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Bilayer graphene encapsulated in tungsten diselenide can host a weak topological phase with
pairs of helical edge states. The electrical tunability of this phase makes it an ideal platform to
investigate unique topological effects at zero magnetic field, such as topological superconductivity.
Here we couple the helical edges of such a heterostructure to a superconductor. The inversion of
the bulk gap accompanied by helical states near zero displacement field leads to the suppression of
the critical current in a Josephson geometry. Using superconducting quantum interferometry we
observe an even-odd effect in the Fraunhofer interference pattern within the inverted gap phase. We
show theoretically that this effect is a direct consequence of the emergence of helical modes that
connect the two edges of the sample. The absence of such an effect at high displacement field, as well
as in bare bilayer graphene junctions, confirms this interpretation and demonstrates the topological
nature of the inverted gap. Our results demonstrate the coupling of superconductivity to zero-field
topological states in graphene.

Helical edge modes in two-dimensional (2D) sys-
tems are an important building block for many quan-
tum technologies, such as dissipationless quantum spin
transport1–3, topological spintronics4,5, and topological
quantum computation6. Electrons traveling along these
modes cannot invert their propagation direction unless
their spin is flipped. As a consequence, they cannot
backscatter as long as time-reversal symmetry is pre-
served (e.g. even in the presence of arbitrary non-
magnetic defects). Helical states are expected to appear
at the edges of 2D topological insulators7,8 or in one-
dimensional semiconductors with large spin-orbit cou-
pling (SOC)6. Interestingly, single-layer graphene was
the first theoretically predicted quantum spin Hall in-
sulator9, whereby the intrinsic SOC gives rise to helical
edge states. However, the strength of this Kane-Mele
type SOC (λKM) is too small (≈ 40 µeV) to realize a
topological phase in practice.

With the advent of graphene-based van der Waals het-
erostructures with exceptional electronic properties, sev-
eral alternative approaches have been explored to cre-
ate helical edge modes. These modes are shown to ex-
ist in the quantum Hall regime of single-layer graphene
at filling factor ν = 0 under the application of a large
in-plane magnetic field10, or using a substrate with an
exceptionally large dielectric constant11. Using a double-
layer graphene heterostructure, helical transport was also
observed by tuning each of the layers to ν = ±112.
While these experiments did not involve superconductiv-
ity, they have been complemented by theoretical propos-
als showing that coupling the helical modes to a super-
conductor should give rise to topological superconduc-
tivity13,14. Unlike the experiments involving topological
insulators15–18, the main practical drawback of these pro-
posals is the requirement of large magnetic fields, which

is detrimental to any system involving superconductors.

Recently, it was shown that helical modes can ap-
pear at zero magnetic field in bilayer graphene (BLG)
encapsulated with WSe2, a transition metal dichalco-
genide (TMD)19. Several experiments have shown that
graphene coupled to TMDs gives rise to a proximity in-
duced Ising-type SOC, denoted λI

20–26. In the case of
BLG symmetrically encapsulated in WSe2 (Fig. 1a), λI

has opposite signs on the two graphene layers, thereby
effectively emulating a Kane-Mele type SOC, but with a
significantly larger magnitude of few meVs19,25,27. Us-
ing an electric displacement field D across the BLG,
it was shown19 that the bandstructure could be tuned
continuously from a band-insulator phase (BIP) at large
D, through a topological phase transition, and into an
inverted-gap phase (IGP).

In this work we combine such a WSe2/BLG/WSe2

heterostructure with a superconductor and study the
Josephson effect across this phase transition. We show
that the IGP is characterized by a local minimum of the
critical current Ic. Supercurrents in this phase are ex-
pected to flow along the helical modes. We show theo-
retically that this should cause a unique even-odd mod-
ulation with flux in the Fraunhofer interference pattern
of the Josephson junction (JJ), and present quantum in-
terferometry measurements that clearly exhibit this sig-
nature. Importantly, the effect is absent in a trivial BLG
system (i.e., without WSe2 encapsulation) as well as in
the BIP of WSe2/BLG/WSe2, thus ruling out trivial edge
transport as its origin, and strongly supporting the topo-
logical nature of the superconducting IGP.

A schematic of the devices is shown in Fig. 1b (see Ap-
pendix A for details about the fabrication process). The
WSe2/BLG/WSe2 heterostructure has superconducting
NbTiN contacts as well as a back gate, VBG, and a top
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FIG. 1. Band inversion in a bilayer graphene junction.
a The BLG is symmetrically encapsulated in WSe2 leading to
a proximity induced SOC. b Device schematic of a NbTiN-
based Josephson junction (JJ). The hexagonal boron nitride
(hBN) and hBN/AlOx act as bottom and top-gate dielectrics,
respectively. The measurements are performed using a quasi-
four terminal current-biased circuit. c Band structure of the
encapsulated BLG for different displacement fields D. At
high |D| (|u| > λI) the bulk is in a band-insulator phase
(BIP), whereas the SOC creates an Ising gap in the bulk bands
around D = 0, driving the system into an inverted-gap phase
(IGP). In this weak topological phase, gapless edge states are
present all around the BLG stack.

gate, VTG. We present results on two devices (Dev A and
Dev B) fabricated on the same heterostructure. Dev A
has a larger contact separation, L = 3.7 µm, which sup-
presses the Josephson effect and allows us to study the
normal state properties of the heterostructure. The su-
percurrent transport is explored in a ballistic JJ (Dev B)
with a contact separation of L ≈ 300 nm.

