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Abstract

Large foundation models, known for their strong zero-shot
generalization, have excelled in visual and language
applications. However, applying them to medical im-
age segmentation, a domain with diverse imaging types
and target labels, remains an open challenge. Current
approaches, such as adapting interactive segmentation
models like Segment Anything Model (SAM), require user
prompts for each sample during inference. Alternatively,
transfer learning methods like few/one-shot models de-
mand labeled samples, leading to high costs. This paper
introduces a new paradigm toward the universal medical
image segmentation, termed ’One-Prompt Segmentation.’
One-Prompt Segmentation combines the strengths of
one-shot and interactive methods. In the inference stage,
with just one prompted sample, it can adeptly handle the
unseen task in a single forward pass. We train One-Prompt
Model on 64 open-source medical datasets, accompa-
nied by the collection of over 3,000 clinician-labeled
prompts. Tested on 14 previously unseen datasets, the
One-Prompt Model showcases superior zero-shot seg-
mentation capabilities, outperforming a wide range of
related methods. The code and data is released as https:
//github.com/KidsWithTokens/one-prompt.

1. Introduction
Large foundation models pre-trained on large-scale
datasets, are transforming the landscape with powerful
zero-shot capabilities [27, 54–56]. These foundational
models showcase an impressive ability in adapting to the
tasks not seen during training. A standout example is
the Segment Anything Model (SAM) [27], which has
gained great success for the zero-shot image segmentation.
The strength of SAM lies in its interactive segmentation
paradigm: the model segments the target following the user-
given prompts, such as a point, a bounding box (BBox), or
free text-like descriptions.

Medical image segmentation, as a unique component of
the image segmentation, plays a vital role in real-world
clinical practices, including disease diagnosis and image-
guided surgery. Many efforts have been made on bring this
interactive foundation model to the medical image segmen-
tation through fine-tuning [13, 36, 58]. However, most of
them still need to re-training the model for each new task,
leading to actually a loss of zero-shot generalization. Addi-
tionally, in these interactive models, the users have to pro-
vide prompts for each image, which is time-consuming and
inapplicable for building the automatic pipeline.

Another way towards the universal medical image seg-
mentation is few/one-shot learning [8, 41, 42, 51]. In
this setting, a pre-trained foundational model needs one
or few labeled samples as the ’supportive examples’, to
grasp a new specific task. However, securing labels for new
tasks is not always feasible. Furthermore, the success of
these methods heavily depends on the number of supportive
examples provided. For example, UniverSeg[8] achieves
competitive performance with 64 supportive samples. But
obtaining such amount of data can be challenging in real
clinical practice.

In this paper, we introduce a new paradigm for the
universal medical image segmentation, called One-Prompt
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Figure 1. Medical segmentation involves a wide range of different organs, tissues and anatomies. One-Prompt Segmentation is a novel
paradigm to building a foundation model that can generalize to unseen tasks. Given an unseen task, One-Prompt Model only needs the
users to prompt one image to grasp the task, which is notably cost-effective comparing with interactive and few-shot segmentation.

Medical Image Segmentation. This method combines the
strengths of both one-shot and interactive models to meet
the real clinical requirements. Specifically, given an unseen
task, the user only needs to provide one prompted sample to
the trained model, then it can perform well at this new task
without any retraining or fine-tuning, even for tasks signifi-
cantly different from those encountered during training. An
illustration is shown in Fig. 1.

The success of the One-Prompt Model is driven by three
key factors. First, we propose novel One-Prompt Former
modules as the model decoder. Such design helps to effi-
ciently integrate the prompted template feature into the pro-
cess of query image segmentation. Secondly, we gather
a large-scale data collection comprising 78 open-source
datasets covering diverse biomedical domains. Our model
is trained on 64 datasets, with clinicians prompting a part
of the data. Moreover, to further enhance the clinical utility,
we offer four different prompt types, which are Click, BBox,
Doodle, and SegLab. The Click and BBox work the same as
those in SAM [27]. Doodle allows the users to freely draw
on the image, helpful for prompting irregular organs like the
pancreas or lymph glands. SegLab allows the user to pro-
vide the segmentation mask as the prompt for representing
more detailed tissues like vessels.

In sum, our contributions can be summarized as follows:
• We introduce novel One-Prompt Segmentation, which is

a strong but low-cost paradigm for the universal medical
image segmentation.

