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Exact Recovery for System Identification with
More Corrupt Data than Clean Data

Baturalp Yalcin, Haixiang Zhang, Javad Lavaei, and Murat Arcak

Abstract— This paper investigates the system identifica-
tion problem for linear discrete-time systems under adver-
saries and analyzes two lasso-type estimators. We examine
both asymptotic and non-asymptotic properties of these
estimators in two separate scenarios, corresponding to
deterministic and stochastic models for the attack times.
Since the samples collected from the system are correlated,
the existing results on lasso are not applicable. We prove
that when the system is stable and attacks are injected
periodically, the sample complexity for exact recovery of
the system dynamics is linear in terms of the dimension
of the states. When adversarial attacks occur at each time
instance with probability p, the required sample complexity
for exact recovery scales polynomially in the dimension of
the states and the probability p. This result implies almost
sure convergence to the true system dynamics under the
asymptotic regime. As a by-product, our estimators still
learn the system correctly even when more than half of the
data is compromised. We highlight that the attack vectors
are allowed to be correlated with each other in this work,
whereas we make some assumptions about the times at
which the attacks happen. This paper provides the first
mathematical guarantee in the literature on learning from
correlated data for dynamical systems in the case when
there is less clean data than corrupt data.

Index Terms— System Identification, Robust Control,
Statistical Learning, Linear Systems, Uncertain Systems

I. INTRODUCTION

Dynamical systems serve as the fundamental components
in reinforcement learning and control systems. The system
dynamics may not be known exactly when the system is
complex. Therefore, learning the underlying system dynamics,
named the system identification problem, and using the data
collected from the system are essential in robotics, control
theory, time-series, and reinforcement learning applications.
The system identification problem with small disturbances
using the least square estimator has been ubiquitously studied,
and the literature for this problem is overly rich [1]. Despite
several advances in this field, most results in system iden-
tification focus on the asymptotic properties, i.e., properties
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of the estimators at infinity, of the proposed estimators only.
Nonetheless, the non-asymptotic analysis of the system iden-
tification problem has gained interest in recent years [2]–[5].
Although non-asymptotic analysis is harder, it is crucial to
understand the required sample complexity for online control
problems.

The robust learning of dynamical systems is crucial for
safety-critical applications, such as autonomous driving [6],
unmanned aerial vehicles [7], and robotic arms [8]. While
recent papers have addressed online non-asymptotic control
of linear time-invariant (LTI) systems, their applicability often
hinges on the assumption of small noise in measurements,
neglecting scenarios involving large magnitudes of noise in-
dicative of adversarial attacks or data corruption [9]–[11].
These papers utilize recent advances in high-dimensional
statistics and learning theory to analyze the properties of
the solution even when the data samples are correlated. The
work [12] provides a tutorial on proof techniques. Least-
square estimators are the main tool in those works, which
are susceptible to outliers and large noise in the system.
Consequently, we propose two new non-smooth estimators
inspired by the lasso problem and robust regression literature
[13]. We study the required sample complexity for the exact
recovery of LTI systems using these estimators when there are
sporadic large disturbance injections to the system.

The robust regression and learning problems under adver-
saries are ubiquitously studied in the literature [14]–[17]. How-
ever, existing methods for analyzing the estimators cannot be
directly generalized to control problems due to the correlation
between the samples. Therefore, different strategies have been
developed recently to tackle this challenge. Firstly, the system
is initiated multiple times, and the data point at the end of
each run is used to obtain uncorrelated data points, as in [18].
However, obtaining multiple trajectories is not viable and cost-
efficient for most safety-critical applications. One method with
a single trajectory relies on the persistent excitation of the
states so that the dynamics can be explored thoroughly. This
is achieved by injecting a Gaussian noise input into the system.
Small ball techniques are used to analyze the properties of the
estimator [9], [19], [20]. This technique employs normalized
martingale bounds for the estimation error when the excitation
is large enough [9].

Unlike the non-asymptotic analysis of correlated data, the
least-squares estimator offers a closed-form solution when the
system is subjected to small white noise [21]–[23]. As long as
the noise magnitudes are not large, the least-squares estimator
performs relatively well. The estimation error asymptotically
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converges to zero with the optimal rate of T−1/2, where T
is the number of samples collected from the system [9].
However, it is not robust to adversarial attacks, and the
literature on robust learning of dynamical systems is limited.
The work by [24] defines the null space property (NSP) to
analyze a lasso-type estimator for the system. It provides
necessary and sufficient conditions for exact recovery when
NSP is satisfied, which is NP-hard to check. To circumvent
the computational complexity, we build upon [24] and study
robust estimators from a non-asymptotic point of view under
standard assumptions, such as the system being stable and the
attacks being sub-Gaussian.

Contributions: We study discrete-time linear time-invariant
systems of the form xi+1 = Āxi + B̄ui + d̄i, where Ā ∈ Rn×n

and B̄ ∈Rn×m are unknown matrices of the model. We aim to
learn these matrices from the samples {xi,ui}T−1

i=0 of a single
initialization of the system when the disturbance vectors d̄i are
adversarial. Here, the adversarial noise refers to a vector that is
designed to deteriorate the performance of the estimator. Thus,
the adversarial vectors {d̄i}T−1

i=0 can take arbitrarily large finite
values, be dependent over time, and can have any undesirable
structures. We say that an adversarial attack occurs whenever
d̄i is non-zero, and we have no information on the value of
d̄i. If d̄i is zero, there is no attack or adversary at time i. In
our setting, we study systems that are not subject to ordinary
minor measurement or modeling errors, and instead the non-
zero noise or disturbance stems from an adversarial event.

We study two convex estimators based on the minimization
of the ℓ2 and ℓ1 norms of the estimated disturbance vectors,
∑

T−1
i=0 ∥di∥2 and ∑

T−1
i=0 ∥di∥1, with the decision variables A, B,

and {di}T−1
i=0 subject to xi+1 =Axi+Bui+di, given the samples

{xi,ui}T−1
i=0 :

min
A∈Rn×n,B∈Rn×m

T−1

∑
t=0

∥xt+1 −Axt −But∥◦, ◦ ∈ {1,2}.

This is equivalent to an empirical risk minimization problem
for which the loss function is the ℓ1 and ℓ2 norms depending on
the choice of ◦. We employ a non-smooth objective function to
obtain a robust estimator. The arbitrary injection of adversaries
may happen infrequently in time. In that case, the attacks occur
sparsely in time. Conversely, the vector d̄i at each attack time
i could be dense, and there is no limitation on how sparse the
vector is. The ℓ2 norm estimator is the most effective in this
case. In contrast, the ℓ1 norm estimator is preferable if the
vector d̄i at each attack time is structured and known to be
sparse. We summarize our contributions below.

i) We first consider the case when the adversarial noise
injections, i.e., adversarial attacks, happen periodically over
time with the period ∆. We show that both of our estimators
exactly recover the true system matrices Ā and B̄ when the
system is stable and the number of samples, i.e., T , is larger
than n+∆.

ii) We then consider a probabilistic model for the occurrence
of attacks, in which there is an arbitrary noise injection at each
time instance i with probability p, independent of previous
time periods. Nevertheless, we allow these noise injections,
or attack vectors, to be dependent. We study the required

sample complexity of our estimators for exact recovery when
the attack vectors are stealthy. Suppose that the adversarial
noise and the input sequence are sub-Gaussian random vectors
and possibly dependent. Then, the estimators achieve exact
recovery with probability at least 1− δ if the time horizon
T satisfies the inequality T ≥ Θ(max{T 1

sample,T
2

sample}), where
T 1

sample and T 2
sample are defined as

n2R1 log
(

nR1

δ

)
,

and

nmR2 log
(

nR2

δ

)
,

with the constants R1 and R2 defined in Theorem 4.
iii) As a corollary to the previous result, we show that

the estimators converge to true system matrices almost surely
when the attack vectors are stealthy. Otherwise, if the attack
vectors are not stealthy, the system operator could detect the
abnormalities and stop the system, which is not a desired
outcome for the adversarial agent or attacker. This is the
first paper that studies the adversarial attack structure for the
system identification problem to obtain sample complexity
using non-asymptotic analysis techniques.

This paper is organized as follows. In Sections 2 and 3, we
introduce the notations used in the paper and formulate the
problem, respectively. In Section 4, we study the convergence
and sample complexity properties of our estimators in the case
when the system is autonomous. In Section 5, we generalize
the results to non-autonomous systems. In Section 6, we
demonstrate the results on a biomedical system that models
blood sugar levels with the injection of bolus insulin. This
work provides the first bound in the literature on sample
complexity for dynamical systems under adversaries, and its
techniques can be adopted to study other robust online learning
problems.

II. NOTATION AND PRELIMINARIES

For a matrix Z, ∥Z∥F denotes the Frobenius norm of a
matrix. For a vector z, ∥z∥1, ∥z∥2, and ∥z∥∞ denote its ℓ1,
ℓ2, and ℓ∞ norms, respectively. Given two functions f and g,
the notation f (x) = Θ[g(x)] means that there exist universal
positive constants c1 and c2 such that c1g(x)≤ f (x)≤ c2g(x).
The relation f (x) ≲ g(x) holds if there exists a universal
positive constant c3 such that f (x) ≤ c3g(x) holds with high
probability when T is large. The relation f (x) ≳ g(x) holds
if g(x)≲ f (x). |S| shows the cardinality of a given set S. For
two vectors v and w, ⟨v,w⟩ is the inner product between those
vectors in their respective vector space. Furthermore, we use
the notation v⊗w = vwT to denote the outer product. P(·) and
E[·] denote the probability of an event and the expectation
of a random variable. A Gaussian random variable X with
mean µ and covariance matrix Σ is written as X ∼ N(µ,Σ).
Since we restrict the disturbance vectors to be sub-Gaussian,
we formally define them below.

Definition 1 (Sub-Gaussian Random Variable [25]): A
random variable X ∈ R with mean µ = E[X ] is sub-Gaussian
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with parameter σ if

E[eλ (X−µ)]≤ eλ 2σ2/2, ∀λ ∈ R.

Moreover, a random vector X ∈ Rn with mean µ = E[X ] is
sub-Gaussian with parameter σ if

E[eλ ⟨ν ,X−µ⟩]≤ eλ 2σ2/2, ∀λ ∈ R,ν ∈ Rn,∥ν∥2 = 1.
Informally, a sub-Gaussian random variable with parameter σ

has the property that its tails are less dense than those of a
Gaussian random variable with variance σ2. We will utilize
concentration bounds for sub-Gaussian random variables to
verify that the optimality conditions for our proposed estima-
tors are satisfied with high probability. The main concentration
inequality for sub-Gaussian random variables is Hoeffding’s
bound.

Lemma 1: (Hoeffding’s Bound [25]) Suppose that the vari-
able X has mean µ and sub-Gaussian parameter σ . Then, for
all t > 0, we have

P(|X −µ|> t)≤ 2exp
(
− t2

2σ2

)
.

We use the union bound over the set of coordinates and
other sets with finite cardinality. Let S be a set with finite
cardinality, |S| < ∞, and Ei be the event related to element i
in the set S. Then, we can write the union bound as

P(∪i∈SEi)≤ ∑
i∈S

P(Ei).

Since we use non-smooth objective functions with ℓ1 and
ℓ2 norms, we introduce the subdifferentials of the ℓ1 and ℓ2
norms.

Definition 2 (Subdifferential of ℓ2 Norm): Given a vector
z ∈ Rn, the subdifferential of ∥z∥2 is denoted as ∂∥z∥2 and
is given as

∂∥z∥2 =

{
z

∥z∥2
, if z ̸= 0,

B2(1), otherwise.

where B2(1) = {x ∈ Rn : ∥x∥2 ≤ 1} is the ℓ2 norm unit ball.
Definition 3 (Subdifferential of ℓ1 Norm): Given a vector

z ∈ Rn with entries zi, i = 1, . . . ,n, the subdifferential of the
∥z∥1 is denoted as ∂∥z∥1 and is given as

∂∥z∥i
1 =


1, if zi > 0,
−1, if zi < 0,
[−1,1], otherwise,

where ∂∥z∥i
1 is the i-th coordinate of the subdifferential of

∥z∥1.
Note that while the subdifferential of the ℓ1 norm is

coordinate-wise separable, the subdifferential of the ℓ2 norm is
not coordinate-wise separable. Whenever the vector z is equal
to 0, the subdifferential of the ℓ2 norm is the ℓ2 norm unit ball,
whereas the subdifferential of the ℓ1 norm is the ℓ∞ norm unit
ball, which is

B∞(1) = {x ∈ Rn : ∥x∥∞ ≤ 1}.

