matrices, named generalized circulant matrices, are
presented.

Key words. circulant matrix; permutation matrix; generalized circulant matrix; eigenvector.
AMS subject classifications. 15A18; 15A29.

1 Introduction

In [3], Kaddoura and Mourad, in order to widen the scope of the class of circulant matrices,
(see [2]), constructed circulant-like matrices that were called generalized weighted circulant
matrices. These matrices form a class of matrices generated by generalized permutation matri-
ces corresponding to a subgroup of some permutation group. The characteristic polynomials,
eigenvalues and eigenvectors of the generalized permutation matrices corresponding to a family
of permutations were described. Additionally, the eigenvalues of the weighted circulant matri-
ces were given however, its eigenvectors were not studied. Having these results as motivation,
we present, in some cases, explicit formulas for the eigenvectors of the generalized weighted
circulant matrices. In this work, they are simply called generalized circulant matrices.

Notation: C is the field of complex numbers and the imaginary unit is denoted by i. Moreover,
N represents the set of natural numbers. The identity matrix of order m is denoted by Im, and
diag(a11, . . . , amm) represents the diagonal matrix with diagonal entries a11, a22, . . . , amm. For
any square matrix M , σ(M) is its spectrum and M−1 is its inverse. We denote by ei the i-th
column of the identity matrix. If M is any matrix, MT is its transpose. The symbol

⊕
repre-

sents the direct sum of matrices and, for u = [u1, . . . , um]
T and v = [v1, . . . , vm]

T the Hadamard
product of u and v is denoted by u⊙ v = [u1v1, . . . , umvm]

T . Moreover, produ =
∏m

i=1 ui, and

for j ∈ N, prodj(i) =
∏j−1

ℓ=0 uπℓ
s(i)

. Additionally, F = (ωi(j−1)), 1 ≤ i, j ≤ m, is the discrete
Fourier transform, where i(j− 1) ≡ r(modm), with r = 0, 1, . . . ,m− 1 and ω = exp(2πi

m
). Also,

for a, b ∈ N, gcd(a, b) denotes the greatest common divisor between a, b. The symmetric group
of order m is denoted by Sm, and the order of a permutation π ∈ Sm is O(πs). Additionally,
πk = π ◦ · · · ◦ π.
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†Grupo de Investigación en Sistemas Dinámicos y Aplicaciones (GISDA), Departamento de Matemática,
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We now present some definitions and results from [3] that will be used in the sequel. Let
m ∈ N and π ∈ Sm. Each element π ∈ Sm corresponds to a permutation matrix Pπ = (pi,j),
where pi,j = 1 if j = π(i) and zero otherwise. A square matrix having in each row and column
only one non-zero element is called a generalized permutation matrix.
It was stated in [3] that an m ×m matrix P (u, π) is a generalized permutation matrix if and
only if

P (u, π) = DuPπ, π ∈ Sm, (1)

where u = [u1, . . . , um]
T ∈ Cm and Du = diag(u1, . . . , um).

For m ∈ N, let Rm = {0, 1, . . . ,m − 1} and R⋆
m = Rm\{0}. Moreover, denote by P(Rm) the

group of permutations of Rm and define

Γm = {πs ∈ P(Rm), s ∈ Rm},

where πs : Rm → Rm and
πs(x) = (x+ s)(modm). (2)

Throughout this paper we assume that πs is defined as in (2) and π0 is the identity of the group
Γm. Moreover, if k ∈ N, πk

s = πks.
The following remark shows that for k ∈ N, the matrix P (u, πs)

k is also a generalized per-
mutation matrix.

Remark 1.1. [3] Let P (u, πs) be a generalized permutation matrix where s ∈ R⋆
m. If O(πs) =

m, from [3, Corollary 1.12] we have P (u, πs)
m = (produ)Im. Additionally, from [3, Corollary

1.3], if k ∈ N, P (u, πs)
k = P (vk, π

k
s ), and

vk = u⊙
k−1⊙
i=1

πi
s(u). (3)

Then, from [3, Corollary 1.13], if k ≥ m and k = qm+ r, for some q ∈ N, such that 0 ≤ r < m,

P (u, πs)
k = (produ)qP (vr, π

r
s).