• We propose a model with unique One-Prompt Former to
fuse the prompted template feature with the query feature
in the multiple feature scales.

• We set four different prompt types for better prompting
the special medical targets, thus to meet the various clini-
cal practices .

• We gather a large-scale collection comprising 78 open-
source datasets to train and test the model, and also an-
notated over 3000 of the samples with clinician-given
prompts.

2. Method

Consider a set D containing all medical image segmenta-
tion tasks. Each task d consists of image-label pairs xd, yd.
In conventional fully-supervised segmentation methods, a
function yd = fd

θ (x
d) is typically learned to estimate a

segmentation map yd based on an input image xd. How-
ever, this function fd

θ is tailored exclusively for the spe-
cific task d. In the case of few-shot strategies, the target
is to learn a universal function yd = fθ(x

d, Sd) perform-
ing on any task d guided by the task-specific support set
Sd = {(xd

j , y
d
j )}nj=1, comprising example image & label

pairs available for task d.



Figure 2. An illustration of One-Prompt Model, which starts from (a) an overview of the pipeline, and continues with zoomed-in diagrams
of individual Models, including (b) One-Prompt Former, and (c) Prompt-Parser.

In contrast, our One-Prompt Segmentation learns a more
general function y = fθ(x

d
j , k

d) performing on any task d,
where kd = {xd

c , p
d
c} comprising one fixed template image

xd
c and a paired prompt pdc available for task d. This prompt

can be freely chosen by the users from different types like
Click, BBox, Doodle, and SegLabel. This learning paradigm
is more user-friendly in the clinical practice in that users
only need to provide a single sample with prompts, and
the model can adapt to any new task in one forward pass.
This makes it easy for clinicians without a computer sci-
ence background to use the system without the complexities
of training or fine-tuning.

It is worth noting that interactive and one-shot models
can be seen as special cases of One-prompt Segmentation.
In specific, when xd

c = xd, it works as an interactive seg-
mentation model, and when pdc is a segmentation label, it
aligns with a one-shot model.

2.1. Prompts

Our model supports four types of prompts. Going be-
yond the usual Click and BBox, users can also use seg-

mentation labels (SegLab) and freehand doodles (Doodle)
as prompts. Each prompt type is best suited for its spe-
cific situations. For example, Click work well for obvious
lesions like melanoma. BBox are effective for lesions with
blurry boundaries but can be refined well by the boxes, such
as the optic cup. SegLab are ideal for scenarios with de-
tailed features, like complex vessels. Doodle are handy for
organs with varies and unusual structures, like the pancreas
and mandible. An illustration of it is shown in Section C. in
the supplementary.

All prompts are represented using two embeddings, de-
noted as p1 and p2. For Click and Doodle, the two embed-
dings are used to denote the foreground and background.
BBox use them to denote the left-top and right-bottom cor-
ner points. For these three kinds of prompts, we use posi-
tional encoding to compress the coordinate information of
the prompts, then add them to the learnable embeddings.
These embeddings learn themselves the concepts they to
represent. SegLab is converted into an embedding using a
pre-trained autoencoder. Two prompt embeddings share the
same parameters in this case.



2.2. Model

The One-Prompt Model comprises an image encoder and a
sequence of One-Prompt Former as the decoder, illustrated
in Fig. 2 (a). The model takes three inputs: the query image
xq , the template image xt, and the prompt of the template
image pt, and subsequently predicts the segmentation of the
query denoted as yq . The multi-scale features of the encoder
and decoder are skip-connected.
Encoder The image encoder can be CNN based [24] or ViT
based [12]. We show a CNN based encoder in the figure
for the simple illustration. The query sample xq and the
template sample xt will both go through the same encoder
to get the feature fq and ft.
One-prompt Former We then decode the down-sampled
query feature by incorporating the prompt embeddings,
multi-scale template features, and multi-scale query fea-
tures together through a sequence of our proposed One-
Prompt Former. All feature maps are pachlized, flattened
and projected to the embedding e ∈ RN×L for further
processing. The One-Prompt Former primarily consists
of attention blocks, and its structure involves two parallel
branches for processing query and template features, as de-
picted in Fig. 2 (b).

