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ABSTRACT

The orbits of the main satellites of Uranus are expected to slowly drift away owing to tides raised in the planet. As a result, the 5/3
mean motion resonance between Ariel and Umbriel was likely encountered in the past. Previous studies have shown that, in order
to prevent entrapment in this resonance, the eccentricities of the satellites must be larger than ∼ 0.01 at the epoch, which is hard to
explain. On the other hand, if the satellites experience some temporary capture and then escape, the inclinations rise to high values
that are not observed today. We have revisited this problem both analytically and numerically focussing on the inclination, using a
secular two-satellite model with circular orbits. We show that if the inclination of Umbriel was around 0.15◦ at the time of the 5/3
resonance encounter, capture can be avoided in about 60% of the cases. Moreover, after the resonance crossing, the inclination of
Umbriel drops to a mean value around 0.08◦, which is close to the presently observed one. The final inclination of Ariel is distributed
between 0.01◦ and 0.25◦ with a nearly equal probability, which includes the present mean value of 0.02◦.

Key words. celestial mechanics – planets and satellites: dynamical evolution and stability – planets and satellites: individual: Uranus
– planets and satellites: individual: Ariel – planets and satellites: individual: Umbriel

1. Introduction

The origin of the Uranian satellite system is not yet completely
understood and it is still under debate (eg. Pollack et al. 1991;
Szulágyi et al. 2018; Ishizawa et al. 2019; Inderbitzi et al. 2020;
Ida et al. 2020; Rufu & Canup 2022). Despite the formation
mechanism of the main satellites, their orbits slowly drift away
owing to tides raised in the planet (eg. Peale 1988; Tittemore
& Wisdom 1988, 1989, 1990; Pollack et al. 1991; Ćuk et al.
2020). Because the orbits do not all evolve at the same pace,
they may have encountered several mean motion resonances
(MMRs) in their way since their formation about 4.5 Gyr ago.
At present, there is no orbital commensurability between these
satellites, but MMRs are often invoked to explain some anoma-
lous observations, such as resurfacing events (e.g Dermott et al.
1988; Peale 1988; Tittemore 1990), the current relatively large
eccentricities (∼ 0.001) of all satellites (e.g Squyres et al. 1985;
Smith et al. 1986; Peale 1988), or the high inclination of Mi-
randa (∼ 4.3◦) (e.g Tittemore & Wisdom 1989, 1990; Malhotra
& Dermott 1990; Verheylewegen et al. 2013; Ćuk et al. 2020).

The latest low-order commensurability to have occurred was
the 5/3 MMR between Ariel and Umbriel (eg. Peale 1988; Ćuk
et al. 2020), which is consistent with recent geologic activity ob-
served in Ariel (eg. Zahnle et al. 2003; Cartwright et al. 2020).
The current free eccentricities still observed also support this
possibility (eg. Jacobson 2014). A detailed study on the pas-
sage through this resonance was carried out by Tittemore & Wis-
dom (1988) using a secular resonant two-satellite planar model
with small eccentricities. It was shown that if the 5/3 MMR
is approached with eccentricities of both satellites smaller than
∼ 0.01, a long-term capture in resonance is certain. Therefore,
in order to evade or skip this resonance, at least one of the ec-
centricities must have been close to 0.01 at the time. However,

Tittemore & Wisdom (1988) recognised that it is very difficult to
justify such high initial eccentricity values. Indeed, mutual per-
turbations between the largest Uranian satellites cannot explain
such high values alone (eg. Dermott & Nicholson 1986; Laskar
1986). Moreover, tidal friction within the satellites circularise
the orbits in a short timescale (eg. Squyres et al. 1985), and so
any large eccentricity remnant left by a prior MMR crossing is
expected to be quickly eroded.

Ćuk et al. (2020) revisited the passage through the 5/3 MMR
using a N-body numerical integrator, which includes the five
main satellites, non-planar orbits, and spin evolution. They
started their simulations with the current eccentricities and
adopted nearly zero inclination for all satellites (< 0.1◦). They
confirm that low initial eccentricities translate into capture in res-
onance, which can nevertheless be broken after some time due
to some chaotic excitation of the eccentricities. They also ob-
served that all five moons had their inclinations excited during
the resonance entrapment. The effect on the inclination is par-
ticularly significant in Miranda because it has the smallest mass;
however, after leaving the resonance, the remaining four moons
were all left with inclination values higher than the current ones.
In particular, Ariel and Umbriel acquired inclinations around 1◦,
which cannot be damped to the current observed mean values of
∼ 0.02◦ and 0.08◦, respectively. Ćuk et al. (2020) then propose
that the inclination of Umbriel can be lowered if its node is in-
volved in a secular spin-orbit resonance with the spin of Oberon
(not observed today). However, even if this mechanism works, it
would fail to damp the inclinations of the remaining satellites.

Ćuk et al. (2020) suggest that the 5/3 MMR between Ariel
and Umbriel can be responsible for the current high inclination
of Miranda instead of the crossing of the 3/1 MMR between Mi-
randa and Umbriel (Tittemore & Wisdom 1989, 1990). However,
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the high inclination values also acquired by Ariel and Umbriel
seem difficult to conciliate with the present observed system. A
more plausible scenario is that Miranda’s inclination is excited
during the Miranda and Umbriel 3/1 MMR crossing, and then
Ariel and Umbriel skip the 5/3 MMR without being captured to
prevent any damage on the inclinations. The problem with this
scenario is that for initial near zero inclination values for both
Ariel and Umbriel, at least one of these satellites must have an
initial eccentricity larger than 0.01 to avoid entrapment in the
5/3 MMR (Tittemore & Wisdom 1988), which is also challeng-
ing to explain.

Since the inclination appears to play an important role in the
passage of the 5/3 MMR between Ariel and Umbriel, here we in-
tend to look at this problem with a different perspective. Instead
of assuming a coplanar model with low initial eccentricities for
Ariel and Umbriel as in Tittemore & Wisdom (1988), we assume
a circular model with low inclinations using a similar approach
to Tittemore & Wisdom (1989) for the study of the 3/1 MMR
between Miranda and Umbriel. In Sect. 2, we introduce a sec-
ular resonant two-satellite circular model with low inclinations
using complex Cartesian coordinates and describe all dynamical
features present in the two degree-of-freedom phase space for
different ratios of the semi-major axes. In Sect. 3, we add tidal ef-
fects to the equations of motion using a constant time-lag model
and then compute the capture probabilities in the 5/3 MMR for
different initial inclination values. In Sect. 4, we perform a large
number of numerical simulations to estimate the possible out-
comes of the passage through the 5/3 MMR as a function of the
initial inclinations. Finally, in the last section, we summarise and
discuss our results.

2. Resonant secular dynamics

In this section we study the conservative dynamics of a three-
body system involved in a second order (p + q)/p MMR, hence
q = 2. For the 5/3 MMR, we additionally have p = 3, but our
model is valid for any p value. We further assume that the orbits
are circular (zero eccentricities) and have low inclinations.

2.1. Hamiltonian

We consider an oblate central body of mass m0 (Uranus) sur-
rounded by two point-mass bodies m1, m2 � m0 (satellites),
where the subscript 1 refers to the inner orbit (Ariel) and the
subscript 2 refers to the outer orbit (Umbriel). The potential en-
ergy of the system is given by (eg. Smart 1953)

U = −

2∑
k=1

Gm0mk

rk

1 + J2

(
R
rk

)2

P2(r̂k · s)

 − Gm1m2

|r2 − r1|
, (1)

where G is the gravitational constant; J2, R, and s are the sec-
ond order gravity field, the radius, and the spin unit vector of
the central body, respectively; rk is the position vector of mk
with respect to the centre of mass of m0 (planetocentric coor-
dinates); rk = |rk | is the norm; r̂k = rk/rk is the unit vector; and
P2(x) = (3x2 − 1)/2 is the Legendre polynomial of degree two.
We neglected terms in (R/rk)3 (quadrupolar approximation for
the oblateness). The Hamiltonian of the problem, H , was then
obtained by adding the orbital and rotational kinetic energies to
Eq. (1) .

2.1.1. Expansion in elliptical elements

We can expand the Hamiltonian in elliptical elements. To the
first order in the mass ratios, mk/m0, zeroth order in the eccen-
tricities, and second order in the inclinations, Ik (with respect to
the equatorial plane of the central body), we have (eg. Murray &
Dermott 1999)

H = HK +HO +HS +HR +HF +
Θ2

2C
, (2)

where

HK = −

2∑
k=1

Gm0mk

2ak
(3)

is the Keplerian part and ak are the semi-major axes,

HO = −

2∑
k=1

Gm0mk

2ak
J2

(
R
ak

)2 (
1 − 3I2

k sin2 (λk −Ωk)
)

(4)

is the contribution from the oblateness of the central body, λk are
the mean longitudes, Ωk are the longitudes of the nodes,

HS = −
Gm1m2

8a2

[
4 b(0)

1
2

(α)−α b(1)
3
2

(α)
(
I2
1 + I2

2

− 2I1I2 cos (Ω2 −Ω1)
)]

(5)

is the secular part, b( j)
s are Laplace coefficients, α = a1/a2, and

HR = −
Gm1m2

8a2

[
I2
1 cos ((p + 2)λ2 − pλ1 − 2Ω1)

− 2I1I2 cos ((p + 2)λ2 − pλ1 −Ω2 −Ω1)

+ I2
2 cos ((p + 2)λ2 − pλ1 − 2Ω2)

]
αb(p+1)

3
2

(α)

(6)

is the contribution from the second order resonant terms (q = 2).
The HS and HR terms arise solely from the direct part of the
disturbing function (last term in Eq. (1)), because in the circular
approximation the indirect part does not have secular or second
order resonant terms. The term inHF corresponds to the remain-
ing terms of the disturbing function that depend on other combi-
nations of the angles λ1, λ2, Ω1, and Ω2 that do not appear in the
expressions ofHS orHR.