Figure 1c shows how the bandstructure is predicted to
evolve as a function of displacement field D. For D = 0
the valence and conduction bands of the BLG are in-
verted due to the Ising SOC. The band inversion opens up
a gap λI in the bulk band structure. Increasing |D| intro-
duces an additional competing energy u = −edD/εBLG.
Here, d = 0.33 nm is the BLG interlayer separation and
εBLG = 4.3 is the out-of-plane dielectric constant of BLG.
At large |D|, u becomes the dominant energy scale com-
pared to λI and a gap associated with layer-polarised
bands opens up. Thus, by tuning |D| one can transition
from the inverted phase (IGP: |u| < λI) to band-insulator
phase (BIP: |u| > λI) via an inversion point, where the
bulk gap closes.

Before proceeding to the superconducting regime of
our devices, we characterize the various phases in the
normal regime. As a first step we measure the depen-
dence of normal resistance with bottom and top gates,
which independently control the carrier density, n, and
the displacement field, D. The resistance R as a function

of n and D reveals a local maximum in R close to D = 0
along the n = 0 line. This is consistent with the predicted
opening of a SOC gap in the IGP (λI > |u|). A simi-
lar behavior has been observed previously in the form of
an incompressible phase in capacitance measurements19.
As we increase |D|, the gap is reduced and R decreases,
reaching a minimum at the gap-inversion point λI = |u|.
Increasing |D| further leads to an increase in R as the
band-insulator gap grows. The inversion points corre-
sponding to R minima are at D = −32 and 35 mV/nm
(Fig. 2a), which yield λI = 2.5 and 2.7 meV.

The SOC gap can alternatively be probed by thermal
excitation, see Fig. 2b. With increasing temperature, R
decreases as expected for a thermally activated gap. In
addition, the local R maximum at D = 0 gradually be-
comes less pronounced as the temperature is increased,
and completely vanishes at higher temperatures. To see
this effect more clearly we determine the difference in the
resistances at D = 0 and at the inversion point Dinv =
−32 mV/mm, i. e., ∆R = R(D = 0)− R(D = Dinv). A
positive value for ∆R implies the band inversion. This
difference is almost zero at T ≈ 26 K (side panel of
Fig. 2b), which corresponds to λI = 2.2 meV. The es-
timated λI matches quite well with previously reported
values of 2.2− 2.6 meV19,25,26.

While the temperature dependence provides the infor-
mation about the bulk gap, a verification of the existence
and the helical character of edge states can be done by
breaking time-reversal symmetry. An in-plane magnetic
field By introduces a Zeeman energy EZ which opens a
gap in the helical edge states19, and removes their contri-
bution from conduction. To check this effect we measure
R at n = 0 in the presence of an in-plane magnetic field
(By) as presented in Fig. 2c. At D = 0 we observed a dip
in magnetoresistance MR = [R(By) − R(0.3 T)]/R(0.3
T) for By < 0.15 T indicating the extra conduction from
edge states. At higher fields the absence of these gap-
less states results in MR values close to zero. Outside
the IGP where no helical edge is present, MR ≈ 0 for
all By. Additionally, we can rule out that this effect is
related to the bulk bands as EZ < λI. Moreover, the pos-
itive ∆R for the complete field range is consistent with a
band inversion originating from the SOC gap (side panel
of Fig. 2c). At lower fields we once again see the presence
of conducting edge channels resulting in a dip in ∆R.

After verifying the presence of helical edge states, we
turn our focus towards inducing superconductivity in
these edge modes using JJs. The JJ (Dev B) is in the
ballistic limit, as indicated by Fabry-Perot oscillations
in the normal state transport28,29 (see Appendix C). We
first check the evolution of the critical current (Ic) in the
JJ as a function of n for fixed D = 0 (Fig. 3a) and vice
versa (Fig. 3b). The dependence of Ic on n is similar to
several previous studies28–32. Figure 3a shows an Ic min-
imum at n = 0, coinciding with the R maximum, while
Ic increases with higher electron/hole doping. The more
interesting behavior is the D dependence of Ic at n = 0,
displayed in Fig. 3b. We observe a local minimum in Ic at
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FIG. 2. Bulk and edge transport in the inverted-gap phase. a Resistance R at 3.3 K for Dev A measured as a function
of carrier density n = (CTGVTG + CBGVBG)/e and displacement field D = (CTGVTG − CBGVBG)/2ε0, where CTG(BG) is the
capacitance of top (bottom) gate. Side panel: line cut of the R(n,D) map at n = 0. b Temperature dependence of R measured
at n = 0 for Dev A. Side panel: the disappearance of the IGP (between the two dotted lines) at higher temperatures is seen
from the difference ∆R between R at D = 0 and at the inversion point, Dinv = −32 mV/mm. c The magnetoresistance
MR = [R(By) − R(0.3 T)]/R(0.3 T) measured at 40 mK as a function of D and in-plane magnetic field By for Dev A. The
dotted lines represent the inversion points. The observed dip close to D = 0 and By = 0 is the result of the conduction due to
helical edge channels. Side panel: field dependence of ∆R.
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FIG. 3. Supercurrent in the inverted-gap phase. a
Current-bias dependence of the differential resistance dV/dI
for Dev B as a function of carrier density n at D = 0 and
T = 40 mK. The jump in dV/dI marks the critical current Ic.
The lower panel shows the normal-state resistance R(n) for
D = 0. b dV/dI (upper panel) and normal-state resistance R
(lower panel) as a function of D for n = 0.

