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The migration of grain boundaries leads to grain growth in polycrystals and is one mechanism
of grain-boundary-mediated plasticity, especially in metallic nanocrystals. This migration is due to
the movement of dislocation-like defects, called disconnections, which couple to externally applied
shear stresses. Here, we investigate a Σ19b symmetric tilt grain boundary without pre-existing
defects using atomistic computer simulations with classical potentials. This specific grain boundary
exhibits two different atomic structures with different microscopic degrees of freedom (complexions),
called “domino” and “pearl” complexion. We show that the grain boundary migration is affected
by both the formation energy of a disconnection dipole and the Peierls-like barrier required to move
the disconnections. For the pearl complexion, the latter is much higher, leading to a high stress
required for grain boundary migration at low temperatures. However, in absolute values, the Peierls
barrier is low and can be overcome by thermal energy even at room temperature. Since the domino
complexion has higher disconnection formation energies, it is more resistant to migration at room
temperature and above.

I. INTRODUCTION

Grain boundaries (GBs) influence mechanical proper-
ties of polycrystalline materials and GB engineering is
critical in material design [1]. The motion of GBs is the
key factor in the microstructure evolution of poycrys-
talline materials [2, 3]. When subjected to shear stress,
GBs move and can account for part of the plastic de-
formation in nanocrystalline materials [4–7]. Some of the
GB deformation mechanisms discussed in the literature
are GB sliding [8–10], grain rotation [11–15], shear cou-
pled GB migration [16–32], diffusional creep [6, 33], dis-
location interaction at grain boundaries [4, 6, 33, 34], and
enhanced partial dislocation activity [4, 6, 33, 34].

Shear coupling is the migration of GBs driven by shear
stress across the GB plane [19, 24, 35]. It can lead to com-
plex effects during grain growth in a polycrystal such as
grain rotation, stress generation, and grain growth stag-
nation, which are all inter-related [15]. A shear coupling
factor β = v‖/v⊥ describes how a GB migrates: A relative
shear velocity v‖ of the two grains parallel to the GB is
coupled directly to the GB migration velocity v⊥ normal
to its plane [12, 19, 36, 37]. This factor β is influenced by
parameters such as temperature, bicrystallography, and
the type of the driving force [38]. Microscopically, shear-
coupled motion is caused by the movement of disconnec-
tions, which are line defects at the GB [36, 37, 39, 40].
Disconnections have dislocation character insofar that
they have a Burgers vector b, which couples to exter-
nally applied stress. They also lead to a step of size h in
the GB, which results in the GB migration during discon-
nection nucleation and movement [35, 41]. The formation
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and migration of disconnections play a vital role in the
kinetic properties of GBs [42–46] and pre-existing mobile
disconnections lead to a reduced stress required for GB
migration [47]. Bicrystallography influences the possible
disconnection modes, i.e., which Burgers vectors can oc-
cur, and the applied stress and temperature influence the
active disconnection mode [19, 37, 38, 45, 48, 49].

At the atomic scale, however, different structures at
GBs and first-order transitions between them were ob-
served even in pure metallic materials [50–57]. These
different structures can be treated as interface phases,
which can only exist in contact with the abutting crystal-
lites, and can be treated using a thermodynamic frame-
work [58–63]. They are called complexions [64–67] or GB
phases [68]. Complexion transitions, then, are analogous
to bulk phase transitions: The GB structure, composi-
tion, and properties change discontinuously at critical
values of thermodynamic parameters such as temper-
ature, pressure, and chemical potential [62–64, 66–68].
Only a few simulation studies investigated the influence
of complexion transitions on the shear coupled motion.
They found that β can depend on the complexion present
at the GB, even if the macroscopic degrees of freedom
of the GB are constant (congruent complexion transi-
tion [66]) and only the microscopic degrees of freedom
change [19, 69]. The understanding of how complexion
transitions can affect shear-coupled GB migration from
a mechanistic viewpoint is thus still at its infancy.

In this paper, we report the underlying mechanisms
and parameters of shear-coupled motion for a Σ19b [111]
(178) symmetric tilt GB. This GB can exhibit two differ-
ent complexions [55]. We discuss the disconnection mode
that is active in these complexions and how differences
of disconnection formation and migration energies affect
the GB migration.
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II. COMPUTATIONAL METHODS

We studied bicrystals with symmetric tilt GBs using
molecular dynamics (MD) simulations, which were per-
formed using LAMMPS [70, 71] with the embedded atom
method (EAM) potential of Mishin et al [72]. This po-
tential reproduces some properties of Cu very well, com-
prising elastic constants, phonon frequencies, thermal ex-
pansion, intrinsic stacking fault energy, the coherent twin
boundary energy and others. We used a time integration
step of 2 fs for all dynamics simulations.

