
Published in Image Processing On Line on YYYY–MM–DD.
Submitted on YYYY–MM–DD, accepted on YYYY–MM–DD.
ISSN 2105–1232 © YYYY IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
https://doi.org/10.5201/ipol

2
0
1
5
/
0
6
/
1
6

v
0
.5
.1

IP
O
L

a
rt
ic
le

c
la
ss

CS-TRD: a Cross Sections Tree Ring Detection method

Henry Marichal1, Diego Passarella,2 Gregory Randall1

1 Instituto de Ingenieŕıa Eléctrica, Facultad de Ingenieŕıa, Universidad de la República,
Uruguay(henry.marichal@fing.edu.uy / randall@fing.edu.uy) 2 Sede Tacuarembó, CENUR Noreste,

Universidad de la República, Uruguay(diego.passarella@cut.edu.uy)

PREPRINT May 19, 2023

Abstract

This work describes a Tree Ring Detection method for complete Cross-Sections of trees (CS-
TRD). The method is based on the detection, processing, and connection of edges corresponding
to the tree’s growth rings. The method depends on the parameters for the Canny Devernay edge
detector (σ and two thresholds), a resize factor, the number of rays, and the pith location. The
first five parameters are fixed by default. The pith location can be marked manually or using an
automatic pith detection algorithm. Besides the pith localization, the CS-TRD method is fully
automated and achieves an F-Score of 89% in the UruDendro dataset (of Pinus Taeda) with a
mean execution time of 17 seconds and of 97% in the Kennel dataset (of Abies Alba) with an
average execution time 11 seconds.

Source Code

A Python 3.11 implementation of CS-TRD is available at the web page of this article1. Usage
instructions are included in the README.md file of the archive. The associated online demo is
accessible through the web site.

Keywords: image edge detection, dendrochronology, tree ring detection

1 Introduction

Most of the available methods for dendrochronology use images taken from cores (small cylinders
crossing all the tree growth rings), as opposed to complete transverse cross sections. The image
analysis on cores is performed on rectangular divisions as illustrated in Figure 1. Using cores for
the analysis presents some advantages. The core is a small piece of the tree, keeping it alive. The
rings are measured on a small portion that can be assumed as a sequence of bands with a repetitive
contrast, simplifying the image analysis. The analysis of complete sections implies the felling of
the tree and, from the image analysis point of view, includes the challenge of generating a pattern
of concentric closed curves that represent the tree rings. Note in the examples shown in Figure 2

1https://ipolcore.ipol.im/demo/clientApp/demo.html?id=77777000390

ar
X

iv
:2

30
5.

10
80

9v
1

 [
cs

.C
V

]
 1

8
M

ay
 2

02
3

https://doi.org/10.5201/ipol
https://doi.org/10.5201/ipol
http://creativecommons.org/licenses/by-nc-sa/3.0/
https://doi.org/10.5201/ipol
https://ipolcore.ipol.im/demo/clientApp/demo.html?id=77777000390

Henry Marichal, Diego Passarella, Gregory Randall

Figure 1: Examples of core tree-ring images taken from a dataset with 239 images [8].

that several factors make the task difficult: wood knots, fungi appearing as black spots with shapes
following radial directions, and cracks that can be very wide. Some applications need the analysis of
the whole cross sections, as when we are interested in studying the angular homogeneity of the ring-
tree pattern. An example of such a case is when we are interested in the detection of the so-called
compression wood [6] for which the lack of homogeneity in the growing pattern produces differential
mechanical properties on the wood.

Several methods exist for automatically detecting tree rings in core images [18, 19, 24, 20]. As
the core approach is more popular, most available datasets are of that type, and machine learning-
based methods need those datasets for training. In particular, most of the machine learning-based
approaches are, to the best of our knowledge, designed for core images. Core images give partial
information on the tree-ring structure, which is important for some applications.

This article presents a method for detecting tree rings on images of tree cross-sections. The approach
takes advantage of the knowledge of the tree cross-section’s general structure and the presence of
redundant information on a radial profile for different angles around the tree’s pith.

This paper is organized as follows: Section 2 contextualizes this method with the previous work in
the field. Section 3 presents the proposed automatic cross section tree-ring detection algorithm (CS-
TRD). The implementation details are explained in Section 4. Section 5 briefly presents a dataset
for developing and testing the proposed algorithm. Experimental results are shown in Section 6 and
Section 7 concludes and discuss future work.

2 Antecedents

Tree ring detection is an old and essential problem in forestry with multiple uses. Due to the
particularity of the species of the concerned trees, many practitioners still use a manual approach,
measuring the tree rings with a ruler or other (manual) tree-ring measuring system. This is a tedious
and time-consuming task.