D = 0, corresponding to the local R maximum, and two
maxima at higher |D| values, concurrent to the R minima
at the gap inversion points. At higher |D|, Ic decreases
monotonically due to gradual opening of band-insulator
gap32.

The presence of a supercurrent and its suppression at
D = 0 is a signature of Josephson coupling across a BLG
in an inverted phase. However, it does not reveal whether
the supercurrent flows through the bulk or through edge

channels. One could attribute the suppression of Ic in the
IGP to the opening of a bulk SOI gap entirely. There-
fore, demonstrating the existence of proximitized edge
modes requires a different probe that can differentiate
edge from bulk supercurrents. A common method em-
ployed for this purpose is superconducting quantum in-
terferometry (SQI)15,16,18,31–34, which involves the mea-
surement of Ic as a function of a perpendicular magnetic
field Bz. In the case of a JJ with homogeneous cur-
rent transport across its width W , Ic(Bz) should dis-
play a standard Fraunhofer pattern, following the func-
tional form: sin(πΦ/Φ0)/(πΦ/Φ0), where Φ = Bz/LW
and Φ0 = h/2e is the superconducting flux quantum.
This regime is clearly observed in our samples at high
densities n, see Appendix E. On the other hand, for a
JJ with only two superconducting and equivalent edges
(i. e., a symmetric SQUID) one expects a SQI pattern of
the form cos(πΦ/Φ0). However, the SQI pattern becomes
more complicated if there is some coupling between these
edges. An efficient inter-edge transport along edge chan-
nels flowing along the two SN interfaces (without becom-
ing fully gapped by proximity) can lead to the electrons
and holes flowing around the planar JJ, thereby picking
up a phase from the magnetic flux. This phase introduces
a 2Φ0-periodic component into the Φ0-periodic SQUID
pattern of the edge supercurrent35, which is a highly sig-
nificant signature of the existence of proximitized helical
modes.

Given its importance for the interpretation of our SQI
results, we now provide a theoretical analysis of how 2Φ0

harmonics arise in Ic(Φ) as a result of electrons and holes
circulating around the sample. We compute Ic in a sim-
ple model containing the minimal ingredients to capture
the effect (see the Appendix G for further details). The
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FIG. 4. Theory of the Fraunhofer even-odd effect from helical edge states. a Sketch of the four-site minimal model,
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Φ0), intra-edge hoppings t and inter-edge hoppings τ , with their Peierls phases in the gauge Ay = Bx. The origin of coordinates
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even-odd modulation for τ 6= 0. c Sketch of a more elaborate model, including in each spin sector one or more trivial edge
modes (yellow) and one helical mode (green) flowing around a gapped bulk. d,e Corresponding Ic(Φ) for one and two trivial
edge modes, respectively, exhibiting the even-odd effect when trivial and helical modes become coupled by a hopping τ at the
corners.
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FIG. 5. Even-odd effect in superconducting quantum interferometry. a Zero-field critical current Ic0 at zero carrier
density for Dev B extracted from Fig. 3b (solid line) and from Fig. 5b (circles) as a function of displacement field D. b
Normalized critical current Ic/Ic0 as a function of perpendicular magnetic field Bz and D. An even-odd effect in the SQI
oscillatory pattern can be observed only within the IGP (marked by two vertical dotted lines). c Ic/Ic0(Bz) at different D
ranging from 0 to 50 mV/nm, with a vertical shift of 0.05 per curve. d-f Same as Fig. 5a-c but for Dev C where a BLG is
encapsulated in hBN without WSe2. In d the solid line is extracted from the supercurrent measurements in the Appendix D.

JJ with a gapped central region is abstracted into just
four sites; one per corner of the BLG region. The parent
superconductor induces on the j-th corner a pairing po-
tential ∆eiφj , see Fig. 4a. The pairing phases φj depend
on the magnetic flux Φ through the BLG region, which
is described by a gauge field Ay = Bzx. This makes the
tight-binding Hamiltonian H of the four sites strictly Φ0-
periodic in Φ. Next, we add two different hopping ampli-
tudes between the corners, representing the existence of
edge channels flowing around the central region. These
hoppings acquire a Peierls phase induced by Ay. The
horizontal hoppings along the vacuum edges are denoted
by t. They have zero Peierls phase, and thus preserve
the Φ0 periodicity of the Hamiltonian. The vertical hop-
ping along the left NS interface is denoted by τ , again
with zero Peierls phase since it is located at x = 0. On
the right NS interface at x = L the hopping has the same

modulus τ , but its Peierls phase is now e±iπΦ/Φ0 , depend-
ing on the direction. This term makes the Hamiltonian
2Φ0-periodic when τ 6= 0.

The critical current Ic may be computed by maximiz-
ing the Josephson current I = (2e/~)∂φF versus φ, where
F is the free energy computed from H. The resulting Ic,
shown in Fig. 4b, therefore inherits the periodicity of H
with Φ. For a small ∆/t and a small but finite τ/t, the
resulting critical current is accurately approximated by35

Ic ∼ | cos(πΦ/Φ0)+f | for a positive 0 ≤ f < 1 that grows
with τ , see the Appendices F and H. A finite f results
in an even-odd modulation of the τ = 0 SQUID-like pat-
tern. As τ approaches t, Ic develops higher harmonics
that deviate from this simple expression. The transport
processes enabled by the coupling τ along the NS inter-
faces, i.e., by Josephson currents looping around the nor-
mal region, lead to the even-odd effect in the Fraunhofer
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pattern.

