
Breakdown of helical edge state topologically protected conductance in
time-reversal-breaking excitonic insulators

Yan-Qi Wang,1, 2 Micha l Papaj,1 and Joel E. Moore1, 2

1Department of Physics, University of California, Berkeley, California 94720, USA
2Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

Gapless helical edge modes are a hallmark of the quantum spin Hall effect. Protected by
time-reversal symmetry, each edge contributes a quantized zero-temperature conductance quan-
tum G0 ≡ e2/h. However, the experimentally observed conductance in WTe2 decreases below G0

per edge already at edge lengths around 100 nm, even in the absence of explicit time-reversal break-
ing due to an external field or magnetic impurities. In this work, we show how a time-reversal
breaking excitonic condensate with a spin-spiral order that can form in WTe2 leads to the break-
down of conductance quantization. We perform Hartree-Fock calculations to compare time-reversal
breaking and preserving excitonic insulators. Using these mean-field models we demonstrate via
quantum transport simulations that weak non-magnetic disorder reproduces the edge length scaling
of resistance observed in the experiments. We complement this by analysis in the Luttinger liquid
picture, shedding additional light on the mechanism behind the quantization breakdown.

I. INTRODUCTION

The discovery of the quantum spin Hall (QSH) effect
gave rise to a flurry of research on the topological aspects
of quantum materials behavior. One of the key features
of the QSH is the presence of helical edge states protected
by the combination of symmetry and topology [1–9]. The
low-energy spectrum of such a system consists of coun-
terpropagating electron states with opposite spins, con-
nected by time-reversal symmetry. Due to the orthogo-
nality of states in a Kramers pair, elastic backscattering
by a static potential is forbidden as long as time-reversal
symmetry is preserved. When the bulk of the material
is insulating, each such helical edge state yields a quan-
tized zero-temperature conductance given by G0 ≡ e2/h,
the conductance quantum. The first theoretically pre-
dicted QSH insulators were HgTe/CdTe quantum well
heterostructures, which have been intensively studied ex-
perimentally since the initial proposal [10–27]. However,
because the penetration depth of the edge states in HgTe
quantum wells is large, it is often difficult to separate
the edge physics from the bulk behavior [28]. This has
lead to the search for alternative platforms, among which
the most prominent are single layers of the transition
metal dichalcogenide WTe2 in the 1T’ crystalline struc-
ture [29–33]. Several experiments have observed signa-
tures of the QSH effect in that platform, both through
transport measurements [30, 32] as well as scanning tun-
neling microscopy/spectroscopy [31, 34, 35].

Unfortunately, while the edge transport provides a new
way towards dissipationless transport and quantum com-
putation [1–9], the experimental observation of robust
conductance quantization in realistic scenarios has been
elusive [11, 15, 17, 30, 32, 36–39]. For example, in the case
of WTe2, while signs of QSH have been observed up to
temperatures of 100 K, these pertain to the devices with
edge lengths shorter than 100 nm, much smaller than
the multiple-micron lengths for the conductance quanti-

zation seen in the integer quantum Hall effect, which also
is topological in origin. This discrepancy between the
expected robustness of quantization and the imperfect
experimental behavior prompted intense theoretical ex-
ploration of the possible explanations for this difference.
One of the fundamental reasons for the deviation from
perfect quantization is that while the time-reversal sym-
metry precludes the overlap of wave functions of counter-
propagating degenerate time-reversal states, there is no
such restriction for them at different energies. There-
fore, time-reversal-invariant perturbations can still lead
to back-scattering of the electrons in a helical channel
through interaction-induced inelastic processes with the
help of non-magnetic disorder [40]. In fact, interaction-
induced inelastic one- or two-particle backscattering is
allowed since the momentum difference between the ini-
tial and final states can be compensated by non-magnetic
disorder [41, 42]. The deviation of the perfect conduc-
tance quanta has been thus attributed to many factors,
including coupling to charge puddles [43, 44], incoherent
electromagnetic noise [9], nuclear spins [45, 46], quenched
disorder [47, 48], spin orbit coupling [49–55], and spin-
phonon coupling [56, 57].