Cerda et al. [1] proposed a solution for detecting entire growth rings based on the Generalized Hough
Transform. This work already suggests some general considerations that lead to the principal steps
of our approach, as illustrated in Figure 4. The method was tested on ten images; neither the code
nor the data are publicly available.

2

CS-TRD: a Cross Sections Tree Ring Detection method

(a) F02a (b) F02b (c) F02c

(d) F02d (e) F02e (f) F03c

(g) F07b (h) L02b (i) L03c

Figure 2: Some examples of the images in the UruDendro dataset. Note the variability of the images and the presence of
fungus (for example, in the image L02b), knots (for example, in images F07b and F03c), and cracks (for example, in images
F02e and L03c). The first five images are from the same tree at different heights, as the text explains in Section 5.

3

Henry Marichal, Diego Passarella, Gregory Randall

Norell [18] proposes a method to automatically compute the number of annual rings in end faces ac-
quired in sawmill environments. The method applies the Grey Weighted Polar Distance Transform[19]
to a rectangular section (core) that includes the pith and avoids knots or other disturbances. Norell
used 24 images for training and 20 for testing its method, but the images are neither publicly available
nor the method’s code.

Zhou et al. [24] proposed a method based on the traditionally manual approach, i.e., tracing two
perpendicular lines across the slice and counting the peaks using a watershed-based method. They
show results on five discs. Neither the algorithm nor the data are available.

Henkel et al. [11] propose a semiautomatic method for detecting tree rings on full tree cross sections
using an Active Contours approach. The authors report good results on several examples, but neither
the data nor the algorithm is available.

Kennel et al. [13] uses the Dual-Tree Complex Wavelet Transform[14] as part of an active contour
approach. This method, which works in the entire cross-section of the tree, gives very good results
on a set of 7 publicly available images. We call it the Kennel dataset and try our method on it in
this work in order to compare our results with the ones reported by the authors on those images. To
the best of our knowledge, the code is unavailable, so it is impossible to see how it works with our
data.

Makela et al. [15] proposed an automatic method based on Jacobi Sets for the location of the pith
and the ring detection on full cross-sections of trees. Neither the code nor the data are publicly
available.

Fabijańska et al. [8] proposed a fully automatic image-based approach for detecting tree rings over
cores images. The method is based on image gradient peak detecting and linking and is applied
over a dataset with three wood species representing the ring-porous species. The same authors
also proposed a deep convolutional neural network for detecting tree-rings over cores images in [7].
Comparing both methods, they reported a precision of 43% and a recall of 51% for the classical
approach and a precision of 97%, and a recall of 96% for the deep learning approach. Neither the
code nor the data are publicly available.

In a recent work, Polek et al.[20] uses a machine learning-based approach for automatically detecting
tree rings of coniferous species but, as most of the reviewed results, work on cores instead of the
whole cross-section. This is the most comprehensive approach, and most algorithms and manual
protocols use this type of image input. But if the aim is to detect compressed wood, we must mark
the whole cross-section to study the asymmetries between rings.

Gillert et al, [9] proposed a method for tree-ring detection over the whole cross-section but applied
to microscopy images. They apply a deep learning approach using an Iterative Next Boundary
Detection Network, trained and tested with microscopy images.

There exist several dendrochronology commercially available software packages. Some consist of a set
of tools that help the practitioners to trace the rings manually. Others are semiautomatic, including
image-processing tools to propose the ring limits. The performance generally varies significantly with
certain wood anatomical features linked to wood species, climate, etc. For example, MtreeRing [22]
is built using the R statistical language. It uses mathematical morphology for noise reduction and
includes several methods for helping in the detection of rings (watershed-based segmentation, Canny
edge detector). Like many other algorithms, it proposes an interactive tool for manual marking.
To the best of our knowledge, the code is not publicly available. The CooRecorder [17] is another
software application of this class, with several tools to help practitioners in the dendrochronological
task, for example, to precisely determine the earlywood-latewood limits, using a zoom visualization

4

CS-TRD: a Cross Sections Tree Ring Detection method

and interactive tools. All of these packages work on cores instead of the whole disc. Constantz et al.,
[3] develop a tool for measuring S. Paniculatum rings. Their software measures trace by constructing
transects and the rings’ areas. The input for this method is a sketch image in SVG format, with
some information about the center and the rings represented by polylines, produced with Adobe
Illustrator.

3 Approach

Our tree-ring detection algorithm, called CS-TRD for Cross-Section Tree-Ring Detector, is heavily
based on some structural characteristics of the problem:

• The use of the whole horizontal cross-section of a tree (slice) instead of a wood dowel (or core),
as most dendrochronology approaches do.