We now improve the minimal model by adopting a
more microscopic description with several trivial trans-
port channels flowing along vacuum edges31,32, and one
helical mode flowing all around the BLG junction, as ex-
pected from the band-inverted phase19,27,36. A coupling
τ between vacuum and helical states enables an inter-
edge scattering mechanism, see Fig. 4c. This time the
Peierls phase is incorporated into the tight-binding dis-
cretization of the different modes. Like in the minimal
model, the inter-mode coupling and the superconducting
proximity effect are both assumed to take place at the
corners of the normal sample, whose bulk is again as-
sumed to be completely gapped. Although these simpli-
fying assumptions are not necessarily satisfied by the ex-
perimental samples, they are enough to confirm that the
conclusions drawn from the minimal model still hold in
a more generic situation, with propagating helical modes
in place of a direct inter-edge hopping and with multi-
ple trivial vacuum edge modes. The results for Ic in the
case of one and two vacuum edge modes are shown in
Fig. 4(d,e). We once more find a Φ0-periodic SQUID-
like pattern at τ = 0 (in red), representative of the non-
inverted phase. By switching on the coupling τ , an even-
odd modulation arises. This holds true also for higher
number of vacuum modes. The main difference with re-
spect to the minimal model is the behavior when τ → t,
which is now less drastic.

Keeping these theoretical results in mind, we measure
the SQI patterns as a function of D at n = 0 (Fig. 5b,c).
As predicted by our model, we observe an even-odd ef-
fect in the Ic(Bz) oscillations inside the IGP. Unlike in
standard Fraunhofer and SQUID patterns, odd lobes are
smaller than the adjacent even lobes, see for instance the
lower curve of Fig. 5c. Such modulation is lost as we enter
the BIP (upper curves), wherein an SQUID-like pattern
is gradually recovered as |D| is increased, probably orig-
inating from trivial and decoupled vacuum edge modes
(see Appendix E). To confirm that the even-odd effect is
associated to superconducting helical modes and not to
bulk supercurrents, we perform control experiments on
a bare hBN/BLG/hBN JJ (Dev C), where we expect no
induced SOC and hence no helical modes. Indeed, we do
not observe any even-odd effect in the control SQI pat-
terns although the trivial edges are still present at higher
D (Fig. 5e,f and Appendix E).

Even-odd modulated SQI patterns have been exper-
imentally reported in various 2D systems16,18,33,34. In
InAs- and InSb-based planar JJs33,34, it was proposed
that the effect stems from crossed Andreev reflection con-
necting the trivial edges of the JJs via conducting NS in-
terfaces. Unfortunately, its origin was not fully clarified
in the InAs and InSb experiments. In contrast, our sym-
metrically encapsulated BLG junctions offer a very nat-
ural candidate for an efficient inter-edge coupling mech-
anism, in the form of helical modes flowing along the
two NS boundaries in the IGP. The even-odd effect then
acquires a special significance in our experiment, as a di-

rect probe of the weak-topological nature of the inverted
gap, and as a demonstration of how D can control the
emergence of helical modes.

Our work provides the first experimental evidence
of supercurrent flow along helical edges in graphene.
The clear 2Φ0-periodic signature in our SQI experiment
suggests an enticing prospect of detecting topological
4π-periodic current-phase relations in this system8,
which requires the investigation of the a.c. Josephson
effect17,18,37 and/or non-equilibrium effects at finite bias
in a.c. supercurrent38. The observation of gate tunable
helical-edge-mediated supercurrents opens a promising
new avenue36 towards topological superconductivity and
Majorana physics in van der Waals materials.
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Appendix A: Device fabrication

We exfoliate flakes of bilayer graphene (BLG), graphite
(5-15 nm), tungsten diselenide WSe2 (10-35 nm) and
hexagonal boron nitride hBN (20-55 nm) on different
SiO2/Si substrates using Scotch tape. Then the stacks
of hBN/WSe2/BLG/WSe2/hBN/graphite are assembled
using the van der Waals dry-transfer using polycarbon-
ate (PC) films on Polydimethylsiloxane (PDMS) hemi-
spheres. The flakes are picked up at 110◦ C and the PC
is melted at 180◦ C on SiO2/Si substrates in the end. Af-
ter dissolving the melted PC in N-Methyl-2-pyrrolidone
(NMP), the stacks are checked with atomic force mi-
croscopy (AFM).

To fabricate the Josephson junctions (JJs) we spin coat
a bilayer of 495 A4 and 950 A3 PMMA resists at 4000
rpm and bake at 175◦ C for 5 minutes, after each spin-
ning. After the e-beam lithography patterning, the re-
sist development is carried out in a cold H2O:IPA 3:1
mixture. We perform a reactive ion etching step us-
ing CHF3/O2 mixture (40/4 sccm) at 80 µbar with a
power of 60 W to etch precisely through the top hBN
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a b

FIG. S1. Optical image of JJs fabricated on (a) hBN/WSe2/BLG/WSe2/hBN/graphite and (b) hBN/BLG/hBN/graphite
stacks. Scale bar is 5 µm.

and WSe2. Then we deposit NbTi (5nm)/NbTiN (110
nm) by dc sputtering for superconducting edge contacts
and lift-off in NMP at 80◦ C. In order to isolate the top
gate metal from the ohmic, we deposit a 30 nm dielec-
tric film of Al2O3 using atomic layer deposition (ALD) at
105◦ C. Finally we define the top gate by e-beam lithogra-
phy, deposit Ti (5 nm)/Au (120 nm), followed by lift-off
(Fig. S1).