Definition 1. [3] A generalized circulant matrix corresponding to P (u, πs) is

C(u, πs) =
k∑

r=0

crP (u, πs)
r, (4)

where k ∈ N and cr ∈ C.

The following theorem gives an explicit expression for the eigenvalues of C(u, πs). The formula
(5) has a misprint in the original paper, [3, Theorem 1.17] so, we correct it here.

Theorem 1.2. [3] Let C = C(u, πs) be as in (4), where s ∈ R⋆
m+1, d = O(πs), and g =gcd(m, s).

Then, the eigenvalues of C are given by:

λt,p(C) =
k∑

r=0

cr (prodd(t))
r
d exp

(
2πpri

d

)
(5)

where p = 0, 1, . . . , d − 1 and t = 1, 2, . . . , g. In particular if O(πs) = m, the eigenvalues of C
are simply given by

λp(C) =
k∑

r=0

cr(produ))
r
m exp

(
2πpri

m

)
with p = 0, 1, . . . ,m− 1.
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Additionally, from [3, Theorem 1.14] for a generalized permutation matrix P (u, πs), d = O(πs)
and g =gcd(m, s), the eigenvalues of P (u, πs)

d are given by

λi(P (u, πs)
d) = prodd(i), for i = 1, 2, . . . , g,

where each λi is repeated d times, and its corresponding eigenvectors V
(t)
i , are the following:

V
(t)
i (P (u, πs)

d) = (prodd(i))ei+tg, (6)

for each t = 1, . . . , d.

The aim of this paper is to present explicit formulas for the eigenvectors of C(u, πs), for the
cases:

• πs ∈ Γm, when s = 1; for any k ∈ N.

• πs ∈ Γm, when s ≥ 2 and gcd(m, s) = 1; for any k ∈ N.

• πs ∈ Γm, when s|m.

2 Eigenvectors of C(u, πs)

In this section, explicit formulas for the eigenvectors of C(u, πs), are given for the cases presented
in the end of previous section. Throughout this text we assume that all ui, i = 1, . . . ,m, are
nonzero. Note that, if ui = 0 for some i = 1, 2, . . . ,m, then the matrix P (u, πs) would not be
a generalized permutation matrix.

2.1 Case s = 1.

The eigenvectors of C(u, π1) are presented next.

Proposition 2.1. Let u1, . . . , un ̸= 0, C(u, π1) be the matrix of order m as in (4) corresponding

to P (u, π1). Let λ = m
√
produ, Λ1 = diag

(
λ

um

,
λ2

u1um

, . . . ,
λm−1

u1u2 · · ·um−2um

, 1

)
and F be the

discrete Fourier transform. Then, the columns of the matrix Λ1F form a basis of eigenvectors
of C(u, π1).

Proof. By Theorem 1.2,

σ(C(u, π1)) =

{
k∑

r=0

crλ
r,

k∑
r=0

cr(λω)
r, . . . ,

k∑
r=0

cr(λω
(m−1))r

}
. (7)

Note that the matrix P (u, π1) is diagonalizable since its eigenvalues are distinct ([3, Corollary
1.15]). Let

T = Λ1F =

(
ωi(j−1) λj

u1u2 · · ·uj−1um

)
, 1 ≤ i, j ≤ m.

For j = 1, 2, . . . ,m, let t(j) be the j-th column of the matrix T as follows:

t(j) =



ω(j−1) λ
um

ω2(j−1) λ2

u1um
...

ω(m−1)(j−1) λ(m−1)

u1u2···um−2um

1


.
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Thus,
P (u, π1)t(j) = λω(j−1)t(j).

Consequently, t(j), is an eigenvector of P (u, π1)
r associated to λrω(j−1)r. Then the claim follows

easily.

In the next example, using Theorem 1.2, we present the eigenvalues and eigenvectors of P (u, π1),
with u = [u1, u2, u3]

t. Additionally, from Proposition 2.1 the eigenvectors of a particular C(u, π1)
are given.