We also define the unit ball S2(1) as

S2(1) = {x ∈ Rn : ∥x∥2 = 1}

that is the set of all the points on the sphere with radius 1.
The asymptotic analysis of the system identification prob-

lem concerns the convergence rate to the true parameter
at an infinite-time horizon. However, historically, asymptotic
analysis has not provided the required sample complexity to
obtain a solution within a given error tolerance. In contrast,
non-asymptotic analysis deals with the finite-time behavior
of the estimators using learning theory and high-dimensional
statistics. It provides the required sample complexity to bound
the estimation error within the specified tolerance with high
probability. Consequently, non-asymptotic analysis is more
challenging than asymptotic analysis. Our goal is to provide
the minimum required number of samples to recover the
true parameters of the system with a high probability using
techniques designed for non-asymptotic analysis.

III. PROBLEM FORMULATION

We consider a linear time-invariant dynamical system over
the time horizon [0,T ], xi+1 = Āxi+ B̄ui+ d̄i, i= 0,1, . . . ,T −1,
where Ā ∈Rn×n and B̄ ∈Rn×m are unknown system matrices,
and d̄i ∈Rn are unknown system disturbances. Given the set of
state measurements {xi}T

i=0 and the set of inputs {ui}T−1
i=0 , the

goal is to estimate the unknown system matrices Ā and B̄. In
this paper, the disturbance vectors {d̄i}T−1

i=0 can be engineered
to be large if there is an outside attack on the system from an
agent or there is a sensor/actuation fault that leads to major
corruption in the system dynamics. Throughout the paper, the
disturbance vectors {d̄i}T−1

i=0 are also called (adversarial) attack
vectors. Moreover, the agent who engineers the disturbance
vectors is called an attacker. As opposed the majority of the
literature, we assume that the disturbance vectors {d̄i}T−1

i=0 can
be dependent on the disturbance vectors from the previous
time instances and there is no specific distribution assumption
for these vectors except the sub-Gaussian assumption. We
represent the time indices of the attacks or large disturbance
vectors with the set K , that is K = {i : d̄i ̸= 0, i∈ 0,1, . . . ,T −
1}. These time instances are called the attack times and K
is the set of attack times. Similarly, the set of time instances
without attack or corrupted data is shown with K c = {i : d̄i =
0, i ∈ 0,1, . . . ,T −1}. These time instances are called the no-
attack times, and K is the set of no-attack times. The data
corresponding to attack times are corrupted, whereas the data
corresponding to no-attack times are uncorrupted.

We establish the exact recovery of the proposed estimators
when there are large disturbances in the system. In such cases,
the least-squares method cannot achieve exact recovery, a
fact that can be easily verified from its closed-form solution.
Define the matrices X := [x0, . . . ,xT−1] and D̄ := [d̄0, . . . , d̄T−1].
The solution for the least-squares problem is Â = (ĀX +
D̄)T X(XT X)−1 in the absence of the input sequence {ui}T−1

i=0 .
Thus, the estimation error is ∥D̄T X(XT X)−1∥, which is non-
zero and arbitrarily large in the presence of arbitrarily large
disturbance vectors. A similar calculation can be made in
the presence of an input sequence. Consequently, the least-
squares estimator cannot achieve a zero estimation error,
leading to a plateau in the estimation error of the least-
squares estimator in our numerical experiments in Section
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6. We define the matrix D := [d0, . . . ,dT−1] with its columns
being estimated disturbances, as well as the norms of matrices
∥D∥1,1 := ∑i ∥di∥1, and ∥D∥2,1 := ∑i ∥di∥2. To exactly recover
the system matrices Ā and B̄, we analyze the following convex
optimization problems with non-smooth objective functions:

min
A∈Rn×n,B∈Rn×m,

D∈Rn×T

∥D∥2,1 (CO-L2)

s.t. xi+1 = Axi +Bui +di, i = 0, . . . ,T −1,

and

min
A∈Rn×n,B∈Rn×m,

D∈Rn×T

∥D∥1,1 (CO-L1)

s.t. xi+1 = Axi +Bui +di, i = 0, . . . ,T −1,

where the states {xi}T
i=0 are generated according to xi+1 =

Āxi+B̄ui+ d̄i, i = 0, . . . ,T −1. The difference between prob-
lems (CO-L2) and (CO-L1) is their objective functions. Note
that these two problems are equivalent when we have a first-
order system with xi ∈R, i∈ 0, . . . ,T −1. In problem (CO-L2),
the sum of the ℓ2 norm columns is analogous to the ℓ1 norm
minimization in the lasso problem. In other words, the ℓ1 norm
is applied at the group level to {di}T−1

i=0 because the occurrence
of large injections of disturbances is rare and not frequent.
We highlight that the vectors {d̄i}T−1

i=0 are not necessarily
sparse. On the other hand, the ℓ1 norm is applied both at the
group level and the in-group levels to {di}T−1

i=0 for problem
(CO-L1). For those applications that the disturbance vectors
can be assumed to be sparse, (CO-L1) is more suitable than
(CO-L2). Furthermore, the states xi are correlated to each
other due to the system dynamics, which makes the non-
asymptotic analysis of the problem more challenging than the
robust regression literature for which the samples are assumed
to be independently generated. One can write the optimization
problems (CO-L2) and (CO-L1) as follows using the ℓ2 and
ℓ1 norms, respectively:

min
A∈Rn×n,B∈Rn×m

T−1

∑
t=0

∥xt+1 −Axt −But∥◦.

This is equivalent to an empirical risk minimization problem
for which the loss function is the ℓ1 or ℓ2 norm, depending
on the choice of ◦. Although these types of sum-of-norm
minimization non-smooth loss functions are utilized in other
applications, this paper marks the first non-asymptotic analysis
of these loss functions in the context of control and system
identification with serially correlated data.

We remark that classical statistical theory on empirical risk
minimization is not applicable to the problem under study in
this paper due to the correlated data at each time instance.
By representing the data points Xt as tuples (xt+1,xt ,µt),
it is impossible to claim that Xt and Xt+1 are independent,
which is a key assumption in the empirical risk minimization
literature. As the first step of our proof technique, the Karush-
Kuhn-Tucker (KKT) conditions will be used to analyze the
properties of these estimators. Since (CO-L2) and (CO-L1) are
convex optimization problems with linear equalities, the KKT
conditions are necessary and sufficient to guarantee optimality,
as stated below.

Theorem 1: Consider the convex optimization problems
(CO-L2) and (CO-L1) and let ◦ ∈ {1,2}. Given a pair of ma-
trices (Â, B̂), if the following conditions hold simultaneously

0 ∈ ∑
i ̸∈K

xi ⊗∂∥(Ā− Â)xi +(B̄− B̂)ui∥◦

+ ∑
i∈K

xi ⊗∂∥(Ā− Â)xi +(B̄− B̂)ui + d̄i∥◦, (1)

0 ∈ ∑
i ̸∈K

ui ⊗∂∥(Ā− Â)xi +(B̄− B̂)ui∥◦

+ ∑
i∈K

ui ⊗∂∥(Ā− Â)xi +(B̄− B̂)ui + d̄i∥◦, (2)

then (Â, B̂) is a solution to (CO-L1) when ◦= 1 and a solution
to (CO-L2) when ◦= 2.
The proof for the KKT conditions when ◦= 2 is provided in
[26], and the proof for the case ◦= 1 can be done similarly. We
will utilize the conditions above to study in what scenarios the
exact recovery is achievable. As a simple corollary to Theorem
1, we can state that (Ā, B̄) is a solution to our estimator(s) if
the following conditions hold:

0 ∈ ∑
i̸∈K

xi ⊗∂∥0∥◦+ ∑
i∈K

xi ⊗∂∥d̄i∥◦,

0 ∈ ∑
i̸∈K

ui ⊗∂∥0∥◦+ ∑
i∈K

ui ⊗∂∥d̄i∥◦.

IV. AUTONOMOUS SYSTEMS

In this section, we consider autonomous systems, meaning
that u0 = · · ·= uT−1 = 0. Therefore, the system dynamics could
be written as xi+1 = Āxi + d̄i for i = 0, . . . ,T −1. Throughout
this section, we assume that the system is stable and that it is
initialized at the origin.

Assumption 1: Given an autonomous system xi+1 = Āxi+ d̄i
for i = 0, . . . ,T −1 with dimension n, assume that x0 = 0 and
all eigenvalues of Ā are inside the unit circle.

The stability assumption is standard in system identification
problems to avoid an unbounded growth of the states during
the learning process. Without loss of generality, we initialize
the trajectories at the origin since an initialization at other
points affects the results only with a constant factor. We study
noiseless systems under an adversary to obtain exact recovery
results, meaning that if there is no attack at time i, i ∈ K c,
then d̄i = 0.

In the noisy case, one can consider the following setup. If
there is no attack at time i, i ∈ K c, then d̄i is likely non-zero
with a small variance and its value is independent of those
for other time periods. If there is an attack at time i ∈ K ,
then d̄i is a combination of two terms: a small noise vector
that is Gaussian and independent of past time periods, and
a large noise vector that could have an arbitrary distribution
and possibly be dependent on past time instances. The noisy
case, where the system is subjected to small independent and
identically distributed Gaussian errors due to measurements
and modeling errors, in addition to the adversarial vectors,
can be easily addressed using our framework. The perturbation
analysis allows us to bound how far the recovered solution is
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from the true solution in terms of the values of small noise
vectors.

Therefore, we only study the noiseless case as described
above. Thus, we are interested in recovering the system
matrix Ā using the following convex optimization problems
for autonomous systems:

min
A∈Rn×n,
D∈Rn×T

T−1

∑
i=0

∥di∥2

s.t. xi+1 = Axi +di,

(CO-L2-Aut)

and

min
A∈Rn×n,
D∈Rn×T

T−1

∑
i=0

∥di∥1

s.t. xi+1 = Axi +di.

(CO-L1-Aut)

The optimality conditions for problem (CO-L2-Aut) with ◦= 2
and problem (CO-L1-Aut) with ◦= 1 can be written as follows
using Theorem 1:

0 ∈ ∑
i̸∈K

xi ⊗∂∥(Ā−A)xi∥◦+ ∑
i∈K

xi ⊗∂∥((Ā−A)xi + d̄i)∥◦.

(3)

As a remark, although the set of attack times K appears in
the optimality conditions, this set is not known a priori to
the system operator. The set is only used during the analysis
of the proposed estimators to derive sufficient conditions for
exact recovery.

We first consider first-order systems where xi, d̄i ∈ R, i =
0,1, . . . ,T −1 and Ā ∈ R. We examine the first-order case to
gain some insight into the ideas behind the proof techniques
for general systems. When n = 1, the problems (CO-L1-Aut)
and (CO-L2-Aut) are equivalent, and therefore, we only focus
on (CO-L2-Aut). After establishing the optimality conditions
for these problems, we will examine two types of attack
structures. An attack structure refers to the pattern of attack
occurrences. In other words, it involves the distribution of each
time instance at which a large disturbance vector is injected
into the system. Namely, we inspect the structure of the set
K .

The first attack structure is a deterministic attack model for
which the attacks occur at every ∆ time period. For instance,
if ∆ = 2, the set K could be {1,3,5, . . . ,2k+1}, meaning that
an agent injects a disturbance vector into the system at every
odd time instance. Later, we investigate a probabilistic attack
structure where each attack may occur with probability p at
each time instance i, independent of the past periods. We first
define the deterministic attack model, borrowed from [26].

Definition 4 (∆-spaced Attack Structure): Given a positive
integer ∆ > 2, the disturbance sequence {d̄i}T−1

i=0 is said to be
∆-spaced if for every i ∈ {0,1, . . . ,T −∆−1} such that d̄i ̸= 0,
we have d̄ j = 0, for all j ∈ {i+1, . . . , i+∆−1} and d̄i+∆ ̸= 0.
In addition, for i ∈ {0,1, . . . ,∆−1}, we must have at least one
non-zero disturbance vector, i.e. d̄i ̸= 0.