The bicrystals for Σ19b [111] (178) symmetric tilt GBs
(misorientation of 46.83°) were created by constructing
two fcc crystals with the desired crystallographic orien-
tations [532], [178], [111] in x, y, z directions for the
top crystal and [352], [718], [111] for the bottom crys-
tal [Fig. 1(a)]. Here, y is the GB normal and z the tilt
axis. The x and z directions were periodic and we used
open boundaries in y direction, allowing us to produce
differently-sized cells by repeating the unit cell along
the periodic directions. The periodic unit cell dimensions
were Lx = 11.142�A and Lz = 6.261�A. We used Ly rang-

ing from 385.317�A to 5790.070�A (see below). The GB
structures were formed by combining the two crystallites,
sampling the microscopic degrees of freedom by displac-
ing the top crystal, and minimizing the result in molec-
ular statics (γ-surface method). We did this until the
previously reported pearl and domino complexions [55]
were found (we evaluated that structure, GB energy, and
excess volume match). The minimum energy GB struc-
tures for domino and pearl are visualized using OVITO
[73] and are shown in Fig. 2(a)–(b).

For the simulation of shear-coupled GB motion, we

used a simulation cell of size 222.814×385.317×62.613�A
3

(20×20×10 unit cells, resulting in 455,400 atoms) unless
specified otherwise.

We started by using molecular statics simulations (T =
0 K) and applying a displacement on the top boundary in
x direction and keeping the bottom boundary fixed. Both
boundaries were the regions at the surfaces in y direction
each with a width of 55 Å [Fig. 2(c)–(d)]. To study GB
migration in domino and pearl, the shear displacement d
was applied stepwise in increments of 0.05 Å, while min-
imizing the system after every step. We calculated the
resulting shear stress by dividing the reaction force at
the boundary by the area Lx × Lz of the top boundary.

Then, MD simulations were performed in the canoni-
cal ensemble (Nosé–Hoover thermostat at T = 100, 200,
300, 400, 500, 600 K). At finite temperatures, the sys-
tem was scaled to obtain the correct lattice constant at
the desired temperature T and then equilibrated for 4 ns.
In this simulation procedure, we applied a velocity in x
direction to the top boundary, while keeping the bot-
tom boundary fixed (see Ref. [19] and Fig. 2). The top
boundary was allowed to move freely in y and z direc-
tion. Shear-coupled simulations were performed for shear
velocities in the range from 0.01 m/s to 10 m/s. We typ-
ically applied a constant shear velocity of 0.1 m/s unless
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FIG. 1. (a) Schematic of the bicrystallography of a Σ19b [111]
(178) symmetric tilt GB. Top and bottom fcc crystals are
joined in the indicated orientations, leading to a misorien-
tation between the two crystals of 46.83°. (b) Schematic of
the construction of the disconnection dipole with opposite
Burgers vetor by repeating bicrystals A and B. Bicrystal B is
moved by a translation vector and step height compared to
A. By varying the number of B unit cells, the separation δ
between disconnections can be controlled.

otherwise noted. Shear stress was calculated as for the
molecular statics simulations.

The desired disconnection dipoles were constructed for
different disconnection widths δ (separation distance be-
tween the two disconnections). This is similar to the con-
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struction of disconnection as described in Refs. [74, 75]:
Bicrystals A and B were generated such that they contain
the same complexion. The GB in bicrystal B was moved
by one step height compared to A. By replicating A and
B and assembling them (e.g., as AABBBAA), two discon-
nections with opposite Burgers vector appear at the junc-
tions . . . AB. . . and . . . BA. . . [Fig. 1(b)]. By varying the
number of B unit cells, the separation δ between discon-
nections can be controlled. We calculated the energy of
the disconnection dipoles in simulation cells of sizes rang-

ing from 1114.220×964.490×6.261�A
3

(5.6× 105 atoms)

to 1114.220×5790.070×6.261�A
3

(3.4× 106 atoms) to en-
sure that size effects due to the open boundary condition
in y could be excluded and that the results converged.

Monopoles (single disconnections) were constructed in
a similar way by combining A and B so that only one
disconnection occurs (. . . AAABBB. . . ) and by leaving
open boundaries in x direction. Simulation cell sizes rang-

ing from 2228.830× 1949× 6.261�A
3

(2.3× 106 atoms) to

3342.799×5790.07×6.261�A
3

(1.0× 107 atoms) with open
boundary conditions in x and y directions were investi-
gated. We computed the monopole energy in a region
of size Lx/2 × Ly/2 × Lz in the center of the simula-
tion cell. We varied Lx and Ly to observe convergence
of the monopole energies, but could not achieve any con-
vergence with Lx due to the infinitely long-ranged elastic
interaction between the Burgers vector and the surfaces.

Finally, in order to obtain the barriers for the migration
of the disconnections themselves, the minimum energy
path for a change of the disconnection dipole width δ was
obtained by nudged elastic band (NEB) method calcula-
tions [76, 77]. The spring constants for the parallel and
perpendicular nudging forces were both 1.0 eV/Å2. The
minimization scheme used was quickmin [78]. The initial
and final states of the minimum energy path are the GB
structures with disconnection dipole widths δ varying by
11.142 Å (equivalent to a CSL periodicity vector and thus
the distance between two local minima for the disconnec-
tions). The saddle point observed along the minimum en-
ergy path is the required disconnection migration barrier
(difference in minimum and maximum energy observed
along minimum energy path).

Raw data for all simulations and analyses is available
in the companion dataset [79].

III. RESULTS AND DISCUSSION

A. Shear coupling

In the present work, we investigated Σ19b [111] (178)
symmetric tilt GBs in copper. For these GBs, two differ-
ent complexions can occur [55], named domino [Fig. 2(a)]
and pearl [Fig. 2(b)]. These complexions each consist of
two structural units, here designated as . . . RLRLRL. . . .