Example 1. Let u = [u1, u2, u3]
T with u1, u2, u3 ̸= 0, and P (u, π1) =


0 u1 0

0 0 u2

u3 0 0

, be a

matrix as in (1). Using Theorem 1.2, its spectrum is

{ 3
√
u1u2u3,−

1

2
(1 + i

√
3) 3
√
u1u2u3,−

1

2
(1− i

√
3) 3
√
u1u2u3},

and the corresponding eigenvectors are:

V
(1)
1 =


3
√
u1u2u3

u3
( 3
√
u1u2u3)2

u1u3

1

 , V
(1)
2 =

 −1
2
(1 + i

√
3)

3
√
u1u2u3

u3

−1
2
(1− i

√
3)

( 3
√
u1u2u3)2

u1u3

1

 , V
(1)
3 =

 −1
2
(1− i

√
3)

3
√
u1u2u3

u3

−1
2
(1 + i

√
3)

( 3
√
u1u2u3)2

u1u3

1

 ,

respectively.
Now, let us consider

C(u, π1) = iP (u, π1)
0 − P (u, π1)

1 + 3P (u, π1)
2 − 1

6
iP (u, π1)

3 +
1

2
P (u, π1)

4 − 1

2
P (u, π1)

5,

when u1 = −2; u2 = −3; u3 = 1 and k = 5. That is,

C(u, π1) =


0 −4 0

0 0 −6

2 0 0

 .

Then, from Theorem 1.2, σ(C(u, π1)) = {2 3
√
6,−(1+i

√
3) 3
√
6,−(1−i

√
3) 3
√
6}. From Proposition

2.1, the columns t(1), t(2), t(3) below form a basis of eigenvectors for C(u, π1) :

t(1) =


3
√
6

−
3√36
2

1

 ; t(2) =


−(1+i

√
3) 3√6

2

(1−i
√
3) 3√36
4

1

 ; t(3) =


(1−i

√
3) 3√6
2

(1+i
√
3) 3√36
4

1

 .

Note that, the spectrum of C(u, π1) coincide with the one determined in Theorem 1.2 however,
the explicit expression for the eigenvectors is given here.

Proposition 2.2. Let C(u, π1) be as in (4) for s = 1. Then, C(u, π1) can be expressed as a
linear combination of the matrices

Im, P (u, π1), P (u, π1)
2, . . . , P (u, π1)

m−1.

4



Proof. We split the proof into two cases.
Case k < m− 1: Then, C(u, π1) =

∑m−1
r=0 crP (u, π1)

r, where ck+1 = ck+2 = · · · = cm−1 = 0.
Case k ≥ m: In this case we start to consider k = qm− 1, with q ≥ 1. Thus,

C(u, π1) =
m−1∑
r=0

crP (u, π1)
r +

2m−1∑
r=m

crP (u, π1)
r +

3m−1∑
r=2m

crP (u, π1)
r + ...

+

qm−1∑
r=(q−1)m

crP (u, π1)
r.

Therefore,

C(u, π1) =
m−1∑
r=0

crP (u, π1)
r +

m−1∑
r=0

cm+rP (u, π1)
m+r +

m−1∑
r=0

c2m+rP (u, π1)
2m+r

+
m−1∑
r=0

c3m+rP (u, π1)
3m+r + · · ·+

m−1∑
r=0

c(q−1)m+rP (u, π1)
(q−1)m+r.

From Remark , as P (u, π1)
θm+r = (produ)θP (u, π1)

r, θ ∈ N we have:

C(u, π1) =
m−1∑
r=0

crP (u, π1)
r +

m−1∑
r=0

(produ)cm+rP (u, π1)
r

+
m−1∑
r=0

(produ)2c2m+rP (u, π1)
r + · · ·+

m−1∑
r=0

(produ)q−1c(q−1)m+rP (u, π1)
r

=
m−1∑
r=0

(cr + (produ)cm+r + · · ·+ (produ)q−1c(q−1)m+r)P (u, π1)
r

=
m−1∑
r=0

(

q−1∑
j=0

cjm+r(produ)
j)P (u, π1)

r =
m−1∑
r=0

(p
cjm+r

q−1 (produ))P (u, π1)
r,

where
∑q−1

j=0 cjm+r(produ)
j = p

cjm+r

q−1 (produ).

Thus, if k ≥ m then k = qm+l, with q ∈ N, and 0 ≤ l < m. Note that qm+l = (qm−1)+l+1.
If l + 1 = m then qm + l = (q + 1)m − 1 and from above the result follows. If l + 1 < m, we
take cqm+l+2 = · · · = cqm+(m−l) = 0, and the result is also obtained.

