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Abstract

Contemporary Low-Light Image Enhancement (LLIE) techniques have made notable

advancements in preserving image details and enhancing contrast, achieving com-

mendable results on specific datasets. Nevertheless, these approaches encounter per-

sistent challenges in efficiently mitigating dynamic noise and accommodating diverse

low-light scenarios. Insufficient constraints on complex pixel-wise mapping learning

lead to overfitting to specific types of noise and artifacts associated with low-light con-

ditions, reducing effectiveness in variable lighting scenarios. To this end, we first pro-

pose a method for estimating the noise level in low light images in a quick and ac-

curate way. This facilitates precise denoising, prevents over-smoothing, and adapts to

dynamic noise patterns. Subsequently, we devise a Learnable Illumination Interpola-

tor (LII), which employs learnlable interpolation operations between the input and unit

vector to satisfy general constraints between illumination and input. Finally, we intro-

duce a self-regularization loss that incorporates intrinsic image properties and essential

visual attributes to guide the output towards meeting human visual expectations. Com-

prehensive experiments validate the competitiveness of our proposed algorithm in both

qualitative and quantitative assessments. Notably, our noise estimation method, with

linear time complexity and suitable for various denoisers, significantly improves both

denoising and enhancement performance. Benefiting from this, our approach achieves

a 0.675dB PSNR improvement on the LOL dataset and 0.818dB on the MIT dataset on

LLIE task, even compared to supervised methods.
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1. Introduction

As a significant branch of image restoration, Low-Light Image Enhancement (LLIE)

aims at improving the visual quality and details of images, to gather brighter, clearer,

and more detailed images captured in low-light conditions. By improving the quality

of images captured under low-light conditions, LLIE finds wide applications in various

fields and downstream machine analytics, such as for consumer photography [1, 2],

autonomous driving [3], and video surveillance [4]. Overall, the development of low-

light enhancement technology holds significant importance in improving image quality,

enhancing visibility, and increasing efficiency and safety across various domains.

Unsupervised learning approaches in low-light enhancement aim to improve im-

age quality without the need for labeled training data. These methods leverage sta-

tistical properties of low-light images or heuristic algorithms to enhance brightness,

contrast, and details. To direct end-to-end learning for this mapping process in unsu-

pervised way, many methods improve the brightness and contrast of low-light images

by performing pixel-wise addition (e.g. adding a pixel-wise map to adjust the curve of

brightness [5, 6]) or division(e.g. dividing learned illumination map [7, 8]). Despite

efforts to uncover relationships and constraints among different quantities during the

enhancement process, these methods do not explicitly impose constraints on the statis-

tical distribution of data that aligns with human visual output. Consequently, training

guidance solely from input data may result in overfitting to specific types of noise or

artifacts. This overall limitation makes these methods less effective in variable and

dynamic lighting conditions, where the types of degradation may vary.

In addition to learning the mapping from dark to bright, denoising is also a crucial

step in LLIE. Because images captured under low-light conditions often exhibit noise,

which can be attributed to factors such as low signal-to-noise ratio, high ISO values and

dark current noise. While some methods [5, 8] implicitly suppress noise by imposing

smoothness constraints on the illumination map, these constraints may not effectively
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Figure 1: Comparison among recent state-of-the-art unsupervised methods, including EnGAN [9], Ze-

roDCE [5], RetinexDIP [10], RUAS [11], and SCI [8]. A scaled heatmap showcasing the absolute error

(darker is better) and an illumination map are concatenated to the right part of the enhanced image for com-

prehensive comparison. Our method closely resembles the ground truth and exhibits a globally smooth yet

structure-aware illumination map.

improve the smoothness of the enhancement results. This limitation becomes partic-

ularly apparent when dealing with high-intensity noise, making the constraints appear

less effective. On the other hand, certain techniques [7, 12] explicitly address noise

issues by incorporating denoising components. However, they do not take into account

the dynamic noise distribution in degraded images, leading the model overfit to spe-

cific noise and providing limited useful visual enhancement. To get better denoising

results, previous research [13, 14] has demonstrated the effectiveness of integrating

noise intensity as an input for enhancing non-blind denoising methods. How to esti-

mate the noise intensity in a fast and accurate way in low-light condition to improve

the performance is what we concerned.

To address these issues, we propose a denoising-first and enhancing-later pipeline

to achieve clear visibility in low-light conditions with dynamic noise. Firstly, we

present a novel noise estimation method that relies on a simple yet efficient formula,

by leveraging high-order image gradients. This method enables rapid and accurate es-

timation of noise levels in low-light settings with linear time complexity, which aids

precise denoising, avoids over-smoothing, and enhances adaptability in noise reduc-

tion. This adaptation equips our model to effectively handle a wide range of noise
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levels encountered in low-light conditions. Then, we observe that even when using

linear interpolation to generate an illumination map then using division to get the en-

hanced result, it helps maintain the brightness of the enhanced image within a stable

and reasonable range. Hence we construct a learnable illumination interpolator (LII) to

generate illumination map in a linear way to handle more complex scenarios, instead

of leaning complex pixel-wise mapping of illumination directly. Using interpolation

maintains pixel value consistencies while retaining natural smoothness in pixel rela-

tionships. LII generates globally smooth yet structurally aware illumination maps, as

illustrated in Figure 1, where the smoothness is frequently employed as a regularization

term to constrain illumination maps. Moreover, starting from the pixel intensity distri-

bution from nature images in ImageNet, we employ a relaxed loss function designed

using the mean and standard deviation of natural image color statistics. This function

constrains the generated target pixel color means to be close to the distribution of colors

found in natural images on the color manifold. As a result, the generated image col-

ors appear more natural and realistic. The relaxed nature of the loss function also helps

mitigate overfitting, ensuring that the results generated by this method remain relatively

stable even in the presence of unknown environmental conditions. Numerous experi-

ments show that our proposed method consistently outperforms existing unsupervised

learning methods, and in some cases, even surpasses supervised learning methods by a

significant margin. It consistently ranks first in nearly all metrics, such as achieving a

PSNR improvement of 0.675dB on LOL dataset and 0.818dB on MIT dataset.