We simulated the shear-coupled motion of these two
complexions by applying a shear displacement. The result

for the applied shear velocity of 0.1 m/s after a simulation
time of 20 ns at 300 K is shown in Fig. 2(c)–(d). Before
the simulations, atoms in a vertical line were marked in
yellow. This fiducial line highlights the atomic displace-
ments: The GB has moved in positive y direction from
its original position (dashed line), while the material was
sheared in positive x direction. The macroscopically ap-
plied displacement couples thus to the GB migration. The
slope of the fiducial line provides the ratio of GB migra-
tion distance to sliding and is therefore equivalent to the
inverse of the shear coupling factor [12, 19, 36, 37]

β =
v‖

v⊥
, (1)

where v‖ is the shear velocity applied to the system and
v⊥ the velocity of GB migration. To more accurately cal-
culate β, we can record the displacement ux of the atoms
and plot it as a function of the atomic position normal
to the GB (Fig. 3). The slope can be obtained by linear
regression and corresponds directly to β. Earlier studies
show that β is a characteristic of a GB and depends on
the misorientation of top and bottom crystal [19], but
can also depend on the complexion for fixed macroscopic
GB parameters [69]. In this study, β is observed to be
0.874 for both domino and pearl. This is independent of
the applied shear velocity or temperature, see Fig. S1 in
the Supplemental Material (SM) [80]. We note, however,
that the individual displacements ux of atoms at a cer-
tain y position in the region traversed by the GB depend
on the complexion. We observe three distinct offsets of
the displacement ux of atoms in domino (with the same
slope), but only one in pearl. This hints at differences
of the internal atomic shuffling during GB migration in
domino and pearl.

In these simulations, displacement was imposed and
the GB migration velocity v⊥ only depends on the ap-
plied shear velocity v‖ and β. In reality, it is often the case
that a given stress is applied, so a relevant figure of merit
is the critical stress τc required to start GB migration.
This can be obtained by monitoring the reaction forces at
the boundary where the shear is applied. We started with
deformation in molecular statics (T = 0 K). As the dis-
placement d increases, the shear stress τ increases linearly
in the elastic regime (Fig. 4). At a certain displacement,
the shear stress drops as the GB migrates. The critical
shear stress τc is observed to be 1.117 GPa for pearl and
0.849 GPa for domino. As we increase the displacement,
the GB continues to move, resulting in recurring shear
stress drops at intervals of displacement characteristic to
the simulation cell size. This saw-tooth behavior is simi-
lar to earlier reported simulation studies [19, 21, 22, 27].
The pearl complexion has a significantly higher barrier
for GB migration than the domino complexion.

By unloading the system after the first stress drop
down to zero shear stress, we obtain a residual displace-
ment of ds ≈ 0.550�A (marked in the inset of Fig. 4). The
distance h traveled by the GB during the event is ob-
tained from atomistic simulations by marking the equiv-
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FIG. 2. Atomic structures of the (a) domino and (b) pearl complexions in our computer model. Both complexions consist of
two repeating structural units (. . . RLRLRL. . . ). Shear coupling simulations for 20 ns with a shear velocity of 0.1 m/s at 300 K
lead to a migration distance on the order of 2 nm for both (c) domino and (d) pearl. Shear coupled GB motion is highlighted
by the yellow fiducial mark, which exhibits a slope (equivalent to β−1) in the region traversed by the GB. The top grain is
sheared and the bottom grain grows at the expense of the top grain.

alent position in the structural unit (e.g., in R) along y
in the initial and final GB positions. Together with the
distance h ≈ 0.647�A that the GB traveled during the
event, we again obtain β = ds/h ≈ 0.850 for domino
and h ≈ 0.686�A, β = ds/h ≈ 0.801 for pearl. The dif-
ference in β is due to the relatively large error of de-

termining h from a single GB migration step, and the
values from Fig. 3 should be preferred. We also observe
that the structural units in both complexions switch from
. . . RLRLRL. . . to . . . LRLRLR. . . , which indicates that
the migration is related to the atomic structure, but that
the basic character of the GB is preserved during migra-
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(a)

(b)

β  = 0.874

β  = 0.874

FIG. 3. Displacement ux of atoms as a function of their posi-
tion along the y axis for the (a) domino and (b) pearl complex-
ions during the shear-coupling simulations. Note that y = 0
corresponds to the initial GB position. The shear coupling
factor β is the slope (red and blue lines) of these graphs and
was obtained by linear regression (Eq. 1). The regions belong-
ing to the bottom crystal (y < 0�A, zero displacement) and to
the top crystal (y > 2.4�A) are strain-free (constant displace-
ment), while the region traversed by the GB was sheared.

tion. We will now investigate the atomistic mechanism
behind the difference in critical stresses.