Remark 2.3. From [2, p. 68] the circulant

circ(c0, . . . , cm−1) =
m−1∑
r=0

crP
r
π1
. (8)

Then, from Proposition 2.2 the circulant can be written as a generalized circulant, as the
expression in (8) is precisely C(u, π1) for k = m− 1, u = (ui), ui = 1, for all i = 1, . . . ,m, and
Pπ1 = P (u, π1).

2.2 Case s ≥ 2 with gcd(s,m) = 1.

In the next proposition we study the eigenvectors of C(u, πs) when s ≥ 2 and gcd(m, s) = 1.
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Proposition 2.4. Let u1, . . . , un ̸= 0, and C = C(u, πs) be the matrix of order m as in (4),
where s ≥ 2 and gcd(s,m) = 1. Let λ = m

√
produ. Then the columns of the matrix below,

t1 t1ω t1ω
2 · · · t1ω

m−1

t2 t2ω
2 t2ω

2·2 · · · t2ω
2(m−1)

t3 t3ω
3 t3ω

3·2 · · · t3ω
3(m−1)

...
...

...
. . .

...
tm−1 tm−1ω

(m−1) tm−1ω
(m−1)·2 · · · tm−1ω

(m−1)(m−1)

tm tm tm · · · tm


, (9)

form a basis of eigenvectors for C(u, πs) where, the first column of the matrix in (9) is an
eigenvector of P (u, πs) associated with λ.

Proof. From Theorem 1.2 the eigenvalues of C are as in (5). Consider the eigenequation
P (u, πs)T = λT , where T = [t1, t2, t3, . . . , tm]

T . From [3, Theorem 1.4] det(P (u, πs) − λI) =
u1u2 · · ·um − λm = 0 and then the rank of the matrix P (u, πs)− λI is less than m. Thus, the
eigenequation have a nontrivial solution T . Let

Λs = diag (t1, t2, . . . , tm).

Then
ΛsF = (ωi(j−1)ti), 1 ≤ i, j ≤ m. (10)

Let t(j) be the j-th column the ΛsF matrix, with j = 1, . . .m. Then

P (u, πs)t(j) = P (u, πs)



t1ω
j−1

t2ω
2(j−1)

...
tm−sω

(m−s)(j−1)

tm−s+1ω
(m−s+1)(j−1)

...
tm


=



u1ts+1ω
(s+1)(j−1)

u2ts+2ω
(s+2)(j−1)

...
um−stm

um−s+1t1ω
j−1

...
umtsω

s(j−1)


(11)

=



λt1ω
(s+1)(j−1)

λt2ω
(s+2)(j−1)

...
λtm−s

λtm−s+1ω
j−1

...
λtmω

s(j−1)


= λωs(j−1)



t1ω
(j−1)

t2ω
2(j−1)

...
tm−sω

(m−s)(j−1)

tm−s+1ω
(m−s+1)(j−1)

...
tm


, (12)

Note that,

λωs(j−1)tm−sω
(m−s)(j−1) = λtm−sω

(m−s)(j−1)+s(j−1) = λtm−sω
m(j−1) = λtm−s

and
λω(j−1)stm−s+1ω

(m−s+1)(j−1) = λtm−s+1ω
m(j−1)+(j−1) = λtm−s+1ω

j−1.

Thus, the column j of ΛsF corresponds to the eigenvector of P (u, πs) associated to eigenvalue
λω(j−1)s, for j = 1, 2, . . . ,m.

The next corollary gives closed expressions for the entries of the eigenvector T = [t1, · · · , tm−1, tm]
T .

associated to λ = m
√
produ when s = 2 and gcd(m, 2) = 1.
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Corollary 2.5. Let u1, . . . , un ̸= 0, and C = C(u, π2) with gcd(m, 2) = 1, and λ = m
√
produ.

Then´, the columns of the matrix as in (9) form a basis of eigenvectors of the matrix C(u, π2),
where

t2j+1 =
λj∏j−1

ℓ=0 u2ℓ+1

t1, j = 1, . . . , q

t2j =
λq+j∏q

ℓ=0 u2ℓ+1

∏j−1
ℓ=0 u2ℓ

t1, j = 1, . . . , q

with u0 = 1.