In each One-Prompt Former block (considering the ith

block), the Cross Attention [10] in the query branch ini-
tially takes the lth level skip-connected query embedding eql
as the query and the last output embedding esi−1 serves as
both the key and value, followed by another Cross Attention
to incorporate the template feature symmetrically. Simulta-
neously, the template branch employs a proposed Prompt-
Parser to integrate the prompts p with eql and etl , followed
by another Cross Attention to integrate the query feature.
In the end, a Cross Attention integrates the two branches
by transferring the prompted template segmentation to the
query domain. Then a self-attention followed by Feedfor-
ward Neural Network (FNN) are employed to project the
embedding to the desired length.
Prompt-Parser In the template branch, we propose a sim-
ple Prompt-Parser to mix the prompt, query and template
feature in an effective way. We show an illustration of the
Prompt-Parser in Fig. 2 (c). The high-level idea is to pro-
duce an adaptive attentive mask M to activate the prompted
target on the query-template-integrated embedding etql :

etql = etl(p
1 + p2 + eql ). (1)

We then divide Prompt-Parser to a Prompting Step and a
Masking Step. In the Prompting Step, we build a mask M
adaptive to the different feature scale by mixing prompts
with the given etl and eql . Specifically, we fist apply a MLP
layer on the stacked embedding [f t; p1; p2] ∈ R3N×L. An
MLP layer with weight w ∈ RN×3N is applied along N
to mix three different embeddings and reduce its dimension

back to N . eql is then matrix multiply on it to transfer its ac-
tivation to the query domain. The process can be formalized
as:

M = w[etl ; p
1; p2](eql )

T . (2)

Then in the Masking Step, we apply M ∈ RN×N to etql
through a proposed Gaussian Masking operation:

eG = Max(etql ∗ kG[Conv(M)], etql ), (3)

where kG is Gaussian kernel, * denotes general convolu-
tion operation. Gaussian Masking first projects M to a 2-
channel feature map by convolution layer. Then we gener-
ate kG by taking two channels as mean and variance respec-
tively. kG then multiply with etql in a pixel-wise manner to
enlarge the prompted space but with uncertainty. Finally,
we select the maximum value between the original feature
and the smoothed one, preserving the highest activation and
eliminating low-confidence uncertainty regions. The output
is obtained by finally multiplying with etl .

2.3. Training and Loss

We divided our One-Prompt dataset into 64 datasets for
model training and 14 datasets for testing. Each training
dataset is further split into three parts: a prompted template
split, a training split, and a validation split. Similarly, each
test dataset has a test split and a prompted template split.
Human users prompt each sample in the template split, for
both training and testing. Model training is performed on
the template and training splits across all datasets. In each
iteration, we randomly pick one prompted template from
the template set of the same dataset with the query image.
Training is collectively conducted across the 64 datasets.
Our final loss is a simple sum of cross-entropy loss and dice
loss.

During the inference stage, we randomly choose a
prompted template from the template split and run the
model over the test/validation split for the evaluation. Un-
less otherwise specified, we run the model 50 times and en-
semble the predictions to mitigate variance.

3. One-Prompt Data
3.1. Data Source

In order to construct a foundation model with high gen-
eralization on the unseen tasks, we train our model on
large-scale and diverse medical images consisted by on-
line open-access datasets. Our data source is constructed
from 78 datasets encompassing diverse medical domains
and imaging modalities. The dataset covers a wide array
of organs, such as lungs [48–50], eyes [16, 23, 39, 40],
brain [5, 17, 22, 28, 29], and abdominal [6, 20, 25, 26, 30–
33, 35, 38, 44, 50]. A detailed list of One-Prompt datasets
is released with our code.



3.2. Prompt Annotation

A team of clinicians prompt over 3000 samples across over
all collected dataset. These samples are meticulously se-
lected by experienced annotators to ensure diversity and
comprehensiveness. The clinicians involved in prompt-
ing come from diverse backgrounds, including cardiolo-
gists, dermatologists, gastroenterologists, neurologists, on-
cologists, pulmonologists, rheumatologists, endocrinolo-
gists, and ophthalmologists. They are encouraged to choose
datasets aligned with their expertise during the prompting
process.

In this process, all four prompt types are available for
each sample, and clinicians are encouraged to use the most
convenient prompt tool for the given targets. The clinicians
employ a browser-based interactive segmentation tool to
prompt images. Upon prompting, ground-truth masks im-
mediately appear on the images based on the given prompts.
Clinicians have the flexibility to refine their prompts, but ad-
justments are suggested only if they feel their initial prompt
was incorrect. Our prompt-based segmentation operates in
real-time directly within a browser. Notably, we do not set
strict constraints on prompt quality. Clinicians are encour-
aged to prompt images in their most natural way, with a
suggested time limit of no more than 5 seconds for each im-
age. The prompting details on the test set can be found in
Section 4.1.