B. Atomistic mechanisms and bicrystallography

It is known that line defects with dislocation charac-
ter can exist on GBs [35–37, 39–41]. These are called
secondary GB dislocations or disconnections and possess
both a Burgers vector b (leading to the dislocation char-
acter) and a step height h. Disconnections can only exist
on and move along the GB, where they also introduce a
step of the GB plane. The Burgers vector is associated
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FIG. 4. Shear stress response to displacement at 0 K plotted
for domino and pearl. Each shear stress drop observed cor-
responds to a unit step GB migration. The maximum shear
stress is the critical shear stress τc required for GB migration.
The dotted lines represent unloading followed by loading in
the opposite direction after the first stress drop. The inset
shows the shear deformation ds for GB migration by a unit
step. The shear deformation is observed to be ≈ 0.550 Å for
both domino and pearl. The migration normal to the GB
plane from the initial position obtained from atomistic sim-
ulations is ≈ 0.647 Å and ≈ 0.686 Å for domino and pearl
respectively.

with a long-range strain field. Applied shear couples to
this strain field, and the GB migrates due to the step of
the disconnections, which nucleate and propagate under
the stress. Similar to a bulk dislocation, the structure
of the GB on both sides of the disconnection is undis-
turbed. Thus, the Burgers vectors must be displacement
shift complete (DSC) vectors. We found that the dis-
connection that is active during GB migration in both
domino and pearl is (b, h) = ([0.586, 0, 0] Å, 0.677 Å), re-
sulting in β = bx/h = 0.865 (see Appendix A).

During a unit GB migration step, we found that the
atoms do not jump immediately from their initial to their
final positions in the respective fcc lattices of the top
and bottom crystal, indicating that the GB has a certain
width in which the equilibrium positions do not corre-
spond to crystallographic sites in fcc (see Appendix B
for more details). The differences in atomic shuffling be-
tween domino and pearl, however, did not provide a con-
clusive reason for the difference in critical stress τc for
GB migration.

C. Disconnection monopoles and dipoles

When disconnections nucleate in otherwise defect-free
GBs, a pair of opposite disconnections, namely (b, h) and
(−b,−h), has to be created. This would be similar for
bulk dislocations. These disconnections form a disconnec-
tion dipole with a separation δ between disconnections.
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FIG. 5. Structure of the disconnection dipoles in (a) domino and (b) pearl. On the left, the disconnection is (b = [0.586, 0, 0] Å,
h = 0.677) with structural units . . . LRLRLLRLRL. . . . On the right, we have the opposite disconnection (b = [−0.586, 0, 0] Å,
h = −0.677) with structural units . . . RLRLRRLRLR. . . The disconnection dipoles were constructed for different disconnection
dipole widths δ. In the image, the ellipsis indicates that δ is larger than visible. Burgers circuits are drawn around the
disconnections (black atoms) to verify the disconnection mode obtained after minimization.

TABLE I. GB energies and parameters K and δ0 for the
dipole energies obtained from fitting Eq. (6) to Edipole from
the simulations. We list the GB energy γ∗ including a dis-
connection dipole with δ = Lx/2, the parameter K de-
scribing anisotropic crystal elasticity, and the effective dis-
connection core size δ0. The energy differences are always
∆E = Edomino−Epearl, with ∆E∗dipole being the dipole energy
difference at δ = Lx/2, and ∆Emonopole being the energy dif-
ference between monopoles (single disconnection). With the
latter, we can also extract the difference of the elastic inter-
action energies ∆Eelastic and the ratio of disconnection core
sizes δdomino

c /δpearlc .

Ly (Å) 964.490 1929.540 3859.800 5790.070
γ∗domino (J/m2) 0.872 0.873 0.873 0.873
Kdomino (meV/Å3) 41.9 75.6 77 76.8
δdomino
0 (Å) 0.191 3.540 3.791 3.761
γ∗pearl (J/m2) 0.836 0.837 0.837 0.837
Kpearl (meV/Å3) 40.6 75 76.4 76.4

δpearl0 (Å) 0.211 4.067 4.358 4.366

∆E∗dipole (meV/Å) 4.885 4.567 4.557 4.555
2∆Emonopole (meV/Å) – 5.718 5.549 5.661
∆Eelastic (meV/Å) – −1.151 −0.992 −1.105
δdomino
c /δpearlc – 1.045 1.038 1.042

Due to the opposite signs of the Burgers vectors, the
disconnections in the dipole have an attractive interac-
tion. We created dipoles of different widths in domino and
pearl GBs to evaluate their energy. The smallest possible
stable dipole width is 11.142 Å, corresponding to the GB
unit cell size along 〈532〉. To introduce the dipole, part of
the GB is translated and moved with the desired b and h
and the energy of the entire structure is minimized. Parts
of the dipoles are shown in Fig. 5. We verified that we
obtained the desired defects by making a Burgers circuit
around them (black atoms, see Fig. S2 in the SM [80] for
details).