Finally, for the last term in the Hamiltonian (Eq. (2)), cor-
responding to the rotational kinetic energy, C is the principal
moment of inertia of the central body and

Θ = Cω , (7)

which corresponds to the rotational angular momentum, ω = θ̇
is the angular velocity, and θ is the rotation angle. In the conser-
vative case, the rotational kinetic energy is constant and could
be dropped from the Hamiltonian. Nevertheless, when we in-
clude tidal dissipation (Sect. 3), there are angular momentum
exchanges between the spin and the orbits, and this term cannot
be neglected.
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2.1.2. Action-angle resonant variables

We can rewrite the Hamiltonian (2) using a set of canonical
action-angle variables. For that purpose, we adopted Andoyer
variables for the rotation (Θ, θ) and Poincaré variables for the
orbits (Λk, λk; Φk,−Ωk) with

Λk = βk
√
µkak , (8)

Φk = Λk(1 − cos Ik) ≈
1
2

ΛkI2
k , (9)

where βk = m0mk/(m0 + mk) and µk = G(m0 + mk). Since we aim
to study the dynamics of the system near the (p + 2)/p MMR,
we introduce the near resonant angle

σ =

(
1 +

p
2

)
λ2 −

p
2
λ1 , (10)

which is present in all terms of the resonant Hamiltonian
(Eq. (6)). Each term corresponds to a resonant combination:

ϕ1 = σ −Ω1 , ϕ2 = σ −Ω2 , ϕ3 =
1
2

(ϕ1 + ϕ2) . (11)

We further introduce the angles

γ =
p
2

(λ1 − λ2) = λ2 − σ and ϑ = θ − σ , (12)

such that
σ
γ
ϕ1
ϕ2
ϑ

 ≡ S


λ1
λ2
−Ω1
−Ω2
θ

 , (13)

with

S =


−p/2 1 + p/2 0 0 0
p/2 −p/2 0 0 0
−p/2 1 + p/2 1 0 0
−p/2 1 + p/2 0 1 0
p/2 −1 − p/2 0 0 1

 , (14)

which gives for the conjugated actions (eg., Goldstein 1950)
Σ
Γ

Φ̃1
Φ̃2
Θ̃

 = (S−1)T


Λ1
Λ2
Φ1
Φ2
Θ

 . (15)

The new set of canonical variables that uses the resonant angles
is then given by

Σ = Λ1 + Λ2 − Φ1 − Φ2 + Θ , σ =
(
1 +

p
2

)
λ2 −

p
2λ1

Γ =
(
1 + 2

p

)
Λ1 + Λ2 , γ = λ2 − σ

Φ̃1 = Φ1 , ϕ1 = σ −Ω1
Φ̃2 = Φ2 , ϕ2 = σ −Ω2
Θ̃ = Θ , ϑ = θ − σ

. (16)

2.1.3. Conserved quantities and average

We can rewrite the Hamiltonian (2) using the resonant canonical
variables (Eq. (16)). For the actions, we can replace the semi-
major axes and the inclinations using relations (8) and (9)

ak =
Λ2

k

β2
kµk

, (17)

Ik ≈

√
2Φk

Λk
. (18)

It is important to note, however, that the Λk are no longer actions
of the resonant variables, and they must be obtained as (Eq. (16))

Λ1 = Γ1 −
p
2

(Φ1 + Φ2) , (19)

Λ2 = Γ2 +

(
1 +

p
2

)
(Φ1 + Φ2) , (20)

with

Γ1 =
p
2

Γ (1 − ∆) , (21)

Γ2 = −
p
2

Γ
(
1 −

(
1 + 2

p

)
∆
)
, (22)

and

∆ = (Σ − Θ) /Γ . (23)

In the approximation of low inclinations, Φk � Λk (Eq. (18)),
and so we also have Φk � Γk, allowing us to write

Λα
1 ≈ Γα1

[
1 − α

p
2

Φ1 + Φ2

Γ1

]
, (24)

Λα
2 ≈ Γα2

[
1 + α

(
1 +

p
2

)
Φ1 + Φ2

Γ2

]
, (25)

and

Ik ≈

√
2Φk

Γk
. (26)

The angle θ does not appear in the expression of the Hamil-
tonian (Eq. (2)), and so ϑ does not appear either (Eq. (16)). As a
consequence, the conjugated action, Θ, is a constant of motion.
According to the d’Alembert rule (conservation of the angular
momentum), the remaining angles must be combined as

cos
(
k1λ1 + k2λ2 + k3Ω1 + k4Ω2

)
, ki ∈ Z , (27)

where k1+k2+k3+k4 = 0, or, using the resonant angles (Eq. (16)),

cos
((

k1 +
2
p

k1 + k2

)
γ − k3ϕ1 +

(
k1 + k2 + k3

)
ϕ2

)
. (28)

Thus, the angle σ also does not appear in the Hamiltonian, and
its conjugated action, Σ, is a constant of motion. We note that,

Σ = (Λ1 − Φ1) + (Λ2 − Φ2) + Θ

= β1
√
µ1a1 cos I1 + β2

√
µ2a2 cos I2 + Cω (29)
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Table 1. Present physical and orbital properties of the Uranian system (Thomas 1988; Jacobson 2014).

m (M�×10−10) R (km) 〈Trot〉 (day) J2(×10−3) C/(m0R2)
Uranus 436562.8821 25559. 0.7183 3.5107 0.2296
Satellite m (M�×10−10) R (km) 〈Torb〉 (day) 〈a〉 (R) 〈e〉 (×10−3) 〈I〉 (◦)

Ariel 6.291561 578.9 2.479971 7.468180 1.22 0.0167
Umbriel 6.412118 584.7 4.133904 10.403550 3.94 0.0796

does indeed correspond to the projection of the total angular mo-
mentum of the system along the direction of s, which must be
conserved.

Near the MMR, the two resonant angles ϕ1 and ϕ2 present
a slower variation than the angle γ, that is, ϕ̇1, ϕ̇2 � γ̇. There-
fore, we can construct the resonant secular normal form of the
Hamiltonian (to the first order in mk/m0) by averaging over γ:

H̄ = 〈H〉γ =
1

2pπ

∫ 2pπ

0
H dγ . (30)

As a result, 〈HF〉γ = 0, and since γ no longer appears in the ex-
pression of the averaged Hamiltonian, the conjugated variable, Γ
(Eq. (16)), also becomes a constant of motion. We thus reduced a
problem with five degrees of freedom initially to a problem with
only two degrees of freedom, (Φ1, ϕ1) and (Φ2, ϕ2), and three pa-
rameters, Σ, Γ, and Θ. The auxiliary quantities Γ1 (Eq. (21)) and
Γ2 (Eq. (22)) are also constant.

The resonant secular Hamiltonian then finally reads as fol-
lows:
H̄ = (Ka + Sa)(Φ1 + Φ2) +Kb(Φ1 + Φ2)2

+ (Oa + Sb)Φ1 + (Ob + Sc)Φ2

+ Sd

√
Φ1

√
Φ2 cos (ϕ1 − ϕ2)

+ RaΦ1 cos (2ϕ1) + RbΦ2 cos (2ϕ2)

+ Rc

√
Φ1

√
Φ2 cos (ϕ1 + ϕ2) , (31)

where K stands for the Keplerian coefficients (Eq. (3)), O for
the oblateness coefficients (Eq. (4)),S for secular the coefficients
(Eq. (5)), and R for the resonant coefficients (Eq. (6)). The Kep-
lerian part needs to be expanded to the second order in Φk (fourth
order in the inclinations), because Kb is much larger than the re-
maining coefficients. The explicit expression of all these coeffi-
cients is given in appendix A.

2.1.4. Complex rectangular coordinates

The equations of motion expressed in the variables (Φk, ϕk) may
experience some singularities when Φk = 0 (because of the
terms in Sd and Rc). To remove this problem, we can perform a
second canonical change of variables to rectangular coordinates
(Φk, ϕk)→ (yk, iyk), where

yk =
√

Φkeiϕk , (32)
and yk is the complex conjugate of yk. From Eq. (26), we have

yk ≈ Ik

√
Γk

2
eiϕk , (33)

and so these variables are proportional to the inclinations. The
resonant secular Hamiltonian (Eq. (31)) now reads as follows:

H̄ = (Ka + Sa) (y1y1 + y2y2) +Kb(y1y1 + y2y2)2

+ (Oa + Sb) y1y1 + (Ob + Sc) y2y2 +
Sd

2
(y1y2 + y1y2)

+
Ra

2
(y2

1 + y2
1) +

Rb

2
(y2

2 + y2
2) +

Rc

2
(y1y2 + y1y2) . (34)

The conservative equations of motion are simply obtained as

dyk

dt
= i

∂H̄

∂yk
, (35)

yielding

ẏ1 = i
[

(Ka + Sa) y1 + 2Kb
(
y1y1 + y2y2

)
y1

+ (Oa + Sb) y1 +
Sd

2
y2 + Ray1 +

Rc

2
y2

]
(36)

and

ẏ2 = i
[

(Ka + Sa) y2 + 2Kb
(
y1y1 + y2y2

)
y2

+ (Ob + Sc) y2 +
Sd

2
y1 + Rby2 +

Rc

2
y1

]
. (37)

2.2. Dynamical evolution

The values of mk, J2, and R are relatively well determined for
the Uranian system (Table 1). Therefore, to compute the coef-
ficients K , O, S, and R appearing in the Hamiltonian (34), we
only need to know the values of the parameters Γ1 and Γ2 (see
Appendix A), which in turn depend on the parameters Γ and ∆
(Eqs. (21) and (22)).