• The following properties generally define the rings on a slice:

1. The rings are roughly concentric, even if their shape is irregular. This means that two
rings can’t cross.

2. Several rays can be traced outwards from the slice pith. Those rays will cross each ring
only once.

3. We are interested only in the rings corresponding to the latewood to early wood transitions,
namely the annual rings.

3.1 Definitions

To explain the approach, we need some naming definitions; see Figure 3. We call spider web the
global structure of the tree-rings we are searching for, which is depicted in a general way in Figure
3a. It comprises a center, associated with the slice pith, which is the origin of a certain number of
rays. The rings are concentric and closed curves that don’t cross each other. Each ring is formed
by a curve of connected points. Each ray crosses a curve only once. The rings can be viewed as a
flexible curve of points with nodes in the intersection with the rays. A chain is a set of connected
nodes. As Figure 3b illustrates, a curve is a set of chained nodes (small green dots in the figure,
noted Pi). Depending on the position of the curve concerning the center, some of those points are
nodes (bigger black dots in the figure, denoted Ni hereafter). The node can move along a ray in a
radial direction, but the movement of a node in a tangential direction over the chain is forbidden. In
other words, nodes can move along a ray as if it were hoops sliding along the rays. The bigger the
number Nr of rays, the better precision of the reconstruction of the rings. We fix Nr = 360. Note
that this is the ideal setting. In real images, rings can disappear without forming a closed curve,
cells can have very varied shapes, given the deformation of the rings, undetected chains, etc.

Figure 3c, illustrate the nomenclature used in this paper: Chains Chk and Chk+1, intersect the
rays Rm−1, Rm and Rm+1 in nodes Ni−1, Ni and Ni+1. Those rays and chains (as well as the four
corresponding nodes) define cells Cl−1, Cl and Cl+1. In general, a cell is limited by four nodes, but
sometimes that is not the case. For example, when a chain doesn’t complete a ring or is not well
detected.

During the detection process, the algorithm uses this terminology to work. We talk of chains that
merge to form a ring, of rays that determine a sampling of the curve, forming chains, of the distri-
bution of a particular measure on the cells produced by a given set of chains and rays, etc.

5

Henry Marichal, Diego Passarella, Gregory Randall

(a)

Ni−1

pn

Ni

Ni+1

pn+1pn−1

(b)

Ni−1 Ni Ni+1

Ni−1 Ni Ni+1

Cl Cl+1

Chk

Chk+1 Cl−1

Rm−1 Rm−1Rm

(c)

Figure 3: (a) The whole structure, called spider web, is formed by a center (which corresponds to the slice pith), Nr rays
(in the drawing Nr = 18) and the rings (concentric curves). In the scheme, the rings are circles, but in practice, they can
be (strongly) deformed as long as they don’t intersect another ring. Each ray intersects a ring only once in a point called
node. The area limited by two consecutive rays and two consecutive rings is named a cell. (b) A curve is a set of connected
points (small green dots). Some of those points are the intersection with rays, named nodes (black dots). A chain is a set
of connected nodes. In this case, the node Ni is the point pn. (c) Each Chain Chk and Chk+1, intersect the rays Rm−1,
Rm and Rm+1 in nodes Ni−1, Ni and Ni+1. Those rays and chains (as well as the four corresponding nodes) determines
cells Cl−1, Cl and Cl+1.

3.2 Method

Figure 4 illustrates the intermediate results of the proposed method described by Algorithm 1. The
input has to be an image of a tree slice without background. To subtract the background, many
methods can be used. We apply a deep learning-based approach [21] based on two-level nested
U-structures (U2Net). Figure 5 shows an example of such a procedure.

Given a segmented image of a tree slice -i.e., an image without a background- we need to find the set
of pixel chains representing the annual rings (dark to clear transitions). We also need the center c
of the spider web (which corresponds to the tree’s pith) as input. Detecting this fundamental point
is a problem that can be tackled by automatic means [4] or manually marked. In this article, we
consider that this point is given (in the demo, both options are available).

Some algorithms have debug parameters. For example, in the function connect chains of Algorithm 1,
it is possible to set a debug flag to save all the intermediate results. To do that, we need the location
where debugging results and the image at different stages will be saved (in some situations, debug
results are saved by writing over the image). This paper does not discuss debug parameters because
they are not crucial for the method understanding. The debug flag passes the debug parameters.

The first step in the Pipeline corresponds to preprocessing the input image to increase the method’s
performance.

Preprocessing The size of acquired images can vary widely, and this has an impact on the perfor-
mance. On one side, the bigger the image, the slower the algorithm, as more data must be processed.
On the other hand, if the image is too small, the relevant structures will be challenging to detect.

6

CS-TRD: a Cross Sections Tree Ring Detection method

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 4: Principal steps of the CS-TRD tree-ring detection algorithm: (a) original image, (b) pre-processed image (resized,
equalized, and converted to a grayscale image), (c) the output of the Canny Devernay edge detector, (d) edges filtered by
the direction of the gradient, (e) set of detected chains, (f) connected chains, (g) post-processed chains and (h) detected
tree-rings.