The dipole energy is

Edipole =
E1 − E0

Lz
, (2)

where E0 is the energy of a system with a GB but no
disconnection, E1 is the energy of the same system with
a disconnection dipole, and Lz is the width of the system
along the disconnection lines. The dipole energy consists
of core and step energies for each disconnection and an
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FIG. 6. (a) The formation energies Edipole of disconnec-
tions for different dipole widths δ of the disconnection mode
(b, h) = (0.586�A, 0.677�A) are plotted for domino and pearl
complexions. (b) Zoom of the gray area in (a). The energies
of dipoles during their migration (thick lines) were obtained
by NEB between the indicated local minima (squares and cir-
cles). The disconnection migration barrier Emig is highlighted
by red and blue arrows for domino and pearl.

elastic interaction energy [37, 47, 81, 82]:

Edipole = 2Ecore + 2Estep + Eelastic

= 2Emonopole + Eelastic.
(3)

The monopole energy is thus the energy of a single, iso-
lated disconnection. The elastic interaction energy is [82]

Eelastic = Kb2 ln

(
δ

δc

)
, (4)

where K is the energy coefficient describing the
anisotropic crystal elasticity [82] and δc is the discon-
nection core size. Eqs. 3 and 4 can be simplified by a

mathematical trick: we can “hide” the monopole energies
by defining δ0 = δc exp(−2Emonopole/(Kb

2)) and writing

Edipole = Kb2 ln

(
δ

δ0

)
. (5)

The length δ0 is now an effective core size without direct
physical meaning, but Eq. 5 can be fitted directly to the
dipole energies obtained by molecular statics simulations
without knowledge of Emonopole. With periodic boundary
conditions along the x and z directions in a bicrystal
simulation, the energy of pair of disconnections is given
by [27, 37, 44]

Edipole = Kb2 ln

(
sin(πδ/Lx)

sin(πδ0/Lx)

)
, (6)

taking into account the image interactions. When Lx is
infinite, Eq. 6 reduces to Eq. 5. In our simulations, we
have to consider the periodic case with a simulation box
size of 1114.220 Å×Ly × 6.261 Å. We varied Ly to verify
that there are no size effects. Table I lists the GB energies

γ =
E1 − Efcc

LxLz
(7)

for the different box sizes. Here, E1 is the energy of a sys-
tem containing a GB with a disconnection dipole and Efcc

is the energy of the same system without a GB. For sim-
plicity, we report γ∗, which is the value for a dipole width
δ∗ = Lx/2. These values converge at Ly = 1929.540�A,
which are the results we report here. We do not use the
larger box sizes in the main text of this paper, since we
also performed NEB calculations on this system, which
have convergence issues at larger system sizes. More data
is provided in Figs. S3–S4 in the SM [80]. The result-
ing dipole energies are plotted in Fig. 6(a) and we list
the fit parameters K and δ0 in Table I. These param-
eters are comparable to those in a previous study on a
Σ13 tilt GB in copper [27] (see Appendix C for details).

The parameter Kdomino ≈ 76.8 meV/�A
3

for domino and

Kpearl ≈ 76.4 meV/�A
3

for pearl is the same because it is
a result of long-range interactions which are solely due to
the Burgers vector. Methods were developed to directly
calculate K from the stiffness tensor of the crystal, while
taking into account the crystal anisotropy [82–85]. Fol-
lowing the methods of Eshelby et al. [83] and Stroh [85],

we also obtained K = 76.7 meV/�A
3
, matching the fitted

value.
Furthermore, we also calculated Emonopole by perform-

ing simulations with a single disconnection and open
boundaries in x direction (with a monopole, periodic
boundaries are not possible). We found that the absolute
monopole energy does not converge even at large Lx (see
Table S1 in the SM [80]), likely due to elastic interactions
of the disconnection with the surfaces. The monopole en-
ergy difference between domino and pearl, however, did
converge. For Lx = 3342.799�A, we obtain a monopole
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energy of 73.5 meV/Å for domino and 70.7 meV/Å for
pearl, resulting in a difference of 2.8 meV/Å.

The energy of the disconnection dipole is maximum at
a disconnection dipole width δ∗ = Lx/2 is

E∗dipole ≈ Kb2 log

(
Lx

πδ0

)
(8)

for periodic boundary conditions and the approximation
is valid when δ0/Lx � 1. We obtained K and δ0 from
atomistic simulations by fitting Eq. 6, and hence E∗dipole
can be calculated for any given Lx of the simulation cell.
Together with the difference in monopole energies, we
can now obtain the ratio of true core sizes by separating

δdomino
0 /δpearl0 back into δdomino

c /δpearlc and ∆Emonopole

(cf. Eqs. 3–5; results in Table I). The core size of the
disconnection in domino is 4–5% larger than in pearl.

All results indicate that it is easier to form disconnec-
tion dipoles in pearl than in domino. Our earlier results,
however, were that pearl needs a higher critical stress
for GB migration. It is clear that the formation energies
cannot explain our observations.

D. Disconnection migration barriers

Apart from their formation, disconnections also need
to move in order to facilitate GB migration. In analogy to
bulk dislocations, there is also a Peierls barrier Emig for
disconnections, requiring a critical Peierls–Nabarro stress
τmig to move [44, 45, 47, 81, 86, 87]. The atomic configu-
ration at the saddle point of this barrier is not stable and
can therefore not be explored with simple molecular stat-
ics calculations. The minimum energy path for the mi-
gration of a disconnection along the GB, extending the
dipole width from δ1 to δ2, was calculated using NEB.
We built two simulation boxes with dipoles that differ
in spacing by a single GB unit cell (11.142 Å), which is
the smallest distance between metastable configurations.
This can be repeated for different δ1 and δ2 to obtain a
continuous path as a function of δ. Figure 6 shows the
results of four NEB calculations superimposed on the re-
sults from static calculations. It is clear that Emig is much