If we neglect the O coefficients (oblateness coefficients), it
is possible to eliminate the dependence in Γ, because we get
H̄ ∝ Γ−2 (see appendix A and Delisle et al. 2012, Sect. 2.1.4).
Although here we cannot use this simplification, the conserva-
tive dynamics is still not very sensitive to the Γ parameter (eg.
Tittemore & Wisdom 1988, 1989), and so we fixed it at the ref-
erence value1

Γ = 2.6684 × 10−12 M� au2 yr−1 . (38)

The dynamics of the 5/3 MMR essentially depends on the ∆
parameter (Eq. (23)), which measures the proximity to the reso-
nance. Following Delisle et al. (2012), we write

δ =
∆

∆r
− 1 , (39)

where ∆r is the value of ∆ at the planar (Ik = 0) nominal reso-
nance, that is (Eq. (23) and (29)),

∆r =
(
Λ1,r + Λ2,r

)
/Γr , (40)

1 The value of Γ was obtained by reversing the orbital tidal evo-
lution of the system (Eq. (73)) until the nominal resonance was
achieved (Eq. (77)) and starting with the present semi-major axes (see
Sect. 3.3.2).
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when n1/n2 = 5/3, where nk is the mean motion of the satellite
with mass mk. At the nominal resonance, using Kepler’s third
law, we have the following relation for the Λk,r:

Λ2,r = ε
(

5
3

)1/3
Λ1,r , with ε =

β2µ
2/3
2

β1µ
2/3
1

≈
m2

m1
. (41)

From the expression of Γr (Eq. (16)), we additionally have

Λ2,r = Γr −
5
3

Λ1,r , (42)

which can be combined with expression (41) to give

Λ1,r =

(
5
3 + ε

(
5
3

)1/3
)−1

Γr (43)

Λ2,r =

(
1 + ε−1

(
5
3

)2/3
)−1

Γr , (44)

and finally (Eq. (40))

∆r =

(
1 + ε

(
5
3

)1/3
) (

5
3 + ε

(
5
3

)1/3
)−1

. (45)

2.2.1. Equilibrium points

The equilibrium points correspond to stationary solutions of the
Hamiltonian. They can be found by solving

∂H̄

∂y1
= 0 and

∂H̄

∂y2
= 0 , (46)

that is, finding the roots of Eqs. (36) and (37). Splitting these
equations into their real and imaginary parts, yk = yk,r + iyk,i, we
get

y2,r = −2
Ka + 2Kb (Φ1 + Φ2) + Oa + Sa + Sb + Ra

Sd + Rc
y1,r , (47)

y1,r = −2
Ka + 2Kb (Φ1 + Φ2) + Ob + Sa + Sc + Rb

Sd + Rc
y2,r , (48)

y2,i = −2
Ka + 2Kb (Φ1 + Φ2) + Oa + Sa + Sb − Ra

Sd − Rc
y1,i , (49)

y1,i = −2
Ka + 2Kb (Φ1 + Φ2) + Ob + Sa + Sc − Rb

Sd − Rc
y2,i . (50)

Replacing expressions (48) and (50) into expressions (47)
and (49), respectively, yields that equilibria arise for

y1,r = y2,r = 0 or y1,i = y2,i = 0 . (51)

A more deep analysis shows that stable equilibria can only occur
when the real roots are null. We then focussed on these roots
to determine the exact position of the stable equilibria. Since
y1,r = y2,r = 0, we have (Eq. (32))

y1,i = ±
√

Φ1 and y2,i = ±
√

Φ2 , (52)

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-5 -4 -3 -2 -1 0 1

I 1
si
n
φ
1
(◦
)

I 2
si
n
φ
2
(◦
)

δ (×10−5)

Fig. 1. Evolution of the equilibrium points as a function of δ. The green
lines represent stable points inside the resonance (in a libration region),
the red lines represent hyperbolic points (unstable), and the blue lines
represent stable fixed points (in a circulation region).

which we replaced in expressions (49) and (50) to determine the
possible values of Φ1 and Φ2,

Φ1 = Φ2 = 0 (53)

or

Φ1 =
(Rc − Sd)ε± − 2(Ka + Oa + Sa + Sb − Ra)

4Kb(1 + ε2
±)

, (54)

Φ2 = ε2
±Φ1 , (55)

with

ε± =
Oa − Ob − Ra + Rb + Sb − Sc

Rc − Sd

±

√
(Oa − Ob − Ra + Rb + Sb − Sc)2 + (Rc − Sd)2

Rc − Sd
. (56)

The equilibrium point at Φ1 = Φ2 = 0 is always present,
although it can be stable or unstable. The remaining equilibria
only exist for some δ values. In Fig. 1, we show the evolution
of the equilibrium points as a function of δ. We rescaled the yk,i

by
√

Γk/2, such that we can translate the different equilibria in
terms of inclinations (Eq. (33)).

For positive δ values far from zero, there is only one equi-
librium point at Ik = 0, which is stable (in blue). For δ =
2.068 × 10−6, there is a first bifurcation in the equilibria: two
new stable equilibrium points appear at non-zero inclination
(in green), while the point at Ik = 0 becomes unstable. For
δ = −2.540 × 10−7, which is very close to the resonance nominal
value δ = 0 (Eq. (40)), a second bifurcation arises: two additional
unstable equilibrium points appear at a non-zero inclination (in
red), while the point at Ik = 0 becomes stable again.
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2.2.2. Energy levels

For a better understanding of the dynamics, we can look at the
energy levels of the resonant secular Hamiltonian (34) for dif-
ferent values of δ (Eq. (45)). Since our problem has two de-
grees of freedom, and thus four dimensions, we need to plot
these levels on section planes. We chose the plane (y1,i, y2,i) with
y1,r = y2,r = 0, in order for stable equilibria to become visible
(Eq. (52)). In Fig. 2, we show the energy levels for three val-
ues of δ, which are representative of the three different equilib-
rium possibilities appearing in Fig. 1. Again, we rescaled yk,i by
√

Γk/2, and so we actually show the energy levels in the plane
(I1 sinϕ1, I2 sinϕ2) with cosϕ1 = cosϕ2 = 0.

For δ = 5 × 10−6 > 0 (Fig. 2a), there is a single equilibrium
point (y1,i = 0, y2,i = 0) at the centre (in blue). It corresponds
to a fixed point of the Hamiltonian (34), which is surrounded
by a circulating region. Therefore, in this case (and for higher δ
values), all trajectories are outside the 5/3 MMR.

For δ = 0 (Fig. 2b), the system is at the nominal reso-
nance (Eq. (39)). In this case, the equilibrium point at the centre
(y1,i = 0, y2,i = 0) is still present (in red), but it is now unsta-
ble. Indeed, there is a separatrix in a tilted ‘8’ shape emerging
from this point that surrounds two additional stable equilibrium
points (in green). Trajectories inside the separatrix that encircle
the stable points are in libration and correspond to orbits inside
the 5/3 MMR. Trajectories outside the separatrix are in circula-
tion.

Finally, for δ = −2 × 10−6 < 0 (Fig. 2c), several equilibria
exist. There are two hyperbolic points (in red) from which a sep-
aratrix with two ‘banana’ shapes emerges. This separatrix delim-
its the phase space in libration and circulation regions. There are
two stable points (in green), one inside each banana island. Tra-
jectories that move around these points are in libration and corre-
spond to orbits inside the 5/3 MMR. The point (y1,i = 0, y2,i = 0)
at the centre (in blue) is again stable and inside a small circula-
tion region. Trajectories outside the separatrix are also in circu-
lation. This kind of phase space persists for smaller δ values, but
the central circulation region becomes larger, while the resonant
islands become thinner.

2.2.3. Surface sections

The energy levels from previous the section allowed us to iden-
tify the different regions of the phase space, but a priori they do
not correspond to trajectories followed by the system. Indeed,
since our problem has four dimensions, they show the trajecto-
ries when they cross the section plane with y1,r = y2,r = 0, which
only remain constant for the equilibrium points. An alternative
projection consists of fixing only y1,r = 0 (or y2,r = 0) together
with a constant energy, that is, to draw Poincaré surface sections.
This projection is less restrictive, and therefore allows us to dis-
tinguish between periodic (fixed points), quasi-periodic (closed
curves), and chaotic trajectories. For that purpose, we used the
modified Hénon method (Henon & Heiles 1964; Palaniyandi
2009).

In Fig. 2, we observe that the more diverse dynamics occurs
for δ = −2×10−6. We thus adopted this value to draw the surface
sections. Since the Hamiltonian (34) is a four-degree function of
yk, the intersection of the constant energy manifold by a plane
may have up to four roots (families). Each family corresponds
to a different dynamical behaviour, and so we must plot one of
them at a time. However, the families are symmetric and actually
we only need to show two of them. We chose to represent the
families with the positive roots (that we dub 1 and 2).
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Fig. 2. Energy level curves in the plane (I1 sinϕ1, I2 sinϕ2) with cosϕ1 =
cosϕ2 = 0, for δ = 5 × 10−6 (top), δ = 0 (middle), and δ = −2 × 10−6

(bottom). Stable equilibria are coloured in green (resonance) and blue,
while unstable equilibria are coloured in red, as well as the level curves
that correspond to the separatrix.
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In Fig. 3, we show a set of surface sections for the motion of
Ariel in the plane (y1,i, y1,r) with y2,r = 0. We rescaled yk again by
√

Γk/2, and so we actually show the surface sections in the plane
(I1 sinϕ1, I1 cosϕ1) with cosϕ2 = 0. Each panel corresponds to
a different energy value, which coincide with the energy levels
that are shown in Fig. 2c (we adopted the same colour code).
The lowest energies occur in the circulation regions, H̄ < H0,
the separatrix corresponds to a transition level, H̄ = H0, while
the largest energies occur in the libration region, H̄ > H0. The
inner circulation region is delimited by the levels 0 < H̄ < H0,
where H̄ = 0 corresponds to the energy of the equilibrium point
with y1 = y2 = 0 (blue point in Fig. 2c). For this energy range,
there are four families, while for the remaining energies only two
families exist.