In this work we measure three devices: two JJs with
the hBN/WSe2/BLG/WSe2/hBN stack (Dev A, Dev B)
and one JJ with hBN/BLG/hBN (Dev C). The two for-
mer JJs are 7 µm wide and their respective lengths are
3.7 µm (Dev A) and 300 nm (Dev B). Dev C is 3 µm
wide and 300 nm long.

Appendix B: Measurements

All measurements are performed in a dilution refrigera-
tor with a base temperature of 40 mK. Four-probe trans-
port measurements are performed with a combination of
DC and AC current bias scheme. To determine critical
current we have employed a voltage switching detection
method with current source and critical current measure-
ment modules developed at TU Delft.41 The magnetic
fields are applied by a 3D vector magnet, which enables
us to align the field within ±5◦ accuracy.

Appendix C: WSe2/BLG/WSe2 devices

Figure S2a shows the dual gate (back gate VBG and
top gate VTG) map of the normal-state resistance R for
Dev A. In Fig. S2b, R is replotted as a function of n
and D. This clearly shows a resistance maximum near
n = 0 = D indicating the inverted-gap phase (IGP).
Similar resistance maps are measured for Dev B (Fig. S3).
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3.3 K for Dev B. Here VBG,0 = 0.5 V and VTG,0 = −1.675 V.
(b) R replotted as a function of n and D using the capaci-
tances CBG = 4.42× 10−4 F and CTG = 5.765× 10−4 F.
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FIG. S4. (a) R measured as a function of carrier density n
at displacement field D = 0 for Dev C. (b) R replotted as a
function of 2L/λF . The vertical dashed lines mark the period
of the Fabry-Perot oscillations.

The existence of Fabry-Perot (FP) interferences in the
normal-state resistance curve shows that Dev B is a bal-
listic JJ (Fig. S4). The FP resonances appear when the
condition 2d = mλF is satisfied, where d is the cavity
length, m is an integer and λF is the Fermi wavelength.
Figure S4b shows the resistance oscillations with a period
of 2d/λF for d = 325 nm.

Appendix D: Bare BLG device

Figure S5 shows the resistance R as a function of VBG
and VTG (a) as well as a function of n and D (b) of
the BLG JJ without any WSe2 encapsulation. Clearly
we observe an increase in R with increasing |D| due to
the opening of a trivial gap (Fig. S5c). In addition, the
critical current Ic gradually reduces with increasing |D|
as expected from the R(D) behaviour.

Appendix E: SQI pattern at high doping

Figure S6 displays a Fraunhofer superconducting quan-
tum interferometry (SQI) pattern for Dev B at n =
3 × 1011 cm−2 and D = 0. The SQI for a JJ with ho-
mogeneous supercurrent flow is of the form: Ic(Bz) =
Ic,0 sin(πΦ/Φ0)/(πΦ/Φ0), where Ic,0 is the zero-field crit-
ical current and Φ0 = h/2e is the (superconducting) flux
quantum. The magnetic flux Φ passing through the JJ
is given by Bz/LW , where L and W are the length and
width of the junction, respectively. However, the flux
focusing increases the effective length. For our JJs the
magnetic penetration depth of NbTiN (≈ 400 nm)42 is
larger than the film thickness (≈110 nm) and the width of
the electrode (l ≈300 nm). Thus, the effective JJ length
is L+ l = 600 nm. Using this value we plot the standard
Fraunhofer curve in Fig. S6, which matches quite well
the measured SQI pattern.

Appendix F: SQI patterns for n = 0 at larger D

Figure S7 presents the SQI patterns measured at larger
D values and Bz for Dev B and Dev C. As discussed in
main text, the even-odd effect is only seen in the WSe2-
encapsulated JJ. For large D values we observe symmet-
ric SQUID-like SQI patterns for both JJs indicating the
presence of trivial edge states. These edge states have
been previously observed in BLG JJs31,32.

Appendix G: Formula for the critical current

Neglecting phase fluctuations, the critical current
across a two-terminal JJ can be written as

Ic(Φ) = max
2π≥φ≥0

∣∣I(φ,Φ)
∣∣, (G1)

where I(φ,Φ) is the supercurrent at a given supercon-
ducting phase difference, φ, and magnetic flux, Φ, thread-
ing the junction area. In the zero-temperature limit,
I(φ,Φ) can in turn be expressed purely as a function
of spectral quantities, namely the system’s free energy
F , as

I(φ,Φ) =
2e

~
d

dφ
F (φ,Φ) =

2e

~
d

dφ

∑
n∈occ

En(φ,Φ), (G2)

written as the sum of the energies En over all occu-
pied eigenstates of the junction Hamiltonian H. These
correspond to negative eigenvalues of the Bogoliubov-de
Gennes (BdG) Hamiltonian.