higher for pearl (7.6 meV/Å as compared to 1.1 meV/Å
for domino), leading to a steeper energy landscape dur-
ing disconnection migration. These values of Emig are
of similar magnitude as for a different, Σ13 tilt GB in
copper, which had a barrier of 5.2 ± 0.4 meV/Å [27]. In
our case, the differences between domino and pearl might
be explained by the disconnection core size differences
in domino and pearl (Table I). Similar to dislocations
[81, 87, 88], the larger disconnection core size (spread
out core) in domino compared to pearl might correlate
with the lower Peierls barrier Emig. This steepness of the
energy landscape in pearl results in its higher GB migra-
tion stresses, despite the lower disconnection formation
energies.
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FIG. 7. The critical shear stress τc as a function of tempera-
ture. At temperatures of around 200 K and above, the critical
stress τc of pearl drops below the one for domino.

E. Temperature effects and critical stresses

We proceeded to simulate the critical stress τc at finite
temperatures up to T = 700 K. With the applied shear
we found that the metastable domino phase transitions to
pearl immediately at 700 K and above, so that meaningful
stress values cannot be extracted. (The domino complex-
ion is metastable over the whole temperature range [55],
but the higher temperatures accelerate its transition to
pearl even within the short simulation timescale.) We re-
strict ourselves therefore to the temperature range up to
600 K. We averaged the critical stress over several migra-
tion events (which are each equal to a stress drop), each
time recording the maximum of the stress curve. The re-
sults are shown in Fig. 7 and are of similar magnitude as
other GBs in fcc metals (see Appendix C). Interestingly,
the critical stress for pearl is only higher than for domino
up to a point between 100 K and 200 K. If we compare
the Peierls barrier Emig to the absolute formation energy
Edipole, however, we notice that the former is quite small
(Fig. 6). Only due to its steepness, is it connected to
a high stress. It is conceivable that the thermal energy
would be sufficient to help overcome this small barrier, so
that in the end only the formation energy matters. We
tested this by starting with systems that already have
a disconnection dipole of width δ∗ = Lx/2 inserted be-
fore applying shear. We can thus probe only τmig, the
critical stress for disconnection migration. Figure 8(a)
shows that domino has τmig ≈ 0 GPa, while pearl has
τmig ≈ 0.5 GPa. The difference in τc (Fig. 4) is roughly
0.27 GPa, which is smaller. That is not surprising, since
there is also a higher stress connected to the nucleation of
domino. With increasing T , however, the disconnection
migration barrier can be overcome more and more eas-
ily, resulting in τmig ≈ 0 GPa for both domino and pearl
already at T = 200 K [Fig. 8(b)–(d)]. This can explain
the temperature dependence: It is easier to nucleate dis-
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FIG. 8. (a)–(c) Shear stress–displacement curves for GBs with pre-existing disconnection dipoles of width δ∗ = Lx/2. The
shear stress response to displacement at temperatures (a) 0 K, (b) 100 K, and (c) 200 K is plotted. The critical stress τmig for
disconnection migration is indicated by the horizontal dotted lines. (d) It reduces with increasing temperature, dropping to
close to zero at 200 K and above for both domino and pearl.

connections in the pearl complexion, but at low temper-
atures these disconnections have to cross high barriers to
move. These barriers, however, are only high compared
to domino and can be overcome with thermal energy.
At room temperature and above, pearl GBs are easier
to migrate since the GB migration is limited by defect
nucleation.

IV. CONCLUSION

We used MD simulations to investigate the nucle-
ation and migration of disconnections as the elemen-
tary mechanisms of shear coupled motion in Σ19b sym-
metric tilt GBs in Cu. In our clean GBs under peri-
dodic boundary conditions, the migration is a cycle of
a disconnection dipole nucleating, growing, and annihi-

lating. These GBs exhibit two complexions, domino and
pearl, which migrate via the same disconnection mode
(b = [0.586, 0, 0] Å, h = 0.677�A). This mode corresponds
to the shortest possible DSC vector, which also lies in
the GB plane, leading to conservative motion of the GB.
However, the critical shear stress τc required to move the
GBs differs between the two complexions. At low temper-
atures, we found by comparing the disconnection dipole
formation and migration energies of both the complex-
ions, that the difference in shear stress is predominantly
due to the steeper Peierls-like barrier in pearl. This is
caused by the differences in atomic structure, in particu-
lar the core structure of the disconnections. We observed
that pearl becomes easier to move than domino at around
200 K and above. By investigating the stress required to
move a pre-existing disconnection dipole, we found that
this stress becomes close to zero at these temperatures,
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indicating that the GB migration barrier is then domi-
nated by the dipole nucleation. We found that disconnec-
tions in domino have higher formation energies, but very
low disconnection migration barriers. This explains why
the critical shear stress for pearl changes steeply from be-
ing much higher than for domino to lower than domino
between 0 K and 300 K. Future work will have to consider
imperfect GBs and the interaction with dislocations and
nonconservative disconnections to get a full picture of GB
migration.
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Appendix A: Disconnection modes from
bicrystallography