For H̄ � 0 (Fig. 3a), only family 1 exists, and we observe
that the system is always quasi-periodic, corresponding to tra-
jectories in the outer circulation region. As the energy increases,
two islands appear, corresponding to trajectories that are in the
libration region (in resonance). Initially, the motion in these
new regions is also quasi-periodic. However, as the energy ap-
proaches the threshold H̄ = 0 (Fig. 3b,c), some chaotic regions
appear in the transition between the circulation and libration re-
gions. For 0 < H̄ < H0 (family 1), the chaotic regions increase,
while the resonant islands shrink (Fig. 3d,e), until they com-
pletely disappear for H̄ = H0 (Fig. 3f). For this specific energy
range, we also needed to plot family 2. Close to H̄ = 0, we ob-
serve quasi-periodic motion in the inner circulation region, but,
as we approach H̄ = H0, this area is also completely replaced
by a chaotic region (Fig. 3j,k,l). Finally, for H̄ > H0, we observe
that the chaotic region progressively vanishes and it is replaced
by quasi-periodic motion in the libration region (Fig. 3g,h,i). In
this energy range, we only have family 1 and trajectories in the
outer circulation region also do not exist. Moreover, there is also
a forbidden region at the centre of each panel that grows with the
energy value while the libration areas shrink.

From the analysis of the surface sections, we conclude that
the dynamics of the 5/3 MMR between Ariel and Umbriel is very
rich and depends on the energy of the system. In fact, the energy
depends on the value of the inclinations (Eq. (34)), given by the
variables y1 and y2 (Eq. (33)). Therefore, the value of the inclina-
tions of Ariel and Umbriel when the system encounters the res-
onance can trigger completely different behaviours. For H̄ < 0,
the motion is quasi-periodic, either in circulation or libration.
Near the separatrix, H̄ ∼ H0, the motion is mainly chaotic. Fi-
nally, for H̄ � H0, the motion is again quasi-periodic, but only
possible in libration with a small amplitude around the high in-
clination stable equilibrium points (Fig. 1).

3. Tidal evolution

The resonant dynamics presented in the previous section is con-
servative and thus the average semi-major axes remain constant.
However, the orbits of the Uranian satellites are expected to
evolve because of tidal interactions. The tidal contributions to
the orbital and spin evolution can be obtained by considering an
additional tidal potential (eg. Darwin 1880; Kaula 1964).

3.1. Tidal potential energy

Tides arise from differential and inelastic deformations of an ex-
tended body (e.g. Uranus) owing to the gravitational effect of a
perturber (e.g. Ariel or Umbriel). The resulting distortion gives
rise to a tidal bulge, which modifies the gravitational potential of

the extended body. The dissipation of the mechanical energy of
tides inside the body introduces a time delay, τ, between the ini-
tial perturbation and the maximal deformation. As the perturber
interacts with the additional potential field, the amount of tidal
potential energy is given by

Uk = −k2
Gm2

k

R

(
R
rk

)3 (
R
r′k

)3

P2(r̂k · r̂′k) , (57)

where k2 is the elastic second Love number for potential of the
body, rk = rk(t) is the position of the pertuber at a time t, and
r′k = rk(t − τ) is its position when it exerts the perturbation. In
this work we solely consider the deformations raised on Uranus
by its satellites, since we assumed the satellites as point masses
(Sect. 2). This choice is fully justified because for circular orbits
and synchronous satellites the tides raised by the planet on its
satellites can be neglected (eg. Correia 2009).

Although tidal effects do not preserve the mechanical energy,
it is possible to extend the Hamiltonian formalism from Sect. 2
by considering the primed quantities, r′k, as parameters (Mignard
1979). The tidal Hamiltonian then reads (Eqs. (2) and (57)) as
follows:

Ht = H + U1 + U2 . (58)

As in Sect. 2.1.1, we first expanded Uk in elliptical elements. To
the first order in the mass ratios, zeroth order in the eccentricities,
and second order in the inclinations, we have

Uk = −k2
Gm2

kR5

4a3
ka′3k

[
1 + 3 cos(2θ − 2θ′ − 2λk + 2λ′k)

−
3
2

I2
k

(
1 − cos(2λk − 2Ωk) + cos(2θ − 2θ′ − 2λk + 2λ′k)

− cos(2θ − 2θ′ + 2λ′k − 2Ωk)
)

−
3
2

I′2k

(
1 − cos(2λ′k − 2Ω′k) + cos(2θ − 2θ′ − 2λk + 2λ′k)

− cos(2θ − 2θ′ − 2λk + 2Ω′k)
)

+ 3IkI′k
(

cos(θ − θ′ − 2λk + 2λ′k + Ωk −Ω′k)

+ cos(θ − θ′ −Ωk + Ω′k)

− cos(θ − θ′ − 2λk + Ωk + Ω′k)

− cos(θ − θ′ + 2λ′k −Ωk −Ω′k)
)]
.

(59)

We first performed the canonical change of variables that uses
the resonant angles (Eq. (16)), and then changed to the complex
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Fig. 3. Poincaré surfaces of section for Ariel in the plane (I1 sinϕ1, I1 cosϕ1) with cosϕ2 = 0 and δ = −2 × 10−6. Each panel was obtained with a
different energy value, corresponding to the energy levels shown in Fig. 2c (we adopted the same colour code), andH0 = 1.06 × 10−19 M� au2 yr−2.
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Cartesian coordinates (Eq. (32)), to get

Uk = −k2
Gm2

kR5β12
k µ

6
k

4Γ7
kΓ′7k

[
ΓkΓ

′
k − 3Γ′k ykyk − 3Γk y′ky′k

− 6pk

(
Γ′k y1y1 + Γk y′1y′1 + Γ′k y2y2 + Γk y′2y′2

)
+ 3

(
ΓkΓ

′
k − Γ′k ykyk − Γk y′ky′k

− 6pk(Γ′k y1y1 + Γk y′1y′1 + Γ′k y2y2 + Γk y′2y′2)
)

× cos(2(ϑ − ϑ′ − qk(γ − γ′)))

+
3
2

Γk

(
y′2k + y′2k

)
cos(2qkγ

′)

+
3
2

Γ′k

(
y2

k + y2
k

)
cos(2qkγ)

+ 3
√

ΓkΓ
′
k

(
yky′k + y′kyk

)
cos(ϑ − ϑ′)

− 3
√

ΓkΓ
′
k

(
yky′k + yky′k

)
cos(ϑ − ϑ′ + 2qkγ

′)

− 3
√

ΓkΓ
′
k

(
yky′k + yky′k

)
cos(ϑ − ϑ′ − 2qkγ)

+ 3
√

ΓkΓ
′
k

(
yky′k + y′kyk

)
cos(ϑ − ϑ′ − 2qk(γ − γ′))

+
3
2

Γ′k

(
y2

k + y2
k

)
cos(2(ϑ − ϑ′ + qkγ

′))

+
3
2

Γk

(
y′2k + y′2k

)
cos(2(ϑ − ϑ′ − qkγ))

−
3
2

i Γk

(
y′2k − y′2k

)
sin(2qkγ

′)

−
3
2

i Γ′k

(
y2

k − y2
k

)
sin(2qkγ)

+ 3i
√

ΓkΓ
′
k

(
y′kyk − yky′k

)
sin(ϑ − ϑ′)

+ 3i
√

ΓkΓ
′
k

(
yky′k − yky′k

)
sin(ϑ − ϑ′ + 2qkγ

′)

− 3i
√

ΓkΓ
′
k

(
yky′k − yky′k

)
sin(ϑ − ϑ′ − 2qkγ)

− 3i
√

ΓkΓ
′
k

(
y′kyk − yky′k

)
sin(ϑ − ϑ′ − 2qk(γ − γ′))

−
3
2

i Γ′k

(
y2

k − y2
k

)
sin(2(ϑ − ϑ′ + qkγ

′))

+
3
2

i Γk

(
y′2k − y′2k

)
sin(2(ϑ − ϑ′ − qkγ))

]
, (60)

with p1 = −p/2, p2 = 1 + p/2, q1 = 1 + 2/p, and q2 = 1.
We note that σ does not appear in the expression of Uk.

Therefore, in the presence of tides the parameter Σ (Eq. (29))
remains conserved. The fast angle γ is still present in the expres-
sion of Uk, but at this stage we cannot perform an average as in
Sect. 2.1.3 because γ′ is considered as a parameter that can later
cancel with γ (see Eq. (64)).

3.2. Secular equations of motion

The equations of motion are obtained from Eq. (58) using the
Hamilton equations. The additional contributions from tides

only derive from the tidal potential energy Uk, and are given by

ẏk = i
2∑

j=1

∂U j

∂yk
, Γ̇ = −

2∑
j=1

∂U j

∂γ
, Θ̇ = −

2∑
j=1

∂U j

∂ϑ
. (61)

In principle, we should also write the equations for γ̇ and ϑ̇, but
these angles disappear from the equations of motion with some
of the following simplifications, and so we do not need them to
get a closed set for the secular evolution of the system.