Our contributions are summarized as follows:

• Leveraging the statistic features of low-light images, we firstly propose a noise

intensity estimation method based on image gradients specifically designed for

low-light images. The results indicate that our noise estimation method can ef-

ficiently and quickly estimate noise parameter in low-light images and improve

the denoiser’s performance with little cost.

• Instead of learning the complex pixel-wise mapping, we mainly learn an inter-

polation factor and construct a learnable illumination interpolator for generating

a global smooth but structure aware illumination representation.
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• Starting from the properties of natural image manifolds, a self-regularized re-

covery loss is introduced as a way to encourage more natural and realistic re-

flectance map. Our method significantly improves enhancing performance on a

diverse range of datasets.

2. Related Work

2.1. Low-light Image Enhancement

In the realm of LLIE, researchers have delved into an assortment of network models

aimed at tackling the amalgamation of degradation factors and improving representa-

tions. RetinexNet[15] introduced a semi-decoupled approach comprising a Decom-Net

for decomposition and an Enhance-Net for illumination adjustment. MBLLEN[16] em-

ployed a deep learning method with multi-branch fusion to extract features from vari-

ous levels and enhance low-light images through multiple subnets. GLADNet[17] dealt

with LLIE via a Global illumination Aware and Detail-preserving Network. RUAS[11]

employed a collaborative reference-free learning searching strategy to discover a suit-

able network architecture for enhancing low-light images, obviating the need for hand-

crafting design. Besides, numerous training strategies have been explored for LLIE

to investigate the relationship between low-light and normal images. DRBN [18] pre-

sented a semi-supervised learning approach utilizing deep recursive band networks to

extract coarse-to-fine band representations and reconstitute towards high-quality im-

ages. ZeroDCE [5] estimated pixel-wise and high-order curves for dynamic range

adjustment of a given image using a lightweight deep network. EnGAN [9] introduced

a global-local discriminator structure, self-regularized perceptual loss fusion, and at-

tention mechanism to train the network in an adversarial way without paired images.

RetinexDIP [10] devised a novel ”generative” strategy for Retinex decomposition and

a unified deep framework for low-light image enhancement, without external image

data. SCI [8] put forward a new self-calibrated illumination learning framework to

reduce computational cost and accelerate the training process.
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2.2. Image Denoising

Previous denoising models, such as IRCNN [19] and DnCNN [20], have tradition-

ally relied on supervised learning methods tailored to distinct noise levels, requiring

separate networks for different degradation factors. In contrast, FFDNet [13] lever-

ages noise estimation as input, demonstrating the capability to effectively handle a

wide range of noise levels using a singular model. Building upon this paradigm, both

DRUNet [14] and CBDNet [21] exhibit impressive denoising proficiency by integrat-

ing noise level inputs and employing a UNet-style denoising architecture. DRUNet

directly incorporates noise levels as input for to solve multiple tasks related to image

restoration, whereas CBDNet estimates noise levels using convolutional networks. The

challenge arises from the dynamic nature of real-world noise, which is not solely static.

This characteristic presents a significant hurdle for neural networks, hindering precise

estimation through learning-based methods. Given the dynamic attributes inherent in

real-world noise, the prompt and accurate estimation of noise levels becomes crucial.

This dynamic quality poses a considerable challenge for both neural networks and con-

ventional methods in accurately estimating the intensity of dynamic noise.

2.3. Noise Level Estimation

Estimating noise levels from a single image is considered an inherently challenging

problem. Despite efforts spanning several decades, numerous methods have emerged

for this purpose, often operating under the assumption that the processed image con-

tains sufficient flat areas. However, this assumption is not consistently applicable,

particularly in scenarios involving the processing of natural images. Pyatykh [22],

Liu [23], and Chen [24] have explored the utilization of Principal Component Analysis

(PCA) to model observed signals and infer the noise distribution. While these methods

represent advancements, they still possess high time complexity in evaluating noise

distribution, rendering them unsuitable for real-time enhancement as a pre-processing

progress.
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3. Preliminaries

Derived from the study of the human visual system [25], Retinex theory serves

as a color constancy model with broad applications in mitigating problems associated

with uneven lighting and color bias. The fundamental tenet of the Retinex theory in-

volves the partitioning of an image into its constituent reflectance and illumination

components. The Retinex theory views an image as the product of its reflectance and

illumination components. The reflectance component represents the color and texture

information of the object’s surface, while the illumination component represents the

distribution of lighting. In LLIE, the relationship of low-light input x, reflectence s

and illumination y can be formulated as follows:

x = y ⊗ s. (1)

4. Proposed Method

Figure 2: Illustrations of the fundamental components for NAI2. Top: (a) Self-Calibrated Denoiser, (b)

Learnable Illumination Interpolator. Bottom: (c) Denoise Module Nd(x,ωd), (d) Illumination Learning

Module Mi(x,ωi), (e) Conditional Feature Modulation (CFM).