We will show that the convex formulation (CO-L2-Aut) ex-
actly recovers Ā in the case of ∆-spaced disturbance sequence
with ∆ ≥ 2.

Proposition 1: Consider a first-order autonomous system
with ∆-spaced disturbance sequence with ∆≥ 2. Then, the con-
vex formulation (CO-L2-Aut) (or equivalently (CO-L1-Aut))
has the unique solution Ā as long as the sample complexity
satisfies the inequality T ≥ ∆+1.

This proposition implies that whenever there are more
than ∆ + 1 data samples, the exact recovery is guaranteed
to be achieved. Note that Proposition 1 does not make any
assumption on the vector set {d̄i : i ∈ K } and each element
of the set could be arbitrarily large and correlated as long
as they are finite. As a result, regardless of the severity of
the attack, an exact recovery is guaranteed for (CO-L1-Aut)
and (CO-L2-Aut). One important implication of Proposition
1 is for the case where there is a ∆-spaced disturbance
sequence with ∆ = 2, meaning that half of the observations
are corrupted. In the robust regression estimation literature,
exact recovery is possible only if the number of attacked
observations is less than half of the total observations. The
main difference between robust regression and system identi-
fication problems is that the observations are correlated with
each other in the latter. This enables exact recovery for the
convex formulation even if half of the data is corrupted via an
adversarial agent. The proof of Proposition 1 is based on the
following lemma.

Lemma 2: (Theorem 1 in [26]) Consider the convex opti-
mization problem (CO-L2-Aut). If ∑i ̸∈K |xi|> ∑i∈K |xi|, then
Ā is the unique solution to the problem.

The proof of Lemma 2 is based on the KKT conditions
of the problem provided earlier. A natural question arises as
to whether one can generalize the above result to higher-
order systems. The next proposition extends Proposition 1 to
autonomous dynamical systems with an arbitrary order n under
a ∆-spaced disturbance sequence with ∆ ≥ n+1.

Proposition 2: Consider an autonomous system of order
n under a ∆-spaced disturbance sequence with ∆ ≥ n + 1.
Suppose that Ā is diagonalizable with eigenvalues, λ̄l , l =
1,2, . . . ,n, and that the condition

d̄i+∆ ∈ span{d̄i, Ād̄i, . . . , Ā∆−2d̄i}, ∀i = 0,1, . . . ,T −1 (4)

is satisfied. Then, Ā is a solution to the convex formulation
(CO-L2-Aut) if T ≥ n+∆, provided that∣∣∣∣∣ ∑

k1+···+kn=∆−n
λ̄ (k1, . . . ,kn)

∣∣∣∣∣≤ ∆−n−1

∑
t=0

∣∣∣∣∣ ∑
k1+···+kn=t

λ̄ (k1, . . . ,kn)

∣∣∣∣∣ ,
(5)

where the notation λ̄ (k1, . . . ,kn) denotes λ̄
k1
1 × λ̄

k2
2 ×·· ·× λ̄ kn

n .

This result is a generalization of Proposition 1, and we do
not require all the eigenvalues of Ā to lie inside the unit
circle (i.e., it allows the violation of Assumption 1). The
condition (4) is necessary to ensure that the KKT condition is
satisfied, which eliminates the alignment of the attack vectors
with eigenspaces of the matrix Ā. In real-life applications, this
circumstance can be avoided by injecting a small perturbation
to the system. To gain insight into equation (5), which involves
the product of eigenvalues, consider a special case where
Ā has the eigenvalue λ with multiplicity n and n distinct
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Fig. 1. Upper-Bound Value Cn,k for Different Values of n and k.

eigenvectors. In this case, we can simplify (5) as follows.
Define k := ∆−n. Then, (5) is equivalent to(

n+ k−1
k

)
|λ |k −

k−1

∑
i=0

(
n+ i−1

i

)
|λ |i < 0.

This condition is satisfied if |λ | ≤ Cn,k, where Cn,k denotes
the upper bound on the eigenvalue magnitudes given the
parameters n and k. Figure 1 summarizes the values of Cn,k for
different choices of n and k. Note that Cn,k ≤Cm,k if n>m and
Cn,k ≤Cn,l if k< l, due to the definition of Cn,k. It can be shown
that C1,k −→ 2 as k −→∞. As a result, |λ | ≤Cn,k ≤C1,k −→ 2. This
shows that the stability of the system is not necessary for exact
recovery when the attack vectors are injected less frequently.
In addition, whenever k = n or ∆ = 2n, |λ |< 1 is sufficient for
exact recovery as suggested by Proposition 2. This conclusion
is analogous to the stability of the system. Proposition 2 can
still be applied to problem (CO-L1-Aut). However, the KKT
conditions will differ due to the subdifferential of the ℓ2 and
ℓ1 norms. In fact, they both have a similar shape. Therefore,
one can show that this proposition still holds with the same
condition even if convex formulation (CO-L1-Aut) with the ℓ1
norm of the disturbance vectors is used.

It is natural to ask whether it is possible to learn the
system when there is more corrupted data than clean data. We
cannot use a ∆-spaced disturbance sequence model because
the minimum value of ∆ is 2, which does not allow the
size of corrupted data to exceed the size of clean data.
Thus, we investigate a probabilistic attack structure. In this
structure, a non-zero disturbance vector d̄i is injected into the
system at time instance i with probability p > 0, which is
independent of the past and future time periods. To address
this, we consider a probabilistic attack model where there
is a parameter p specifying the probability of an attack at
each time instance. Specifically, given a time instance i, d̄i
is non-zero with probability p, and this is independent of
all previous and future time instances. As a result, the event
of having an attack at each time instance is identically and
independently distributed with a Bernoulli distribution with
parameter p. Nevertheless, the attack vectors are still allowed
to be correlated with each other. Our goal is to discover the
properties of (CO-L1-Aut) and (CO-L2-Aut) for an arbitrary
value of p, especially p > 0.5. We make the following stealth
attack assumption.

Assumption 2: For each k ∈K , the attack vector is defined
by

d̄k := ℓ̄k f̄k, where ℓ̄k ∈ R and f̄k ∈ S2(1).

where f̄k plays the role of the direction of the attack while ℓ̄k
plays the role of the length (that is allowed to take negative

values too). Define the filtration

Fk := σ{x1, . . . ,xk}, ∀k ∈ {0, . . . ,T −1}.

For all k ∈ K , conditioning on Fk, the following statements
hold:

1) ℓ̄k is independent from the direction f̄k;
2) The direction f̄k obeys the uniform distribution on S2(1);
3) ℓ̄k is mean-zero and sub-Gaussian with parameter σ ;
4) The variance of ℓ̄k is σ2

k ∈ [c2σ2,σ2] for some constant
c > 0.

Under the stealth assumption, the length ℓ̄k can depend on
the previous attacks d̄k′ , and in particular ℓ̄k′ and f̄k′ for k′ < k.
In addition, we note that the above assumption of symmetry
of the disturbance vectors reflected in f̄k is not restrictive and
corresponds to stealth attacks. If this assumption does not
hold, the attacks may be detectable, and their effects could
be nullified, or the system could be stopped to investigate
the possible influence from outside agents. For an attack to
be stealthy, its value should be zero on expectation, and our
assumption has a similar flavor. If the symmetric assumption
does not hold, it has been shown that there is a bias in
estimation, and there is no way to avoid this bias [27]. In
the special cases when the length distribution is Gaussian or
bounded, the constant c is equal to 1. Furthermore, we mention
that the uniform distribution assumption of f̄k can be relaxed to
an arbitrary distribution on the sphere with zero mean and full-
rank covariance matrix. In that more general case, the sample
complexity in Theorems 2-5 will depend on the conditional
number of the covariance matrix, which is equal to 1 under
Assumption 2.

Since the KKT conditions include random variables and
random sets due to the randomness in the attack structure, it
is not possible to obtain deterministic sample complexity for
exact recovery as in Proposition 2. Therefore, it is essential
to quantify the required number of samples for exact recovery
with high probability using non-asymptotic analysis. Under
Assumption 2, the attack vector at time i, d̄i, has a sub-
Gaussian distribution with parameter σ given Fi, as described
in Assumption 2. The sub-Gaussianity assumption does not
specify the distribution of the disturbance vector but assures
that the disturbance vectors have light tails. For instance, any
distribution over a bounded space is sub-Gaussian, making
this assumption extremely mild. As a result, the sub-Gaussian
assumption is not restrictive.

The KKT conditions for exact recovery, which are necessary
and sufficient, can be restated as

∃γi ∈ ∂∥0∥◦, ∀i ̸∈ K s.t. ∑
i̸∈K

xi ⊗ γi = ∑
i∈K

xi ⊗∂∥d̄i∥◦.

because of the properties of the subdifferentials at the origin. In
order to simplify the analysis, we use the relationship between
the unit balls of the ℓ∞ and ℓ2 norms, that is 1√

nB∞(1)⊆B2(1).
Additionally, we examine the results for each coordinate of the
subdifferentials since they are separable due to the properties
of the ℓ∞ norm. Therefore, the following propositions provide
sufficient conditions to satisfy the KKT conditions.

Proposition 3: The KKT conditions for the problem
(CO-L2-Aut) and (CO-L1-Aut) are satisfied if there exist
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scalars γ l
i ∈ [−1,1], i ̸∈ K , l = 1, . . . ,n such that

∑
i̸∈K

γ
l
i xi/

√
n = ∑

i∈K

∂∥d̄i∥l
2xi, ∀l = 1, . . . ,n (6)

and

∑
i̸∈K

γ
l
i xi = ∑

i∈K

∂∥d̄i∥l
1xi, ∀l = 1, . . . ,n, (7)

respectively. Here, ∂∥d̄i∥l
◦ is the l-th element of the subgradi-

ent.
Because analyzing the conditions (6) and (7) directly is

cumbersome, we investigate the equivalent condition provided
in the lemma below, derived using Farkas’ lemma [28] and
the duality of linear programs.

Lemma 3: Given a matrix F ∈Rn×m and the vector g ∈Rn,
the following statements are equivalent:

i) There exists a vector w ∈ Rm with ∥w∥∞ ≤ 1 satisfying
Fw = g.

ii) For every z ∈ Rn with ∥z∥2 = 1, it holds that f (z) :=
zT g+∥zT F∥1 ≥ 0.

It is important to notice that the conditions (6) and (7)
amount to finding a vector for the set of equations in the
form of Fw = g where w is restricted as ∥w∥∞ ≤ 1. Given a
coordinate l, the matrix F ∈ Rn×(T−|K |) associated with the
conditions (6) and (7) is a matrix with columns xi√

n and xi,
and the vector g ∈ Rn is ∑i∈K ∂∥d̄i∥l

2xi and ∑i∈K ∂∥d̄i∥l
1xi,

respectively. Moreover, the vector w ∈ RT−|K | has the ele-
ments γ l

i , i ̸∈ K for both conditions. Hence, we study the
second statement in Lemma 3. We use the union bound to
study the satisfaction of this condition. However, there are
infinitely many points inside the ℓ2 unit ball B2(1). In order to
show that the function f (z) = zT g+∥zT F∥1 is non-negative at
every point inside the ℓ2 unit ball, we employ the discretization
technique that uses a finite set of points. The set of such points
is called the cover of the unit ball.

Definition 5 (Covering Number [25]): Let (T,ρ) be a
compact metric space with a set T and a norm operator ρ .
ε-cover of the set T with respect to the norm ρ is a set
{θ 1,θ 2, . . . ,θ N} ⊂ T such that for each θ ∈ T, there exists
some i ∈ {1, . . . ,N} such that ρ(θ ,θ i) ≤ ε . The ε-covering
number N (ε,T,ρ) is the cardinality of the smallest ε-cover.

Given a ε > 0, the logarithm of the covering number of
the unit ball or the metric entropy of the unit ball can be
upper bounded using the volumetric arguments of the balls.
Indeed, the number of ε balls exceeding exp{n log(1+2/ε)}
is sufficient to cover the unit ball with balls of radius ε .