Appendix H: Construction of the four-site minimal
model

In order to get physical insight into the processes that
may give rise to an even-odd modulation in Ic(Φ), we pro-
pose, prior to more elaborate calculations, the following
minimal tight-binding model for the junction. It consists
of only four sites located at the corners of the junction,
see Fig. S8a. These four sites represent the normal re-
gion between the superconductors, and are threaded by
a magnetic flux Φ. Within this model, the sites labelled
as 1 and 4, and 2 and 3 are contacted to the left and
right superconducting leads, respectively, in a JJ geom-
etry. The resulting BdG Hamiltonian for a single spin
species reads

H =

(
H0 H+

∆
H∆ −H∗0

)
, (H1)
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FIG. S5. (a) R measured as a function of VBG and VTG at 3.3 K for Dev C. Here VBG,0 = 0 V and VTG,0 = −0.07 V.(b) R
replotted as a function of n and D using the capacitances CBG = 0.96× 10−4 F and CTG = 2.75× 10−3 F. (c) Resistance line
cut R(D) of (b) at n = 0 (top panel) and critical current Ic(D) for n = 0 at 40 mK (bottom panel).
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FIG. S6. Superconducting quantum interference pattern
Ic(Bz) for Dev B at n = 3 × 1011 cm−2 and D = 0, that
follows the standard Fraunhofer curve (dashed line).

written in the Nambu basis (cσ, c
†
σ̄)T where cσ =

(c1σ, c2σ, c3σ, c4σ) and

H0 =


0 t 0 τ
t 0 τe−iπΦ/Φ0 0
0 τeiπΦ/Φ0 0 t
τ 0 t 0

 , (H2)

H∆ = ∆


1 0 0 0
0 eiφ 0 0
0 0 eiφ+i2πΦ/Φ0 0
0 0 0 1

 . (H3)

H0 and H∆ are 4× 4 matrices corresponding to the nor-
mal Hamiltonian of the particle sector and the onsite

superconducting electron-hole pairing terms induced by
the leads, respectively. ∆ and φ are the induced pairing
amplitude and phase from the parent superconductors,
respectively. t and τ are the hopping amplitudes be-
tween sites along the vacuum edge interfaces (1↔ 2 and
3↔ 4) and the NS interfaces (1↔ 4 and 2↔ 3), respec-
tively. Thus, the ratio τ/t is a key quantity that controls
the efficiency of the inter-edge coupling (between the top
and bottom edges).

For the sake of simplicity, we assume that the system
is spin degenerate and, thus, Eq. (H1) can be regarded
as half the BdG Hamiltonian of a spinful model. The
previous assumption is justified as long as the magnetic
length at Φ = Φ0 is the largest spatial scale of the prob-
lem, which seems a good approximation for large-area
devices.

The vector potential is chosen in the gauge A = Ayy =
Φ
LW xy, where L and W are the length and width of the
junction, respectively. The origin of coordinates is cho-
sen at site 1. The magnetic flux introduces a position-
dependent modulation of the pairing phase, following
∆parent(r) = ∆parent(r0) exp(2i

∫ r

r0
A · dr), where r0 is

any given point inside the superconductor and the inte-
gral path is taken inside it. Taking r0 in the left lead,
adjacent to site 1, this introduces a phase φ at site 2
(junction phase difference picked along the outer loop
between left and right) and φ+ 2πΦ at site 3. The latter
makes the Hamiltonian Φ0-periodic in Φ. In addition,
Φ enters H0 as a Peierls phase in the hoppings. In the
chosen gauge, the Peierls phase is non-zero only for hop-
pings connecting sites 2↔ 3. The Peierls phase makes H
2Φ0-periodic in Φ, in contrast to the Φ0-periodicity from
the pairing phases. From a different point of view, elec-
trons and holes will pick up an Aharonov phase ±πΦ/Φ0

when circulating around the normal region (possible only
if τ 6= 0, which enables inter-edge scattering), which will
produce a beating when added to the 2πΦ/Φ0 phase of a
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FIG. S8. (a) Sketch of a minimal model for the Josephson junction (JJ) with vacum edge states, defined by hoppings t, and
an inter-edge coupling, defined by hoppings τ . Sites 1, 4 and 2, 3 are coupled to the left and right superconducting leads,
respectively, which have a phase difference φ. In addition, a finite magnetic flux Φ induces Peierls and superconducting phases
at the hopping amplitudes and onsite pairing terms, respectively. Crucially, the Peierls phase on those hoppings connecting
different edges (in red) halves the flux-induced superconducting phase at site 3 (in blue). The induced superconducting pairing
amplitudes at the corners are ∆. (b) Supercurrent trajectories that contribute to a Φ0-periodic SQUID-like Fraunhofer pattern.
(c) Trajectories encircling the normal region enabled by inter-edge coupling, that contribute with 2Φ0-periodic critical currents.
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FIG. S9. Regimes of the minimal four-site model. ∆/t = 0.1
(a, c), ∆/t = 0.9 (b, d), τ/t = 0 (a, b), τ/t = 0.5 (c, d).

standard SQUID discussed in the main text. Thus, and
despite its extreme simplicity, the four-site model allows
us to identify inter-edge scattering as the key mechanism
behind the even-odd effect.

Appendix I: Regimes of the four-site model

Here we compute the critical current Ic(Φ) using Eqs.
(G1) and (G2) and the spectrum of Eq. (H1) in four
different regimes. The results are shown in Fig. S9.
The left and right columns correspond to the ∆/t � 1
and ∆/t ≈ 1 regimes, respectively, whereas the top and
bottom row contains the cases of forbidden or allowed
inter-edge coupling controlled by τ/t. In the absence of
inter-edge coupling, Fig. S9(a,b), the spectrum has Φ0-
periodicity whose oscillations with Φ may or may not
touch zero at half-integer fluxes depending on the value
of ∆/t. A small ∆/t ratio yields a complete suppression
of Ic at half-integer normalized flux (a) as opposed to
(b).