4.1. First-Denoising Last-Enhancing

Motivated by the Retinex theory [25], we adapt a more general framework for low-

light imaging that accounts for incidental compatible noise. The framework can be for-

mulated as x = y⊗ s+v, where x denotes the low-light input corrupted by incidental
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Input: x Noise: v Illumination: y Reflectance: s

Figure 3: Visualization of intermediate results (i.e., x, v, y and s) regarding the workflow of NAI2 based on

Equation3 (2).

noise v, s represents the reflectance, y represents the illumination, and ⊗ denotes the

element-wise product operation.

Specifically, we construct an unsupervised learning framework with noise removal

followed by Illumination learning, including a precursor Self-Calibrated Denoiser (SCD)

and a subsequent Learnable Illumination Interpolator (LII). The learning paradigm can

be formulated as follows:

SCD− to− LII :

u = x− v,

s = u⊘ y,
(2)

where v and u denote the noise map and noiseless low-light map, respectively. For

further understanding, a visualization of the intermediate results regarding the work-

flow is illustrated in Figure 3, where Nd and Mi denote the noise removal module and

illumination learning module, parameterized by ωd and ωi, respectively.

We prioritize denoising primarily due to the following reasons. Firstly, under low-

light conditions, it is easier to accurately estimate noise characteristics. On the other

hand, brightening the image first can amplify noise intensity, and our noise estimation

accuracy diminishes under high-brightness conditions, making it challenging for de-

noisers. This dual effect makes noise removal more difficult. In comparison to color

restoration, existing methods tend to exhibit relatively pale noise handling capabilities.

Therefore, our priority is to focus on image denoising, followed by brightening, to

achieve superior visual results.
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4.2. Self-Calibrated Denoiser

Prior research has demonstrated that estimating noise intensity is beneficial for

denoising. In the following, we attempt to explore the noise intensity distribution of

low-light input from its intrinsic properties (e.g., gradient information), and develop

a self-calibrated denoiser to bootstrap the image to remove the intrinsic noise in an

unsupervised manner.

4.2.1. Noise Estimation

The gradient characteristics of image can reflect the distribution of potential noise.

Thus, we use the higher order gradient of the image to estimate the noise intensity.

After a rigorous theoretical derivation the following equation is given :

σ ≈ ψ(∇nx) :=

√
πE|∇nx|√
2Σn

k=0[C
k
n]

2
. (3)

In this equation, ∇nx signifies the n-order image gradient. For a given image with

pixel coordinate position p, the gradient can be calculated as ∇x(p) = x(p) − x(p +

1). When n is greater than 1, the computation can be recursively performed using

∇nx(p) = ∇n−1x(p) − ∇n−1x(p + 1). The symbol C represents the mathematical

notation for combinations, defined asCk
n = n!

k!(n−k)! . Here,E signifies the expectation.

Proof: Here we initially consider the Gaussian noise distribution v ∼ N (0, σ2)

with a standard deviation of σ, and define the following relationship: x = u + v

between the noisy input x and noise-free image u. First, we define the first-order

gradient and n-order gradient (n > 1) of the image at pixel coordinate position p,

i.e., ∇x(p) = x(p) − x(p + 1) and ∇nx(p) = ∇n−1x(p) − ∇n−1x(p + 1). De-

coupling the noise map v and clear images u, we obtain ∇nx(p) = ∇nu(p) +

∇n−1v(p)−∇n−1v(p+ 1). Recursively, we further obtain ∇nx(p) = ∇nu(p) + T ,

where T = Σn
k=0(−1)kCk

nv(p+k). Since each noisy pixel is independently and iden-

tically distributed, i.e., v(p) ∼ N (0, σ2), we have T ∼ N (0,Σn
k=0[C

k
n]

2σ2) and

E|T | = σ
»

2
πΣ

n
k=0[C

k
n]

2, where E denotes the expectation sign.

Further, according to E|∇nx| = E|∇nu + T |, we can obtain the following in-

equality: E|T | −E|∇nu| ≤ E|∇nx| ≤ E|T |+E|∇nu|. Since the natural noise-free

image satisfies the smoothness property, the following rules are satisfied ∇u(ps) →
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0 and ∇u(pe) → u(pe) for the smooth region pixel point ps and the edge pixel

point pe. Further we obtain E|∇nu| ≈ E|∇u|. Substituting into the inequality,

we have E|T | − E|∇u| ≤ E|∇nx| ≤ E|T | + E|∇u|. When n is large enough,

E|∇nu| ≈ E|∇u| = const ≪
√
Σn

k=0[C
k
n]

2, E|∇nu| ≪ E|T |, it follows from

the pinch-force theorem that E|∇nx| ≈ E|T | = σ
»

2
πΣ

n
k=0[C

k
n]

2. Therefore, the

Gaussian noise intensity can be estimated by statistical analysis of |∇nx|, which yields

σ ≈ ψ(∇nx) :=
√
πE|∇nx|√

2Σn
k=0[C

k
n]

2
.

Time Complexity. Due to the simple but efficient representation, the noise esti-

mation approach can reach linear time complexity. By capitalizing on statistical infor-

mation encompassing the entire image, our approach eliminates the necessity of patch

selection based on additional principles. This fundamental characteristic allows our

method to operate with a time complexity of O(r) for r-dimensional flattened image

input, affirming its linear computational demand. This inherent linearity empowers our

method with exceptional suitability for real-time computing applications. Notably, our

approach simplifies the noise calculation process by relying on Equation (3), foregoing

the need for additional complex algorithms. This simplicity not only ensures accuracy

but also makes our method highly compatible with GPU implementations. Conse-

quently, our method enables accelerated inference without compromising precision or

computational efficiency.