Lemma 4 (Covering Number of the Unit Ball [25]):
Given an n-dimensional unit ball B(1) with the norm ∥ · ∥,

B(1) = {x ∈ Rn : ∥x∥ ≤ 1},

the logarithm of the ε-covering number, i.e., the metric entropy
of the unit ball, can be upper bounded by

logN (ε,B(1),∥ · ∥)≤ n log
(

1+
2
ε

)
.

We show that the function f (z) can be lower bounded by
some positive number θ > 0 at every point in the ε-cover

of the unit circle with high probability, and that the function
value inside the ε-ball does not change more than this positive
number θ with high probability. Thus, f (z) must be non-
negative at every point of the unit circle with high probability.
Utilizing this idea, the next theorem shows that the required
number of samples for the exact recovery grows with n2 and
(1− p)−2 for the general systems of order n.

Theorem 2: Consider an autonomous system of order n
under a probabilistic attack model with frequency p. Suppose
that Assumptions 1 and 2 hold. Then, for all δ ∈ (0,1], if the
time horizon satisfies T ≥ Θ(Tsample), where Tsample is defined
as

nR
[

n log(nR)+ log
(

1
δ

)]
,

and

R := max

{
log(1/c)

nc4 p(1− p) log(1/ρ)
,

log2(1/c)
c10(1− p)2(1−ρ)3 log2(1/ρ)

,
1

np(1− p)

}
,

with ρ denoting the largest magnitude of the eigenvalues of Ā,
then Ā is a solution to the convex optimization (CO-L2-Aut)
with probability at least 1−δ .

An implication of the above theorem is that even when p is
large (e.g., p > 0.5) corresponding to the system being under
attack frequently, exact recovery of the system dynamics is still
possible as long as the time horizon is above the threshold.
Similar results can be obtained if one prefers to use problem
(CO-L1-Aut) to recover the system matrix Ā.

Theorem 3: Under the same assumptions as in Theorem 2,
if the time horizon T satisfies T ≥ Θ(Tsample), where Tsample
is defined as

R
[

n log(nR)+ log
(

1
δ

)]
,

and R is defined in Theorem 2, then Ā is a solution to the
convex optimization (CO-L1-Aut) with probability at least 1−
δ .

The proof of Theorem 3 is highly similar to that of Theorem
2 and therefore, it is omitted. Because the conditions (6) and
(7) differ by a factor of

√
n, the sample complexity results in

those theorems differ by a factor of n.
The required amount of data increases with the value (1−

p)−2 and the order of the system n. Hence, as p and n increase,
the number of samples for exact recovery with high probability
grows. The results on sample complexity are intuitive: as the
probability of having an attack increases, a larger time horizon
is required for exact recovery. We note that the dependence
on p−1(1− p)−1 is an artifact of the high probability bound.
More specifically, this dependence guarantees that the number
of attacks is bounded by Θ(pT ) with high probability. In
addition, if the system is at the verge of instability with
eigenvalues close to the unit circle, the sample complexity
increases significantly. Even in the case when the probability
p is close to 1, resulting in significantly more corrupt data than
clean data, this result guarantees asymptotic exact recovery as
long as there are a sufficient number of clean samples.
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Last but not at least, due to the logarithmic probability
bound and the Borel-Cantelli lemma, Theorems 2 and 3 imply
almost sure asymptotic convergence as a corollary. Almost
sure convergence of random variables implies the convergence
in probability and convergence in distribution for a sequence
of random variables. Almost sure convergence of random
variables is defined as below for completeness.

Definition 6 (Almost Sure Convergence): A sequence of
random variables X1,X2,X3, . . . converges to X almost surely
if

P
(

lim
n−→∞

Xn = X
)
→ 1.

The following corollary states that the sequence of estima-
tors over time converges to the true system matrices almost
surely.

Corollary 1: Under the same assumptions as in Theorem
(2), Ā is almost surely a solution of convex formulations
(CO-L2-Aut) and (CO-L1-Aut) when T goes to infinity.

V. SYSTEMS WITH INPUT SEQUENCE

It is desirable to understand the role of an input sequence
in exact recovery because the majority of dynamical systems
are controlled by an external input. Since the input sequence
is generated by a controller, one can design it in such a way
that it accelerates the exact recovery. In the non-autonomous
case, the system dynamics is given as xi+1 = Āxi + B̄ui +
d̄i, i = 0, . . . ,T − 1, where Ā ∈ Rn×n and B̄ ∈ Rn×m. Similar
to the autonomous case, the true system matrices Ā and
B̄ are not known and the goal is to obtain these matrices
using the state trajectories and the sequence of inputs. Unlike
the disturbance vectors d̄i, i ∈ {0, . . . ,T − 1}, the sequence
of system states xi, i ∈ {0, . . . ,T}, and the sequence of the
inputs ui, i ∈ {0, . . . ,T −1} are known. We will investigate the
estimators (CO-L2) and (CO-L1) defined earlier.

We choose the input vectors ui to be Gaussian given Fi.
This allows us to obtain a high-probability bound for the exact
recovery of the matrices Ā and B̄. A random input sequence is
commonly used in system identification and online learning
because it enables the exploration of the system to learn
the system dynamics faster. The Gaussian input assumption
may seem restrictive. Nevertheless, it is satisfied when ui
is designed in the linear feedback form as ui = Kxi + ω .
Conditioning on Fi, if the input is excited with Gaussian
noise ω , the input vector ui is also Gaussian. Therefore, the
most common input sequence used in optimal control satisfies
this assumption. Note that the closed loop system could be
written as xi+1 = (Ā+ B̄K)xi + B̄ω + d̄i. Thus, the problem is
equivalent to estimating the matrices (Ā+ B̄K) and B̄ when
the linear feedback control is used.

The KKT conditions for the exact recovery that are both
necessary and sufficient can be restated as

∃γi ∈ ∂∥0∥◦ ∀ i ̸∈ K s.t. ∑
i ̸∈K

xi ⊗ γi = ∑
i∈K

xi ⊗∂∥d̄i∥◦

and

∃µi ∈ ∂∥0∥◦ ∀ i ̸∈ K s.t. ∑
i̸∈K

ui ⊗µi = ∑
i∈K

ui ⊗∂∥d̄i∥◦.

The first set of conditions corresponds to the KKT conditions
for the system states while the second set is for the KKT
conditions for the input sequence. Similar to Proposition 3,
the sufficient conditions can be tightened so that the equations
become coordinate-wise separable.

Proposition 4: The KKT conditions for problem (CO-L2)
are satisfied if there exist scalars γ l

i ,µ
l
i ∈ [−1,1] for all i ̸∈

K , l ∈ {1, . . . ,n} such that

∑
i̸∈K

γ
l
i xi/

√
n = ∑

i∈K

∂∥d̄i∥l
2xi, ∀l = 1, . . . ,n, (8)

and

∑
i̸∈K

µ
l
i ui/

√
n = ∑

i∈K

∂∥d̄i∥l
2ui, ∀l = 1, . . . ,n, (9)

where ∂∥d̄i∥l
2 denotes the l-th element of the subgradient.

The proof of Proposition 4 is omitted because it relies on
the same technique as in Proposition 3. As in the case of
autonomous systems, two sets of equations that guarantee the
satisfaction of the KKT conditions can be written for problem
(CO-L1) by omitting the factor

√
n. To establish the exact

recovery guarantees, we require the following controllability
assumption.

Assumption 3: The ground truth (Ā, B̄) satisfies

rank
{[

B̄ ĀB̄ · · · Ān−1B̄
]}

= n.
Intuitively, the controllability of a non-autonomous system

denotes the ability to move a system around in its entire state
space using the admissible manipulations, namely, the input
sequence {ut}T−1

t=0 . Controllability is an important property of
a control system and plays a crucial role in many control
problems, such as stabilization of unstable systems by feed-
back. Under the above assumption, we implement the non-
asymptotic analysis of the general non-autonomous system in
a similar fashion to Theorem 2 using the covering arguments
and Farkas’ lemma.

Theorem 4: Consider an autonomous system of order n un-
der a probabilistic attack model with frequency p. Suppose that
Assumptions 1, 3 and the first three conditions in Assumption
2 hold. Assume also that the input vectors ui|Fi are selected to
be independent from the attack vectors and obey the Gaussian
distribution N (0, ξ 2

m Im). For all δ ∈ (0,1], let

T 1
sample := nR1

[
n log(nR1)+ log

(
1
δ

)]
and

T 2
sample := nR2

[
m log(nR2)+ log

(
1
δ

)]
,

where

R1 := max

{
log(κ/c)

nc4 log(1/ρ)
,

pκ2

c10(1− p)2(1−ρ)2 ,

pκ2 log2(κ/c)
c10(1−ρ)2 log2(1/ρ)

,
1

np

}

R2 := max

{
1

np
,

p
(1− p)2 ,

m
n

}
.
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Here, constants c ∈ (0,1] and κ ≥ (1−ρ)−1 depend on m, n,
σ , ξ and B̄. If the time horizon satisfies the inequality T ≥
Θ[max{T 1

sample,T
2

sample}], then (Ā, B̄) is a solution to (CO-L2)
with probability at least 1−δ .

We have obtained a high probability bound for the exact
recovery of the system matrices Ā and B̄. The first term in
the sample complexity corresponds to the satisfaction of the
KKT conditions for the state measurements {xi}T

i=0, whereas
the second term corresponds to the satisfaction of the KKT
conditions for the input sequence {ui}T−1

i=0 . Similar to the case
of autonomous systems, the sample complexity increases as
the probability of disturbances increases. Because there is a
logarithmic dependence on the satisfaction of the probability
bound, Theorem 4 and the application of the Borel-Cantelli
lemma imply almost sure asymptotic convergence to the
correct matrices Ā and B̄. The sample complexity T 2

sample is
needed to satisfy the KKT conditions associated with on the
input sequence. Compared with the previous theorems for the
autonomous case, we require a sample complexity that scales
with p/(1− p)2 and terms depending on the spectral norm
of Ā. The introduction of the input sequence removes the
requirement on the variance of the attack vectors. In addition,
the dependence of the sample complexity on p is improved
from 1/(1− p)2 to p/(1− p)2. Moreover, the dependence on
the spectrum of Ā is reduced from 1/[(1−ρ)3 log2(1/ρ)] to
1/[(1− ρ)2 log2(1/ρ)]. Finally, we mention that the depen-
dence on 1/(np) is also to guarantee that the number of attacks
is bounded by Θ(pT ) with high probability.

The following theorem studies problem (CO-L1).
Theorem 5: Under the assumptions of Theorem 4, for all

δ ∈ (0,1], let T 1
sample and T 2

sample be defined as

R1

[
n log(nR1)+ log

(
1
δ

)]
and R2

[
m log(nR2)+ log

(
1
δ

)]
,

where R1 and R2 are given in Theorem 4. If the time
horizon satisfies the inequality T ≥ Θ[max{T 1

sample,T
2

sample}],
then (Ā, B̄) is a solution to (CO-L1) with probability at least
1−δ .

As expected, even if more than half of the data are cor-
rupted, that is p > 1/2, the exact recovery is still attainable
with high probability. We note that when the input sequence
ui = Kxi is used to control the system, this input sequence
satisfies the assumptions in the above theorems if xi are sub-
Gaussian. The closed-loop system with the matrix (Ā+ B̄K)
results in a second solution Â = Ā + B̄K and B̂ = 0. Nev-
ertheless, the ground-truth system matrix pair (Ā, B̄) is also
a solution to our estimators. This phenomenon occurs due
to the existence of multiple optimal solutions and it could
be avoided if the input is excited with a small noise in the
form of ui = Kxi +ω . Moreover, if all the input vectors ui are
set to zero, it is not possible to uniquely recover the system
matrix B̄. Nevertheless, because the input sequence {ui}T−1

i=0
is zero, the KKT conditions are trivially satisfied. Therefore,
the estimators have multiple optimum solutions where B̄ and 0
matrices are possible solutions among all optimum solutions.