7

Henry Marichal, Diego Passarella, Gregory Randall

Algorithm 1: Tree-ring detection algorithm

Input: Imin, // segmented input image. Background pixels are in white (255)
c, // position of the pith in Imin: center of the sypder web
σ, // Canny edge detector gaussian kernel parameter
thlow, // low threshold on the module of the gradient. Canny edge detector parameter
thhigh, // high threshold on the module of the gradient. Canny edge detector parameter
height, // height of the image after the resize step
width, // width of the image after the resize step
α, // threshold on the collinearity of the edge filtering, see Equation (3)
nr, // number of rays
mc // minimum chain length
Output: A list l ringsk, k = 1, 2, · · · , K, where each element is a closed chain of points in the

image, representing a tree-ring.

1 impre, c ← preprocessing(Imin, height, width, c) //see Algorithm 2
2 m che, Gx, Gy ← canny deverney edge detector(Impre,σ,thlow,thhigh) // described in [10]
3 l chf ← filter edges(m che, c, Gx, Gy, α, Impre) //see Algorithm 5
4 l chs, l nodess ← sampling edges(l chf , c, nr, mc, Impre) //see Algorithm 7
5 l chc, l nodesc ← connect chains(l chs,l nodess, c, nr) //see Algorithm 8
6 l chp ← postprocessing(l chc,l nodesc, c) //see Algorithm 19
7 l rings ← chain to labelme json(l chp, height, width, c, Imin)// convert closed chains to json
8 return l rings

(a) (b)

Figure 5: Background removal stage. Input (a) and output (b) using the code available from [21]

8

CS-TRD: a Cross Sections Tree Ring Detection method

Algorithm 2 shows the pseudo-code of the preprocessing stage. The first step is resizing the input
image to a standard size of 1500x1500 pixels. In Section 6.2.1, we show a series of experiments that
lead to choosing these dimensions. The size of the input image can vary, so zoom is applied in such
a way as to zoom in or zoom out the input image so the image size for the rest of the processing is
fixed. Pith coordinates must be resized as well. This step can be turned off by the user in the demo.

From lines 1 to 6, the former logic is implemented. The resize function (Line 5) is shown in Algo-
rithm 3. The dimensions of the input image can vary, so image resize (Line 1, Algorithm 3) is applied
using the function resize from Pillow library [2]. The method involves filtering to avoid aliasing if
the flag image.ANTIALIAS is set. The center coordinates must be modified accordingly as well. To
this aim, we use the following equations:

cyoutput = cy ∗ heightoutput
height

cxoutput = cx ∗ widthoutput
width

(1)

Where (height, width) is the input image dimensions, (heightoutput, widthoutput) is the output image
dimension, and (cy, cx) is the (original resolution) disk pith location coordinates in pixels.

In line 7, the RGB image is converted to grayscale using the OpenCV [12] function:

cv2.cvtColor(img, cv2.COLOR BGR2GRAY)

Finally, in line 8, an histogram equalization step is applied to enhance contrast. The method is de-
scribed in Algorithm 4. The first step (Line 1) changes the background pixels to the mean grayscale
value to avoid undesirable background effects during equalization. Both equalized, and masked back-
ground images are returned. Then, in Line 2, the Contrast Limited Adaptive Histogram Equalization
(CLAHE) [25] method for equalizing images is applied. We use the OpenCV implementation [12]2.
The threshold for contrast limiting is set to 10 by means of the clipLimit parameter. Finally, in Line
3, the background of the equalized image is set to white (255).

Algorithm 2: preprocessing

Input: Imin, // input image without background. Background pixel set to white (255)
Parameter:
heightoutput, // output image height, in pixels
widthoutput, // output image width, in pixels
cy, // pith’s coordinate y, in pixeles
cx, // pith’s coordinate x, in pixeles
Output: Preprocessed Image, pith coordinates scaled to the size of the preprocessed image

1 if None in [heightoutput, widthoutput] then
2 Imr, cyoutput, cxoutput ← (Imin, cy, cx)
3 end
4 else
5 Imr, cyoutput, cxoutput ← resize(Imin, heightoutput, widthoutput, cy, cx) // See Algorithm 3
6 end
7 Img ← rgb2gray(Imr)
8 Impre ← equalize(Img) // See Algorithm 4
9 return [Impre, cyoutput, cxoutput]

2https://www.geeksforgeeks.org/clahe-histogram-equalization-opencv/

9

Henry Marichal, Diego Passarella, Gregory Randall

Algorithm 3: resize

Input: Imin, // the input image
Parameter:
heightoutput: // output image height, in pixels
widthoutput: // output image width, in pixels
cy: // pith’s coordinate y, in pixeles
cx: // pith’s coordinate x, in pixeles
Output: Resize image using Pillow Library