To handle the expression of the primed quantities, we need
to use a tidal model. For simplicity, we adopt here the weak fric-
tion model (eg. Singer 1968; Alexander 1973), which assumes
a constant and small time delay, τ. This model is widely used
and provides very simple expressions for the tidal interactions,
because it can be made linear (eg. Mignard 1979):

λ′k ≈ λk − nkτ and θ′ ≈ θ − ωτ . (62)

It follows for the remaining primed quantities that

y′k ≈ yk − iyk (p2n2 + p1n1) τ , (63)

γ′ ≈ γ − p1 (n2 − n1) τ , (64)

ϑ′ ≈ ϑ + (p2n2 + p1n1 − ω) τ , (65)

with

nk = β3
kµ

2
k/Γ

3
k . (66)

We then substituted expressions (63) to (65) into the equations
of motion (61) and averaged over the fast angle γ (as in Eq. (30))
to finally get the secular equations for the tidal evolution

ẏ1 = −
3
2
D1

Γ13
1

(2ip + n1τ) y1 + 3i(p + 2)
D2

Γ13
2

y1 , (67)

ẏ2 = −
3
2
D2

Γ13
2

(−2i(p + 2) + n2τ) y2 − 3ip
D1

Γ13
1

y2 , (68)

Γ̇ = 3
D1

Γ13
1

(1 + 2/p)
[(

Γ1 + 6p(y1y1 + y2y2) − y1y1

)
ω

−
(
Γ1 + 6p(y1y1 + y2y2)

)
n1

]
τ

+3
D2

Γ13
2

[(
Γ2 − 6(p + 2)(y1y1 + y2y2) − y2y2

)
ω

−
(
Γ2 − 6(p + 2)(y1y1 + y2y2)

)
n2

]
τ , (69)

Θ̇ = −3
D1

Γ13
1

[(
Γ1 + 6p(y1y1 + y2y2) − y1y1

)
ω

−
(
Γ1 + 6p(y1y1 + y2y2) − y1y1

)
n1

]
τ

−3
D2

Γ13
2

[(
Γ2 − 6(p + 2)(y1y1 + y2y2) − y2y2

)
ω

−
(
Γ2 − 6(p + 2)(y1y1 + y2y2) − y2y2

)
n2

]
τ , (70)
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where

Dk = k2Gm2
kβ

12
k µ

6
kR5 . (71)

We note that in the expressions of y1 (Eq. (67)) and y2 (Eq. 68)),
we have a conservative contribution (imaginary terms) and a dis-
sipative contribution (real terms in τ). The conservative contribu-
tions result from a permanent tidal deformation and only slightly
modify the fundamental frequencies of the system, while the dis-
sipative contributions modify the secular evolution.

3.3. Tidal constraints

Tidal dissipation induces variations in the parameters Γ
(Eq. (69)) and Θ (Eq. (70)). Then, the coefficients K , O, S, and
R appearing in the Hamiltonian (34) slowly change in time
(Eqs. (21)−(23)), modifying the phase space (Fig. 2), which
translates into a secular evolution of the system. We note that
for the oblateness coefficients (Eqs. (A.3) and (A.4)), changes
are observed not only due to Γ, but also in J2, according to (eg.
Correia & Rodríguez 2013)

J2 = kf
ω2R3

3Gm0
, (72)

where ω = Θ/C (Eq. (7)) and kf is the fluid second Love number
for potential. Using the present rotation rate and J2 of Uranus
(Table 1), we obtained kf = 0.356.

3.3.1. Orbital evolution

For a better understanding of the tidal evolution of the satellites’
orbits, we can compute the secular evolution of the semi-major
axes and inclinations from Eqs. (17) and (18) as

ȧk ≈ 2Ak

(
ω

nk
(1 − 1

2 I2
k ) − 1

)
ak , (73)

İk ≈ −
Ak

2
ω

nk
Ik , (74)

with

Ak =
3Gm2

kR5

βka8
k

k2τ . (75)

Both Ariel and Umbriel have very low inclinations (Table 1).
Combined with the fast rotation rate of Uranus (ω/nk � 1), we
conclude that tides induce an outward migration of the satellites
(Eq. (73)), and they damp their inclinations (Eq. (74)).

3.3.2. Resonance encounter

We can extrapolate the past evolution of the semi-major axes
and determine when the 5/3 MMR encounter may have occurred
(Eq. (73)). Neglecting the effect of the inclination and assuming
a constant rotation rate for Uranus (ω/nk ≈ cte), we get

a7
2da2

m2 (ω/n1 − 1)
≈

a7
1da1

m1 (ω/n2 − 1)
, (76)

which can be integrated to obtain a2 as a function of a1. Starting
with the present system (Table 1) and assuming that the satel-
lites were not temporarily captured into resonance, we can move

10.38

10.39

10.40

10.41

7.37 7.39 7.41 7.43 7.45 7.47

a
2
(R

)

a1(R)

Fig. 4. Tidal evolution of the semi-major axes of Ariel and Um-
briel (Eq. (76)). The orange point marks the current observed values
(Table 1). The dashed line gives the position of the nominal 5/3 MMR
relation between a2 and a1 (Eq.( 77)). The blue point gives the best es-
timation for the semi-major axes at the nominal resonance (Eq. (78)).

backwards until the ratio of the nominal resonance is achieved
(Eq. (41))

a2/a1 ≈ (5/3)2/3 ≈ 1.4057 . (77)

This allowed us to get the best estimate for the semi-major axes
of Ariel and Umbriel at the exact 5/3 MMR (Fig. 4),

a1/R = 7.3906 , a2/R = 10.3891 , (78)

and to compute other related parameters, such as Γ (Eq. (38)).

3.3.3. Evolution timescale

The orbital evolution timescale depends on τ, which is related to
the tidal dissipation (Eq. (62)). A more commonly used dimen-
sionless quantity to measure the tidal dissipation is given by the
quality factor (eg. Correia & Valente 2022),

Q = 1/(2ωτ) . (79)

As a result of studying the likelihood of resonance cross-
ing in the Uranian system, Tittemore & Wisdom (1990) stated
that the 2/1 MMR Ariel-Umbriel cannot be crossed, while the
3/1 MMR Miranda-Umbriel can be, and thus they constrained
the interval of Q to be between 11 000 and 39 000. Following the
same approach, but using more recent measures for the satellites’
masses (Jacobson 2014), we find that Q = 8 000 is a more suit-
able value. From Eq. (79), we then computed τ ≈ 0.62 s. In fact,
the exact dissipation rate depends on the product k2τ (Eq. (75)).
As in previous studies, in the present work we adopted k2 =
0.104 (Gavrilov & Zharkov 1977), which translates into

k2

Q
= 1.3 × 10−5 ⇔ k2τ = 0.064 s . (80)

Using Eq. (73), we estimate that the 5/3 MMR was crossed
about 640 Myr ago. We can also estimate the damping timescale
for the inclinations of both satellites (Eq. (74)). We get

τinc ≈
4βka8

knkQ

3Gm2
kR5k2

, (81)

which yields about 180 Gyr and 1500 Gyr for Ariel and Umbriel,
respectively. We hence conclude that the presently observed in-
clination values are likely unchanged since the system crossed
the 5/3 MMR.
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3.4. Capture probability

The behaviour of the system when it crosses the 5/3 MMR is not
straightforward, since the problem has two degrees of freedom.
As explained in Sect. 2.2.3, the different behaviours while cross-
ing the resonance depend on the energy of the system, which cor-
responds to different inclinations. In order to get an idea of the
critical inclinations that tend to trap the system in resonance or
skip it, we can build a simplified one degree-of-freedom model.

The system can either be in resonance with the angle ϕ1 or
ϕ2. Following Tittemore & Wisdom (1988), we retained only the
terms associated with each angle and obtained their associated
one degree-of-freedom simplified Hamiltonian (Eq. (34))

Hk = Ak ykyk + Bk (ykyk)2 +
Ck

2
(y2

k + y2
k) , (82)

with

A1 = Ka + Oa + Sa + Sb , B1 = Kb , C1 = Ra , (83)

A2 = Ka + Ob + Sa + Sc , B2 = Kb , C2 = Rb . (84)

In this simplified case, we could then directly apply the the-
ory of the adiabatic invariant for resonance capture (Henrard
1982; Henrard & Lemaître 1983). In general, the phase space
of a given resonance presents three different regions delimited
by the separatrix (see for instance Fig. 2c): a libration region,
with area JR

k , and two circulation regions, one outside the libra-
tion region and another encircled by the separatrix, with an area
JC

k . Consider an initial trajectory with some energy Hk < H0.
As the system evolves due to tides, the phase space and the ar-
eas of each region also change. When the trajectory encounters
the resonance, depending on the exact place where the separatrix
is crossed, the system can either evolve into the libration region
(resonance) or into the inner circulation region. We can compute
the capture probability analytically, provided that the evolution
is adiabatic, that is, the tidal induced variations are much slower
than the conservative inclination variations. The capture prob-
ability can then be obtained by the modification of the phase
space with time, that is, by the change in the areas encircled by
the separatrix (eg. Yoder 1979; Henrard 1982):

Pcap =
J̇R

k

J̇R
k + J̇C

k

. (85)

The area of the resonance region is obtained by integrating
over the separatrix,

JR
k = i

∮
yk dyk . (86)

The energy of the separatrix (H0) can be found by finding the
hyperbolic points (see Sect. 2.2.1) and computing the Hamilto-
nian (82) at these points,

H0 = −
(Ak + Ck)2

4Bk
. (87)

Replacing H0 into expression (82), we find, for the separatrix
points, that

yk = −
2Akyk ±

√
−2Ck

(
Ak + 2y2

kBk + Ck

)2
/Bk

4y2
kBk + 2Ck

. (88)

There are two solutions, the + corresponding to the branch be-
tween the libration and the outer circulation region (J+

k ), and the
− corresponding to the branch between the libration and the in-
ner circulation region (J−k ). Therefore, we have JR

k = J+
k +J−k

and JC
k = −J−k , which gives (Eq. (85))

Pcap =
J̇+

k + J̇−k

J̇+
k

= 1 +
∂J−k
∂Γ

/ ∂J+
k

∂Γ
, (89)

where,

∂J−k
∂Γ

=
1
B2

k

arcsin
√− Ck

Ak

 +
π

2

 (BkA
′
k −AkB

′
k)

+
1
B2

k

√
−
Ck +Ak

Ck
(BkC

′
k − CkB

′
k) , (90)

∂J+
k

∂Γ
=

1
B2

k

arcsin
√− Ck

Ak

 − π2
 (BkA

′
k −AkB

′
k)

+
1
B2

k

√
−
Ck +Ak

Ck
(BkC

′
k − CkB

′
k) , (91)

and A′k = ∂Ak/∂Γ, B′k = ∂Bk/∂Γ, and C′k = ∂Ck/∂Γ. We note
that since Γ is the only time-dependent quantity appearing inAk,
Bk, and Ck (appendix A), J̇k = Γ̇ ∂Jk/∂Γ (we neglected the
small changes in Θ from the oblateness coefficients, Ok).