4.2.2. Noise Remover

Based on the rapid noise estimation as an additional input, we’ve developed a Self-

Calibrated Denoiser (SCD), represented in (c) of Figure 2, formulated as:

Nd(x;ωd) :

fσ = FCFT (Fconv(σ)) ,

v = G(σ, σg)⊗FUnet

(
FC

(
fσ,x

))
,

(4)

Here, the noise level σ is estimated using Equation (3). This estimated noise level

is embedded within the conditional feature transformation layer FCFT , yielding the

latent feature map fσ detailed in (e) of Figure 2. Subsequently, the cascaded raw input

x is directed into the Unet-style based denoiser FUnet alongside a noise gate function

G to generate the noise map v. The function G(σ, σg) = sign(ReLU(σ−σg)) regulates
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the process, preserving crucial details and preventing excessive smoothing, particularly

in noiseless images.

4.3. Learnable Illumination Interpolator

To learn better illumination map, we generalize the following uniform prior knowl-

edge. It reflects the mathematical rules about the original input, illumination and re-

flection that need to be satisfied in a limited dynamic range.

Here, we aim to examine the numerical relationships among each component to

unveil their intrinsic connections. By imposing normalization operation restrictions on

the raw input, we ensure that the reflectance and illumination components, confined

within a limited dynamic range during recovery, adhere to the following prior con-

straints: 0 ≤ x ≤ s ≤ 1, and 0 ≤ x ≤ y ≤ 1, where 1 represents a unit vector.

Considering the potential structural consistency among x, s, and y, the challenge of

separating illumination from reflectance within an image, inspired by the principles

of retinex theory, can be addressed by formulating an explicit interpolation operator

or function. This construction facilitates the effective separation of these components

based on their intrinsic relationships.

Building upon the established relationship, we propose a straightforward method

to estimate illumination y by employing a linear interpolation function, denoted as

y = g(x) ⊗ x + (1 − g(x)). Notably, our experimental observations highlight a no-

table enhancement effect achievable by formulating the interpolation function g(x) in

relation to the image mean Mean, specifically as g(x) = 1−Mean(x). This observation

is evidenced by the results obtained from the Illumination Interpolator(II) in Figure 4.

Intuitively, brighter areas tend to have an illumination value closer to 1, while darker

areas retain illumination values closer to their original intensities. Consequently, upon

division, as described in Equation (2), the resultant image is brighter than the original.

The image mean Mean encapsulates statistical information from the images and can

be adapted to accommodate various images under different lighting conditions. Al-

though interpolation exhibits potential for enhancement, it remains fixed and may not

consistently align with our desired outcomes.

To further improve the representational capability and the nonlinear nature of the
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Figure 4: Compared with state-of-the-art unsupervised methods, II, the Illumination Interpolator, has ability

to enhance images with different degradation factors, which simply divide the linear interpolation result

between the input image and a unit vector.

function of g, we construct learnable network module Mi(u,ωi) (parameterized by

ωi) to simulate the process of illumination generation in the form of interpolation.

Specifically, the noise-free low-light image u is transmitted to the network to generate

illumination factors and then illumination is calculated in a weighted form. The above

illumination learning process is formulated as

y = u⊗α + 1−α, where α = Mi(u,ωi), (5)

where 1 denotes the unit vector and α is the learned illumination interpolation factor.

As shown in (d) of Figure 2, Mi(u,ωi) is constructed as a network module. The

interpolation is a natural structure constraint on fidelity and smooth properties of illu-

mination and we will delve into the compelling advantages of LII with such structure

constraint in Section Discussion 4.5.

4.4. Reference-Free Loss Function

The total loss function is expressed as

Ltotal = λsrr ∗ Lsrr + λnr ∗ Lnr, (6)
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where Lsrr and Lnr are self-regularized recovery loss, and noise removal loss respec-

tively. λsrr and λnr are the corresponding weights.

Self-Regularized Recovery Loss. Inspired by the gray world assumption and fol-

lowing normal image’s pixel intensity distribution, we propose the self-regularized re-

covery loss Lsrr to encourage color naturalness of the result and it can be formulated

as

Lsrr(s) = erelu(|s̄−ηt|−σt), (7)

where s̄ is the mean value of image s in different channels, ηt and σt are constants, and

presents the mean and standard deviation value of the desired enhanced image. ηt is

set to [0.485, 0.456, 0.406] and σt is set to [0.229, 0.224, 0.225] according to statistical

properties of Imagenet [26], revealing a statistic value of image intensity. These values

represent common attributes of typical images and hold practical value, being widely

applied in preprocessing processes like detection and segmentation. Further discussion

is provided in Section Discussion 4.5.

Self-Adaptable Noise Removal Loss. To preserve edge details during the de-

noising process, we introduce an adaptive denoising loss function that dynamically

balances the weights of fidelity term and regularization term [27], thereby ensuring

optimal performance across varying noise intensities encountered in unsupervised de-

noising. It can be formulate as

Lnr(y) = ||u− x||2 + λTV ∗ σ(x) ∗ TV(u), (8)

in which the regularized term TV is the standard total variation with a hyper- parameter

λTV > 0, and the noise coefficient σ(x) is the noise aware weight for balancing the

smoothness and details of the input x, estimated by the Equation (3).