VI. NUMERICAL EXPERIMENT

We conduct a numerical experiment inspired by biomedical
applications to demonstrate the results of this paper. We
consider a compartmental model of blood sugar and insulin
dynamics in the human body, as described in [29]. Accurately
estimating the parameters of the dynamics is crucial when
regulating the blood sugar level through the injection of a
bolus of insulin into the system. Due to the complex structure
of the human body, the dynamics vary among individuals. We
consider a linear system based on Hovarka’s model as follows
[30]:

ẋ1 =−ka1x1 − kb1I +d1,

ẋ2 =−ka2x1 − kb2I +d2,

ẋ3 =−ka3x1 − kb3I +d3,

Ṡ1 =−S1/tmax,I +d4,

Ṡ2 = S1/tmax,I −S2/tmax,I +d5,

İ = S2/(tmax,IVI)− keI +d6,

where given a time-dependent variable z(t), ż(t) represents its
derivative with respect to time t. The states x1,x2,x3 represent
the influence of insulin on the system of the body. S1 and
S2 represent the absorption rate of insulin in the, directly
and indirectly, accessible compartment models, respectively.
Lastly, the state I represents the blood sugar level in the
body. The disturbance d4 corresponds to the bolus injection
into the body, while the remaining disturbance vectors model
sudden changes in the body due to diseases such as diabetes.
Although the injected insulin amount could be known, the
exact amount of insulin and its timing reaching the effective
body parts are unknown. Hence, the di values are treated
as unknown. Even though the disturbance in this application
is not a malicious attack, it exhibits similar characteristics
for identification purposes: the arrival time of the bolus is
unknown, and once it arrives, it has a large magnitude.

In this experiment, we discretize the continuous-time sys-
tem to obtain an LTI system using ∆t = 0.5. The resulting
matrix Ā is stable. Our objective is to estimate the parameters
(kai,kbi, tmax,I ,VI ,ke), where the true values are obtained from
Table 1 in [31]. We model the attack vectors given the
historical data as zero-mean Gaussian random vectors with
an identity covariance matrix with variance 10. Thus, the
attack vectors are conditionally independent, although they
are dependent. We run our model with the probability of
an attack being p = 0.2, p = 0.4, and p = 0.6. We report
the estimation error |Â− Ā|F for the least-squares estimator,
problem (CO-L2), and problem (CO-L1).

Figure 2 suggests that our proposed estimators attain exact
recovery while the least-squares estimator fails to do so. As
the probability of having an attack p increases, the number of
required time periods for exact recovery grows proportionally
to p/(1− p)2. Note that there are more corrupted data than
clean data in the case of p = 0.6. Additionally, because there
is no sparsity assumption on the attack vectors, (CO-L2)
performs slightly better than (CO-L1).

We compare the performance of (CO-L2) and (CO-L1)
by running a similar experiment with and without sparse
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Fig. 2. Estimation errors for Least-Squares, (CO-L2), and (CO-L1) with attack probability of p = 0.2,0.4,0.6 (left-to-right).

Fig. 3. Estimation errors for Least-Squares, (CO-L2), and (CO-L1) with
attack probability p = 0.6 not Sparse d (top) Sparse d (bottom).

disturbances. When the disturbances are sparse, d1,d2,d3,d5
are set to zero while d4 and d6 have the same Gaussian
distribution as before. Figure 3 shows that the two methods
perform similarly when the attack vectors are also sparse.

VII. DISCUSSION AND CONCLUSION

We investigated the problem of learning LTI systems under
adversarial attacks by studying two lasso-type estimators. We
considered both deterministic and probabilistic attack models
regarding the time occurrence of the attack and developed
strong conditions for the exact recovery of the system dynam-
ics. When the attacks occur deterministically every ∆ period,
exact recovery is possible after n+∆ time steps. Moreover, if
the system is attacked at each time instance with probability
p, the system matrices are recovered with high probability

when T is on the order of Θ((1− p)−2) and a polynomial in
the dimension of the problem. Similar results were obtained
when the system is controlled by an input sequence. These
findings were supported by a numerical experiment in biology
that to validate the non-asymptotic analytic results. This work
provides the first set of mathematical guarantees for the robust
non-asymptotic analysis of dynamic systems.

Since our estimators have non-smooth objective functions,
closed-form solutions to the optimization problem are not
obtainable. We did not provide any specific numerical algo-
rithm to solve the provided estimation problems. However,
both (CO-L2) and (CO-L1) are convex optimization problems,
allowing the use of the subgradient descent algorithm to
obtain these estimators. It is a well-established result that the
subgradient algorithm has a convergence rate on the order
of 1√

k
, where k is the iteration update number. Although

the algorithm is considered fast, one possible extension of
this work would be to design an algorithm to predict and
update (Ât+1, B̂t+1) using the latest estimation (Ât , B̂t) and
the new data (xt+1,ut), instead of solving the problem from
scratch at each time period. Initial experiments hinted that
a single subgradient update at each iteration using the new
information, (xt+1,ut), asymptotically converges to the true
system matrices. We leave the analysis of this algorithm and
online control of dynamic systems under adversaries as future
work.

APPENDIX

A. Proofs for Results in Main Part

1) Proof of Proposition 1: The proof of Proposition 1 is
established based on Lemma 2 defined in the paper. Let
i1, i2, . . . be the set of attack times over time horizon T .
Therefore, K = {i1, i2, . . .}. Due to ∆-spaced attack model,
the first attack time must be smaller than ∆, i.e., i1 ≤ ∆. Since
x0 = 0, we have xt = 0 for t = 0,1, . . . , i1. Define N as the set
of natural numbers. We can utilize Lemma 2 to show that Ā
is the unique solution. Using these facts, we can decompose
the sum of the magnitudes of the states at non-attack times as

∑
i ̸∈K

|xi|= ∑
i ̸∈K , i>i1

|xi|= ∑
i∈K ′

|xi|+ ∑
i∈K ′′

|xi|,
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where K c+ = N\(K ∪{0,1, . . . , i1 − 1}), K ′ = K c+\K ′′,
and K ′′ = {i2 −1, i3 −1, . . .}. The second term on the right-
hand side is the sum of magnitudes at the time step just before
the attack while the first term covers the rest of the magnitudes
of the states. In addition, the magnitudes of the states at attack
times can be written as

∑
i∈K

|xi|= ∑
i∈K , i≥i2

|xi|= ∑
i∈K ′′

|Āxi|= ∑
i∈K ′′

|Ā||xi|.

The second equality follows from the fact that xik = Āxik−1
due to lack of attack. We compare the sum of the magnitudes
of the states at attack times for the non-attack times to check
if the condition in Lemma 2 holds:

∑
i̸∈K

|xi|− ∑
i∈K

|xi|= ∑
i∈K ′

|xi|+ ∑
i∈K ′′

|xi|− ∑
i∈K ′′

|Ā||xi|

= ∑
i∈K ′

|xi|+(1−|Ā|) ∑
i∈K ′′

|xi|> 0. (10)

Note that the term ∑i ̸∈K |xi| becomes positive at time period
i1 + 1 while ∑i∈K |xi| is positive first time at time step i2.
Consequently, the strict inequality for (10) holds for every
time step after i1 because (1−|Ā|) > 0 by assumption. As a
result, we have a unique and exact recovery for every time
period T ≥ ∆+1 ≥ i1 +1.

2) Proof of Proposition 2: By using (3), the necessary and
sufficient condition for this problem is

0 ∈ ∑
i ̸∈K

xi ⊗∂∥(Ā−A)xi∥2 + ∑
i∈K

xi ⊗∂∥(Ā−A)xi + d̄i∥2.

Then, Ā is a solution to the problem if and only if

0 ∈ ∑
i̸∈K

xi ⊗∂∥0∥2 + ∑
i∈K

xi ⊗∂∥d̄i∥2. (11)

Let i1 be the time stamp of the first attack time. Then, we
have i1 ∈ {1, . . . ,∆}. The set of attack times is K = {i1, i1 +
∆, i1+2∆, i1+3∆, . . .}. Since x0 = 0, we have xt = 0 whenever
t = 0,1, . . . , i1 and xi1+1 = d̄i1 . Let T =∆+ i1, i.e., the time step
at which a cycle of disturbance is completed. In this case, the
sufficient condition (3) can be written as

0 ∈
∆−1

∑
t=1

xi1+t ⊗∂∥0∥2 + xi1+∆ ⊗∂∥d̄i1+∆∥2

=
∆−2

∑
t=0

Āt d̄i1 ⊗∂∥0∥2 + Ā∆−1d̄i1 ⊗
d̄i1+∆

∥d̄i1+∆∥
.

The matrix 0 may belong to the right-hand side term for
arbitrary d̄i1+∆ if d̄i1+∆ ∈ span{d̄i1 , Ād̄i1 , . . . , Ā

∆−2d̄i1}. This is
satisfied by the assumption in the proposition statement.

However, this is not sufficient to ensure that KKT condition
(3) holds. The reason is that ∂∥0∥2 = {x ∈ Rn : ∥x∥2 ≤
1}. The vectors chosen for ∂∥0∥2 have a bounded norm.
Therefore, we need a condition that bounds the norm of the
columns of Ā∆−1d̄i1 ⊗

d̄i1+∆

∥d̄i1+∆∥2
, so it can be expressed as a

linear combination of the vectors {d̄i1 , Ād̄i1 , . . . , Ā
∆−2d̄i1}. Let

(λ j,v j) be eigenvalue-eigenvector pairs for the matrix ĀT . Let
e1, . . . ,e∆−1 ∈ ∂∥0∥2. Then, the KKT condition can be written
as follows after dropping the sub-index i1:

0 ∈ e1d̄T + e2d̄T ĀT + · · ·+ e∆−1d̄T (ĀT )∆−2 + f d̄T (ĀT )∆−1,

where f =
d̄i1+∆

∥d̄i1+∆∥2
and ∥ f∥2 = 1. If we multiply the equation

above by the eigenvector v j of ĀT , we obtain

0 ∈ e1d̄T v j + · · ·+ e∆−1d̄T (ĀT )∆−2v j + f d̄T (ĀT )∆−1v j

∈ (e1 +λ je2 + · · ·+λ
∆−2
j e∆−1 +λ

∆−1
j f )d̄T v j.

Note that because Ā is diagonalizable, we only need to satisfy
this condition along the direction of each eigenvector, since
all eigenvectors span the whole space. Therefore, the KKT
condition holds if

0 ∈ e1 +λ je2 + · · ·+λ
∆−2
j e∆−1 +λ

∆−1
j f , ∀ j = 1, . . . ,n.

There are (∆− 1)n free variables and n2 equations. One can
use the substitution to eliminate n2 variables, which leads to

∑
k1+···+kn=∆−n

λ (k1, . . . ,kn) f =

∆−n−2

∑
t=0

∑
k1+···+kn=t

λ (k1, . . . ,kn)et+n+1.

Taking the norm of both sides and using the triangle inequality
yields that∣∣∣∣∣ ∑

k1+···+kn=∆−n
λ (k1, . . . ,kn)

∣∣∣∣∣∥ f∥2

≤
∆−n−1

∑
t=0

∣∣∣∣∣ ∑
k1+···+kn=t

λ (k1, . . . ,kn)

∣∣∣∣∣∥et+n+1∥2.

Using the fact that ∥e j∥2 = 1 for all j and ∥ f∥2 = 1, we obtain∣∣∣∣∣ ∑
k1+···+kn=∆−n

λ (k1, . . . ,kn)

∣∣∣∣∣≤ ∆−n−1

∑
t=0

∣∣∣∣∣ ∑
k1+···+kn=t

λ (k1, . . . ,kn)

∣∣∣∣∣ .
This completes the proof for the proposition.

3) Proof of Proposition 3: The KKT condition for the exact
recovery that is the necessary and sufficient condition can be
restated as

∃γi ∈ ∂∥0∥◦, i ̸∈ K s.t. ∑
i ̸∈K

xi ⊗ γi = ∑
i∈K

xi ⊗∂∥d̄i∥◦. (12)

For the problem (CO-L2-Aut) with ◦ = 2. the condition (12)
becomes

∃γi ∈ ∂∥0∥2, i ̸∈ K s.t. ∑
i ̸∈K

xi ⊗ γi = ∑
i∈K

xi ⊗∂∥d̄i∥2.

Since 1√
n ∂∥0∥1 =

1√
nB∞(1)⊆ B2(1) = ∂∥0∥2, we can rewrite

it as

∃γi ∈ ∂∥0∥1, i ̸∈ K s.t. ∑
i̸∈K

xi√
n
⊗ γi = ∑

i∈K

xi ⊗∂∥d̄i∥2.