Proof.
It is clear that m > 2 and m is odd, because gcd(2,m) = 1. Let m = 2q+1, q < m. Let us

consider P (u, π2), with u = [u1, . . . , um]
T , and the eigenequation

P (u, π2)T = λT . (13)

It is easy to show that (13) generates a system with the following pair of equations:

u1+2jt2(j+1)+1 = λt2j+1; u2+2jt2(j+1)+2 = λt2j+2, (14)

for j = 0, 1, 2 . . . q − 2 for q ≥ 2, and the three additional ones:

u1+2(q−1)t2q+1 = λt2(q−1)+1

um−1t1 = λtm−1

umt2 = λtm.

When q = 1, the equations in (14) do not exist. Note that the indices are calculated modm.
Solving the system based on t1, we have:

t2j+1 =
λj∏j−1

ℓ=0 u2ℓ+1

t1, j = 1, . . . , q

t2j =
λq+j∏q

ℓ=0 u2ℓ+1

∏j−1
ℓ=0 u2ℓ

t1, j = 1, . . . , q,

where u0 = 1.
Therefore, from the Proposition 2.4, the result follows.

Example 2. Consider in this example the case s = 2,m = 5. Thus, from Proposition 2.4 and
Corollary 2.5, consider:

Λ2 = diag

(
t1,

λ3

u1u3u5

t1,
λ

u1

t1,
λ4

u1u2u3u5

t1,
λ2

u1u3

t1

)
.

Then, taking t1 = 1,

7



Λ2F =


1 0 0 0 0

0 λ3

u1u3u5
0 0 0

0 0 λ
u1

0 0

0 0 0 λ4

u1u2u3u5
0

0 0 0 0 λ2

u1u3




1 w w2 w3 w4

1 w2 w4 w w3

1 w3 w w4 w2

1 w4 w3 w2 w
1 1 1 1 1



=



1 w w2 w3 w4

λ3

u1u3u5
w2 λ5

u1u3u5
w4 λ3

u1u3u5
w λ3

u1u3u5
w3 λ3

u1u3u4

λ
u1

w3 λ
u1

w λ
u1

w4 λ
u1

w2 λ
u1

λ4

u1u2u3u5
w4 λ4

u1u2u3u5
w3 λ4

u1u2u3u5
w2 λ4

u1u2u3u5
w λ4

u1u2u3u5

λ2

u1u3

λ2

u1u3

λ2

u1u3

λ2

u1u3

λ2

u1u3


=

[
t(1) t(2) t(3) t(4) t(5)

]
,

where for j = 1, 2, . . . , 5, t(j) denotes the column j of the previous matrix. Doing some
computations, and following the formulas in (11) it is easy to check that

P (u, π2)T (1) = λT (1),

P (u, π2)T (2) = (λw2)T (2),

P (u, π2)T (3) = (λw4)T (3),

P (u, π2)T (4) = (λw)T (4),

P (u, π2)T (5) = (λw3)T (5).

2.3 Case s|m.

In this subsection we study the eigenvectors of C(u, πs) when s|m. In this case, there exists
k0 ∈ N such that m = k0s.

From [3, Corollary 1.15] the eigenvalues of P (u, πs), with g =gcd(m, s), and d = O(πs), are
given by

λt,p = (prodd(t))
1
d exp

(
2πi

d

)p

(15)

where t = 1, 2, . . . , g and p = 0, 1, . . . , d− 1.

Note that, as m = k0s, for some k0 ∈ N, by [3, Lemma 1.6], g = s and d = k0. Thus, the
expression in (15) can be written as:

λt,p =
(
prodk0(t)

) 1
k0 exp

(
2πi

k0

)p

=
(
prodk0(t)

) 1
k0 ωp (16)

where t = 1, 2, . . . , s and p = 0, 1, . . . , k0 − 1.

8



In this case P (u, πs) can be written by blocks in the following form:

P (u, πs) =



0 U1 0 0 · · · 0
0 0 U2 0 · · · 0
0 0 0 U3 · · · 0
...

. . .
...