In Fig. 5, we show the probability of capture in the ϕ1 and ϕ2
resonances obtained with expression (89). For some inclination
values, we also show the results obtained with numerical inte-
grations of the equations of motion derived from the simplified
Hamiltonian (Eq. (82)) together with the secular tidal equations
(Eqs. (67)−(70)). For each initial inclination, we ran 100 simu-
lations where the initial angle ϕk was uniformly sampled. The
amount of simulations captured in resonance at the end of the
simulation are marked with a dot. The statistical fluctuation, rep-
resented as error bars, were estimated using binomial statistics,
with the expression

∆P =

√
Pcap

N

(
1 − Pcap

)
, (92)

where N = 100 is the number of simulations (e.g. Tittemore &
Wisdom 1988). We observe that there is a good agreement be-
tween the theoretical curve (Eq. (89)) and the output of the nu-
merical simulations, that is, the adiabatic approximation holds.

In Fig. 5, we observe that for initial inclinations lower than
0.05◦, the system is always captured in resonance. However, as
we increase the initial inclination, the capture probability quickly
decreases, it becomes ∼ 50% for Ik = 0.1◦, and drops to ∼ 30%
for Ik = 0.2◦. These results suggest that a system with nearly
coplanar orbits cannot escape the 5/3 MMR, but for inclinations
higher than about 0.1◦, it may be able to evade it.

We cannot completely rely on the conclusions obtained with
the simplified Hamiltonian, mainly for two reasons. One is be-
cause the complete Hamiltonian (Eq. (34)) depends on the incli-
nation of the other body. When we simplified the Hamiltonian
(Eq. (82)) for y1, we dropped all terms in y2 (and vice versa),
which is equivalent to setting y2 = 0. However, if we set y2 , 0,
more terms appear in the Hamiltonian, leading to a different dis-
tribution in the capture probabilities. The other reason is that the
complete Hamiltonian has two degrees of freedom, and so for
some combinations of the inclination values, the system can be
chaotic (see Sect. 2.2.3). For the trajectories crossing the chaotic
regions, the final outcome is unpredictable.
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4. Numerical simulations

We have seen that Ariel and Umbriel almost certainly encoun-
tered the 5/3 MMR at some time in the past. Depending on the
inclination values of these satellites, the system may experience
rather different behaviours. Near coplanar orbits are expected to
become trapped in resonance, while some inclination can lead to
alternative scenarios. In order to get a global view of the resonant
dynamics with tides, in this section we integrate the complete set
of differential equations (36), (37), and (67) to (70).

4.1. Setup

When a resonance is crossed, we cannot perform a backward in-
tegration because we have a stochastic evolution. Therefore, we
need to place the system slightly before the resonance encounter
and then integrate it forwards. It is not possible to determine the
exact semi-major axes prior to resonance crossing, but if the sys-
tem does not spend much time in resonance, the semi-major axes
should not differ much from the estimation given in Sect. 3.3.2.
We still need to slightly decrease a1 (or increase a2) to move the
system out of the nominal resonance (Eq. (78)). Since tides are
stronger in Ariel, we opted to shift a1 and kept a2 constant:

a1/R = 7.3892 , a2/R = 10.3891 . (93)

These values of the semi-major axes allowed us to compute the
initial Γ parameter (Eq. (16)). For some given initial inclination
values, we could also compute the initial value of ∆ (Eq. (23)),
which translates into an initial δ > 0 (Eq. (39)).

The physical properties of Uranus and its satellites can be
found in Table 1. The total angular momentum is conserved and
can also be obtained from the present system,

Σ = 9.367 247 × 10−10 M� au2 yr−1 . (94)

The initial rotational rate, ω, was obtained from Σ using Eq. (29)
with the pre-resonance semi-major axes (Eq. (93)). Finally, for
the tidal dissipation, we adopted k2τ = 0.064 s (Eq. (80)).

4.2. Comparison with analytical estimations

In general, tidal effects are weak and only correspond to small
perturbations of the conservative dynamics (adiabatic approxi-
mation). To verify that the numerical integrations do follow the
theoretical predictions from Sects. 2 and 3, we initially ran a few
simulations with the full equations of motion and then superim-
posed the output in the equilibria map as a function of δ (Fig. 1).
Since ω > nk, tidal effects are expected to increase the value of Γ
(Eq. (69)) and thus decrease the value of δ (Eq. (39)). Therefore,
the results of the simulations as a function of time must be read
from the right to the left in the figure.

In Fig. 6, we show the results of a first experiment with very
small initial inclinations for both satellites, I1 = I2 = 0.01◦.
Initially, when δ > 0, the system is in circulation with a small
amplitude around the equilibrium point at zero (y1 = 0, y2 = 0).
The system encounters the resonance when δ ≈ 0. However, just
before δ = 0, two stable equilibrium points emerge (correspond-
ing to the 5/3 MMR), and the equilibrium point at zero becomes
unstable. The system is thus forced to follow one of the two res-
onance branches. As the system evolves and δ < 0, the equilib-
rium point at zero becomes stable again. However, because the
amplitude of oscillation is small, the system closely follows the
resonant branch, which corresponds to an increase in the incli-
nations. We thus confirm that for initially near coplanar orbits,
the system cannot avoid capture in the 5/3 MMR (Sect. 3.4).

In Fig. 7, we show the results of a second experiment with
higher initial inclinations for both satellites, I1 = I2 = 0.1◦. The
initial evolution for δ > 0 is similar to the case with lower ini-
tial inclinations (Fig. 6), except that the amplitude of oscillation
is ten times larger in this case (corresponding to a system with a
higher energy). As the system encounters the resonance at δ ≈ 0,
it is not able to follow one of the resonant equilibria and it re-
mains in a chaotic region around the separatrix (Fig. 3f). In the
example on the left (Fig. 7a), after some time in the chaotic re-
gion with δ < 0, the system finds a way into the libration region
and follows one of the resonant branches in a quasi-periodic orbit
(Fig. 3i). On the other hand, in the example on the right (Fig. 7b),
the system finds an alternative path back into the circulation re-
gion around the equilibrium point at zero in a quasi-periodic or-
bit (Fig. 3k). We thus confirm that for initial orbits with some
inclination, the system experiences a chaotic regime for some
time (Sect. 2.2.3), after which it can either be captured in the
5/3 MMR, or escape it with some probability (Sect. 3.4).

4.3. Impact of the initial inclination

The present mean inclinations of Ariel and Umbriel (Table 1) are
likely unchanged after the system quits the 5/3 MMR (Eq. (81)).
However, they may have been rather different before this en-
counter, as the inclinations undergo some excitations while
crossing the resonance (Sect. 2). The fact that the system is
not trapped in resonance at present, implies that the separatrix
was crossed at some point and the inclinations had to experience
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Fig. 6. Tidal evolution of the system as function of δ for initial inclina-
tions I1 = I2 = 0.01◦. The results of the numerical simulation (in black)
are superimposed in the equilibria map (Fig. 1). We show the evolution
for the resonant angle ϕ1 (top) and ϕ2 (bottom).

some chaotic oscillations (Fig. 7b). Therefore, it is impossible to
simply integrate backwards and determine the exact inclination
values prior to the resonance encounter. To have a more clear
idea of what the system may have been, we need to perform a
statistical study of its past evolution, starting with arbitrary ini-
tial inclinations for both Ariel and Umbriel and then reject those
that are not coherent with the present observations.

For that purpose, we explored a mesh of initial inclinations
ranging between 0.001◦ and 0.2◦ with a stepsize of 0.05◦. For
each pair (I1, I2), we ran 1abe000 simulations evenly sampled
over the angle σ (Eq. (10)) for 100 Myr, in a total of 25 000 ex-
periments. In Table 2, we list the complete set of initial condi-
tions together with a summary of the outcome of the resonance
crossing. The results of the simulations are presented in percent-
age because they can be seen as a statistical distribution of a
given final evolution possibility. The total number of events of
each kind can be simply obtained multiplying the percent by ten.

4.3.1. Capture probability

For each run, we first evaluated whether capture in resonance
occurred or not. Capture takes place whenever at least one res-
onant angle, ϕk (Eq. (11)), switches from circulation to libra-
tion, and the mean motion ratio becomes approximately constant
(n1/n2 ≈ 5/3). The mean motion ratio criterion is usually more
useful to automatically detect captures because inside chaotic re-
gions the behaviour of the resonant angles can be quite erratic.
Conversely, capture does not occur when all resonant angles re-
main in circulation, which introduces only a small jump in the
mean motion ratios. For this last case, we consider that the reso-
nance is skipped. In Table 2, the relative number of these events
is dubbed as Ps (skip probability).

The capture probability can be simply evaluated as 1 − Ps.
However, when a capture occurs, we still have to distinguish be-

tween trajectories that remain captured for long periods of time
from those that are able to escape shortly after. Indeed, in many
resonant lockings, the inclinations remain chaotic and the sys-
tem is able to evade the resonance after some time. In theory, all
trajectories evading the resonance could lead to the present sys-
tem. In practice, that is not possible, because the longer the sys-
tem stays in resonance, the higher the final inclinations become
(Fig. 6), and they cannot be conciliated with the presently ob-
served values (Table 1). Moreover, Ćuk et al. (2020) have shown
that as long as Ariel and Umbriel stay in resonance, the inclina-
tions of the three other large satellites of Uranus also grow, in
particular that of Miranda. After only 10 Myr in resonance, is it
impossible to explain the observed values since tides are unable
to efficiently damp the inclinations (Eq. (81)). Therefore, in our
analysis, we split the capture events into those that stay in res-
onance for more than 10 Myr and those that are able to evade
it before that time. In Table 2, the relative number of escapes
is dubbed as Pe (escape probability) and the relative number of
long-term entrapments is referred to as Pc (capture for more than
10 Myr probability).

In most sets of the simulations shown in Table 2, all three
scenarios described above (capture, escape, and skip) are simul-
taneously present. To better illustrate the different possibilities,
in Fig. 8, we show one example of each case, corresponding to
set #17 (with an initial I1 = 0.05◦ and I2 = 0.15◦).