In this work we explore the possibility of explaining
the deviation from the perfect conductance quantization
in WTe2 via the formation of a time-reversal breaking
excitonic condensate [58, 59]. Besides the quantum spin
Hall effect, WTe2 exhibits also fascinating interaction-
driven effects, including superconductivity [60] and po-
tential excitonic insulator states [61, 62]. In the latter
case, the effect is due to the possible semimetallic non-
interacting band structure of WTe2 with a hole pocket
around the Γ point of the Brillouin zone and two elec-
tron pockets along the Γ − X direction. Formation of
an excitonic condensate with finite momentum pairing
equal to the separation between the pockets was postu-
lated and experimental signatures of such a state were
observed [61, 62].
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However, the exact nature of the excitonic state is un-
clear and the possibility of time-reversal breaking spin-
spiral or spin-density wave at the Hartree-Fock mean field
level has been raised [59]. Starting from a bulk Hartree-
Fock calculation, we observe both time-reversal-breaking
and -preserving energy minima, with unconstrained min-
imization often favoring the former. We then derive
a tight-binding model for the excitonic insulator states
and use it to perform quantum transport calculations
for a finite width ribbon with disorder. We demonstrate
that while the time-reversal-preserving excitonic insula-
tor is topological and thus exhibits robust conductance
quantization of edge state transport, the time-reversal-
breaking condensate deviates from e2/h per edge state
conductance in the presence of non-magnetic static dis-
order. However, the remnants of the helical edge states,
though unprotected from backscattering, remain in the
exciton-induced gap and allow us to reproduce the ex-
perimentally observed edge-length scaling of resistance,
with results close to quantized below 100 nm but with
the deviation increasing substantially for longer edges.
We then supplement these simulations by analysis in the
Luttinger liquid picture, shedding additional light on the
mechanisms that lead to the breakdown of conductance
quantization.

II. TRANSPORT FROM THE BULK THEORY

To perform the quantum transport simulations for the
excitonic insulator phases of WTe2, we employ a tight-
binding model that is the finite difference approximation
of a continuum model given by:

H0(k) =

(
ak2
x + bk4

x + 2bk2
xk

2
y + byk

4
y +

δ

2

)
Id

+

(
− k2

2m
− δ

2

)
Ip + vxkxτxsy + vykyτys0 (1)

where k2 = k2
x + k2

y, τi and si are Pauli matrices in p, d
orbitals and spin spaces, respectively, Id = (τ0 + τz)/2 s0

and Ip = (τ0 − τz)/2 s0 are identity matrices for d and
p orbitals, while vx and vy determine the spin-orbital
coupling. The parameter values we use in the calculations
are a = −3, b = 18, by = 40, δ = −0.9,m = 0.03, vx =
0.5, vy = 3, where all the energies are expressed in eV
and lengths in Å. The different value of by parameter
as compared to Ref. [62] was chosen to ensure that the
low energy behavior of the full lattice model is consistent
with the continuum model within the cutoff employed
therein, with no extra low-energy valley along the Γ− Y
direction.

We discretize this Hamiltonian on a rectangular lattice
with lattice constants ax = 2.805 Å and ay = 6.27 Å. In
discretizing the Hamiltonian we use the finite difference
terms up to (±3,±3) hoppings in x and y directions, re-
spectively. At charge neutrality point this system has

a hole pocket around Γ point and two electron pockets
with minima at qc = ±0.32 x̂ along the Γ−X direction of
the Brillouin zone. Based on previous works [59, 62], we
expect the formation of an excitonic condensate at finite
momentum corresponding to the pocket separation qc in
momentum space. When time-reversal symmetry is not
enforced, the excitonic order can form either a spin spiral
or spin density wave phases, depending on the interaction
strength. The lattice constant ax was therefore chosen
such that for qc as determined for WTe2 from first prin-
ciples the resulting order would be commensurate with
the discretized lattice with a period increased by a fac-
tor of Lx = 7. This simplifies expressing the model with
mean field order parameter in real space. When a finite
q order is allowed, the period of the lattice increases cor-
respondingly and the Brillouin zone (BZ) shrinks, while
the electron bands are folded into the smaller BZ. We can
then label these bands by their corresponding momenta
k, spin and orbital index α, and finally the reciprocal
lattice vector of the enlarged unit cell Gi, which indi-
cates from which extended Brillouin zone the particular
state comes from. In other words, the original momen-
tum k0 of the state before folding becomes decomposed
as k0 = k + Gi.

We then consider Coulomb interaction of the electrons
in the tight-binding model given by:

Hint =
1

2Nk0Ω

∑
k0,p0,q0

∑
α,β

Vq0
c†k0+q0,α

c†p0−q0,β
cp0,βck0,α

(2)
where Ω is the area of the crystal unit cell, Nk0 is the
number of momentum points taken in the summation,
c†k0,α

are creation operators of a particle with momentum
k0 and α labeling both the orbitals and spin. We assume
double-gate screening of the Coulomb potential, with the
resulting Fourier transform:

Vq = V0
tanh ξq/2

ξq/2
(3)

with ξ = 250 Å being the distance between the gates and
V0 the interaction strength parameter. We then include
the impact of Coulomb interaction at the mean field level
by performing Hartree-Fock calculations. To remain con-
sistent with the previous Hartree-Fock calculations for
this model, even though we work with a tight-binding
lattice model, we still maintain the cutoff in momen-
tum summation as in continuum model of Refs. [59, 62],
with |kx| < 3/2 qc and |ky| < 0.25. With the cutoff
imposed, we also appropriately rescale the interaction
strength parameter to reflect the decreased number of
momentum points within the cutoff. We compare the
results when we allow for breaking of inversion and time-
reversal symmetries during the self-consistent calculation
to the case where time-reversal is preserved. We choose
the interaction strength parameter V0 so that the rescaled
interaction energy within the cutoff at wave vector qc
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FIG. 1. The band structures of the excitonic condensate systems within Hartree-Fock mean field approximation. (a) 2D tight-
binding model with time-reversal symmetry preserved. The gap is opened by the exciton formation, but the bands remain
doubly degenerate due to symmetry preservation. (b) Spectrum of system from (a) placed on a quasi-1D ribbon. The system
is topological, which results in presence of helical edge states within the excitonic band gap. (c) 2D tight-binding model with
time-reversal symmetry broken. The excitons open the gpa, but the spin degeneracy is lifted due to formation of the spin spiral
state. (d) Spectrum of system from (c) placed on a quasi-1D ribbon. Even though time-reversal is broken, as the magnitude
of symmetry breaking terms is relatively small, the remainder of the helical edge states remain in the gap.

is Ṽqc = 1.71eV in the case with time-reversal symme-

try enforced, and Ṽqc = 0.9 eV otherwise. In expressing
the rescaled interaction strength, we follow the conven-
tion of Ref. [62]. In both cases we consider the forma-
tion of finite momentum order parameter at qc = 0.32
along x direction as mentioned above. In each self-
consistent iteration we diagonalize the quadratic Hamil-
tonian HMF = H0 + HHF to obtain a set of n = 4Lx
eigenvalues εkn at each momentum and their correspond-
ing eigenvectors ukGαn, which are n component spinors.
These eigenvalues and eigenvectors are then used to ob-
tain the order parameters according to:

∆G1G2

Hαβ =

δαβ
∑
pGn

V (G1 −G2)

Nk
u∗pG−G1+G2βnupGβnf0(εpn) (4)

∆G1G2

Fαβ (k) =∑
pGn

V (p− k + G1 −G2)

Nk
u∗pG−G1+G2βnupGαnf0(εpn)

(5)

where Nk is the number of points within the cutoff,
f0(ε) = (eβ(ε−µ) + 1)−1 is the Fermi-Dirac distribution,
with β = 1/kBT being the inverse temperature and µ
the chemical potential.

The order parameters given above, which among others
represent various forms of excitonic order, enter the mean
field Hamiltonian through:

HHF =
∑
k,α,β

∑
G1,G2

(∆G1G2

Hαβ −∆G1G2

Fαβ (k))c†kG1α
ckG2β (6)

The new HMF is then again diagonalized and the whole
procedure is repeated until convergence is achieved,
which is monitored by the change in the average value

of the order parameters ∆G1G2

Hαβ and ∆G1G2

Fαβ (k), with the
calculation ending when the difference between each step
is smaller than 10−14.

The appearance of various excitonic phases is estab-
lished by calculation of several different quantities. The
overall presence of excitonic condensate with qc momen-
tum is determined through:

∆exc =

√
1

Nk

∑
kGαβn

|u∗kGαnukG+qcβnf0(εkn)|2 (7)

The time-reversal breaking spin spiral and spin density
wave components are characterized using the Fourier
components of spin density that correspond to qc order-
ing vector:

ρsi =
1

Nk

∑
kσσ′an

si,σσ′u∗k0σanukqcσ′anf0(εkn) (8)

Expressing the spin density as a vector ρs we can then
give the expressions that separate the spin spiral and spin
density wave components:

ρSDW =
√

2|ρs · ρs|, ρSS =
√

2|ρs|2 − ρSDW (9)

The exact phase obtained as the Hartree-Fock ground
state depends on several factors, most important of which
is the screened interaction strength V0. This parameter
is determined by the device configuration, in particular
the spacing between the metallic gates that are used to
control charge density within the device and the gate
insulator material itself. Through the self-consistent cal-
culation we obtain results in agreement with the previous
calculations with [62] and without [59] time-reversal sym-
metry, reproducing the phase diagram that contains spin
spiral and spin density wave in the latter case. Repre-
sentative examples of mean-field band structures are pre-
sented in Fig. 1. In panel (a) we show that when time-
reversal symmetry is enforced, the exciton condensate
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forms and the gap opens up, but the bands remain dou-
bly degenerate. The state is topological in nature as will
be explicitly demonstrated by the presence of the edge
states. In panel (c), the band structure for time-reversal
breaking state is shown. Again, the exciton condensate
formation leads to gap opening, but now the band de-
generacy in the proximity of the gap is lifted due to the
formation of the spin spiral state. As this degeneracy-
lifting is small, the system will still retain some of the
quantum spin Hall effect features, but will no longer be
robust to perturbations.