The possible disconnections modes for a given GB—
consisting of a set of Burgers vectors and step heights
(b,h)—can be obtained from its bicrystallography. For a
certain b, there are multiple possible step heights h. Fig-
ure 9 shows the dichromatic pattern of our Σ19b [111]
(178) GB. To describe b, the notation bj/k is used [89],
where j and k are integers indicating the ending (j) and
starting (k) plane of the vector. The planes are counted
from a coincidence site, as demonstrated for b1/−1 in
Fig. 9, where the dashed lines indicate the starting plane
(−1) and the ending plane (1). The integers j and k can
be multiplied with the unit step height h0 = a/(2|178|)
to obtain the absolute length of the component normal
to the GB. Four examples of Burgers vectors of low mag-
nitude, i.e., b−15/−15, b−6/−9, b−7/−8, and b1/−1, are
marked in Fig. 9. There are six Burgers vectors in to-
tal with the same length as b−15/−15 and b−6/−9, which

have a magnitude of 0.586 Å. There are another six Burg-
ers vectors of the same length as b−7/−8 and b1/−1, which

shift the top grain position from a given [111] plane to an
adjacent [111] plane, which have a magnitude of 2.114 Å.
The in-plane shifts move identical symbol types, while
bj/k with out-of-plane component move any symbol on
one of a different type. The Burgers vector b−15/−15 is
the shortest vector that lies in the GB plane (pointing
in 〈532〉 direction). This is favorable for the mobility of
the corresponding disconnection, because its glide plane
lies in the GB plane. The disconnections b−6/−9, b−7/−8,
and b1/−1 have components normal to the GB plane and
the disconnection motion would require climb in addi-
tion to glide. This can be understood by considering that
the glide plane of the disconnection would no longer be
equal to the GB plane, but that the disconnection can

b-15/-15

b1/-1

b-6/-9

b-7/-8

h

initial GB position

final GB position

(a)

(b)

FIG. 9. (a) Dichromatic pattern of the Σ19b [111] (178) sym-
metric tilt GB in the xy plane. White and black symbols rep-
resent the atoms from the two different grains. Circle, triangle,
and square indicate different layers along z. Four unique DSC
vectors of low magnitude are marked by arrows. The DSC
vector b−15/−15 is marked with a red arrow and lies within
the (178) GB plane, while b−6/−9, b−7/−8, and b1/−1 have
components normal to the GB plane. (b) Pattern after moving
the top crystal by b−15/−15. If we imagine that the original
GB plane passed through the coincidence site marked by a
gray circle, the new GB plane must also pass through a co-
incidence site (red circle) and has thereby moved by h. The
same is true for an initial GB plane at any other position.
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only exist on the GB plane. The resulting requirement
of climb involves diffusion of vacancies in and out of the
disconnection and is therefore slow. The disconnections
b−7/−8 and b1/−1 are longer than b−15/−15 and b−6/−9
and likely have a higher core energy. It is thus likely that
the shear-coupled motion is driven by b−15/−15 discon-
nections.

We can get the step height caused by a Burgers vec-
tor from the the dichromatic pattern. When the top
crystal moves by b−15/−15, the original coincidence site
(gray circle) shifts to a new position (red circle) along
〈178〉. The difference in old and new position of coin-
cidence site along 〈178〉 is the step height (GB migra-
tion distance) h of 0.677 Å, as shown in Fig. 9(b). This
disconnection is thus represented as disconnection mode
(b, h) = ([0.586, 0, 0] Å, 0.677 Å). The ratio of shear dis-
placement (equal to bx) to GB migration distance (equal
to h) is thus β = bx/h = 0.865. This corresponds to
the value obtained from the simulations in Sec. III A.
Together with b−15/−15 being the shortest Burgers vec-
tor lying in the GB plane, this provides strong evidence
that this is the active disconnection mode during shear-
coupled GB migration in domino and pearl.

Appendix B: Atomic shuffling during GB migration

The perfect GBs in our simulations thus went through
a cycle of nucleating, propagating and annihilating the
b−15/−15 disconnection. Since we seem to observe the
same disconnection mode for domino and pearl (same
β), the differences in shear stress required to move the
disconnection can also be due to the differences in the
atomic shuffling during GB migration for both the com-
plexions [49, 91].

The atomic shuffling during GB migration for both
the complexions was observed after 20 shear stress drops
in the molecular statics calculations (corresponding to
n = 20 unit steps of GB migration). The mean GB plane
moved a total distance of nh = 13.540 Å along y and the
shear displacement 20ds = n|b| = 11.720 Å along x for
both the complexions. In Fig. 10, the initial positions of
the atoms in the top and bottom grain before GB migra-
tion are plotted in black and their final positions after
migration are marked in red and blue for domino and
pearl, respectively. At first glance, we can see that the
dichromatic pattern appears in the traversed region. This
is as expected, due to the rearrangement of atoms in this
regions from the crystallography of the top crystal (black,
before) to the one of the bottom crystal (red/blue, after)
[92, 93]. On closer inspection, it can be seen that there
are no true coincidence sites, which is a result of the mi-
croscopic degrees of freedom of the GB: The dichromatic
pattern is always plotted such that coincidence sites ex-
ist, but in reality the top crystal can always be translated
arbitrarily against the bottom crystal [57, 63, 94]. Fur-
thermore, a more complex pattern arises above/below the
traversed region. It appears that atoms do not directly