4. Experiments
In this section, we present task generalization experiments
with One-Prompt Model. We divide out 14 tasks in our
available datasets, which differ significantly in term of im-
age modalities and target structures, as our held-out test
set. This set comprises 8 MICCAI2023 Challenge tasks, en-
compassing various anatomies including kidney tumor [21],
liver tumor [43], breast cancer [1], nasopharynx cancer [4],
vestibular schwannoma [2], mediastinal lymph node [45],
cerebral artery [11], and inferior alveolar nerve [7]. The
other 6 tasks including the segmentation of white blood cell
[60], optic cup [16], mandible [3], coronary artery [52],
pancreas [46], and retinal blood vessel [23]. We assess
the model performance on each test dataset using a specific
prompt type, informed by the observation that users tend to
favor specific prompts for particular tasks. We provide our
implementation and data processing details in the appendix.

4.1. Human-User Prompted Evaluation

For the evaluation, we involved human users to simulate
real-world interactions for prompt-based segmentation. We
assigned 15 users to prompt about 10% of the test images.
The users comprised 5 regular individuals with a clear un-
derstanding of the task but no clinical background, 7 junior
clinicians, and 3 senior clinicians. This aims to simulate

real-world prompting scenarios such as clinical education
or semi-automatic annotation.

4.2. One-Prompt Transfer Capability

Task We first validate the One-Prompt transfer capability
by comparing it with few/one-shot learning baseline using
varies prompts. Our main objective is to assess the gen-
eralization of One-Prompt Model in solving unseen tasks.
We compare with various few-shot models: PANet[51],
ALPNet[41], SENet[47], UniverSeg[8], all provide with the
same template to run. Few-shot methods are all given only
one template in the testing for the fair comparison. Ad-
ditionally, we compare with one-shot models: DAT[59],
ProbOne [15], HyperSegNas[42], and LT-Net [53]. All
these models are trained on the same dataset as ours, and
are all given segmentation labels as the ’prompt’ as they
could not accept sparse prompts.
Data In this comparison, we conduct tests on the held-out
test set with 14 different tasks. Among them, KiTS23[21],
ATLAS23[43], TDSC[1], and WBC[60] datasets using the
one Click prompt. For the SegRap [4], CrossM23 [2], and
REFUGE [16] datasets, we employ the BBox Prompt. The
Doodle prompt is applied to the Pendal [3], Pancreas-CT
[46], LNQ23 [45], and CAS23 [11] datasets, while the
SegLab prompt is used for CadVidSet [52], STAR [23], and
ToothFairy [7] datasets
Results Fig. 3 illustrates the average Dice score per task for
each method, and Fig. 5 provides the comparison on visu-
alized results. It is worth noting that the compared few/one-
shot models all necessitate the segmentation label as the
’prompt.’ Therefore, they have a comparative advantage in
contrast to our model. Despite this, our model consistently
outperforms the competitors by significant margins, show-
casing its robust generation ability across various tasks. In
a fair comparison where all methods are provided segmen-
tation labels (Fig. 3 SegLab), our model demonstrates more
substantial leads, which averagely outperforms the second
11.2%, which is the most among all the prompt settings.

4.3. Interactive Segmentation Capability

Task
Interactive segmentation models achieve zero-shot gen-

eralization by prompting each of the test sample. When
we offer the One-Prompt Model with the same query im-
age and prompted template image, the model degrades
to a standard interactive segmentation model. We com-
pare this setting with other interactive segmentation mod-
els, including vanilla SAM [27], SAM-U [14], VMN [61],
iSegFormer[34], MedSAM [37], MSA [58], and SAM-
Med2D [13]. Except vanilla SAM, all models are trained
on the same dataset as ours. Since most of these models
only accept Click and BBox prompts, Doodle and SegLab
prompt settings are not included in this comparison. Since



Figure 3. One-Prompt Model v.s. Few/One-shot Models on 14 held-out test datasets with 4 different prompts.