For the purpose of quantum transport simulation with
disorder we need to convert these Hamiltonian terms to
their real space counterparts. While the unit cell of the
original tight-binding Hamiltonian consisted of a single
site with four spin-orbitals, when excitonic order with
finite q arises, the unit cell has to increase correspond-
ingly to allow for the spatial modulation of the charge
and spin densities. Since we have chosen the lattice con-
stant so that the postulated excitonic order wave vector
is commensurate with the original lattice, we can sim-
ply extend the original model by including Lx sites in
the extended unit cell. The chosen value of Lx = 7 en-
ables a reasonable approximation for the modulation of
densities within the unit cell while keeping the compu-
tational complexity in check. At the same time, we can
easily convert the Hartree-Fock order parameters to real
space hoppings. As a result of a Fourier transform with
c†kα = 1/

√
N
∑

ri
eik·ric†ri we obtain hoppings between ri

and rj sites of the lattice:

∆αβ(ri, rj) =
∑

kG1G2

∆G1G2

αβ (k)eik·rei((G1−G2)·rj+G1·r)

(10)
where ∆G1G2

αβ (k) = ∆G1G2

Hαβ −∆G1G2

Fαβ (k) and r = ri − rj .
Similarly to the discretization of the continuum model,
we use hoppings up to (±3, ± 3) in x and y directions.
While the Fourier decomposition of ∆G1G2

αβ (k) includes
an infinite number of ∆αβ(ri, rj), in practice for the sys-
tem under study such a limited number of terms repro-
duces the Hartree-Fock potential with sufficient accuracy,
partially due to the choice of lattice constant that results
in an order that is commensurate with the initial lattice.

With a real-space model defined as above, we can now
set up the quantum transport simulation to study the
effect of the time-reversal-breaking excitonic condensate
on the helical edge states of the quantum spin Hall state.
To perform all the quantum transport calculations we
use the Kwant package [64]. We restrict the model to a
ribbon with a finite width in y direction, while still retain-
ing the translational invariance in the x direction, along
the spin density modulation coming from the spin spiral
state. Due to this translational invariance we can still
label the quantum states by their momentum in x direc-
tion and calculate the spectrum within the 1D Brillouin

zone (which is indicated by primes in the point labeling)
of the ribbons. Such spectra are presented in Fig. 1, both
for time-reversal preserving and breaking cases. In panel
(b), the time-reversal preserving case, the helical edge
states resulting from the topological nature of the exci-
tonic insulator are clearly visible. However, in panel (d)
even though the time-reversal symmetry is broken, the
remainder of helical edge states is still visible in the gap.
These states are partially gapped, but because the mag-
nitude of symmetry breaking terms is not large, there are
energy windows within the gap for which a pair of edge
states is present and in the absence of any disorder they
would contribute 2e2/h to the longitudinal conductance
of the ribbon.

In a standard Landauer-Buttiker calculation fashion,
we attach the semi-infinite leads to the opposite ends of
the ribbon that extend in the x direction. We then intro-
duce additional random on-site potential to the tight-
binding model within the central scattering region to
model the disorder that preserves time-reversal symme-
try:

Hdis =
∑
ri,α

U(ri)c
†
ri,αcrj ,α (11)

The random on-site values U(ri) are taken from a uni-
form distribution over the range [−U0/2, U0/2], where
we call U0 the disorder strength. We calculate the scat-
tering matrix of the system for navg = 100 independent
disorder realizations and then average the conductances
over these realizations. In the usual circumstances, the
quantum spin Hall edge states are robust with regards
to such a disorder and the breakdown of the quantized
sample conductance happens only for extremely large dis-
order strengths. This remains true even in the presence
of the excitonic condensate which preserves time-reversal
symmetry, as demonstrated in Fig. 2(a). The conduc-
tance remains precisely quantized for much of the inves-
tigated disorder strength range and the leading source of
the quantization breakdown is the coupling between the
opposite edges of the sample. This is evident as the con-
ductance curve is sensitive to the width of the ribbon,
with the disorder strength needed to decrease the con-
ductance increasing for wider ribbons. At the same time,
when disorder is chosen within the quantized plateau, the
result doesn’t depend on the length of the ribbon, reveal-
ing robustness characteristic of the topological transport.
Moreover, the variance displayed among the different dis-
order realizations shows that conductance in that case is
very unstable, being dependent on whether the disor-
dered potential forms a path connecting to the opposite
edge.

However, once the time reversal symmetry breaking ex-
citonic condensate is formed, even a small scalar disorder
causes a deviation from the perfect value, as exemplified
in Fig. 2(a). In contrast to the time-reversal preserving
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FIG. 2. Quantum transport simulation results. (a) Disorder strength U0 dependence of conductance for the case of time-reversal
breaking and preseving exciton condensates. The solid lines show average over 100 disorder realizations, with each realization
shown as a separate set of points. (b) The comparison between the experimental data as reported in [63] and quantum
transport simulation averaged over disorder realizations. The experimental data from two different devices and channel lengths
50-1000 nm demonstrates increasing channel resistance for longer edge channels, suggesting lack of topological protection of
the quantum spin Hall edge states. This observation is consistent with the simulation result, which can reproduce the observed
length dependence and sample variation with relatively small changes to disorder strength value U0.

case, the decrease from 2e2/h value is immediate. More-
over, the disorder strength dependence is insensitive to
the width scaling, indicating that the backscattering pro-
cesses occur within the same edge. The variance among
disorder realizations is also much smaller then previously,
confirming that the backscattering is not depedent on
accidental appearance of a pathway across the device.
At the same time, increasing the length of the ribbon
decreases the conductance for all disorder strengths, re-
vealing the lack of the topological protection.