1 Imr ← resize image using pil lib(Imin, heightoutput, widthoutput)
2 height, width ← get image shape(Imin)
3 cyoutput, cxoutput ←

convert center coordinate to output coordinate(cy, cx, height, width, heightoutput, widthoutput)//
See Equation (1)

4 return [Imr, cyoutput, cxoutput]

Algorithm 4: equalize

Input: Img, // gray scale input image. The background is white (255)
Output: Equalized image using OpenCV CLAHE [25] method

1 Impre,mask ← change background intensity to mean(Img)
2 Impre ← equalize image using clahe(Impre)
3 Impre ← change background to value(Impre,mask, 255)
4 return [Impre]

Canny-Devernay edge detector. Line 2 of Algorithm 1, correspond to the edge detection stage.
We apply the sub-pixel precision Canny Devernay edge detector [5, 10]. The output of this step is a
list of pixel chains corresponding to the edges present in the image. Besides some noise-derived ones,
we can group those edges into the following classes:

• EdgesT : edges produced by the tree growing process. It includes the edges that form the rings.
Considering a direction from the pith outward, these edges are of two types: those produced
by early wood to late wood transitions, expressed in the images as clear to dark transitions,
and the latewood to early wood transitions, expressed as transitions from dark to clear in the
images. We are interested in detecting the former ones, hereon called annual rings.

• EdgesR: mainly radial edges produced by cracks, fungi, or other phenomena.

• Other edges produced by wood knots.

The gradient vector is normal to the edge and encodes the local direction and sense of the transition.
The Canny Devernay filter gives as output both the gradient of the image (composed by two matrices
with the x and y components of the gradient, named Gx and Gy) as well as the edge chains, in the
form of a matrix, called m che. Successive rows refer to chained pixels belonging to the same edge,
and the row [-1,-1] marks the division between edges.

The Canny Devernay edge detector has the following parameters:

• σ: The standard deviation of the Gaussian kernel.

• thlow: Gradient threshold low, applied to the gradient modulus and associated with the two
threshold hysteresis filtering on the edge points.

10

CS-TRD: a Cross Sections Tree Ring Detection method

• thhigh: Gradient threshold high, applied to the gradient modulus and associated to the two
threshold hysteresis filtering on the edge points.

To use the Devernay-Canny implementation from [10], we needed to build a Python wrapper to
execute that code. That code uses as input a PGM image. We feed the Devernay-Canny with the
preprocessed image Impre saved in disk with that format.

Regarding the output, m che is a matrix, where each row refers to the pairs (x, y), the coordinates
of the edges. Each Devernay curve in the list is separated from the next one by a (−1,−1). Minor
code modifications were needed in the IPOL implementation of the Canny Devernay filter [10] to get
the image gradient matrices Gx and Gy as output.

Filtering the edge chains We filter out all the points of the edge chains for which the angle
between the gradient vector and the direction of the ray touching that point are greater than α (30
degrees in our experiments). The EdgesT produced by the early wood transitions points inward, and
the EdgesR, for which the normal vector is roughly normal to the rays, are filtered out. Note that
this process breaks an edge chain into several fragments. This is done by Algorithm 5.

Given the center c and a point pi over an edge curve, the angle δ(~cpi, ~Gpi) between the vector ~cpi at

the point pi and the gradient vector ~Gpi (Figure 6) at the same point is given by:

δ(~cpi, ~Gpi) = arccos

(
~cpi × ~Gpi

‖ ~cpi‖‖ ~Gpi‖

)
(2)

We filter out all the points pi for which the angle δ(~cpi, ~Gpi) is greater than the parameter α:

δ(~cpi, ~Gpi) ≥ α (3)

The filter edges method is shown at Algorithm 5. It gets as input the Deverney edges m che,
the pith center, the image gradient components in the form of two matrices Gx and Gy and the
preprocessed image Impre. It needs the α threshold of Equation (3) as a parameter. From lines 1

to 5, it computes the angle between vector ~cpi and the gradient ~Gpi at point pi. We use the Python
numpy library matrix operations to speed up computation. In line 1, we change the edge reference
axis. Figure 6 shows vectors ~Opi and ~cpi, as well as the gradient ~Gpi at edge point pi. The function

change reference axis change the vector coordinate reference from ~Opi to ~cpi and produces a new
matrix Xb. This is made by subtracting the pith vector from each row. Matrix Xb still has the
delimiting edges curve rows with the value [-1,-1]

Each edge gradient is saved in matrix G (line 2), keeping the same edge order of the matrix m che;
this means that

pi = m che[i]→ ~Gpi = G[i]

Where pi is the i-row of matrix m che and ~Gpi is the i-row of matrix G[i].