Figure 4. One-Prompt Model v.s. Interactive Segmentation Mod-
els on 7 held-out datasets with One-Click and BBox prompts.

all these models need the prompt on each input image, we
simulate the oracle prompts (details in Section 4.5: Effect
of prompt quality & types in the inference) over the images
if needed. It is worth noting that we did not re-train One-
Prompt Model on the simulated prompts: we use the same
trained One-Prompt Model as that in the last section, but
only offered the simulated prompts in testing for the possi-
ble of comparison.

Data We conduct the comparison on all 14 held-out test
datasets.

Results. We present a quantitative comparison with the in-
teractive segmentation methods in Fig. 4. We can see in
the figure that One-Prompt Model outperforms all other in-
teractive competitors by a significant margin. These results
demonstrate that One-Prompt Model could perform as well
when the query image itself is prompted, despite not be-
ing intentionally trained for this specific setting. By train-
ing under our more challenging setting, the One-Prompt
Model demonstrates superior capability compared to inter-
active models.

4.4. Zero-shot Capability

Task Our model can automatically segment all salient tar-
gets following the similar ’segment everything’ setting in
SAM. In this setup, we prompt the template image with
a regular grid of foreground points, generating an average
of approximately 50 masks per image. We compare our
model under this setting with conventional fully-supervised
models that are not promptable [9, 12, 18, 19, 24, 57], and
also SAM-based methods [13, 36, 58] under ’segment ev-
erything’ setting.
Data We use 11 unseen datasets in the held-out test set to
verify the zero-shot transfer ability of the models. Detailed
datasets are shown in Table. 1
Results We present a quantitative comparison of zero-shot
segmentation results in Table 1. It shows the challenge
faced by fully-supervised segmentation methods in gener-
alizing to unseen tasks, as they may struggle to understand
the task, such as ’what to segment,’ without the human in-
teraction. When compared to SAM-based models under the
’segment everything’ setting, the One-Prompt Model con-
sistently outperforms them across all tasks, achieving the
highest average performance of 64.0%, which surpasses the
second-highest by a substantial 10.7%. It again highlights
the value of setting a challenging learning task with a com-
parable model for enhancing the generalization.

4.5. Ablation Study and Analysis

Ablation on Prompt-Parser In the design of Prompt-
Parser, we experimented with various combinations of
strategies in both the Masking and Prompting steps. The
comparative results are shown in Fig. 6. For the Prompt-
ing step, we explored simply adding or concatenating three
embeddings and then projecting them to the desired length
using a MLP. In the Masking step, we tested different ap-
proaches, such as directly adding the mask to the feature,
binary thresholding the mask (setting negatives to zero and
positives to one) then do element-wise multiplication with
the feature (Binary Masking), or normalizing the mask and



Figure 5. Visualized comparison of One-Prompt Model and few/zero-shot models. One-Prompt Model is given templates with prompts for
the prediction. Few/zero-shot models are given templates with segmentation labels for the prediction.

Table 1. The zero-shot comparison between One-Prompt Model, full-supervised models and SAM-based models under ’segment every-
thing’ setting. Evaluated on 11 unseen tasks by Dice Score (%).

Methods KiTS ATLAS WBC SegRap CrossM REFUGE Pendal LQN CAS CadVidSet ToothFairy Ave
TransUNet 38.2 34.5 49.1 25.5 37.7 36.3 31.2 23.3 24.5 31.6 37.9 33.6
Swin-UNetr 37.2 26.5 32.1 25.6 29.7 28.9 31.4 17.2 20.5 22.6 32.1 28.5

nnUNet 39.8 30.3 40.4 26.8 35.0 34.9 42.9 18.9 37.4 41.8 35.3 34.9
MedSegDiff 40.1 30.5 42.9 34.7 37.7 31.9 42.6 21.1 38.3 34.7 33.5 35.3

MSA 54.6 48.9 55.9 47.3 51.7 49.2 54.2 41.0 48.9 53.5 47.6 50.3
MedSAM 62.4 53.1 67.8 52.3 59.3 54.5 58.7 42.5 41.5 45.7 56.2 53.9

SAM-Med2D 56.3 51.4 52.6 43.5 47.2 52.0 50.8 47.4 44.3 49.0 55.1 50.0
One-Prompt 67.3 63.8 72.5 62.2 65.8 58.4 72.6 49.5 64.5 66.3 61.4 64.0

then element-wise multiplying it with the feature (Norm
Masking). We can see the combination of the proposed
Stack MLP + Gaussian Masking achieves the highest score
on the held-out test dataset.