To further demonstrate this, and to relate our simu-
lations to the experimental data, we calculate the chan-
nel resistance of the edge states with increasing ribbon
length, keeping all the other Hamiltonian parameters, in-
cluding the disorder strength U0, constant. The results
are presented in Fig. 2(b), where a comparison between
the simulation and experimentally obtained resistance
values [63] is made. The experimentally studied edge
lengths range from 50 to almost 1000 nm, which we also
use as the ribbon lengths in our calculations. We include
calculations with two different, but comparable disorder
strengths. The smaller value, U0 = 0.3 eV reproduces the
device data represented by the black points, while the
larger disorder strength U0 = 0.35 eV is well-suited for
the device represented by the green points. This demon-
strates that the variability between the devices can be
explained by relatively small change in disorder strength
that can realistically be expected in experimental con-
ditions. In both cases, the simulations mirror the ex-
perimental data for almost two orders of magnitude in
channel length, suggesting that the breakdown of quan-
tization of edge conductance as observed in WTe2 could
be explained by a bulk time-reversal-breaking excitonic
condensate.

III. TRANSPORT FROM THE EDGE THEORY

To better understand the mechanism behind the break-
down of quantization in the presence of the time-reversal-
breaking excitonic condensate, we use an analytical
model based on the Luttinger liquid picture. Such a
model can be applied to study the helical edge states
that arise in the quantum spin Hall (QSH) insulator un-
der open boundary conditions. The helical edge state
consists of two degenerate counterpropagating electron
states with opposite spins, related by the time rever-
sal symmetry, each contributing a quantized zero tem-
perature conductance G0 ≡ e2/h in opposite directions.
Even though the quantized conductance G0 is protected
by time reversal symmetry, there exists a multitude of
proposals that can explain the breakdown of the quan-
tization as discussed in the Introduction. In terms of
time-reversal breaking mechanisms, previous works sug-
gested backscattering from magnetic impurities as one of
the most prominent. However, in many systems such as
WTe2 the source of such impurities is not obvious and
thus we look towards a different, intrinsic source of time-
reversal breaking, namely the excitonic condensate. In
this section, following Ref. [40, 45, 46], we compute the
two terminal conductance for a QSH insulator slab with
bulk spin spiral order. While in the referenced works the
justification for the appearance of such an order is the
spontaneous arrangement of nuclear spins, here the spin
spiral is purely electronic as shown in the Hartree-Fock
calculations, giving hope for a more pronounced effect
at higher temperatures. Although the spin spiral order
breaks the time reversal symmetry locally, when aver-
aged over the whole period of the spiral the symmetry
is still preserved, resulting in a lack of gap opening at
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FIG. 3. Illustration of spin spiral order in the quantum spin
Hall phase. The single layer of WTe2 (blue cuboid) is in
a quantum spin Hall effect phase before the appearance of
the bulk spin spiral order (purple arrows). The red and blue
arrows on the boundary stand for the helical edge states from
the original quantum spin Hall effect.

the Dirac point of the edge state dispersion. Therefore,
we need to also take into account scattering on random
non-magnetic impurites to observe the effect on conduc-
tance. To put this on more concrete terms, we use the
bosonization technique and compute the deviation from
the perfect conductance quantum G0 below.

A. Fermionic model

We consider the setup for a single layer of QSH insu-
lator WTe2 as shown in Fig. [3], in the form of a ribbon
with open boundary conditions along y direction. This
results in helical edge states (denoted by the red and
blue arrows) on the upper and lower boundaries. Based
on the results of Hartree-Fock calculations, we further
assume the ground state of the QSH insulator has bulk
spin-spiral order, denoted by the violet arrows. Such
a bulk spin spiral preserves the time reversal symmetry
only when spatially averaged over the period of the spi-
ral along the x direction. As the edge state decay length
is very short in WTe2 [28], we can neglect any coupling
between the states located at the opposite boundaries.
Focusing thus on states along a single boundary, we can
write down the Hamiltonian for helical edge states as:

Hhel = Hkin +Hee +Hm +Himp, (12)

where Hkin and Hee are the kinetic energy and electron-
electron interactions, respectively. The termHm is the ef-
fective magnetic field from the bulk excitonic spin spiral,
and Himp denotes the non-magnetic impurities. We fur-
ther assume that the helical edges are formed by a right-
moving mode with spin down (R↓) and a left-moving
mode with spin up (L↑). The kinetic energy for the he-

lical edge states reads:

Hkin = −i~vF
ˆ

[dx][R†↓(x)∂xR↓(x)− L†↑(x)∂xL↑(x)],

(13)
with the Fermi velocity vF . When time reversal symme-
try is preserved, the electron-electron interaction Hee =
H2

ee+H4
ee contains only forward scattering H2

ee and chiral
interaction H4

ee:

H2
ee =g2

ˆ
[dx]R†↓(x)R↓(x)L†↑(x)L↑(x), (14a)

H4
ee =

g4

2

ˆ
[dx][(R†↓(x)R↓(x))2 + (L†↑(x)L↑(x))2]. (14b)

The Hm captures coupling between the spin density of
the edge states and the effective magnetic field induced
by the bulk spin spiral order:

Hm =

ˆ
[dx]

∑
ss′

ψ†s(x)(b(x) · σss′)ψs′(x), (15)

where σ is a vector of Pauli matrices and ψ(x) =
(L↑, R↓)

T. The spatial dependence of the coupling to
effective magnetic field b(x) can be deduced from the
Hartree-Fock mean field and is given by:

b(x) = b[êx cos(qcx) + êz sin(qcx)]. (16)

Here 2π/qc denotes the period of the bulk spin spiral.
In the non-interacting clean limit, i.e., g2 = g4 = 0 and
Himp = 0, we can transform Eq. [12] into Fourier space:

H ′hel =
∑
k,s,s′

[
ψ†s(k)(~vF kσzss′)ψs′(k) +

b

2
ψ†s(k + qc)(σ

x
ss′ − iσzss′)ψs′(k) +H.c.

]
.

(17)

Note that Eq. [17] couples the right movers and left
movers separated by a momentum difference ±qc. Thus
the energy spectrum of the Hamiltonian of Eq. [17] is
gapless at k = 0, but gaps open for states at momenta
±qc/2, as shown in Fig. [4]. The lack of gap opening at
k = 0 reflects that Hm preserves the time-reversal sym-
metry when averaged over real space.

Since we are only interested in the impact of the spin
spiral on transport properties, we can neglect the forward
scattering components of Hm, which are the terms pro-
portional to σz. Therefore, we can now focus only on the
backscattering part, which written in terms of L↑(x) and
R↓(x) reads:

Hb
m =

ˆ
[dx]

b

2

∑
δ=±

[L†↑(x)R↓(x)eiq
δ
cx +R†↓(x)L↑(x)e−iq

δ
cx],

(18)
with qδc = ±qc. We further model the impurity Hamilto-
nian as:

Himp =

ˆ
[dx]Vimp(x)[R†↓(x)R↓(x) + L†↑(x)L↑(x)], (19)
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FIG. 4. The spin spiral will not gap out the Dirac cone gener-
ically in the absence of disorder. Instead, it will open a gap
on the edge of the Brillouin zone at ±qc/2, where the effective
real-space periodicity is defined by the spiral.

where the Gaussian random potential Vimp(x) satisfies

Vimp(x)Vimp(x′) = Mimpδ(x − x′), with · · · denoting
the averaging over the random potential. The impu-
rity strength Mimp = ~2v2

F /(2πλmfp) here is defined
by the mean free path λmfp of the 2D QSH insulator
bulk [40, 45, 46].

B. Schrieffer-Wolff transformation

We can now derive the combined effect of the random
impurities and the spin spiral arising from the excitonic
condensate by performing a Schrieffer-Wolff transforma-
tion. The full Hamiltonian with the two perturbations
included is H = Hel + δV , where δV = Himp +Hm. This
can be transformed into momentum space using:

R↓(x) =
1√
L

∑
k

eikxR↓(k), L↑(x) =
1√
L

∑
k

eikxL↑(k),

(20)
such that we have kinetic energy diagonal in momentum
space

Hkin =
∑
k

~vF k[R†↓(k)R↓(k)− L†↑(k)L↑(k)]. (21)

The impurity contributes arbitrary momentum shift in
the forward scattering process

Himp =
∑
k,q

Vimp(q)

L

(
R†↓(k + q)R↓(k) + L†↑(k + q)L↑(k)

)
(22)

and the coupling to the spin spiral reads:

Hm =
b

2L

∑
k,δ

[L†↑(k + qδc )R↓(k) +R†↓(k + qδc )L↑(k)]

(23)