0 0 0 0 · · · Uk0−1

Uk0 0 0 0 · · · 0


, (17)

where
Uk = diag(u1+(k−1)s, u2+(k−1)s, . . . , us+(k−1)s), k = 1, . . . , k0,

and the blocks 0 are s-by-s matrices. Let

T λt,0 =


T

λt,0

1

T
λt,0

2
...

T
λt,0

k0

 ,

where

T
λt,0

1 = et,

T
λt,0

2 =
λt,0

prod1(t)
et,

T
λt,0

3 =
λ2
t,0

prod2(t)
et,

...

T
λt,0

k0
=

λk0−1
t,0

prodk0−1(t)
et,

where et is the t-th column of the identity matrix. Then, P (u, πs)T
λt,0 = λt,0T

λt,0 as, for each
k = 1, 2, . . . , k0, we have

UkT
λt,0

k+1 = ut+(k−1)s

λk
t,0

prodk(t)
et =

λk
t,0

prodk−1(t)
et = λt,0

(
λk−1
t,0

prodk−1(t)
et

)
= λt,0T

λt,0

k , (18)

with the sub indices taken (mod) k0 and prod0(t) = 1.

Now, for each ℓ = 0, 1, . . . , k0 − 1, let us define the vectors:

T λt,0(ωℓ) =


ωℓT

λt,0

1

ω2ℓT
λt,0

2

ω3ℓT
λt,0

3
...

ωk0ℓT
λt,0

k0

 .
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Lemma 2.6. For each t = 1, . . . , s, the vectors

T λt,0(ω0), T λt,0(ω1), T λt,0(ω2), · · · , T λt,0(ωk0−1)

are the eigenvectors of P (u, πs), corresponding to the eigenvalues

λt,0 = λt,0w
0, λt,1 = λt,0w, λt,2 = λt,0w

2, . . . , λt,k0−1 = λt,0w
k0−1,

respectively.

Proof. As proven before, we have P (u, πs)T
λt,0(ω0) = λt,0T

λt,0(ω0).
For ℓ = 1, . . . , k0 − 1 and, from the expressions in (18), assuming that prod0(t) = 1 and

ωk0 = 1, we have:

P (u, πs)T
λt,0(ωℓ) =


ω2ℓU1T

λt,0

2

ω3ℓU2T
λt,0

3
...

ωk0ℓUk0−1T
λt,0

k0

ωℓUk0T
λt,0

1

 =


ω2ℓλt,0T

λt,0

1

ω3ℓλt,0T
λt,0

2
...

ωk0ℓλt,0T
λt,0

k0−1

ωℓλt,0T
λt,0

k0



= λt,0ω
ℓ


ωℓT

λt,0

1

ω2ℓT
λt,0

2

ω3ℓT
λt,0

3
...

ωk0ℓT
λt,0

k0

 = (λt,0ω
ℓ)T λt,0(ωℓ).

Then, the result follows.

Proposition 2.7. The set

{T λt,ℓ : t = 1, 2, . . . , s and ℓ = 0, 1, . . . , k0 − 1}

forms a basis of eigenvectors of P (u, πs).

Proof. This result is a consequence of Lemma 2.6.

Example 3. In this example, for m = 9 and s = 3, the eigenvectors of P (u, π3) corresponding
to the list of eigenvalues λt,ℓ, t = 1, 2, 3, ℓ = 0, 1, 2 are presented. By the previous proposition
the eigenvectors are given by:

T λ1,0 , T λ1,1 , T λ1,2 , T λ2,0 , T λ2,1 , T λ2,2 , T λ3,0 , T λ3,1 , T λ3,2

T λ1,0 = T λ1,0(ω0)

T λ1,1 = T λ1,0(ω1)

T λ1,2 = T λ1,0(ω2)

T λ2,0 = T λ2,0(ω0)

T λ2,1 = T λ2,0(ω1)

T λ2,2 = T λ2,0(ω2)

T λ3,0 = T λ3,0(ω0)

T λ3,1 = T λ3,0(ω1)

T λ3,2 = T λ3,0(ω2)
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and the columns of the following matrix form a basis of eigenvectors of P (u, π3),



1 ω ω2 0 0 0 0 0 0
0 0 0 1 ω ω2 0 0 0
0 0 0 0 0 0 1 ω ω2

λ1,0

prod1(1)