Variance of offering different Templates in the inference
To assess the variance of using different templates during
inference, we conducted 100 repetitions using different ran-
dom templates across 8 test tasks. The results are shown
in Fig. 7. We can see given the same type of prompts for
different tasks, the larger variances are shown in tasks with
more diverse and uncertain target structures, such as Optic-
Cup (REFUGE) and Pancreas segmentation. This is be-
cause the template may significantly differ from the query
samples in these tasks. The variance also varies depending
on the type of prompts, such as the notably smaller vari-

ance is observed when using fine-grained SegLab prompts.
Overall, we observed variance consistently staying below
13%. This inherent stability of the model suggests a robust
zero-shot generalization capability.

Effect of prompt quality & types in the inference To ver-
ify the effect of prompt quality and types in the inference,
we categorize five different levels of the prompt quality,
from the lowest to the highest quality, respectively denoted
as: Low, Medium, High, Oracle, and Human, on each of
the prompt type. The detailed prompt simulation process
is provided in the supplementary. We provide the model
the same template with different prompt qualities each time
in the comparison. The model is tested under One-Prompt
setting on REFUGE and WBC datasets.

In Fig. 8, we observe a gradual improvement in model



Figure 6. Ablation study on Prompt-Parser. We cross-validate
the combination of different methods in Masking and Prompting
steps, and show the average dice score under one-prompt segmen-
tation setting on the held-out test set.

Figure 7. Variance of offering different templates to One-Prompt
Model in the inference. Validated on 8 held-out test task giving
different prompts.

performance as prompt quality increases, highlighting the
significant impact of prompt quality on the final model per-
formance. The choice of prompt types also has a notable
effect on the results. For both tasks, fine-grained SegLab
exhibit the highest performance. BBox and Doodle demon-
strate comparable performance after convergence and gen-
erally outperform the quicker and simpler Click prompt.
This underscores a trade-off between user prompting and
model performance: achieving better performance typically
requires more detailed and high-quality prompts.
Model Efficiency In Table 2, we compare the efficiency
of our model with one/few-shot learning models across 14
test tasks. Additionally, we train 14 TransUNet on 14 test
datasets to establish an upper-bound for the performance.
Unlike current one/few-shot models that require the fully-
labeled images, One-Prompt only needs the users to sim-

Figure 8. The variance of model performance given differ-
ent prompts with different qualities on REFUGE and WBC test
datasets.

ply prompt the image, significantly reducing the user-cost
time. On average, it takes a user 27.47 seconds to anno-
tate one image across 14 datasets, while prompting for one
image only takes an average of 2.28 seconds. Moreover,
the prompting process requires the users much less clinical
background and domain knowledge, making it more practi-
cal. The One-Prompt Model also exhibits superior scale-up
capability, showing a significant improvement of about 10%
compared to smaller models and only a 3.23% decrease
compared to the TransUNet upper-bound. Comparing with
the fully-supervised upper-bound, One-Prompt only needs
to train one time for all downstream tasks, which saves sig-
nificant parameters, training run time, and user-cost time for
the annotation.

Table 2. Model efficiency comparison with few/one-shot trans-
fer learning models. To establish an upper bound for perfor-
mance, we individually train 14 task-specific TransUNet models
for 14 held-out datasets. The run-time is its cumulative training
time. The user-cost time is denoted as ∞ since the user must an-
notate all training samples in using.

Models params (M) Run Time (ms) User-Cost Time (s) Dice
ALPNet 14.7 240 27.47 52.96
PANet 43.0 528 27.47 50.11

HyperSegNas 1321.0 2154 27.47 63.86
UniverSeg 1.2 142 27.47 64.66
OnePrompt 192.0 741 2.28 73.98

TransUNet (sup.) 14 × 103 14 × 5.7 ·107 ∞ 77.21

5. Conclusion
In this paper, we introduce ”One-Prompt Medical Im-
age Segmentation”, a new paradigm for building founda-
tion model to handle diverse medical segmentation tasks.
The model competed many related methods with just one
prompted sample. With user-friendly prompt options for
clinicians and remarkable results, the model holds signifi-
cant promise for practical applications in clinical settings.