In Fig. 8a, the system is permanently captured in resonance.
Prior to the resonance encounter, the semi-major axes ratio fol-
lows the asymptotic evolution predicted by Eq. (73). When the
system comes across the resonance (at t ≈ 11 Myr), the semi-
major axes ratio becomes constant (since n1/n2 ≈ 5/3), devi-
ating considerably from the asymptotic line. Indeed, looking at
Fig. 4, when capture occurs, instead of following the black curve,
the system follows the dashed line, corresponding to the nominal
resonance (Eq. (77)). Shortly after being captured, the system en-
ters into the chaotic region. The inclinations of both satellites are
excited and grow steadily on average, in particular that of Ariel,
which oscillates between the two resonant branches (green lines
in Fig. 1). For a time t ≈ 40 Myr, the system finds a way into the
libration region and becomes quasi-periodic, as in the example
shown in Fig. 7a.

In Fig. 8b, the system is temporarily captured in resonance
for less than 10 Myr. As in the previous example, the semi-major
axes ratio initially follows the asymptotic evolution predicted by
Eq. (73), but it switches to a constant ratio as soon as capture in
resonance occurs (at t ≈ 11 Myr). As before, during the resonant
entrapment, the system enters into the chaotic region and the in-
clinations of both satellites start to grow. However, for a time
around t ≈ 18 Myr (that is, just 7 Myr after being captured), the
system finds a way outside the chaotic region that breaks the res-
onant locking and returns into the circulation region around the
equilibrium point at zero (blue line in Fig. 1). From that point on,
the semi-major axes ratio again follows the asymptotic evolution
predicted by Eq. (73), though restarting with a slightly higher
ratio, and the inclinations of both satellites stabilise around a
given constant mean value. The final inclination of Ariel is al-
ways higher than its initial value because of the forcing during
the resonant phase. The final inclination of Umbriel is less im-
pacted by this mechanism and it does not have a systematic trend
because it oscillates around the initial value with a large ampli-
tude during the resonance crossing.

Finally, in Fig. 8c, the system shortly skips the resonance. As
usual, the semi-major axes ratio initially follows the asymptotic
evolution predicted by Eq. (73), and it undergoes some perturba-
tions during the resonance crossing. However, it quickly returns
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simulation (in black) are superimposed in the equilibria map (Fig. 1). We show the evolution for the resonant angle ϕ1 (top) and ϕ2 (bottom).

to the asymptotic evolution, though restarting with a slightly
lower ratio. In this case, there is almost no chaotic evolution
for the inclinations because, just after crossing the separatrix,
the system directly goes into the circulation region around the
equilibrium point at zero (blue line in Fig. 1). The inclination
of Ariel initially briefly grows since, owing to the topology of
the 5/3 MMR (Fig. 2), it is not possible to reach the inner cir-
culation region without moving around the resonant equilibrium
for a short time (less than 1 Myr). Since in the example #17 the
initial inclination of Ariel is indeed relatively small, for a short
moment the inclination of Ariel follows the resonant branch and
has to increase (green line in Fig. 1). Nevertheless, as soon as the
equilibrium point at zero becomes stable, the system moves back
into the circulation region and the inclination of Ariel drops. In
the example shown in Fig. 8c, the inclination of Ariel decreases
to a mean value smaller than the initial one, but actually in other
examples it can be anything between zero and the maximum pre-
viously attained. The brief resonant excitation only involves the
angle ϕ1, and so it does not impact the inclination of Umbriel
much. Its amplitude grows due to the mutual interactions with
Ariel, but the mean value remains constant. However, as the res-
onance is skipped, the mean value of Umbriel inclination sud-
denly drops to a lower level. This reduction is always observed
because the inner circulation region is confined within a region
of low inclination for Umbriel, in particular for δ values very
close to zero (Fig. 2c).

Fig. 8c also provides an example of a simulation where the
system crosses the 5/3 MMR and subsequently evolves into
the presently observed configuration (orange dots, taken from
Table 1). Not all simulations #17 that skip the resonance end
in the present system, though a significant number is consistent
with it. On the other hand, some simulations starting with differ-
ent initial conditions (Table 2) can also evolve into the present
state. Therefore, only a more refined analysis of the final distri-
bution of the inclinations of both Ariel and Umbriel can provide

more insight into the occurrence likelihood of the currently ob-
served system.

4.3.2. Statistics

For the set of simulations #1 − #8 (Table 2), that is to say those
with initial I2 ≤ 0.05◦, the system is captured in resonance nearly
in 100% of the cases. For the initial inclination of Umbriel, these
results are thus in agreement with the predictions of the simpli-
fied model presented in Sect. 3.4. Since capture in the 5/3 MMR
is not observed today, we can immediately exclude this range of
initial conditions. We hence conclude that, regardless of the ini-
tial inclination of Ariel, the system requires some moderate ini-
tial inclination for Umbriel (I2 & 0.1◦) to evolve into the present
state.

The resonance crossing is a stochastic process and therefore
the same initial inclinations with a slightly different initial res-
onant angle may end up in a completely different final state. In
all of the other sets of simulations that we performed (#9− #25),
the system can either remain captured for a long time, escape
the resonance in less than 10 Myr, or simply skip it. In gen-
eral, as we increase the initial inclinations of both satellites, the
probability of capture in resonance decreases, in conformity with
the analysis from Sect. 3.4. Interestingly, the number of trajecto-
ries temporarily captured for less than 10 Myr does not change
much with the initial conditions, they occur around 20% − 25%
of the time. This suggests that the chaotic diffusion, which char-
acterises this transient regime, is not very sensitive to the initial
inclinations. Finally, as a result of the previous two outcomes, as
we increase the initial inclinations of both satellites, the number
of simulations that simply skip the resonance also increases.

For those systems that skip or escape the 5/3 MMR, one can
ask if the final inclinations are in agreement with the present
observations. However, there is not an easy answer because of
the chaotic diffusion. Indeed, the final inclinations of Ariel and
Umbriel never end exactly with the same values, but they rather
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Table 2. Initial conditions and summary of the numerical simulations’s results of the 5/3 MMR crossing.

# I1 (◦) I2 (◦) Pc(%) Pe(%) Ps(%) 〈I1〉 (◦) ∆I1 (◦) 〈I2〉 (◦) ∆I2 (◦)
1 0.001 0.001 100.0 − −

2 0.05 0.001 100.0 − −

3 0.10 0.001 99.2 0.8 −

4 0.15 0.001 100.0 − −

5 0.20 0.001 100.0 − −

6 0.001 0.05 100.0 − −

7 0.05 0.05 100.0 − −

8 0.10 0.05 97.3 2.5 0.2
9 0.15 0.05 82.4 10.5 7.1 0.149 0.062 0.056 0.023

10 0.20 0.05 80.9 9.3 9.8 0.187 0.054 0.047 0.019
11 0.001 0.10 90.1 9.2 0.7 0.170 0.041 0.047 0.016
12 0.05 0.10 83.1 13.6 3.3 0.167 0.050 0.041 0.022
13 0.10 0.10 50.6 28.5 20.9 0.145 0.059 0.049 0.020
14 0.15 0.10 38.8 19.2 42.0 0.119 0.068 0.068 0.020
15 0.20 0.10 36.2 15.8 48.0 0.141 0.066 0.081 0.023
16 0.001 0.15 39.6 26.5 33.9 0.112 0.068 0.083 0.019
17 0.05 0.15 38.6 25.8 35.6 0.114 0.069 0.095 0.024
18 0.10 0.15 35.1 25.1 39.8 0.088 0.081 0.109 0.017
19 0.15 0.15 31.0 23.2 45.8 0.099 0.082 0.127 0.023
20 0.20 0.15 30.0 15.9 54.1 0.104 0.085 0.136 0.021
21 0.001 0.20 32.7 26.2 41.1 0.107 0.073 0.144 0.018
22 0.05 0.20 31.9 28.6 39.5 0.116 0.070 0.152 0.018
23 0.10 0.20 30.1 23.9 46.0 0.109 0.072 0.162 0.015
24 0.15 0.20 27.1 22.1 50.8 0.117 0.075 0.173 0.013
25 0.20 0.20 27.0 15.2 57.8 0.119 0.076 0.182 0.014

Ik is the initial inclination of each satellite; Pc is the number of simulations trapped in resonance more than 10 Myr; Pe is the number
of simulations that were captured in resonance, but escaped in less than 10 Myr; Ps is the number of simulations that skipped the
resonance; and 〈Ik〉 and ∆Ik are the mean and the standard deviation, respectively, of a Rice distribution adjusted to the final results.

follow some kind of statistical distribution. Considering only the
trajectories that quickly evade or skip the resonance (Pe and Ps),
we can build a histogram to better understand how they are dis-
tributed for each set of simulations #9−#25 (i.e. we only consider
simulations with less than 95% of capture probability).

In Fig. 9, we show three examples of histograms for the sets
#9 (I1 = 0.15◦, I2 = 0.05◦), #17 (I1 = 0.05◦, I2 = 0.15◦), and
#19 (I1 = 0.15◦, I2 = 0.15◦). The final inclinations of Ariel and
Umbriel are distributed in classes with a size of 0.015◦ and the
number of events in each class is normalised by the total num-
ber of trajectories that quickly evaded or skipped the resonance.
We observe that for Ariel, the final inclinations are more or less
evenly distributed between 0.01◦ and 0.25◦, while for Umbriel
the final inclinations closely pile up around some mean value.

To better analyse the results in a systematic way, and since
Ik ∝ |yk | (Eq. (33)), we fitted a Rice distribution to each data
set (Rice 1945), which describes the modulus of a random walk
variable in two dimensions. This function has the form

f (I) =
I

∆I2 B0

(
I 〈I〉
∆I2

)
exp

(
−

I2 + 〈I〉2

2∆I2

)
, (95)

where 〈I〉 is the mean inclination, ∆I is the standard deviation,
and B0(x) is the modified Bessel function, given by

B0 (x) =

∞∑
n=0

x2n

n!2 . (96)

In Fig. 9, for each histogram we also show the curve of the Rice
distribution corresponding to the best fit parameters 〈I〉 and ∆I.