λ1,0ω2

prod1(1)

λ1,0ω

prod1(1)
0 0 0 0 0 0

0 0 0 λ2,0

prod1(2)

λ2,0ω2

prod1(2)

λ2,0ω

prod1(2)
0 0 0

0 0 0 0 0 0 λ3,0

prod1(3)

λ3,0ω2

prod1(3)

λ3,0ω

prod1(3)
λ2
1,0

prod2(1)

λ2
1,0ω

3

prod2(1)

λ2
1,0

prod2(1)
0 0 0 0 0 0

0 0 0
λ2
2,0

prod2(2)

λ2
2,0ω

3

prod2(2)

λ2
2,0

prod2(2)
0 0 0

0 0 0 0 0 0
λ2
3,0

prod2(3)

λ2
3,0ω

3

prod2(3)

λ2
3,0

prod2(3)


(19)

Proposition 2.8. The set

{T λt,ℓ : t = 1, 2, . . . , s and ℓ = 0, 1, . . . , k0 − 1}

forms a basis of eigenvectors of C(u, πs).

Proof. Consider the matrix T with columns

T λ1,0 , . . . , T λ1,k0−1 , T λ2,0 . . . , T λ2,k0−1 , . . . , T λs,0 , . . . , T λs,k0−1 ,

respectively. Then we have:

T−1C(u, πs)T =
k∑

r=0

crT
−1P (u, πs)

rT

=
k∑

r=0

cr(T
−1P (u, πs)T )

r

=
⊕
1≤t≤s

k∑
r=0

cr diag ((λt,0)
r, (λt,1)

r, . . . , (λt,k0−1)
r)

=
⊕
1≤t≤s

diag

(
k∑

r=0

crλ
r
t,0,

k∑
r=0

cr(λt,0ω)
r, . . . ,

k∑
r=0

cr(λt,0ω
(k0−1))r

)
.

Example 4. Let m = 9, s = 3, and C(u, π3) =
∑3

r=0 crP (u, πs)
r where cr = 1 − (r − 1)i,

r = 0, 1, 2, 3. and u = (i,−1,−i, 1, i,−1,−i, 1, i). Then

C(u, π3) =



2 + i 0 0 i 0 0 −1 + i 0 0
0 3− 2i 0 0 −1 0 0 1− i 0
0 0 −3i 0 0 −i 0 0 −1 + i

1− i 0 0 2 + i 0 0 1 0 0
0 −1 + i 0 0 3− 2i 0 0 i 0
0 0 1− i 0 0 −3i 0 0 −1
−i 0 0 1 + i 0 0 2 + i 0 0
0 1 0 0 −1− i 0 0 3− 2i 0
0 0 i 0 0 1 + i 0 0 −3i


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Let T be the matrix as in (19), that is:

T =



1 ω ω2 0 0 0 0 0 0
0 0 0 1 ω ω2 0 0 0
0 0 0 0 0 0 1 ω ω2

−i −iω2 −iω 0 0 0 0 0 0
0 0 0 −i −iω2 −iω 0 0 0
0 0 0 0 0 0 −i −iω2 −iω
−i −i −i 0 0 0 0 0 0
0 0 0 −i −i −i 0 0 0
0 0 0 0 0 0 −i −i −i


.

Then,
T−1C(u, π3)T = W1 ⊕W2 ⊕W3,

with

W1 = diag

(
3∑

r=0

cr(λ1,0)
r,

3∑
r=0

cr(λ1,0ω)
r,

3∑
r=0

cr(λ1,0ω
2)r

)
,

W2 = diag

(
3∑

r=0

cr(λ2,0)
r,

3∑
r=0

cr(λ2,0ω)
r,

3∑
r=0

cr(λ2,0ω
2)r

)
,

W3 = diag

(
3∑

r=0

cr(λ3,0)
r,

3∑
r=0

cr(λ3,0ω)
r,

3∑
r=0

cr(λ3,0ω
2)r

)
,

where c0 = 1− i, c1 = 1, c2 = 1− i, c3 = 1− 2i, and

λ3
1,0 = prod3(1) = u1u4u7 = 1

λ3
2,0 = prod3(2) = u2u5u8 = −i

λ3
3,0 = prod3(3) = u3u6u9 = −1.
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