References
[1] Tumor detection, segmentation and classification challenge

on automated 3d breast ultrasound (abus) 2023. https://tdsc-
abus2023.grand-challenge.org, 20203. 5

[2] Cross-modality domain adaptation for medical image seg-
mentation. https://crossmoda-challenge.ml, 2023. 5

[3] Amir Hossein Abdi, Shohreh Kasaei, and Mojdeh
Mehdizadeh. Automatic segmentation of mandible in
panoramic x-ray. Journal of Medical Imaging, 2(4):044003–
044003, 2015. 5

[4] Mehdi Astaraki, Simone Bendazzoli, and Iuliana Toma-
Dasu. Fully automatic segmentation of gross target volume
and organs-at-risk for radiotherapy planning of nasopharyn-
geal carcinoma. arXiv preprint arXiv:2310.02972, 2023. 5

[5] Ujjwal Baid, Satyam Ghodasara, Suyash Mohan, Michel
Bilello, Evan Calabrese, Errol Colak, Keyvan Farahani,
Jayashree Kalpathy-Cramer, Felipe C Kitamura, Sarthak
Pati, et al. The rsna-asnr-miccai brats 2021 benchmark on
brain tumor segmentation and radiogenomic classification.
arXiv preprint arXiv:2107.02314, 2021. 4

[6] Nicholas Bloch, Anant Madabhushi, Henkjan Huisman,
John Freymann, Justin Kirby, Michael Grauer, Andinet En-
quobahrie, Carl Jaffe, Larry Clarke, and Keyvan Farahani.
Nci-isbi 2013 challenge: automated segmentation of prostate
structures. The Cancer Imaging Archive, 370(6):5, 2015. 4

[7] Federico Bolelli. Tooth fairy: A cone-beam computed to-
mography segmentation challenge. International Conference
on Medical Image Computing and Computer Assisted Inter-
vention (MICCAI) 2023, 2023. 5

[8] Victor Ion Butoi, Jose Javier Gonzalez Ortiz, Tianyu Ma,
Mert R Sabuncu, John Guttag, and Adrian V Dalca. Uni-
verseg: Universal medical image segmentation. arXiv
preprint arXiv:2304.06131, 2023. 1, 5

[9] Bingzhi Chen, Yishu Liu, Zheng Zhang, Guangming Lu, and
Adams Wai Kin Kong. Transattunet: Multi-level attention-
guided u-net with transformer for medical image segmenta-
tion. IEEE Transactions on Emerging Topics in Computa-
tional Intelligence, 2023. 6

[10] Chun-Fu Richard Chen, Quanfu Fan, and Rameswar Panda.
Crossvit: Cross-attention multi-scale vision transformer for
image classification. In Proceedings of the IEEE/CVF in-
ternational conference on computer vision, pages 357–366,
2021. 4

[11] Huijun Chen. Cerebral artery segmentation challenge. In-
ternational Conference on Medical Image Computing and
Computer Assisted Intervention (MICCAI) 2023., 2023. 5

[12] Jieneng Chen, Yongyi Lu, Qihang Yu, Xiangde Luo, Ehsan
Adeli, Yan Wang, Le Lu, Alan L Yuille, and Yuyin Zhou.
Transunet: Transformers make strong encoders for medi-
cal image segmentation. arXiv preprint arXiv:2102.04306,
2021. 4, 6

[13] Junlong Cheng, Jin Ye, Zhongying Deng, Jianpin Chen,
Tianbin Li, Haoyu Wang, Yanzhou Su, Ziyan Huang, Ji-
long Chen, Lei Jiang, et al. Sam-med2d. arXiv preprint
arXiv:2308.16184, 2023. 1, 5, 6

[14] Guoyao Deng, Ke Zou, Kai Ren, Meng Wang, Xuedong
Yuan, Sancong Ying, and Huazhu Fu. Sam-u: Multi-box

prompts triggered uncertainty estimation for reliable sam in
medical image. arXiv preprint arXiv:2307.04973, 2023. 5

[15] Yuhang Ding, Xin Yu, and Yi Yang. Modeling the proba-
bilistic distribution of unlabeled data for one-shot medical
image segmentation. In Proceedings of the AAAI conference
on artificial intelligence, pages 1246–1254, 2021. 5

[16] Huihui Fang, Fei Li, Huazhu Fu, Xu Sun, Xingxing Cao,
Jaemin Son, Shuang Yu, Menglu Zhang, Chenglang Yuan,
Cheng Bian, et al. Refuge2 challenge: Treasure for multi-
domain learning in glaucoma assessment. arXiv preprint
arXiv:2202.08994, 2022. 4, 5