In Lines 3 and 4, the matrices Xb.T (Xb transposed matrix) and G are normalized, dividing the
vector by the norm as shown in Equation (4), simplifying Equation (2):

δ(Ri, ~Gpi) = arccos

(
~cpi × ~Gpi

‖ ~cpi‖‖ ~Gpi‖

)
= arccos

(
~cpi
‖ ~cpi‖

×
~Gpi

‖ ~Gpi‖

)
= arccos

(
~cpiunit × ~Gpiunit

)
(4)

11

Henry Marichal, Diego Passarella, Gregory Randall

In line 5, Equation (4) is computed in matrix form, and the angle between normalized vectors ~Gpiunit

and ~cpiunit is returned in degrees in the matrix θ. In line 6, the edge filtering is applied, following
Equation (3). If the edge point pi is filtered out, then Xedges filtered[i] = [−1,−1]. The edges are
converted to curve objects in line 7. We say that two edge pixels belong to the same edge if, between
them, it does not exist a row in matrix Xedges filtered with values [-1,-1]. The object Curve inherits
the properties of the class LineString from the shapely package, which is used in the sampling
edges stage.

Finally, in lines 8 and 9, the curve belonging to the border edges is computed and added to the
curve list, l chf . In this context, we name border, the limits of the segmented image concerning the
background. The function get border curve is shown in Algorithm 6. We use a simple method to
compute the border edges. First, we generate a mask which is an image of the same dimensions as
Impre, enlarged by 3 lines and 3 columns before the first and after the last line and columns to avoid
border effects of the filtering. The mask image has two values, 0 for the region of the wood slice and
255 for the background. Lines 1 to 4 calculate the mask image. In line 1 we threshold Impre masking
all the pixels with a value equal to 255, particularly the background. Some internal pixels can also
have a value equal to 255. To avoid those pixels in the mask, we blur the mask (line 2), using a
Gaussian Kernel with a high σ (in our implementation σ = 11), and we set to 255 all the pixels with
a value higher than 0 (lines 2 and 3). In line 4, the mask is padded with pad = 3. Finally, in line 5,
we apply an OpenCV finding contour method to get the border contour on the mask. The OpenCV
implementation returns all the contours it finds, including the image’s border. We select the contour
for which the enclosed area is closest to half the image. This is a criterion that works fine for this
purpose. In line 6, the contour object is converted to a Curve object.

Algorithm 5: filter edges

Input: m che, // matrix of edge curves
c, // center of the spider web, in pixels: cx and cy
Gx, // X component of the gradient, a matrix
Gy, // Y component of the gradient, a matrix
Impre, // Preprocessed image
Parameter:
α, //Threshold edge filter, Equation (3)
Output: A list l chkf , k = 1, 2, · · · , N , where each element is a filtered edge curve

1 Xb ← change reference axis(m che, cy, cx)
2 G ← get gradient vector for each edge pixel(l che, Gx, Gy)
3 Xbnormalized ← normalized row matrix(Xb.T)
4 Gnormalized ← normalized row matrix(G)
5 θ ← compute angle between gradient and edges(Xbnormalized, Gnormalized)
6 Xedges filtered ← filter edges by threshold(m che, θ, α)
7 l chf ← convert masked pixels to curves(Xedges filtered)
8 border curve ← get border curve(Impre, l chf)// See Algorithm 6
9 l chf ← l chf + border curve

10 return l chf

Sampling edges Given the set of filtered chained edge points l chf , a list of curves, we sample
each curve using the number of rays Nr. The Algorithm 7 describe the procedure. Two parameters
are included in this algorithm: Nr, the number of rays (360 by default), and min chain lenght, the

12

CS-TRD: a Cross Sections Tree Ring Detection method

Figure 6: Coordinates reference of edge pi, vector ~Opi. Edge filtering computation use vector ~cpi. O represents the origin
of the image coordinate axis. C represents the pith position

Algorithm 6: get border curve

Input: Impre, // Preprocessed image
l chf , //list of object Curves
Output: border curve

1 mask ← mask background(Impre)
2 mask ← blur(mask)
3 mask ← thresholding(mask)
4 mask ← padding mask(mask)
5 border contour ← find border contour(mask, Impre)
6 border curve ← contour to curve(border contour, len(l chf))
7 return border curve

13

Henry Marichal, Diego Passarella, Gregory Randall

minimum number of nodes in a chain (the object chain is described in the following paragraph).
Every chain has two endpoints, so we fix min chain lenght = 2.

This algorithm produces as output two lists: one of the objects Chain named l chs and one of the
objects Nodes named l nodess, which includes all the nodes in all the chains. The object Chain
contains a list of pointers to all the nodes belonging to that chain (l nodes). This allows us to find
all the nodes of a given chain. The object Node contains the identifier of the chain to which it
belongs (chain id). There is no chain without nodes, nor nodes belonging to more than one chain.

An object Chain has the following attributes:

• l nodes: chained list of the nodes belonging to the chain.