4.5. Discussion

Charm of Illumination Interpolator. Compared to Retinex-induced LLIE meth-

ods, the proposed illumination interpolator learns a difference function from the orig-

inal image to the illumination map. The interpolation between input and unit vector

effectively performs edge-preserving smoothing on the input image. On one hand, the

differences between pixels decrease after interpolation, resulting in an overall smoother
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Figure 5: Visual comparison of estimated illumination map. Left: Combination reference produced by the

ground truth, Right: Illumination estimated via reverse procedure (i.e., x⊘ s).

appearance. On the other hand, the interpolation process does not disturb the relative

spatial relationships between pixels, thus preserving edges and ensuring the overall

structure of the image remains stable. As a result, the output maintains consistency in

relative brightness and structural fidelity with the input. That’s to say, the output of

LII naturally satisfies the general assumptions for illumination smoothing and struc-

tural fidelity, which are the main Note that comparison results of the Retinex-induced

LLIE methods is illustrated in Figure 5. Considering the Retinex-induced model, we

calculate the illumination map y of various methods by using x ⊘ s. Obviously, the

illumination map estimated by our NAI2 is smoother and retains the edge detail infor-

mation of the original image.

Figure 6: Statistic results of estimated illumination map. Our illumination maps’ distribution outperforms at

least as well as other retinex-based methods, despite without using corresponding loss explicitly.

LII provides a natural way to ensure the fidelity and smooth assumption of illu-
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mination and our loss draws a desired blueprint of the final result’s properties. For a

certain factor α, the gradient of illumination map can be calculated by ∇y = α∇x,

according to Equation (5). Although without constrained directly on illumination map

as other retinex-based methods do, our method outperforms at least as well as other

retinex-based approaches. We quantitatively analyze illumination maps by measuring

the common constraint term ∥∇y∥ and the translated fidelity term ∥x̂ − ŷ∥2, where

x̂ = x− Mean(x) and ŷ = y − Mean(y). We use the MIT dataset for our experiment

to avoid interference from noise. Results in Figure 6 show that our method produces

smoother and more similar illumination maps to the low-light input.

Figure 7: Charm of self-regularized recovery loss for robust enhancement. si presents the enhanced result of

xi and ∆s = 10(s1 − s2)2 means scaled square difference between results for better comparison (darker is

better). Mean square error are listed at the bottom to quantify the difference of similar inputs/results (smaller

is better).

Charm of Self-Regularized Recovery Loss. The loss ensures that the brightness

of each channel is constrained within a small margin, similar to normal images. If the

brightness is at a normal level, the loss will be zero, but if it is over-exposed or under-

exposed, the loss will increase rapidly. From the perspective of image manifold, this

approach considers mapping the high-dimensional information of the image into a low-
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dimensional manifold region that reflects the color distribution of the image, allowing

us to effectively enhance low-light images without over-exposure or under-exposure.

Additionally, the color loss function permits the efficient optimization of parameters

without the need for complex, prior-based domain knowledge, with LLI’s linear con-

vex interpolation structure. Compared to other methods that require adjusting hyper pa-

rameters between distinct loss terms, our novel illumination architecture utilizes only

the color loss function, thus simplifying the training process. Moreover, when han-

dling low-light images with subtle differences, our proposed method generates results

that exhibit smaller differences compared to other approaches. This outcome further

validates the robustness, as shown in Figure 7.

5. Experiment

In this section, we initially showcase the effectiveness and efficiency of our noise

estimation method within low-light conditions and showcase its positive impact on

denoising in such scenarios with dynamic noise. Then, we conducted comprehen-

sive evaluations encompassing both qualitative and quantitative analyses using well-

established low-light datasets. Moreover, to provide deeper insights into our method’s

components, we executed an extensive set of ablation experiments. These experiments

aimed to elucidate the functionalities of each module within our approach and to com-

pare the effectiveness of our modules against specific components extracted from state-

of-the-art methods.

5.1. Noise Estimation Evaluation

In this section, we mainly focus on the effectiveness of our proposed noise estima-

tion method for low light conditions.

To verify the effectiveness of using the higher-order gradient of images to estimate

the image noise intensity σ, we randomly selected 10 noiseless low-light images on the

MIT dataset and 10 noiseless normal images on the LOL dataset, respectively. On this

basis, we then added Gaussian noise with different noise intensity σref. and estimated

the noise intensity σn using a noise estimator of order n (i.e., n = 1, 2, 3). The process
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MIT dark images LOL normal images

Figure 8: Comparison of noise level estimation error in different datasets. σ represents the estimated noise

level, while σref. denotes the ground truth of the added noise.

was repeated 100 times for each image. As shown in Figure 8, the noise estimation

accuracy increases with increasing noise intensity and also with increasing order of

the image gradient used. The experiments prove that the 1-st order noise estimator

remains high accuracy for high intensity noise(1% error when sigma is greater than

20 in low-light images), and therefore the experiment defaults to the 1st order noise

estimator. It can be observed that our method is better suited for estimating noise

intensity under low-light conditions. Due to the generally lower pixel intensity under

low-light conditions, the impact of image texture details on the noise estimation is

relatively minor, compared to the estimated noise under normal lighting conditions.

For a more comprehensive quantitative assessment, we conducted a comparative

analysis of our methods against various noise estimation techniques, emphasizing the

assessment of absolute estimated errors and CPU running times. In this comparative

study, we utilized identical images selected from the MIT dataset and subsequently

introduced Gaussian noise with varying intensities. The outcomes are presented in

Table 1. As the additional noise intensity increases, the average absolute error demon-

strates an upward trend for the compared methods, whereas our method exhibits a

decline in error rate. Evidently, our proposed method demonstrates superior accuracy

across most noise levels while demanding significantly less computational time. No-

tably, even without GPU acceleration, ours running time is approximately fourfold
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Table 1: The average absolute error(ABE) and CPU running time of different noise estimation methods on

random selected low-light images from MIT dataset. The best result is in red whereas the second best one is

in blue.

Metric Methods
σref.