[17] Randy L Gollub, Jody M Shoemaker, Margaret D King,
Tonya White, Stefan Ehrlich, Scott R Sponheim, Vincent P
Clark, Jessica A Turner, Bryon A Mueller, Vince Magnotta,
et al. The mcic collection: a shared repository of multi-
modal, multi-site brain image data from a clinical investiga-
tion of schizophrenia. Neuroinformatics, 11:367–388, 2013.
4

[18] Ali Hatamizadeh, Vishwesh Nath, Yucheng Tang, Dong
Yang, Holger R Roth, and Daguang Xu. Swin unetr: Swin
transformers for semantic segmentation of brain tumors in
mri images. In International MICCAI Brainlesion Workshop,
pages 272–284. Springer, 2022. 6

[19] Ali Hatamizadeh, Yucheng Tang, Vishwesh Nath, Dong
Yang, Andriy Myronenko, Bennett Landman, Holger R
Roth, and Daguang Xu. Unetr: Transformers for 3d medical
image segmentation. In Proceedings of the IEEE/CVF Win-
ter Conference on Applications of Computer Vision, pages
574–584, 2022. 6

[20] Nicholas Heller, Fabian Isensee, Klaus H Maier-Hein, Xi-
aoshuai Hou, Chunmei Xie, Fengyi Li, Yang Nan, Guangrui
Mu, Zhiyong Lin, Miofei Han, et al. The state of the art in
kidney and kidney tumor segmentation in contrast-enhanced
ct imaging: Results of the kits19 challenge. Medical image
analysis, 67:101821, 2021. 4

[21] Nicholas Heller, Fabian Isensee, Dasha Trofimova, Re-
sha Tejpaul, Zhongchen Zhao, Huai Chen, Lisheng Wang,
Alex Golts, Daniel Khapun, Daniel Shats, Yoel Shoshan,
Flora Gilboa-Solomon, Yasmeen George, Xi Yang, Jian-
peng Zhang, Jing Zhang, Yong Xia, Mengran Wu, Zhiyang
Liu, Ed Walczak, Sean McSweeney, Ranveer Vasdev, Chris
Hornung, Rafat Solaiman, Jamee Schoephoerster, Bailey
Abernathy, David Wu, Safa Abdulkadir, Ben Byun, Jus-
tice Spriggs, Griffin Struyk, Alexandra Austin, Ben Simp-
son, Michael Hagstrom, Sierra Virnig, John French, Nitin
Venkatesh, Sarah Chan, Keenan Moore, Anna Jacobsen,
Susan Austin, Mark Austin, Subodh Regmi, Nikolaos Pa-
panikolopoulos, and Christopher Weight. The kits21 chal-
lenge: Automatic segmentation of kidneys, renal tumors, and
renal cysts in corticomedullary-phase ct, 2023. 5

[22] Moritz R Hernandez Petzsche, Ezequiel de la Rosa, Uta
Hanning, Roland Wiest, Waldo Valenzuela, Mauricio Reyes,
Maria Meyer, Sook-Lei Liew, Florian Kofler, Ivan Ezhov,
et al. Isles 2022: A multi-center magnetic resonance imag-
ing stroke lesion segmentation dataset. Scientific data, 9(1):
762, 2022. 4

[23] AD Hoover, Valentina Kouznetsova, and Michael Gold-
baum. Locating blood vessels in retinal images by piecewise



threshold probing of a matched filter response. IEEE Trans-
actions on Medical imaging, 19(3):203–210, 2000. 4, 5

[24] Fabian Isensee, Paul F Jaeger, Simon AA Kohl, Jens Pe-
tersen, and Klaus H Maier-Hein. nnu-net: a self-configuring
method for deep learning-based biomedical image segmen-
tation. Nature methods, 18(2):203–211, 2021. 4, 6

[25] Yuanfeng Ji, Haotian Bai, Jie Yang, Chongjian Ge, Ye Zhu,
Ruimao Zhang, Zhen Li, Lingyan Zhang, Wanling Ma, Xi-
ang Wan, et al. Amos: A large-scale abdominal multi-organ
benchmark for versatile medical image segmentation. arXiv
preprint arXiv:2206.08023, 2022. 4

[26] A Emre Kavur, N Sinem Gezer, Mustafa Barış, Sinem
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