!↓ "↑

#

# + %#

# + %# + %
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FIG. 5. Spin spiral assisted backscattering on non-magnetic
impurities. The initial right moving state with momentum
k is first scattered by the spin spiral to a left mover with
momentum k+ qc and then forward scattered by an impurity
to a left moving state with momentum k + qc + q. At low
temperatures, the leading scattering processes will have the
initial and final state in the vicinity of the Fermi energy EF

which changes a right to a left mover and vice versa to-
gether with a momentum shift ±qc determined by the
period of the spin spiral. The forward scattering from
Himp on its own does not change the conductivity and at
low temperatures, the initial and final states in backscat-
tering process should come from the vicinity of the Fermi
level. Therefore, neither Himp nor Hm in 1D can affect
conductivity on their own. However, a combined spin
spiral and impurity scattering can lead to the relaxation
of the current through a second-order process, an exam-
ple of which is illustrated in Fig. [5]. This second-order
effect, where the Hm first backscatters a state with mo-
mentum k to k + qc (k − qc), and then Himp brings the
state back to the region near the Fermi level through the
forward scattering with the disorder potential. We see
that the scattering with combination of the spin spiral
and non-magnetic disorder can be viewed as the scat-
tering with an effective magnetic disorder, though the
former pattern still respects time reversal symmetry on
average. We term this kind of the current relaxation
mechanism as the spin-spiral assisted backscattering.

The intuitive picture of spin-spiral assisted backscat-
tering presented above can be captured by the Schrieffer-
Wolff transformation. For simplicity, we first consider the
non-interacting case where Hel = Hkin.

H ′ = eSHe−S = Hkin + δV + [S,Hkin] + [S, δV ]

+
1

2
[S, [S,Hkin]] +

1

2
[S, [S, δV ]] + · · · .

(24)
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We can now choose S such that the transformed Hamil-
tonian H ′ does not depend on perturbation couplings to
linear order by fulfilling the condition δV +[S,Hkin] = 0.
Since Hkin is diagonal in momentum space, we can write
down the matrix element Sαβ between the two eigen-
states α and β of Hkin:

Sαβ =
δVαβ

Eα − Eβ
. (25)

Substituting this back into H ′, we obtain:

H ′αβ=Eαδαβ+
1

2

∑
γ

(
δVαγδVγβ
Eα − Eγ

+
δVαγδVγβ
Eγ − Eβ

)
+O(δV 3).

(26)
We can now consider how the original Hamiltonian acts
within the subspace of the three states presented in
Fig. 5. In the basis of Ψ = (R↓(k), L↑(k + qc), L↑(k +
qc + q))/L, we have:

h(k, q)=Ψ†

~vF k 0 b/2
0 −~vF (k + qc + q) Vimp

b/2 Vimp −~vF (k + qc)

Ψ.

(27)
Using these matrix elements in combination with
Eq. [26], we find:

∆h(k, q)=
b

4

(
Vimp(q)

~vF (2k + qc)
− Vimp(q)

~vF q

)
. (28)

Now we need to take into account the conservation of
energy in the whole scattering process. The majority of
the contribution in the low temperature limit is given by
the states with an identical energy for the initial and final
states around the Fermi level: with initial k ∼ kF , these
energies are ~vF kF and −~vF (kF + qc − q), leading to
q = −2kF − qc + k′. In such limit, we have:

∆h(k′) ≈ b

2

Vimp(−2kF − qc + k′)

~vF (2kF + qc)
. (29)

Similar procedure follows for the other possible scatter-
ing processes and in the end the effective back scattering
reads:

Heff =
∑
k,k′,δ

[V δ(k′)L†↑(k − 2kF + k′)R↓(k) + H.c.],

(30)
where V ±(k′) = bVimp(−2kF ∓ qc + k′)/(2L2~vF (2kF ±
qc)).

The above results hold even in the interacting case,
provided that g2 = g4 [46]. While Eq. [30] looks very
much similar to Eq. [D5] in Ref. [46], the physical inter-
pretation is quite different. In Ref. [46], the spin spiral
arises from the RKKY coupling of nuclear spins, whereas
in our case it comes from the time-reversal breaking exci-
tonic condensate. The nuclear spin spiral period is thus

directly related to kF and changes with chemical poten-
tial, while the excitonic spiral is determined by the mo-
mentum space separation between the electron and hole
pockets in the band structure and is fixed.

The Eq. [30] can be transformed into real space by the
inverse Fourier transformation after which the Hamilto-
nian reads:

Heff =

ˆ
[dx][ξ(x)L†↑(x)R↓(x) + ξ∗(x)R†↓(x)L↑(x)],

(31)
with:

ξ(x) = b
2kF cos(qcx) + iqc sin(qcx)

~vF (4k2
F − q2

c )
Vimp(x), (32)

The correlation function of ξ(x) averaged over the disor-
der realizations can be deduced from the correlation of
Vimp(x) to be:

ξ(x)ξ∗(x′) = Mssδ(x− x′), (33)

with

Mss = Mimp
b2(4k2

F + q2
c )

2~2v2
F (4k2

F − q2
c )2

, (34)

where we used the fact that cos2(qcx) = sin2(qcx) = 1/2.