We can check the condition at each coordinate because the
set B∞(1) is coordinate wise separable. Thus, the condition
becomes that KKT condition holds for (CO-L2-Aut) if there
exist scalars γ l

i ∈ [−1,1], i ̸∈ K , l = 1, . . . ,n such that

∑
i̸∈K

γ
l
i xi/

√
n = ∑

i∈K

∂∥d̄i∥l
2xi, ∀l = 1, . . . ,n,

where ∂∥d̄i∥l
◦ is the l-th element of the subgradient. Similar

algebraic manipulation can be done for (CO-L1-Aut) except
for the transforming subdifferential of the ℓ2 norm to subdif-
ferential of the ℓ1 norm to obtain the second part of the result.
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4) Proof of Lemma 3: The condition ”Given a matrix F ∈
Rn×m and the vector g ∈Rn, there exists a vector w ∈Rm with
∥w∥∞ ≤ 1 satisfying Fw = g.” is equivalent to the feasibility
of the linear programming (LP) below with objective function
equal to 0:

max
w∈Rm

0

s.t. Fw = g,

∥w∥∞ ≤ 1.

Due to the strong duality, the dual problem of the LP above
must have the optimum objective value equal to 0. The dual
problem can be formulated as

min
y∈Rm,z∈Rn

zT g+∥yT∥1

s.t. zT F+ yT = 0,

or equivalently,

min
z∈Rn

f (z) := zT g+∥zT F∥1.

Thus, for any z ∈Rn, f (z) must be nonnegative, i.e., f (z)≥ 0.
Because f (cz) = c f (z) for all c > 0, the condition f (z) ≥ 0
for all z ∈ Rn is satisfied if f (z) ≥ 0 for all z ∈ Rn such that
∥z∥2 = 1. This completes the proof.

5) Proof of Theorem 2: Due to the system dynamics and
given x0 = 0, xi can be expressed as

xi = ∑
k∈K

Ā(i−k−1)+ d̄k,

where A(i)+ is defined as

A(i)+ :=


0, if i < 0
I, if i = 0
Ai, if i > 0

.

By Lemma 3, given a coordinate l ∈ {1, . . . ,n}, the optimality
condition for the recovery of Ā is equivalent to

f (z) := zT g+∥zT F∥1 ≥ 0, ∀z ∈ S2(1), (13)

where the unit sphere S2(1) is {z ∈Rn : ∥z∥2 = 1}, the matrix
F ∈ Rn×(T−|K |) has the columns

Fi := ∑
k∈K

Ā(i−k−1)+ d̄k√
n

, ∀i ̸∈ K ,

and the vector g ∈ Rn is

g := ∑
i∈K

∑
k∈K

Ā(i−k−1)+ d̄k · f̄ l
i .

We prove that condition (13) holds with high probability in
two steps.

Step 1: We first prove that condition (13) holds with high
probability for a fixed z ∈ S2(1).

a) Step 1-1: We first analyze the term ∥zT F∥1, namely,

E∥zT F∥1 =
1√
n ∑

i/∈K

E

∣∣∣∣∣ ∑
k∈K

zT Ā(i−k−1)+ d̄k

∣∣∣∣∣ . (14)

We construct the index set

I1 := {i | i /∈ K , i−1 ∈ K }.

Let

S :=
⌈

logρ Θ

[
c5

log(|I1|/δ )

]⌉
=Θ

[
log log(|I1|/δ )+ log(1/c)

log(1/ρ)

]
,

where ⌈x⌉ is the minimal integer that is not smaller than x and
δ ∈ (0,1) is the specified probability. We construct a subset
of I1 in the following way:

I := {i1, . . . , iI | i j ∈ I1, i j − i j−1 ≥ S, ∀ j}.

It is straightforward to construct I such that

I = |I | ≥ 1
S
|I1|.

In addition, due to the probabilistic attack model, it holds with
probability at least 1− exp[−Θ[p(1− p)T ]] that

|I1| ≥
p(1− p)T

2
.

Therefore, we have an estimate on the size of I :

P
(

I ≥ p(1− p)T
2S

)
≥ 1− exp[−Θ[p(1− p)T ]]. (15)

For each j ∈ {1, . . . , I}, we define

K j := {k ∈ K | i j−1 < k < i j},

where we denote i0 :=−1. Moreover, we define

X j,ℓ := ∑
k∈K j

zT Āiℓ−k−1d̄k, ∀ j, ℓ ∈ {1, . . . , I} s.t. j ≤ ℓ.

Using equation (14), we can calculate that

∥zT F∥1 ≥
1√
n

I

∑
ℓ=1

∣∣∣∣∣ ℓ

∑
j=1

X j,ℓ

∣∣∣∣∣ (16)

≥ 1√
n

I

∑
j=1

(∣∣X j, j
∣∣− I

∑
ℓ= j+1

∣∣X j,ℓ
∣∣) .

We utilize the following lemma to bound |X j,ℓ|.
Lemma 5: Suppose that a random variable X is sub-

Gaussian with parameter σX , where the mean and the variance
of X are 0 and σ̃2

X , respectively. Then, we have

P(|X | ≥ σ̃X )≥
σ̃4

X

64σ4
X
.

For all j ∈ {1, . . . , I}, the stealthy assumption (Assumption
2) implies that the standard deviation and the sub-Gaussian
parameter of X j,ℓ are

σ̃ j,ℓ :=

√
1
n ∑

k∈K j

∥zT Āiℓ−k−1∥2
2σ2

k ,

σ j,ℓ :=

√
1
n ∑

k∈K j

∥zT Āiℓ−k−1∥2
2σ2,
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respectively. It follows from Lemma 5 that

P(|X j, j| ≥ σ̃ j, j)≥
σ̃4

j, j

64σ4
j, j
,

which further leads to

P(|X j, j| ≥ cσ j, j)≥
c4

64
. (17)

On the other hand, the sub-Gaussian parameter of ∑
I
ℓ= j+1

∣∣X j,ℓ
∣∣

is at most

I

∑
ℓ= j+1

σ j,ℓ ≤
I

∑
ℓ= j+1

ρ
(ℓ− j)S

σ j, j ≤
ρS

1−ρS σ j, j.

Therefore, it holds with probability at least 1−δ/(4I) that

−
I

∑
ℓ= j+1

∣∣X j,ℓ
∣∣≥− ρS

1−ρS σ j, j ·
√

2log(4I/δ ) (18)

≥− ρS

1−ρS σ j, j ·
√

2log(4|I1|/δ )

≥− c4

512
· cσ j, j,

where the last step is by the choice of S. Using the bound in
(15), if we choose

T ≥ Θ

(
log log(1/δ )+ log(1/c)

p(1− p)c4 log(1/ρ)

)
,

it holds with high probability that

c4

64
− δ

4I
≥ c4

128
.

Note that we have dropped the |I1| term in the definition
of S since loglog(|I1|) is bounded by loglog(T ) and will
not change the order of the above bound. Let q j be the
(1− c4/128)-quantile of

∣∣X j, j
∣∣−∑

I
ℓ= j+1

∣∣X j,ℓ
∣∣. We define the

indicator function

1 j :=

{
1, if

∣∣X j, j
∣∣−∑

I
ℓ= j+1

∣∣X j,ℓ
∣∣≥ q j,

0, otherwise,
∀ j ∈ {1, . . . , I}.

Since the value of the Bernoulli random variable 1 j only
depends on attacks in K j, which are disjoint from each other,
the random variables

11 − c4/128, . . . , 1I − c4/128

form a martingale sequence with respect to filtration
Fi1 , . . . ,FiI . For all j ∈ {1, . . . , I}, we can calculate that

E [exp(s1 j)]≤ exp
[

c4

128
(es −1)

]
, ∀s ∈ R.

By the tower property of expectation, we have

E

[
exp

(
s

I

∑
j=1

1 j

)]
≤ exp

[
c4I
128

(es −1)
]
, ∀s ∈ R.

Therefore, by applying Chernoff’s bound and choosing s :=
− log(2), it follows that

P

(
I

∑
j=1

1 j ≤
c4

256
· I

)
≤ exp

[
− c4I

256
· s+ c4I

128
(es −1)

]
≤ exp

[
− c4I

256
· log

(
1
2

)
− c4I

128
· 1

2

]
= exp

[
−Θ

(
c4

128
· I
)]

.

Equivalently, we know

P

(
I

∑
j=1

1 j ≥
c4

256
· I

)
≥ 1− exp

[
−Θ

(
c4

128
· I
)]

. (19)

Furthermore, since i j −1 ∈ K j, we can estimate that

σ j, j ≥
√

1
n
∥z∥2

2σ2 =
1√
n

σ .

By the definition of q j and 1 j, when the event in inequality
(19) happens, inequalities (17) and (18) imply that

∥zT F∥1 ≥
1√
n

I

∑
j=1

(∣∣X j, j
∣∣− I

∑
ℓ= j+1

∣∣X j,ℓ
∣∣)

≥ 1√
n

I

∑
j=1

[
c4

256
· cσ j, j −

c4

512
· cσ j, j

]
≥ c5σ

512n
· I

holds with probability at least 1−δ/4. Hence, we obtain

P
[
∥zT F∥1 ≥

c5σ

512n
· I
]
≥ 1− exp

[
−Θ

(
c4I
)]

− δ

4
. (20)

b) Step 1-2: For the term zT g, we can establish an upper
bound on

E
[
exp
(
λ · zT g

)]
=E

[
exp

(
λ ∑

k∈K
∑

i∈K

zT Ā(i−k−1)+ d̄k · f̄ l
i

)]
.

Define the filtration

F f := σ{ f̄t , t ∈ K }.

By the stealth assumption, for each k ∈K , conditional on Fk
and F f , we have

ℓ̄k is sub-Gaussian with parameter σ .

Let T ′ be the second last time instance in K . We have

E

[
exp

(
λ ∑

i∈K
∑

k∈K

zT Ā(i−k−1)+ d̄k · f̄ l
i

)]
(21)

=E

[
exp

(
λ ∑

k∈K ,k<T ′
∑

i∈K

zT Ā(i−k−1)+ d̄k · f̄ l
i

)

×E

[
exp

(
λ ∑

i∈K

zT Ā(i−1−T ′)+ d̄′
T · f̄ l

i

)∣∣∣∣∣FT ′ ,F f

]]
.
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Using the decomposition in Assumption 2, we have

E

[
exp

(
λ ∑

i∈K

zT Ā(i−1−T ′)+ ¯dT ′ · f̄ l
i

)∣∣∣∣∣FT ′ ,F f

]

=E

[
exp

(
λ ∑

i∈K

zT Ā(i−1−T ′)+ f̄T ′ f̄ l
i · ℓ̄T ′

)∣∣∣∣∣FT ′ ,F f

]

≤exp

λ 2σ2

2

(
∑

i∈K

zT Ā(i−1−T ′)+ f̄T ′ f̄ l
i

)2
 .

Substituting back into (21), it follows that

E

[
exp

(
λ ∑

i∈K
∑

k∈K

zT Ā(i−k−1)+ d̄k · f̄ l
i

)]

≤E

[
exp

(
λ ∑

k∈K ,k<T ′
∑

i∈K

zT Ā(i−k−1)+ d̄k · f̄ l
i

)

× exp

λ 2σ2

2

(
∑

i∈K

zT Ā(i−1−T ′)+ f̄T ′ f̄ l
i

)2
].

Continuing the process for all k ∈ K , we obtain

E

[
exp

(
λ ∑

i∈K
∑

k∈K

zT Ā(i−k−1)+ d̄k · f̄ l
i

)]
(22)

≤E

exp

λ 2σ2

2 ∑
k∈K

(
∑

i∈K

zT Ā(i−1−k)+ f̄k f̄ l
i

)2


≤E

exp

λ 2σ2

2 ∑
k∈K

(
∑

i∈K

∣∣∣zT Ā(i−1−k)+ f̄k

∣∣∣)2
 ,

where the last inequality holds because f̄ l
i is bounded in

[−1,1]. For each i,k ∈K , the value of
(

zT Ā(i−1−k)+ f̄k

)2
con-

centrates around its expectation ∥zT Ā(i−1−k)+∥2
2/n. Therefore,

inequality (22) leads to

E

[
exp

(
λ ∑

i∈K
∑

k∈K

zT Ā(i−k−1)+ d̄k · f̄ l
i

)]
(23)

≤exp

Θ

λ 2σ2

2n ∑
k∈K

(
∑

i∈K

∥∥∥zT Ā(i−1−k)+
∥∥∥

2

)2


≤exp

Θ

λ 2σ2

2n ∑
k∈K

(
∑

i∈K

ρ
(i−k−1)+

)2
 .