The beating of the Φ0-periodic modulation comes from
electron/hole trajectories encircling the sample [see Fig.
4(d, e)] and is enabled by a finite τ/t. In Fig. S9c, the
experimentally relevant situation, the exact Ic(Φ) func-
tional form, in blue, can be approximated by

Ic(Φ) ≈ Ic(0) + Ic(Φ0)

2Ic(0)

∣∣∣∣cos(π
Φ

Φ0
) +

Ic(0)− Ic(Φ0)

Ic(0) + Ic(Φ0)

∣∣∣∣ ,
(I1)

depicted as a dashed black line, similar to Eq. (18) of
Ref. 35 obtained in the framework of a network (transfer-
matrix) model. This approximation becomes exact, how-
ever, only in the limit of small ∆/t and τ/t. In the gen-
eral case, in contrast, the critical current receives contri-
butions from all possible processes without spin mixing
that lead to the net transfer of Cooper pairs across the
junction and, therefore, involve an arbitrary number of

loops around the sample and Andreev electron/hole con-
versions. To gain a better understanding of those that
contribute to the Φ0-periodicity breaking, we focus on
the leading processes up to order (∆/t)2 and (τ/t)2 cor-
responding to two Andreev reflections, one at each NS
interface, and quasiparticle trajectories that encircles the
device at most once, as those depicted in Fig. S8(b, c).
In this ∆/t, τ/t� 1 limit, the critical currents at Φ = 0
and Φ = Φ0 read:

Ic(0) ≈ 2e

~
16∆2

t

(
1 +

τ2

t2

)
, (I2)

and

Ic(Φ0) ≈ 2e

~
16∆2

t

(
1− τ2

2t2

)
. (I3)

Substituting Eqs. (I2) and (I3) into Eq. (I1) yields the
dashed orange line in Fig. S9c that tends to the exact
solution as τ/t→ 0. Despite its deviation from the calcu-
lations to all orders (blue and dashed black lines in Fig.
S9) as we relax the τ/t� 1 condition, we conclude that
loops of order (∆/t)2 and (τ/t)2 are the most relevant
within the hierarchy of inter-edge processes that leads to
2Φ0-periodicity.

Appendix J: Contribution to Ic(Φ) of O[∆2τ2]
processes

In this section we provide details of the derivation of
Eqs. (I2) and (I3). We start by rewritting the BdG
Hamiltonian of Eq. (H1) into a normal and a supercon-
ducting part as:

H

t
= H̃N + H̃S =

(H0

t 0

0 −H
∗
0

t

)
+

∆

t

(
0

H+
∆

∆
H∆

∆ 0

)
. (J1)

In the regime of interest for the experiment, i.e., that
of Fig. S9c with ∆/t � 1, H̃S can be regarded as a

small perturbation to H̃N and, therefore, a perturbative

treatment of the problem is justified. Let |Ψ(0)
i 〉 be the

i’th eigensolution of

H̃N |Ψ(0)
i 〉 = E

(0)
i |Ψ

(0)
i 〉, (J2)

with energy E
(0)
i . Since the unperturbed Hamiltonian

does not couple the electron and hole sectors we can dis-
tinguish said eigenstates by their electron/hole character:

|Ψ(0)
i,e 〉 = |e〉 ⊗ |ψ(0)

i,e 〉, (J3)

|Ψ(0)
i,h〉 = |h〉 ⊗ |ψ(0)

i,h 〉, (J4)

where |e〉 and |h〉 are the eigenstates of the Nambu pro-

jector Pe/h = τ0 ± τz, respectively, and |ψ(0)
i,e 〉 (|ψ(0)

i,h 〉)
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the eigenstates of H0 (−H∗0 ). They obey the so-called
biorthonormality conditions, which in this basis reads:

〈Ψ(0)
i,e |Ψ

(0)
j,e 〉 = δi,j , 〈Ψ(0)

i,h |Ψ
(0)
j,h〉 = δi,j , and 〈Ψ(0)

i,h |Ψ
(0)
j,e 〉 = 0,

(J5)
and

〈ψ(0)
i,e |ψ

(0)
j,e 〉 = 〈ψ(0)

i,h |ψ
(0)
j,h〉 = δi,j . (J6)

Under standard perturbation theory the eigenstates
and eigenvalues of H can be expressed as:

Ei = E
(0)
i + E

(1)
i + E

(2)
i +O[(∆/t)3] and (J7)

|Ψi〉 = |Ψ(0)
i 〉+ |Ψ(1)

i 〉+ |Ψ(2)
i 〉+O[(∆/t)3]. (J8)

where E
(n)
i and |Ψ(n)

i 〉 corresponds to the n’th order con-
tribution to the i’th eigenstate |Ψi〉 with corresponding
energy Ei of the perturbed problem, respectively.

Substituting the previous expansion into the
Schrödinger equation for the full BdG Hamiltonian
yields:(

H(0) − E(0)
i

)
|Ψ(1)
i 〉 =

(
E

(1)
i −H

(1)
)
|Ψ(0)
i 〉, (J9)

and(
H(0) − E(0)

i

)
|Ψ(2)
i 〉 = E

(2)
i |Ψ

(0)
i 〉+

(
E

(1)
i −H

(1)
)
|Ψ(1)
i 〉.