Time(s)5 15 25 35

ABE↓

Pyatykh. [22] 0.073 0.452 0.922 1.338 1.847
Liu. [23] 0.036 0.197 0.373 0.506 7.916

Chen. [24] 0.030 0.067 0.119 0.181 0.038
IVHC [28] 0.275 0.335 0.550 0.734 0.012

ABE↓ Ours
σ1 0.409 0.201 0.137 0.104 0.003
σ2 0.255 0.116 0.077 0.057 0.003
σ3 0.206 0.089 0.059 0.043 0.006

shorter compared to the second-ranked method.

To comprehensively evaluate the advantages of integrating estimated noise levels,

we executed a series of experiments. In instances where denoising models like IR-

CNN [19] and DnCNN [20] traditionally do not consider noise levels as additional

inputs, we adopted a methodology involving the embedding of our estimated noise into

a vector. This embedded vector was seamlessly integrated into the shadow layer of

these widely-used denoising models through the incorporation of multiple linear lay-

ers. Regarding CBDNet [21], a model typically reliant on neural network-based noise

estimation, we replaced its original estimation module with our proposed noise estima-

tion method. All models underwent training using the common Mean Squared Error

(MSE) loss function for image restoration. Training procedures utilized a dataset com-

prising 596 clear low-light images sourced from the MIT dataset. Subsequently, testing

involved 99 additional images, each augmented with Gaussian noise characterized by

dynamically varying intensities. Importantly, during training, the noise intensity ranged

randomly from 2 to 50, while during testing, it varied from 5 to 35. This random vari-

ation ensured that the denoising models remained oblivious to specific noise levels,

maintaining a blind status throughout the entire process. Each individual model un-

derwent training for a total of 4000 iterations. This comprehensive experimental setup

facilitated a thorough evaluation of how our estimated noise impacted the denoising

models’ performance.
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Table 2: Denoising performance of applying noise estimation method on different models.

Methods
Original w/ Noise Input

PSNR #Params(M) PSNR #Params(M)

IRCNN 34.6645 0.19 35.23460.57↑ 0.290.10↑
DnCNN 28.6796 0.56 35.68787.01↑ 0.660.10↑
CBDNet 36.6844 4.36 37.06390.38↑ 4.340.02↓

From the findings presented in Table 2, it is evident that methods incorporating our

estimated noise level input significantly outperform the original results. Notably, our

rapid statistical noise estimation method showcases superior efficiency compared to

the noise estimation network in CBDNet, for it achieves higher performance even with

fewer parameters without using network to estimate the noise intensity.

5.2. Low-light Image Enhancement

We have conducted experiments to demonstrate the accuracy and efficiency of our

noise estimation method, which has showcased promising potential for further low-

light image denoising. Building upon this progress, we are investigating the advan-

tages of employing our proposed noise estimation method within a denoising-first and

enhancing-later framework for low-light image enhancement. The datasets and training

configurations are enumerated below:

Benchmark Datasets and Evaluation Metrics. To rigorously evaluate the ef-

fectiveness of our proposed method in low-light image enhancement, we conducted

assessments across multiple datasets. The evaluation encompassed well-established

datasets such as MIT [29] and LOL [15], renowned for their diverse light condition

images. The MIT dataset contains noiseless low-light images, serving as a benchmark

for comparison, while the LOL dataset includes images captured under various light

conditions, often exhibiting significant noise. Additionally, we included several un-

paired datasets including DICM [30], LIME [31], MEF [32], NPE [33] and VV [34]

for testing directly. In evaluating the efficacy of our method, we employed a com-

prehensive set of evaluation metrics. This includes two full-reference metrics, PSNR

and SSIM [35], known for their precision in assessing image quality. Furthermore,
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we incorporated no-reference metrics, DE [36], EME [37], LOE [38] and NIQE [39],

essential for evaluating images in the absence of reference images.

Training Configuration. During the training phase, we adopted an unsupervised

learning approach tailored to each dataset. Initially, the images were segmented into

patches, each sized at 128 × 128, and a batch size of 16 was utilized. Our training

process employed the Adam optimizer with an initial learning rate set at 1× 10−4 and

betas of 0.9 and 0.999, a configuration that proved effective in our experiments. We

executed alternating optimization cycles between the Self-Calibrated Denoiser (SCD)

and the Learnable Illumination Interpolator(LII). Each optimization loop involved 50

successive updates to the LII module, followed by 50 updates to the SCD module. This

alternating optimization strategy continued for 4000 iterations to effectively train the

model.

Benchmark Evaluation. We performed quantitative and qualitative evaluations

of the proposed method against several state-of-the-art LLIE methods, including tra-

ditional methods (i.e. LIME [31] and Structure-Revealing Retinex Model [40] ), super-

vised learning methods (i.e., Retinex [15], GLADNet [17], DRBN [18] and MBLLEN [16]),

and unsupervised learning methods (i.e, EnGAN [9], ZeroDCE [5], RetinexDIP [10],

RUAS [7], and SCI [8] ). Presented below are the experimental findings following the

outlined experimental conditions and settings.

Qualitative evaluation. Qualitative results are displayed in Figure 9. As illus-

trated, previous efforts did not achieve the desired enhancement results, resulting in in-

conspicuous details, unnatural colors and overexposure or underexposure. In contrast,

our NAI2 achieves the best visual quality with vivid colors and outstanding texture

details. In contrast, our approach is both fast and flexible, and delivers highly effec-

tive results. We achieve real-time enhancement without the need for external hyper-

parameters finetuning or early stop strategies, and demonstrate superior performance

compared to existing methods.