Suppose the elements in K are

j1 < j2 < · · ·< j|K |.

Define

∆k := jk − jk−1 −1, ∀k ∈ {2, . . . , |K |}.

We can calculate that

∑
i∈K

ρ
(i−1− jk)+ ≤ ρ∆k

1−ρ
.

Since ρ∆k ∈ [0,1] are bounded random variables, they are
sub-Gaussian and concentrate around the mean with high
probability. The expectation of ρ2∆k is

∞

∑
∆=0

p(1− p)∆
ρ

2∆ =
p

1− (1− p)ρ2 .

Therefore, with probability at least 1−exp[−Θ(pT )], we have

|K |

∑
k=2

ρ
2∆k ≲

|K |p
1− (1− p)ρ2 ≤ |K |p

1−ρ
.

Hence, inequality (23) implies that with the same probability,
zT g is sub-Gaussian with parameter

Θ


√√√√σ2

n

|K |

∑
k=2

ρ2∆k

(1−ρ)2

≤ Θ

[√
|K |pσ2

n(1−ρ)3

]
.

Therefore, Hoeffding’s inequality leads to

P

[
zT g ≤−Θ

(√
|K |pσ2

n(1−ρ)3 log
(

4
δ

))]
≤ δ

4
. (24)

By combining inequalities (20) and (24), it holds with
probability at least

1− exp
[
−Θ(c4I)

]
− δ

2
that

f (z)≥ Θ

[
c5σ I

n
−

√
|K |pσ2

n(1−ρ)3 log
(

1
δ

)]
.

Similar to the bound in (15), it holds with probability at least
1− exp[−Θ(pT )] that

|K | ≤ 2pT.

As a result, if we choose

T ≥ Θ

[
max

{
log log(1/δ )+ log(1/c)

c4 p(1− p) log(1/ρ)
log
(

1
δ

)
, (25)

1
p(1− p)

log
(

1
δ

)
,

n log(1/c)2

c10(1− p)2(1−ρ)3 log2(1/ρ)
log
(

1
δ

)}]

= Θ

[
nR log

(
1
δ

)]
,

where

R := max

{
log(1/c)

c4 p(1− p) log(1/ρ)
log
(

1
δ

)
,

log2(1/c)
c10(1− p)2(1−ρ)3 log2(1/ρ)

,
1

np(1− p)

}
,

we have

P
[

f (z)≥ Θ

(
c5σ I

n

)]
≥ 1−δ . (26)
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Step 2: In the second step, we apply discretization tech-
niques to prove that condition (13) holds for all z ∈ S2(1) with
high probability. Suppose that ε > 0 is a small constant. We
construct an ε-cover of the unit sphere S2(1), denoted as

{z1, . . . ,zN},

Namely, for all z ∈ S2(1), we can find r ∈ {1,2, . . . ,N} such
that ∥z− zr∥2 ≤ ε . The number of points N can be bounded
by

log(N)≤ log[N (ε,S2(1),∥ · ∥2)]≤ n log
(

1+
2
ε

)
.

Define a to be the lower bound of f (z) in inequality (26).
Then, we have

a = Θ

(
c5σ I

n

)
.

Our goal is to prove that

f (z)− f (z′)≥−a, ∀z,z′ ∈ S2(1) s.t. ∥z− z′∥2 ≤ ε

holds with high probability. Notice that

f (z)− f (z′) = (z− z′)T g+(∥zT F∥1 −∥(z′)T F∥1)

≥ (z− z′)T g−∥(z− z′)T F∥1

≥−∥z− z′∥2∥g∥2 −∥z− z′∥2 ∑
i/∈K

∥Fi∥2

≥−ε

(∥∥∥∥∥ ∑
i∈K

∑
k∈K

Ā(i−k−1)+ d̄k

∥∥∥∥∥
2

+
1√
n ∑

i/∈K

∥∥∥∥∥ ∑
k∈K

Ā(i−k−1)+ d̄k

∥∥∥∥∥
2

)
≥−ε ∑

k∈K
∑
i>k

ρ
(i−k−1)|ℓ̄k|.

Using the property of exponential sequences, we have

∑
k∈K

∑
i>k

ρ
(i−k−1)|ℓ̄k| ≤

1
1−ρ

∑
k∈K

|ℓ̄k|.

Using a similar proof, we can show that ∑k∈K |ℓ̄k| is sub-
Gaussian with parameter |K |σ . Therefore, Hoeffding’s in-
equality implies that

P

(
1

1−ρ
∑

k∈K

|ℓ̄k|>
a
ε

)
≤ 2exp

[
− (1−ρ)2a2

2ε2|K |2σ2

]
.

Letting

ε :=
(1−ρ)a

|K |σ
√

2log(4/δ )
,

it holds that

P
[

f (z)− f (z′)≥−a, ∀z,z′ ∈ S2(1) s.t. ∥z− z′∥2 ≤ ε
]

≥P

(
1

1−ρ
∑

k∈K

|ℓ̄k| ≤
a
ε

)
≥ 1− δ

2
.

Now, after we replace δ in (25) with δ/(2N), it holds with
probability at least 1−δ/2 that

f (zr)≥ a, ∀r ∈ {1, . . . ,N}.

After combining the above two inequalities, we apply the
union bound to obtain

P [ f (z)≥ 0, ∀z ∈ S2(1)]≥ 1−δ .

The corresponding sample complexity is

T ≥ Θ

[
nR log

(
2N
δ

)]
.

Since it holds with probability 1− exp[−Θ[p(1− p)T ]] that

|I1|= Θ[p(1− p)T ], |K |= Θ(pT ),

we get the estimate

log(N)≤ n log
(

1+
2
ε

)
= n log

[
1+Θ

(
n
√

log(1/δ ) log(1/c)
(1− p)c5(1−ρ) log(1/ρ)

)]
= Θ [n log(nR)] .

By omitting the constants in the expression, the final sample
complexity can be written as

T ≥ Θ

[
nR
[

n log(nR)+ log
(

1
δ

)]]
.

Finally, we replace δ with δ/n and apply the union bound to
all coordinates ℓ ∈ {1, . . . ,n}. The sample complexity remains
on the same order as the above expression.

6) Proof of Theorem 4: Due to the system dynamics and
given x0 = 0, xi can be expressed as

xi = ∑
k/∈K

Ā(i−k−1)+ B̄uk + ∑
k∈K

Ā(i−k−1)+(B̄uk + d̄k).

From Proposition 4, we want to show that there exist scalars
γ l

i ,µ
l
i ∈ [−1,1] for all i ̸∈ K , l ∈ {1, . . . ,n} such that

∑
i̸∈K

γ
l
i xi/

√
n = ∑

i∈K

∂∥d̄i∥l
2xi, ∀l = 1, . . . ,n, (27)

and

∑
i̸∈K

µ
l
i ui/

√
n = ∑

i∈K

∂∥d̄i∥l
2ui, ∀l = 1, . . . ,n. (28)

We finish the proof in two steps.
Step 1: We first analyze condition (27) with a given

coordinate l ∈ {1, . . . ,n}. From Lemma 3, condition (27) is
equivalent to

f (z) := zT g+∥zT F∥1 ≥ 0, ∀z ∈ S2(1),

where the matrix F ∈ Rn×(T−|K |) has the columns

Fi := ∑
k/∈K

Ā(i−k−1)+ B̄uk√
n

+ ∑
k∈K

Ā(i−k−1)+(B̄uk + d̄k)√
n

, ∀i ̸∈ K ,

and the vector g ∈ Rn is

g := ∑
i∈K

[
∑

k/∈K

Ā(i−k−1)+ B̄uk + ∑
k∈K

Ā(i−k−1)+(B̄uk + d̄k)

]
f̄ l
i .

Similar to the proof of Theorem 2, we first prove that f (z)≥ a
holds with high probability for a fixed z ∈ S2(1) and some
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positive constant a. For each k /∈ K , the standard deviation
and sub-Gaussian parameter of zT Ā(i−k−1)+ B̄uk are both

1√
m
∥zT Ā(i−k−1)+ B̄∥2ξ .

For each k ∈ K , the standard deviation and sub-Gaussian
parameter of zT Ā(i−k−1)+(B̄uk + d̄k) are, respectively,√

1
m
∥zT Ā(i−k−1)+ B̄∥2

2ξ 2 +
1
n
∥zT Ā(i−k−1)+∥2

2σ2
k ,√

1
m
∥zT Ā(i−k−1)+ B̄∥2

2ξ 2 +
1
n
∥zT Ā(i−k−1)+∥2

2σ2.

Note that we have utilized the independence between uk and
d̄k in the above calculation. Let

S :=

logρ Θ


√

1
m η2

Bξ 2 + p
n σ2 · c5√

1
m ρ2

Bξ 2 + p
n σ2 ·

√
log(1/δ )

 ,
where ρB is the maximal singular value of B̄ and ηB is the
minimal singular value of the matrix

1
(1−ρ)2

[
B̄ ĀB̄ · · · Ān−1B̄

]
.

By the controllability assumption, the above matrix is rank-
n and thus, the parameter ηB is strictly positive. We define
i0 :=−1 and construct the index set

I := {i1, . . . , iI | i j /∈ K , i j − i j−1 ≥ S, ∀ j}.

It is straightforward to construct I such that I = |I | is on
the order of

min
{
(1− p)T,

T
S

}
.

For each j ∈ {1, . . . , I}, we define

K j := {k∈K | i j−1 ≤ k< i j}, K c
j := {k /∈K | i j−1 ≤ k< i j}.

Moreover, we define

X j,ℓ := ∑
k∈K j

zT Āiℓ−k−1 (B̄uk + d̄k
)
+ ∑

k∈K c
j

zT Āiℓ−k−1B̄uk,

∀ j, ℓ ∈ {1, . . . , I} s.t. j ≤ ℓ.

For all j ∈ {1, . . . , I}, the stealthy assumption (Assumption
2) implies that the standard deviation and the sub-Gaussian
parameter of X j,ℓ is

σ̃ j,ℓ :=√√√√ 1
m ∑

k∈K j∪K c
j

∥zT Āiℓ−k−1B̄∥2
2ξ 2 +

1
n ∑

k∈K j

∥zT Āiℓ−k−1∥2
2σ2

k ,

σ j,ℓ :=√√√√ 1
m ∑

k∈K j∪K c
j

∥zT Āiℓ−k−1B̄∥2
2ξ 2 +

1
n ∑

k∈K j

∥zT Āiℓ−k−1∥2
2σ2,

respectively. Define

c j,ℓ :=
σ̃ j,ℓ

σ j,ℓ
, ∀ j, ℓ ∈ {1, . . . , I} s.t. j ≤ ℓ.

Similar to the proof of Theorem 2, we have the bound

∥zT F∥1 ≥
1√
n

I

∑
j=1

(
|X j, j|−

I

∑
ℓ= j+1

|X j,ℓ|

)
.

By Lemma 5, we have

P(|X j, j| ≥ c j, jσ j, j)≥
c4

j, j

64
. (29)

For all vector y ∈ Rn, the controllability assumption leads to

n−1

∑
k=0

∥yT ĀkB̄∥2
2 ≥

η2
B

(1−ρ)2 · ∥y∥2
2 (30)

≥ η2
B

(1−ρ)2 · (1−ρ)2
n

∑
k=0

ρ
2k∥y∥2

2 ≥ η
2
B

n

∑
k=0

∥yT Āk∥2
2.

Therefore, we can divide the set K j ∪K c
j into segments with

n consecutive time instances and apply inequality (30) to each
segment. When T is large enough such that I ≥ Θ(n), we
obtain the estimation

∑
k∈K j∪K c

j

∥zT Āiℓ−k−1B̄∥2
2 ≳

i j−1

∑
k=i j−1

∥zT Āiℓ−k−1∥2
2η

2
B.

Applying concentration inequalities to set K j, the distribution
of its elements will surround their expected values. Therefore,
for the simplicity of presentation, we use the following ap-
proximation:

σ
2
j, j ≳

1
m

η
2
Bξ

2 +
p
n

σ
2 := σ̄

2.