We verified there is a reasonably good agreement between the
histogram and the derived distribution, in particular for the final
inclination of Umbriel. We hence adopted the best fit parameters
obtained in this way to characterise each data set.

The statistical results obtained are listed in Table2. From a
detailed analysis, for the trajectories that are not trapped in res-
onance, we observe the following: for Ariel, regardless of the its
initial inclination value, the final inclinations are always more
or less uniformly distributed2 in the interval I1 ∈ [0.01◦, 0.25◦];
and for Umbriel, the final inclinations are gathered around the
mean value with a standard deviation ∆I2 ≈ 0.02◦, and the mean
value for the final inclination of Umbriel increases with the ini-
tial inclinations of both satellites. A more subtle analysis addi-
tionally shows that the average final inclination of Umbriel is al-
ways lower than its initial value and it also depends on the initial
inclination of Ariel. It is approximately given by (see Fig. 10)

〈I2〉 − I2 ≈ −0.06◦ + 0.22 I1 , (97)

that is, to say the lower the initial inclination of Ariel is, the
larger the decrease observed in the initial inclination of Umbriel.

The present average inclinations of Ariel and Umbriel are
I1 ≈ 0.02◦ and I2 ≈ 0.08◦, respectively (Table 1). After crossing
the 5/3 MMR, the inclination of Ariel is always approximately
2 We note that by construction, the Rice distribution must be zero
when the inclination is zero and it has to peak around the mean value
(Eq. (95)). As the final inclinations of Ariel are more or less uniformly
distributed, a step function would provide a better adjustment. Never-
theless, we kept the Rice distribution for Ariel for simplicity since it is
able to correctly capture the mean value and the dispersion around it.
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semi-major axes (top), the inclination of Ariel (middle), and the inclination of Umbriel (bottom) as a function of time. Each column corresponds to
a different simulation. We show an example of a system that is permanently caught in resonance (a), one that is captured but evades the resonance
in less than 10 Myr (b), and another that skips the resonance without capture (c). The blue line gives the asymptotic evolution predicted by Eq. (73),
while the dashed line gives the position of the nominal resonance Eq. (77)). The orange dots mark the present mean inclinations (Table 1).

uniformly distributed and not very sensitive to the initial condi-
tions. The presently observed value is thus compatible with near
zero or moderate initial inclinations of both satellites (Ik < 0.2◦),
but no additional constraints can be derived. However, the final
inclination of Umbriel strongly depends on the initial inclination
of both satellites (Eq. (97)). We hence conclude that the best con-
figuration that reproduces the present data was obtained for ini-
tial I1 ≈ 0.20◦ and I2 ≈ 0.10◦ (#15, Table 2) or initial I1 . 0.05◦
and I2 ≈ 0.15◦ (#16 and #17, Table 2).

The satellites of Uranus were likely formed in a circumplan-
etary disk (eg. Pollack et al. 1991; Szulágyi et al. 2018; Ishizawa
et al. 2019; Inderbitzi et al. 2020), and so the initial inclinations
should have been extremely small. Therefore, initial inclinations
of 0.15◦ or higher are very difficult to explain. However, Um-
briel was most likely previously involved in a 3/1 MMR with
Miranda (Tittemore & Wisdom 1989, 1990), which can excite
the inclination of Umbriel to 0.15◦ prior to the encounter with
the 5/3 MMR. We hence conclude that the most likely scenario
for the initial inclinations of Ariel and Umbriel is I1 . 0.05◦ and
I2 ≈ 0.15◦ (#16 and #17, Table 2).

5. Conclusion

Ariel and Umbriel have almost certainly passed through the
5/3 MMR in the past owing to the tidal evolution of their or-
bits. However, the exact mechanism that allows the system to
evade capture in this resonance is a mystery. For coplanar orbits
(zero inclinations), the eccentricity of at least one satellite must

be close to 0.01 at the time, which is unlikely because tides are
expected to quickly damp the eccentricities to nearly zero (Titte-
more & Wisdom 1988). For non-coplanar orbits, the inclinations
appear to grow to high values, which is unlikely because tides
are very inefficient to damp the inclinations to the presently ob-
served near zero values (Ćuk et al. 2020).

To address this question, in this paper we revisited the
5/3 MMR crossing problem only focussing on the inclination.
We adopted a secular resonant two-satellite circular model with
low inclinations, using a Hamiltonian approach similar to Tit-
temore & Wisdom (1989) for the study of the 3/1 resonance
between Miranda and Umbriel. However, in our model we in-
cluded the spin evolution of Uranus, we used complex Carte-
sian coordinates, and we adopted the total angular momentum of
the system as a canonical variable, which is conserved and natu-
rally removes one degree of freedom from the problem. We thus
only needed to perform one average over a fast angle, instead of
the widely used average over two fast angles (eg. Tittemore &
Wisdom 1988, 1989; Michtchenko & Ferraz-Mello 2001; Alves
et al. 2016). We also implemented a Hamiltonian extension for
tides based on the constant time-lag model, which provides the
exact tidal evolution for all variables in the problem.

Our model is valid for any second order MMR, and thus
not restricted to the 5/3 MMR between Ariel and Umbriel. For
instance, it can be directly applied to the passage through the
3/1 MMR between Miranda and Umbriel. More generally, it can
also be used to study a large number of planetary systems near
second order resonances (in the circular approximation), such
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as the 3/1 MMR for HD 60532 (Laskar & Correia 2009), the
5/3 MMR for HD 33844 (Wittenmyer et al. 2016), the 7/5 MMR
for HD 41248 (Jenkins et al. 2013), or the 9/7 MMR for Kepler-
29 (Vissapragada et al. 2020).

Applying our model to Ariel and Umbriel, we have shown
that, prior to the 5/3 MMR encounter, the system is in circu-
lation around an equilibrium point at the origin of the coordi-
nates (y1 = 0, y2 = 0). As the system approaches the reso-
nance, this equilibrium becomes unstable, while two other sta-
ble symmetrical equilibria appear, corresponding to libration in
resonance. Shortly after, the equilibrium at zero becomes stable
again, corresponding to a new circulation region (see Fig. 2).
For initial very low inclination values (low energy), the system
is thus forced to follow one of the resonant equilibria (capture).

However, for moderate inclinations (higher energy), the system
may encounter the resonance when all the stable equilibrium
possibilities are already available and directly go to the circula-
tion region (skip). Alternatively, the system enters into a chaotic
regime and can subsequently evade into the circulation (escape)
or the libration regions (capture). The chaotic nature of the sys-
tem as a function of the energy is clearly portrayed in a sequence
of Poincaré surface sections obtained with the modified Hénon
method (Fig. 3).

The crossing of the 5/3 MMR is a stochastic process, and so
we performed a large number of numerical simulations covering
many different combinations for the initial inclinations of Ariel
and Umbriel. The results show that the initial inclination of Um-
briel must have been higher than about 0.1◦ to avoid a permanent
capture. Moreover, in order to conciliate the output of the simu-
lations with the presently observed system (Table 1), we find that
the optimal inclinations for the satellites prior to the resonance
encounter are I1 . 0.05◦ for Ariel and I2 ≈ 0.15◦ for Umbriel. In
this configuration, about 60% of the simulations avoid capture in
resonance and the final inclination distribution of Umbriel clus-
ters around the present mean value of 0.08◦. The final inclina-
tion distribution of Ariel spreads between 0.01◦ and 0.25◦ with a
nearly equal probability, which includes the present mean value
of 0.02◦. The inclination damping timescales of ∼ 180 Gyr for
Ariel and ∼ 1500 Gyr for Umbriel additionally suggest that the
inclination values obtained just after crossing the resonance have
nearly remained unchanged up to the present.

The satellites of Uranus were presumably formed in a cir-
cumplanetary disk, and so the primordial eccentricities and incli-
nations should have been extremely small. Before the encounter
with the 5/3 MMR, the Uranian satellites may have crossed other
MMRs (eg. Peale 1988; Ćuk et al. 2020). In general, these res-
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onances excite the eccentricities and the inclinations of the bod-
ies involved in the commensurability. Tides are very efficient at
damping the eccentricities, but not the inclinations. Therefore,
while the remnant eccentricities are quickly eroded, the incli-
nations are fossilised until the next resonant encounter. For in-
stance, the present high inclination of Miranda (∼ 4.3◦) is usu-
ally explained after a passage through the 3/1 MMR between
Miranda and Umbriel that occurred several billion years ago.
Interestingly, this resonance also involves Umbriel, whose in-
clination can therefore also be excited, though to a much lower
value than that of Miranda (Tittemore & Wisdom 1989, 1990).
As a consequence, prior to the encounter with the 5/3 MMR, it
is reasonable to assume a near zero inclination for Ariel and an
inclination around 0.15◦ for Umbriel.

The results obtained in this paper are very compelling, but
they need to be taken with caution because our model is lim-
ited to circular orbits and two satellites. In a non-circular model,
the eccentricity terms introduce other resonant angles that pro-
vide additional libration and chaotic regions to the problem (Tit-
temore & Wisdom 1988). Indeed, for the 3/1 MMR between
Miranda and Umbriel, it was shown that the coupling between
the eccentricity and inclination resonances may cause significant
variations in the eccentricity evolution of Miranda (Tittemore &
Wisdom 1990). Moreover, the presence of the remaining three
large satellites or Uranus can also introduce three-body reso-
nances that may further excite the eccentricities and the incli-
nations (Ćuk et al. 2020). Therefore, in order to fully understand
how exactly the system evaded the 5/3 MMR between Ariel and
Umbriel and subsequently settled into the present state, future
work should take into account the effect of the eccentricities and
from all five major satellites in the Uranian system.
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Appendix A: Conservative Hamiltonian coefficients

We note that
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where α0 ≈ 0.7114 corresponds to α = a1/a2 at the nominal
resonance (Eq. (77)).
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