Further, to demonstrate the stability of our method in dynamic environments, we

select pairs of images in test set of LOL with the same content but captured under dif-

ferent lighting conditions, many of which are slight different with each other. Despite

the minor variations in the input images, achieving stable appearance including pixel
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Input Retinex GLADNet DRBN MBLLEN EnGAN

Reference ZeroDCE RetinexDIP RUAS SCI Ours

Figure 9: Visual results of state-of-the-art LLIE methods and ours on the MIT dataset. Zoom in for best view.

intensity remains a challenge. Additionally, we use mean square error as the metric

to compare the enhanced images and results are revealed in Figure 10. Our method

consistently achieves the lowest differences among the unsupervised methods and out-

performs most of the supervised methods. Specifically, our proposed method generates

results with smaller differences compared to other approaches when handling low-light

images with subtle differences. This finding further validates the robustness of our ap-

proach and its ability to defend against slight changes while producing stable results.

Quantitative evaluation. Table 3 reports quantitative comparison results on the

MIT and LOL datasets. As can be seen, our method numerically outperforms exist-

ing unsupervised learning methods and even supervised learning methods by a large

margin and ranks first in almost all metrics. In comparison to the second-best unsu-

pervised state-of-the-art method on the MIT dataset, our approach achieves a PSNR

improvement of 0.818dB. Furthermore, when compared to the best performing super-

vised method, our approach results in a PSNR improvement of 1.164dB. Likewise, on

the LOL dataset, our method leads to improvements of 2.688dB and 0.675dB, respec-

tively. Benefiting from the systematic network architecture and reference-free loss we

construct, our method outperforms the results of existing unsupervised methods and
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Figure 10: Robust enhancement towards different similar images in LOL dataset. si presents the enhanced

result of xi and ∆s = 10(s1 − s2)2 means scaled square difference between results for better comparison

(darker is better). Mean square error are listed at the bottom to quantify the difference of similar inputs/results

(smaller is better). The best result is in red whereas the second best one is in blue.
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Table 3: Quantitative comparison with traditional methods (Trad.), supervised methods (Super.) and unsu-

pervised methods (Unsuper.) on MIT and LOL dataset regarding two full-reference metrics (i.e., PSNR and

SSIM) and two no-reference metrics (i.e., LOE and NIQE) . The best result is in red whereas the second best

one is in blue.

Dataset MIT LOL
Metric PSNR↑ SSIM↑ LOE↓ NIQE↓ PSNR↑ SSIM↑ LOE↓ NIQE↓

Tr
ad

. LIME 17.393 0.687 587.408 3.717 17.654 0.511 366.894 9.302
SRRM 17.306 0.662 501.561 5.150 14.700 0.660 416.025 6.955

Su
pe

r. Retinex 12.734 0.592 1820.125 4.387 16.308 0.436 1030.256 10.244
GLADNet 16.120 0.644 261.987 3.921 19.697 0.656 374.294 7.438

DRBN 16.292 0.606 737.147 4.710 18.262 0.669 615.350 5.480
MBLLEN 17.519 0.616 184.634 5.266 17.666 0.577 367.522 5.466

U
ns

up
er

.

EnGAN 15.363 0.633 849.468 3.845 17.684 0.608 529.220 5.559
ZeroDCE 16.000 0.665 496.208 3.678 16.402 0.573 227.478 8.895

RetinexDIP 17.865 0.716 505.883 3.812 12.530 0.505 386.879 8.819
RUAS 12.277 0.599 878.720 6.597 14.966 0.499 377.342 7.808

SCI 17.350 0.665 225.252 4.035 15.841 0.519 124.840 8.930
Ours 18.683 0.689 104.057 3.981 20.372 0.718 356.261 5.413

supervised learning methods on both MIT and LOL datasets significantly. To delve

deeper into the models’ ability to generalize across unforeseen scenarios, we evaluated

the unsupervised methods directly on the unpaired datasets. The results presented in

Table 4 indicate comparable performance among the methods based on DE and NIQE

metrics, although RUAS stands out due to its tendency for overexposure and a less fa-

vorable appearance. Notably, our method exhibits substantial superiority over others

in terms of LOE and EME metrics.

Computational Efficiency. Our proposed method is characterized by high effi-

ciency . Specifically, the model size is only 7.7046M, and the GPU runtime is 0.0096s.

At full speed, our method can perform high-performance enhancement at a rate of up

to 100 frames per second.

In experiments conducted on standard low-light datasets, our method exhibited ev-

ident superiority in both qualitative and quantitative enhancement of image quality.

Leveraging these outcomes, we expanded the application of our technology to more

demanding and practical scenarios.
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Table 4: Quantitative comparison on unpaired datasets with non-reference metrics. The best result is in red

whereas the second best one is in blue.

Datasets Metrics EnGAN ZeroDCE RUAS SCI Ours

DICM

DE↑ 7.173 7.025 4.367 6.752 6.962
EME↑ 14.786 29.246 14.623 44.374 44.647
LOE↓ 709.359 342.108 1403.100 362.332 98.421
NIQE↓ 3.496 3.564 7.111 4.011 3.854

LIME

DE↑ 7.313 7.017 6.866 7.163 7.259
EME↑ 15.430 35.926 19.310 38.807 40.105
LOE↓ 540.728 135.035 719.906 176.336 79.139
NIQE↓ 3.658 3.769 5.358 4.165 4.380

MEF

DE↑ 7.301 7.056 6.216 7.098 7.214
EME↑ 16.801 38.975 17.727 40.896 44.167
LOE↓ 589.343 164.262 784.168 200.329 57.198
NIQE↓ 3.221 3.283 5.426 3.681 3.644

NPE

DE↑ 7.361 7.389 4.523 7.318 7.526
EME↑ 12.985 27.063 17.418 29.476 33.893
LOE↓ 749.139 161.408 1357.500 462.794 85.321
NIQE↓ 4.120 3.926 7.083 4.180 4.046

VV

DE↑ 7.549 7.444 5.223 7.196 7.222
EME↑ 7.759 14.947 6.337 20.871 22.336
LOE↓ 461.173 145.436 583.704 128.578 37.580
NIQE↓ 4.139 3.213 5.303 2.753 2.773
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5.3. Ablation Studies

We conducted ablation studies to investigate individual network components, noise

estimator and reference-free loss functions.