In addition, the parameter c j, j can be bounded by

c2
j, j

≥
1
m ∑k∈K j∪K c

j
∥zT Āiℓ−k−1B̄∥2

2ξ 2

1
m ∑k∈K j∪K c

j
∥zT Āiℓ−k−1B̄∥2

2ξ 2 + 1
n ∑k∈K j ∥zT Āiℓ−k−1∥2

2σ2

=

[
1+

 1
m ∑

k∈K j∪K c
j

∥zT Āiℓ−k−1B̄∥2
2ξ

2

−1

× 1
n ∑

k∈K j

∥zT Āiℓ−k−1∥2
2σ

2

]−1

.

For the numerator, we can estimate that

∑
k∈K j∪K c

j

∥zT Āiℓ−k−1B̄∥2
2 ≳

i j−1

∑
k=i j−1

∥zT Āiℓ−k−1∥2
2η

2
B.

On the other hand, since

∑
k∈K j∪K c

j

∥zT Āiℓ−k−1B̄∥2
2ξ

2 ≤ ∑
k∈K j∪K c

j

∥zT Āiℓ−k−1∥2
2ρ

2
Bξ

2,

∑
k∈K j

∥zT Āiℓ−k−1∥2
2σ

2 ≲p ∑
k∈K j∪K c

j

∥zT Āiℓ−k−1∥2
2σ

2,

we get

c2
j, j ≳

1
m η2

Bξ 2

1
m ρ2

Bξ 2 + p
n σ2

:= c.
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Therefore, inequality (29) implies

P(|X j, j| ≥ cσ̄)≥ c4

64
. (31)

Since the sub-Gaussian parameter of ∑
I
ℓ= j+1 |X j,ℓ| is

∑
I
ℓ= j+1 σ j,ℓ, Hoeffding’s inequality implies that

P

(
I

∑
ℓ= j+1

|X j,ℓ| ≤
I

∑
ℓ= j+1

σ j,ℓ ·

√
2log

(
4I
δ

))
≥ 1− δ

4I
. (32)

We can bound the sub-Gaussian parameter by

I

∑
ℓ= j+1

σ j,ℓ

≤
I

∑
ℓ= j+1

√√√√ 1
m ∑

k∈K j∪K c
j

ρ2(iℓ−k−1)ρ2
Bξ 2 +

1
n ∑

k∈K j

ρ2(iℓ−k−1)σ2

≤ ρS

1−ρS

√√√√ 1
m ∑

k∈K j∪K c
j

ρ2(i j−k−1)ρ2
Bξ 2 +

1
n ∑

k∈K j

ρ2(i j−k−1)σ2

≤ ρS

1−ρS

√
1

m(1−ρ)
ρ2

Bξ 2 +
1
n ∑

k∈K j

ρ2(i j−k−1)σ2.

In the same way, we have the following bound with high
probability:

∑
k∈K j

ρ
2(i j−k−1) ≲ p ∑

k∈K j∪K c
j

ρ
2(i j−k−1) ≤ p

1−ρ
,

which holds with high probability when T is large. Therefore,
we have the bound

I

∑
ℓ= j+1

σ j,ℓ ≲
ρS

1−ρS

√
1

m(1−ρ)
ρ2

Bξ 2 +
p

n(1−ρ)
σ2

:=
ρS

1−ρS σ̃ .

By the choice of S, we get

I

∑
ℓ= j+1

σ j,ℓ ≲
c4

256
· cσ̄ ·

(√
2log

(
4I
δ

))−1

,

Therefore, inequality (32) leads to

P

(
I

∑
ℓ= j+1

|X j,ℓ| ≤
c4

256
· cσ̄

)
≥ 1− δ

4I
. (33)

Choosing

T ≥ Θ

(
log log(1/δ )

c4 min{1− p,1/S}

)
,

we have
c4

64
− δ

4I
≥ c4

128
.

By the same construction of the martingale sequence and the
application of Azuma-Hoeffding’s inequality, inequalities (29)

and (32) imply that

∥zT F∥1 ≥
1√
n

I

∑
j=1

(
|X j, j|−

I

∑
ℓ= j+1

|X j,ℓ|

)
(34)

≥ 1√
n

(
c4I
256

· cσ̄ − c4I
512

cσ̄

)
=

c5σ̄

512
√

n
· I

holds with probability at least

1− exp[−Θ(c4I)]−δ/4.

On the other hand, for the term zT g, we can bound its sub-
Gaussian parameter by√

|K |ρ2
Bξ 2

m(1−ρ)3 +
|K |pσ2

n(1−ρ)3 =

√
|K |

(1−ρ)2 σ̃ .

Then, Hoeffding’s inequality leads to

P

[
zT g ≤−Θ

(√
|K |σ̃2

(1−ρ)2 log
(

4
δ

))]
≤ δ

4
. (35)

Combining inequalities (34) and (35), it holds with proba-
bility at least

1− exp[−Θ(c4I)]− δ

2

that

f (z)≥ Θ

[
c5σ̄ I√

n
−

√
σ̃2|K |
(1−ρ)2 log

(
1
δ

)]
.

Similar to the bound in (15), it holds with probability at least
1− exp[−Θ(pT )] that

|K | ≤ 2pT.

As a result, if we choose

T ≥ Θ

[
max

{
1

c4 min{1− p,1/S}
log
(

1
δ

)
,

1
p

log
(

1
δ

)
,

npκ2

c10(1−ρ)2 min{(1− p)2,1/S2}
log
(

1
δ

)}]

= Θ

[
nR1 log

(
1
δ

)]
,

where κ := σ̃/σ̄ ≥ (1−ρ)−1 and

R1 := max

{
1

c4(1− p)
,

log(κ/c)
c4 log(1/ρ)

,

pκ2

c10(1− p)2(1−ρ)2 ,
pκ2 log2(κ/c)

c10(1−ρ)2 log2(1/ρ)
,

1
np

}
we have

P
[

f (z)≥ Θ

(
c5σ̄ I√

n

)]
≥ 1−δ . (36)
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Next, we apply the discretization techniques and estimate
the size of ε-net, which we denote as N. Similar to the proof
of Theorem 2, it is sufficient to choose

log(N)≤ n log
(

1+
2
ε

)
,

and

ε := Θ

(
a

∥g∥2 +∑i/∈K ∥Fi∥2

)
.

where a > 0 is the lower bound of f (z) in (36). We can
estimate that

∥g∥2 ≤ ∑
i∈K

∥∥∥∥∥ ∑
k/∈K

Ā(i−k−1)+ B̄uk + ∑
k∈K

Ā(i−k−1)+(B̄uk + d̄k)

∥∥∥∥∥
2

≤ ρB

1−ρ

T−1

∑
k=0

∥uk∥2 +
1

1−ρ
∑

j∈K

∥d̄k∥2.

Therefore, the sub-Gaussian parameter of ∥g∥2 is bounded by

1
1−ρ

√
ρ2

BT ξ 2 + |K |σ2 ≲
1

1−ρ

√
ρ2

BT ξ 2 + pT σ2 := σ
′√T .

Similarly, the sub-Gaussian parameter of ∑i/∈K ∥Fi∥2 is
bounded by

1
(1−ρ)

√
n

√
ρ2

BT ξ 2 + pT σ2 =
σ ′√T√

n

with high probability. Hoeffding’s inequality implies

∥g∥2 + ∑
i/∈K

∥Fi∥2 ≤ Θ

[
σ
′√T

√
log
(

1
δ

)]
with probability at least 1− δ/2. With the same probability,
we have

log
(

1+
2
ε

)
≤ log

[
1+Θ

( √
nσ ′√log(1/δ )

c5σ̄ min{1− p,1/S}
√

T

)]
≤ Θ[log(nR1)],

which further leads to

log(N)≲ Θ[n log(nR1)].

Replacing δ with δ/N in (36), the final sample complexity
bound is

T ≥ Θ

[
nR1

[
n log(nR1)+ log

(
1
δ

)]]
.

Step 2: In the second step, we consider condition (28).
From Lemma 3, given a coordinate l ∈ {1, . . . ,n}, (28) is
equivalent to

f (z) := zT g+∥zT F∥1 ≥ 0, ∀z ∈ S2(1),

where the matrix F ∈ Rm×(T−|K |) has the columns

Fi :=
ui√

n
, ∀i ̸∈ K ,

and the vector g ∈ Rm is

g := ∑
i∈K

ui f̄ l
i .

For a given z ∈ S2(1), we have

E[ f (z)] = E∥zT F∥1 = ∑
i/∈K

E|zT Fi|

= Θ

(
(T −|K |)ξ√

mn

)
≳ Θ

(
(1− p)T ξ√

mn

)
.

The sub-Gaussian parameter of ∥zT F∥1 + zT g is√
(T −|K |)ξ 2

mn
+

|K |ξ 2

m
≲

√(
1− p
mn

+
p
m

)
·T ξ 2.

Therefore, Hoeffding’s inequality implies that

f (z)≥ Θ

(
(1− p)T ξ√

mn

)
holds with probability at least

1− exp
[
−Θ

(
(1− p)2T
1− p+np

)]
.

Choosing

T ≥ Θ

[
max

{
1
p

log
(

1
δ

)
,

1− p+np
(1− p)2 log

(
1
δ

)}]

= Θ

[
max

{
1
p

log
(

1
δ

)
,

np
(1− p)2 log

(
1
δ

)}]
,

we have

P
[

f (z)≥ Θ

(
(1− p)T ξ√

mn

)]
≥ 1− δ

2
.

Similarly, applying the discretization techniques, it is sufficient
to choose N points, where

log(N)

= m log
[

1+Θ

(
∑i/∈K ∥ui∥2/

√
n+∑i∈K ∥ui∥2

(1− p)T ξ/
√

mn

)]
≲ m log

[
1+Θ

(√
(1− p)T/n+ pT ξ ·

√
log(1/δ )

(1− p)T ξ/
√

mn

)]

= m log

[
1+Θ

(√
1− p+np ·

√
log(1/δ )

(1− p)
√

T/m

)]

≤ m log
[

m log
(

1
δ

)]
.

Hence, the overall sample complexity is

T ≥ Θ

[
nR2

[
m log(nR2)+ log

(
1
δ

)]]
,

where we define

R2 := max

{
1

np
,

p
(1− p)2 ,

m
n

}
.

Combining the two steps, we get the conclusion of this
theorem.
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B. Proofs for Results in Appendix
1) Proof of Lemma 5: For the notational simplicity, we omit

the X in subscripts. Let

η :=
σ̃

σ
, δ := 1− σ̃4

64σ4 .

Assume conversely that

P(|X | ≥ ησ)< 1−δ .

Then, we can calculate that

E(X2) =
∫

∞

0
θ

2 d [−P(|X | ≥ θ)] =
∫

∞

0
2θP(|X | ≥ θ) dθ

≤ (ησ)2 +
∫

∞

ησ

2θ min
{

1−δ ,2exp
(
− θ 2

2σ2

)}
dθ

= (ησ)2 +(1−δ )
[
(σ ′)2 − (ησ)2]

+
∫

∞

σ ′
2θ ·2exp

(
− θ 2

2σ2

)
dθ

= (ησ)2 +(1−δ )
[
(σ ′)2 − (ησ)2]

+4σ
2 exp

(
− (σ ′)2

2σ2

)
,

where we define

σ
′ :=

√
2σ2 log

(
2

1−δ

)
.

Rearranging the above inequality, we get

η
2 ·δ +2(1−δ ) log

(
2

1−δ

)
+2(1−δ )≥ σ̃2

σ2 .

Hence, it holds that

η
2 ≥ 1

δ

[
σ̃2

σ2 −2(1−δ ) log
(

2
1−δ

)
−2(1−δ )

]
> 2

[
σ̃2

σ2 +4(1−δ ) log
(

1−δ

2

)]
,

where the second inequality holds because δ > 1/2 and
log[2/(1−δ )]> 1. Using the fact that

(1−δ ) log
(

1−δ

2

)
≥−

√
1−δ ≥− σ̃2

8σ2 ,

we get

η
2 >

σ̃2

σ2 ,

which contradicts with the definition of η . Therefore, we have
proved that

P(|X | ≥ σ̃)≥ σ̃4

64σ4 .
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