(a)

(b)

 20 ds  

 20 ds  

FIG. 10. Atom positions in (a) domino and (b) pearl before
(black) and after (red/blue) shear-coupled GB motion. These
images are after n = 20 unit steps of GB migration, which cor-
respond to a GB migration distance of nh = 13.540 Å along
y and a shear displacement n|b| = 20ds = 11.720 Å along x.
In the traversed region, an image similar to the dichromatic
pattern appears due to overlaying atoms from before the mi-
gration, which belong to the top crystal, and after the migra-
tion, which now belong to the bottom crystal. An additional
offset between the atoms in the pattern is due to the micro-
scopic degrees of freedom, i.e., the top and bottom crystal are
shifted against each other depending on the complexion. Fur-
thermore, the pattern at the start and end of the migration
region is somewhat smeared out, indicating that the atomic
jumps during the GB migration do not necessarily go from the
initial to the final position, but can also occupy intermediary
positions.
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FIG. 11. Displacements of the atoms in the GB during a single
GB migration step, plotted by (a) ux and uy components and
(b) ux and uz components. Here, we define GB atoms as those
atoms that were not identified as fcc either before or after the
migration event by the polyhedral template matching method
[90] in OVITO [73]. The displacements are symmetric around
|b|/2 = 0.293�A in x direction.

jump from their initial to their final position during one
GB migration step.

Hence we analyzed the atomic displacements during
a single step of GB migration. A simulation cell of

size 11.142 × 192.291 × 6.261�A
3

(1 × 10 × 1 units cells,
1137 atoms) was used for this. We only considered atoms
that were not identified as fcc atoms either before or
after the GB migration step, utilizing the polyhedral
template matching structure identification method [90]
as implemented in OVITO [73]. The results are shown
in Fig. 11. The jump vectors are symmetric around
|b|/2 = 0.586�A/2 = 0.293�A in x direction. The average
of all jumps has to be |b|/2 because the displacement for
atoms with y coordinates below the GB has to be zero,
while the displacement above the GB has to be |b|. The
additional symmetry of the jump vectors is due to the
symmetry of the GB. The atomic displacements during a
single GB migration step do not correspond to DSC vec-

tors. In our simulations, atoms thus transition from one
crystallite to the GB region and only then to the second
crystallite during GB migration. The non-DSC nature of
the jump vectors is due to the internal degrees of free-
dom for the atomic positions of the domino and pearl
complexions.

We furthermore probed the effort required to effect
those jumps by calculating the L2-norm of a combined
vector of the displacement components for the GB atoms
i as

√∑n
i=1 (x2i + y2i + z2i ). The atomic jump lengths is

evaluated to be 3.018�A for domino and 2.877�A for pearl.
The difference in jump lengths is small and seems to be
unlikely to explain the differences in τc for the two com-
plexions. It is therefore necessary to calculate the ex-
act energy cost of introducing the disconnections as in
Sec. III C.

Appendix C: Shear coupled motion in other GBs of
fcc metals

The energy of disconnections depends on both their
core and step energy and their elastic interaction energy,
and is therefore best described by the parameters K and
δ0 (see Sec. III C). Here, K encodes the elasticity of the
crystal lattice and δ0 the properties of the disconnection
core. Only a limited number of studies list such values,
and for copper GBs we just found Ref. [27], in which as
Σ13 [001] (320) symmetric tilt GB is simulated. They ob-
tained a value of K = 30.468 meV/Å3, whereas we found
K = 76.7 meV/Å3 (Sec. III C). The difference could be
a result of the anisotropy of copper and the different
GB planes. The paper reported Emonopole = 5.3 meV/Å

and δc = 3.615 Å. The latter was chosen arbitrarily and
we therefore combined these values into δ0 = 2.556 Å
(see Eq. 5 and surrounding discussion), which is of the
same order of magnitude as our values of δ0 = 3.8–4.4 Å
(Table I). The migration barrier Emig was reported as

5.2 ± 0.4 meV/Å, which is in the same range as our val-
ues of Emig = 1.1–7.6 meV/Å (Sec. III D).

Previously, the critical shear stress τc was calculated
for various GBs in fcc metals. Values lie in the range
of 1–4 GPa. At 0 K, shear stress in Σ13 [001] (320) and
Σ17 [001] (410) symmetric tilt Cu GBs is observed to
be 1.4 GPa and 2.1 GPa, respectively [27, 46]. Likewise,
shear stress in the Σ41 [001] (540) Al GB is noted to
be 2.85 GPa [95]. This is in the same range as our 0 K
values, which are 1.117 GPa for pearl and 0.849 GPa for
domino. Shear stress as a function of temperature is re-
ported for complexions in Cu Σ5 [001] (210) GB [69].
At 500 K, shear stress is observed to be ≈ 0.95 GPa and
≈ 0.58 GPa for split kite and filled kite complexions, re-
spectively. At the same temperature, the critical shear
stress in our domino and pearl complexions is ≈ 0.5 GPa
and ≈ 0.4 GPa, respectively. The shear stress difference
between the complexions can be due to the activation
of different disconnection modes in, e.g., split kites and
filled kites contrary to domino and pearl.
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