Table 5: Ablation study toward network modules (i.e., SCD and LII) on the LOL dataset. The best result is

in red whereas the second best one is in blue.

Method PSNR↑ SSIM↑ LOE↓ NIQE↓
Config.: M1 (w/o SCD), M2 (w/o LII, w/SCI),

M3 (w/o ψ(∇nx)), M4 (LII-to-SCD)
M1 18.1820 0.5175 195.1463 8.7650
M2 15.2660 0.5162 1277.8000 5.8762
M3 20.0589 0.7009 373.0177 5.1661
M4 19.2083 0.6783 418.1006 4.8808

Ours 20.3721 0.7183 356.2606 5.4132

Effects of SCD and LII. Table 5 presents the results of network module (i.e., SCD

and LII) ablation on the LOL dataset. It should be noted that in the table, [M1] refers to

the model without the SCD module, and [M2] represents the removal of the LII mod-

ule, which is replaced by the unsupervised illumination learning network proposed in

the recent work SCI [8]. We observe that without the SCD module, the performance de-

creased by 2.1901dB and 0.2008 on the PSNR and SSIM metrics, respectively. More-

over, the substitution of LII for SCI significantly attenuates the performance on all

metrics, especially with a 5.1061dB decrease in PSNR. We argue that the root cause

of this phenomenon is that the substituted Model [M2] does not comply with the loss

optimization procedure under the illumination prior constraint condition with a simple

loss function. In the other hand, it indicates that our LII module satisfy the illumination

prior naturally.

High-Order Gradient-Based Noise Estimator. Having examined the accuracy

of the noise estimator, we subsequently investigate its influence on the enhanced re-

sults. To be specific, we remove the noise estimator from denoiser and formulated

Model [M3] for experimental purposes, as shown in Table 5. The outcomes reveal that

the noise estimator can proficiently eliminate noise and boost the performance of our

approach.

SCD-to-LII v.s. LII-to-SCD. We explore the effects of executive order of SCD,
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Table 6: Ablation study regarding the proposed reference-free loss (i.e., Lsrr andLnr) on the LOL dataset.

The best result is in red whereas the second best one is in blue.

Method SCD LDCE LSCI Lsrr LTV Lnr PSNR↑ SSIM↑
M5 ✓ 10.8484 0.2553
M6 ✓ 10.5643 0.2835
M7 ✓ 18.1820 0.5175
M8 ✓ ✓ ✓ 20.1610 0.6023

Ours ✓ ✓ ✓ 20.3721 0.7183

and construct model [M4] where its front LII is spliced with a post-processor denoiser

plug-in. The corresponding quantitative is reported in Table 5, showing that using

“SCD-to-LII” improves the performance of LLIE to a certain extent on three perfor-

mance metrics, compared with “LII-to-SCD”.

— (13.615, 0.620) (13.657, 0.611) (22.389, 0.754)

— (10.421, 0.340) (10.323, 0.368) (24.779, 0.7614)

Figure 11: Ablation study on the impact of reference-free loss. (PSNR↑, SSIM↑) are listed at the bottom

to quantify the generated image quality, and a scaled heatmap of the square error between ground truth and

result is concatenated to the right part of enhanced image for better comparison.

Exploration on Reference-Free Loss. Our study investigates the effectiveness of

self-regularized recovery loss in comparison with popular unsupervised learning loss

functions, including LDCE from ZeroDCE [5] and LSCI from SCI [8], as shown in

Table 6. We built Model [M5] and [M6] separately using the corresponding complex

loss configurations. Hyperparameters of the loss functions are utilized without any co-

efficient adjustment for evaluate its robustness. However, due to the lack of a denoising

function of these model, we remove the Lnr as well as SCD term and construct Model
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[M7] for justice. None of the models include an SCD module. Our quantitative results

show a substantial improvement in Model [M7] over Models [M5] and [M6], such

as a 67.6% PSNR score improvement, demonstrating robustness and effectiveness in

color restoration, as indicated in Figure 11 and Table 6. Additionally, we explore self-

adaptable noise removal loss by removing the adaptive factor σ(x) from Lnr to train

Model [M8], which leads to the degradation of the loss to the most common denoise

loss LTV [27]. Our final model shows improvements in the PSNR and SSIM metrics

of 0.2111dB and 0.1160, respectively.

6. Conclusion

Drawing upon the distinctive characteristics of low-light images, we have devised

a rapid Gaussian noise estimation formula tailored specifically for dynamic dark sce-

narios. This formula empowers denoising solutions and prioritizes enhancing denoiser

performance in low-light conditions. Inspired by the partitioning scheme of the retinex

theory, we propose a structure-constrained noise-aware illumination interpolator, com-

plemented by an intuitive yet effective reference-free loss function. The simplicity

and efficacy of these strategies enhance the interpretability of our network and the

predictability of the enhanced results. Our proposed method consistently surpasses

state-of-the-art methodologies across various metrics on multiple datasets. Notably,

the noise estimation approach’s lack of requirement for additional sampling operations

and its ease of integration into neural networks suggest potential benefits for diffusion

models and image information entropy estimation in future applications. Building upon

these contributions, our future endeavors will focus on refining data inline distribution

to achieve even better enhancement performance.
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