C. Bosonization result for transport propertied

With the effective spin spiral assisted backscattering
Hamiltonian derived, we can determine its impact on
transport properties using bosonization, which is espe-
cially well suited for studying two-terminal transport in
disordered 1D quantum system [40, 45, 46, 51, 59, 65–
69]. The chiral component in Eq. [12] can be expressed in
terms of the bosonic field (θ, φ) [40, 45, 46, 51, 59, 68, 69]:

R↓(x) =
UR√
2πα

eikF xei[−φ(x)+θ(x)],

L↑(x) =
UL√
2πα

e−ikF xei[φ(x)+θ(x)],

(35)

where UR/L is the Klein factor and α = ~vF /∆b is the
short-distance cutoff, which is associated with the high-
energy cutoff set by the bulk gap ∆b.

With the above definitions, the helical Hamiltonian
without Hm can be bosonized in a standard way as:

Hkin +Hee =
~u
2π

ˆ
[dx]

[
1

K
(∂xφ)2 +K(∂xθ)

2

]
, (36)

where the velocity u and the interaction parameter K are
given by:

u =

[(
vF +

g4

h

)2

−
(
g2

h

)2]1/2

,

K ≡
(
hvF + g4 − g2

hvF + g4 + g2

)1/2

.

(37)
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To find the bosonized form of the effective backscattering
Hamiltonian Heff averaged over disorder, we utilize the
replica method, and similarly to Ref. [46], we obtain the
effective backscattering action:

δSss

~
=− Mss

(2π~a)2

ˆ
u|τ−τ ′|>a

dxdτdτ ′

× cos[2φ(x, τ)− 2φ(x, τ ′)].

(38)

In the absence of disorder, so long as the Fermi level is not
placed within the gap (see in Fig. [4]), the Hamiltonian
Eq. [12] is similar to the edge of time reversal invariant
QSH insulator, which has a quantized zero-temperature
conductance G = G0 ≡ e2/h (equivalently, resistance
R0 = h/e2) per edge. Following the results of Ref. [40],
we find the increase of the resistivity Rss due to the com-
bination of bulk spin spiral and non-magnetic disorder
depends on the relative magnitude of three possible phys-
ical cutoffs. These cutoffs are the edge length L, the ther-
mal length λT ≡ ~u/(kBT ), and the localization length
ξss. We define the dimensionless coupling constant,

Dss ≡
2aMss

(π~2u2)
, (39)

and u = vF /K. If the edge length is the shortest among
all these scales, L < λT , , ξss, the correction to edge re-
sistance is:

δRss(L) ∝ R0
MssL

~2v2
F

L2−2K = R0
πDss

2K2

(
L

a

)3−2K

. (40)

Secondly, in the limit of high temperatures where λT <
L, , ξss, we get:

δRss(T ) ∝ R0
MssL

~2v2
F

λ2−2K
T = R0

πDssL

2K2a

(
KkBT

∆

)2K−2

.

(41)
Finally, if ξss < L, λT , the RG flow reaches the strong
coupling regime, so the edge states are gapped, displaying
a thermally activated resistance:

δRss(T ) ∝ R0
πDssL

2K2a
e∆ss/(kBT ), (42)

with the gap ∆ss = ∆(2KDss)
1/(3−2K).

IV. CONCLUSION

In conclusion, we provided a mechanism for the break-
down of the perfect quantized conductance quantization
in WTe2 due to the formation of a time-reversal break-
ing excitonic condesate with a bulk spin spiral order.
Through Hartree-Fock calculations we showed the differ-
ence between the time-reversal preserving and breaking
excitonic condensates that can form in WTe2 depend-
ing on the circumstances. Based on the mean field re-
sults, we performed quantum transport calculations for

a finite width ribbon with disorder based on a tight-
binding model. We demonstrated that while the time-
reversal preserving excitonic insulator is topological and
thus exhibits robust conductance quantization of edge
state transport, the time-reversal breaking condensate
deviates from e2/h per edge conductance in the presence
of non-magnetic static disorder. Our results are in good
agreement with the experimentally observed edge-length
scaling of resistance with results close to quantized be-
low 100 nm with the deviation increasing substantially
for longer edges.

To provide some additional intuition for the mecha-
nism behind the breakdown, we then supplemented these
simulations by analytical edge transport calculations in
the Luttinger liquid picture. Similarly to the previous
work on the effect of RKKY nuclear spin spiral on helical
edge states [46], we used the Schrieffer-Wolff transforma-
tion to capture the effective spin-spiral assisted back scat-
tering from the non-magnetic impurities. This provides a
qualitative understanding of the effective backscattering
in disordered excitonic condensate with spin spiral order.
Finally, by using bosonization, we determine the effect of
this backscatering process on the transport properties of
the system, determining the scaling dependence of resis-
tance on length, temperature, and interaction strength.
Our work thus provides a new mechanism which pos-
sibly contributes to the lack of perfect quantization in
WTe2 and paves the way for bridging the bulk and edge
transport theory. Our results can also be generalized to
transport in many other quantum physics systems with
topologically protected edge states such as twisted mul-
tilayer graphene [70].
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