(J10)
The artificial built-in redundancy of the Nambu represen-
tation for H̃N demands to use degenerate perturbation
theory, as it reveals in the form of a two-fold degeneracy
of the unperturbed energy levels, eventually splitted by
the perturbation H̃S . Following Ref. 43 we apply the fol-
lowing ansatz for the i-th two-fold degenerate subspace
of the unperturbed system:

|Ψ(0)
i 〉 = αi|Ψ(0)

i,e 〉+ βi|Ψ(0)
i,h〉, (J11)

where α and β are constants chosen to be real for sim-
plicity. In a similar fashion, higher order eigenstates with
n > 0 can be decomposed as:

|Ψ(n)
i 〉 =

∑
j 6=i

α
(n)
j |Ψ

(0)
j,e 〉+ β

(n)
j |Ψ

(0)
j,e 〉. (J12)

Note that the i 6= j constraint in the sum together with
Eq. (J5) imposes that the first and subsequent per-

turbed eigenstates are orthogonal to |Ψ(0)
i 〉, being con-

sistent with the normalisation choice: 〈Ψ(0)
i |Ψi〉 = 1.

The first and second energy corrections to E
(0)
i can

be readily found by substituting these ansatszes into Eq.
(J9) and Eq. (J10), respectively, and solving the system

of equations resulting from left multiplying it by 〈Ψ(0)
i,e/h|.

After some algebraic manipulations (see Ref. 43 for in-

stance) we get: E
(1)
i = 0, since the BdG Hamiltonian is

hermitian. On the other hand, the second-order correc-
tions are given by:

E
(2)
i,e =

∑
j 6=i

〈ψi,e|∆|ψj,h〉〈ψj,h|∆∗|ψi,e〉
E

(0)
j − E

(0)
i

, (J13)

and similarly

E
(2)
i,h =

∑
j 6=i

〈ψi,h|∆∗|ψj,e〉〈ψj,e|∆|ψi,h〉
E

(0)
j − E

(0)
i

, (J14)

with i, j ∈ {1, 2, 3, 4}. Note that the bras and kets are the
eigenstates of the normal 4×4 Hamiltonian H0/t instead

of those of the 8×8 BdG H̃N in Eq. (J1), a circumstance
that greatly reduces the algebraic complexity.

Now that we know the second order corrections to E
(0)
i ,

we can compute the free energy summing over all i’s cor-
responding to occupied states, and by virtue of Eqs. (G2)
and (G1) compute Ic(Φ). Taking the Φ→ 0 and Φ→ Φ0

limits of the resulting expression yields Eqs. (I2) and
(I3).

Appendix K: Construction of the multi-mode
tight-binding model

Going beyond the four-site model, we consider the fol-
lowing tight-binding Hamiltonian

HTB = Hregions +Hcoupling, (K1)

where Hregions comprises the Hamiltonians of three dif-
ferent regions [see sketch in Fig. 4c] and Hcoupling the
couplings between them. The former reads

Hregions = HIGP +Hvac +HSC, (K2)

where HIGP, Hvac, and HSC correspond, respectively, to
the Hamiltonians of the IGP of BLG, two edge regions
placed at the top and bottom interfaces to vacuum ac-
counting for the expected formation of trivial edge chan-
nels, and the two s-wave superconducting leads at x = 0
and x = L with phase difference φ treated in mean-field.
Setting the origin at the left bottom site of the NS inter-
face, and using the same gauge for the vector potential as
in the four-site model, the previous terms can be written
as:

HIGP =
∑
i,σ

(2t− µN ) c†i,σci,σ (K3)

+
∑
〈i,j〉,σ

(
te−iπ

Φ
Φ0

xi(yj−yi)

LW c†iσcjσ + h.c.

)
,

Hvac =
∑
i,σ

(2t− µvac) c†i,σci,σ +
∑
〈i,j〉,σ

(
tc†iσcjσ + h.c.

)
,

(K4)

HSC = HL
SC +HR

SC, (K5)



12

HL
SC =

∑
i∈L,σ

(2t− µSC) c†i,σci,σ −
∑
i∈L

(
∆c†i↑c

†
i↓ + h.c

)
,

(K6)

HR
SC =

∑
i∈R,σ

(2t− µSC) c†i,σci,σ (K7)

−
∑
i∈R

(
∆eiφe−i2π

Φ
Φ0

xiyi
LW c†i↑c

†
i↓ + h.c

)
,

where c†iσ creates at electron with spin σ at site i, µN,
µvac, and µSC are the chemical potentials at the helical,
vacuum-edge, and superconducting regions, respectively,

and t = ~2

2ma2
0

where a0 is the lattice constant and m

the electron mass. Note that in this Section ∆ denotes
the parent superconducting pairing amplitude (instead
of the induced one used in the four-site model and the
main text). Channels in the vacuum-edge region are as-
sumed to be decoupled from each other and ballistic. Fi-
nally, the helical region corresponding to the IGP only
“sees” the superconductors through its coupling to the
vacuum-edge region [see Fig. 4c], therefore the coupling
Hamiltonian reads:

Hcoupling = HIGP-vac +Hvac-SC, (K8)

with

HIGP-vac =

{i,j}∈{IGP, vac}∑
〈i,j〉,σ

(
τIGP-vacc

†
iσcjσ + h.c.

)
,

(K9)
and

Hvac-SC =

{i,j}∈{BLG, vac}∑
〈i,j〉,σ

(
τNSc

†
iσcjσ + h.c.

)
, (K10)

where τIGP-vac ≤ t and τNS ≤ t are the hopping ampli-
tudes between sites at the IGP and thee vacuum edge and
between the vacuum edge and the superconductor, re-
spectively. Their magnitudes control the inter-edge cou-
pling rate and transparency at the NS interfaces.

The Ic(Φ) shown in Fig. 4(d,e) is computed using Eqs.
(G2) and (G1) and the spectrum of Eq. (K1).
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