• id: identification of the chain.

• Nr: total number of rays on the disk.

• extA: first endpoint of the chain, named node A.

• extB: second endpoint of the chain, named node B.

• type: We define three chain types: border, normal, and center.

• B outward: Pointer to the next chain above the B node.

• B inward: Pointer to the next chain below the B node.

• A outward: Pointer to the next chain above the A node.

• A inward: Pointer to the next chain below the A node.

We use the concepts of outward and inward in the attributes of a chain. Both are related to a given
endpoint (A or B). Given a chain endpoint and the corresponding ray, we find the first chain that
intersects that ray going from the chain to the center (named here as inward) and the first chain
that intersects that ray going from the chain moving away from the center (named here as outward).
Figure 8 illustrate this. Chains are superposed over the gray-level image. The ray at endpoint A
is in blue, the nodes are in red at the intersection between the rays, and the chains are in orange,
black, and yellow. Orange and yellow chains are the visible chains for the black chain at endpoint
A (outward and inward, respectively); this concept is explained later. Every chain has two endpoint
nodes, A and B. Endpoint A is always the furthest node clockwise, while endpoint B is the most
distant node counterclockwise.

An Object Node has the following attributes:

• (x, y) node coordinates. Floating point numbers.

• chain id: identification of the chain to which the node belongs.

• radial distance: Euclidean distance to the center. It is a floating point number.

• angle: angle orientation of the ray passing by that node, in degrees. It is a floating point
number.

Three metric distances between chains are defined. Given a chain endpoint EndPointj(the selected
endpoint for the current chain Chj) and EndPointk (the selected endpoint for chain Chk) distances
are defined as:

14

CS-TRD: a Cross Sections Tree Ring Detection method

θj Rayj

C

y

x

Figure 7: Ray references axis. C is the pith center. θj is the angle of Rayj

.

• Euclidean Given endpoint cartesian coordinates (x,y), the distance between endpoints is
defined as √

(xj − xk)2 + (yj − yk)2 (5)

Where (xj, yj) are the cartesian coordinates of Endpointj and (xk, yk) are the cartesian coor-
dinates of Endpointk.

• Radial Difference Given the endpoint Euclidean distance to the pith center, this distance is
defined as

‖rj − rk‖ (6)

Where rj is the Euclidean distance of Endpointj to the pith center, and rk is the Euclidean
distance of Endpointk to the pith center.

• Angular Given the endpoints ray support angle, θ (radii angular direction) this distance is
defined as

(θj − θk + 360)mod 360 (7)

Where θj is the direction of the ray supporting Endpointj (in degrees), θk is the direction of
the ray supporting Endpointk (in degrees), and mod refers to the module operation. Figure 7
illustrates angle θj of Rayj given the disk pith position C.

Algorithm 7 extract the image dimensions from the preprocessed image Impre. Then we proceed to
build the rays. A ray object is a semi-line, with one endpoint at the center c (the pith) and the other
at the image border. This gives a list of Nr rays. Then, we compute the intersections between curves
and rays using the Shapely python library. Note that a curve produced by Devernay is a set of
chained pixels, and some of them are also nodes, as shown in Figure 3b. Once the Nodes are found,
we create a chain including only the nodes and not all the points of the corresponding Devernay
curve. In this sense, a chain is a sampled curve. If a chain has less than min chain lenght nodes,
we delete it. Finally, we build two artificial chains. One of type center. This artificial chain has
Nr nodes, all with the same (x, y) coordinates but different angular orientations. The second one is

15

Henry Marichal, Diego Passarella, Gregory Randall

Figure 8: A given chain (in black) with two endpoints A and B. Its nodes (in red) appear at the intersection between the
Canny Devernay curve and the rays. The ray at endpoint A is in blue. Other chains detected by Canny Devernay are colored
in white. Endpoint A’s inward and outward chains are in yellow and orange, respectively.

the disk border. Both artificial chains are beneficial at the connecting chain stage. The field type
in the Chain object identifies if the chain is a normal one or is one of the two artificial chains just
described.

Algorithm 7: sampling edges

Input: l chf , // list of curves
c, // center of the sypder web
Impre // preprocessed image
Parameters:
min chain lenght, // minimum length of a chain
nr // number of total rays
Output: A list l chks , k = 1, 2, · · · , N , where each element is a chain;
l nodesks , k = 1, 2, · · · , Nn, where each element is a Node

1 height, width ← Impre.shape
2 l rays ← build rays(nr, height, width, c)
3 l chs,l nodess ← intersections between rays and devernay curves(c, l rays , l chf ,

min chain lenght, nr, height, width)
4 l chs,l nodess ← generate virtual center chain(c, nr, l nodess, l chs)
5 return l chs,l nodess

Connect chains We must now group this set of chains to form the rings. Some of these chains
are spurious, produced by noise, small cracks, knots, etc., but most are part of the desired rings, as
seen in Figure 4.

To connect chains, we must decide if the endpoints of two given chains can be connected, as illustrated
by Figure 9. We use a support chain, Ch0 in the figure, to decide whether or not those chains must
be connected.

16

CS-TRD: a Cross Sections Tree Ring Detection method

Ch1
Ch3

Ch0
B A

Ch2A B

(a)

Ch1
Ch3

Ch0
B A

Ch2A B

(b)

Figure 9: An illustration of the connectivity issue. (a) The question is if endpoint A of Ch3 must be connected to endpoint
B of Ch2 (red dashed line) or to endpoint B of Ch1 (blue dashed line). In figure (b), the same question can be posed for
the connection between endpoint B of Ch1 and endpoint A of Ch2, but Ch1 and Ch2 intersect (the endpoints are crossed
by the same ray), and so this connection is forbidden. Note that we represent the connections by line segments for clarity,
but in fact, these are curves in the image space, as we interpolate between chain endpoints in polar geometry

Ch0

Ch1

Ch4
Ch6

Ch5Ch3

Ch2

Figure 10: For the chain support Ch0, the set of chain candidates is formed by Ch1, Ch2, Ch4, Ch5 and Ch6. Chain Ch3
is shadowed by Ch1 but Ch5 is not shadowed by Ch6 because at least one endpoint of Ch5 is visible from Ch0. Note that
a chain becomes part of the candidate chains set if at least one of its endpoints is visible from the chain support.

.

17

Henry Marichal, Diego Passarella, Gregory Randall

To group chains that belong to the same ring, we proceed as follows:

1. We order all the chains by length and begin processing the longest. The processed chain is
called Chain support, Chi. Once we finish merging all the possible candidate chains related to
that one (candidatesChi), we do the same with the next longest chain.

2. We find the chains that are visible from the Chain support inwards (i.e., in the direction from
Chain support to the center). The concept of visibility here means that at least one endpoint
of the candidate chain is visible from the Chain support. Visible means that a ray that goes
through the endpoint of the candidate chain crosses the chain support without crossing any
other chains in between. The set of candidate chains of the Chain support Chi is named
candidatesChi . This is illustrated by Figure 10, in which case, the chains candidates generated
inwards by Ch0 is:

candidatesCh0 = {Ch1, Ch2, Ch4, Ch5, Ch6}
Chain Ch3 is shadowed by Ch1 and Ch5 is not shadowed by Ch6 because at least one of its
endpoints are visible from Ch0. The same process is made for the chains visible from the Chain
support outwards.

3. We go through the set candidatesChi searching for connections between them. By construction,
the chain support is not a candidate to be merged in this step. From the endpoint of a chain, we
move forward angularly. The next endpoint of a nonintersecting chain in the candidatesChi set
is a candidate to be connected to the first one. We say that two chains intersect if there exists
at least one ray that cross both chains. For example, in Figure 10, Ch6 intersects with Ch5
and non-intersects with Ch4. To decide if both chains must be connected, we must measure
the connectivity goodness between them.

4. To define a notion of connectivity goodness, we combine three criteria:

(a) Radial tolerance for connecting chains. The radial difference between the distance from
each chain to be merged (measured at the endpoint to be connected) and the support
chain must be small. For example, in Figure 11, if we want to connect node Ni of Chl
and node Ni+1 of Chk, we must verify that

δRi ∗ (1− ThRadial tolerance) ≤ δRi+1 ≤ δRi ∗ (1 + ThRadial tolerance)

Where ThRadial tolerance is a parameter of the algorithm. We call this condition RadialTol.

(b) Similar radial distances of nodes in both chains. For each chain, we define a set of nodes.
For the chain Chj, this set is Nj = {N0

j , N
1
j , ..., N

nnodes
j } where nnodes is the number of

nodes to be considered, a parameter. See Figure 12. We use the whole chain if it is
shorter than nnodes. We measure δRi, the radial distance between a node in the given
chain and the corresponding node for the same ray in the support chain, as illustrated
in Figure 11. This defines two sets, one for each considered chain i and k: Setj =
{δR0

j , .., δR
nnodes
j } and Setk = {δR0

k, .., δR
nnodes
k }. We calculate the mean and the standard

deviation Setj(µj, σj) and Setk(µk, σk). The size of the distribution is defined by the
parameter ThDistribution size. This defines a range of radial distances associated with each
chain: Rangej = (µj − ThDistribution size ∗ σj, µj + ThDistribution size ∗ σj) and Rangek =
(µk−ThDistribution size ∗σk, µk +ThDistribution size ∗σk). To connect both chains, there must
be a non-null intersection between both distributions: Rangej ∩Rangek 6= 0. We call this
condition SimilarRadialDist.

(c) Regularity of the derivative. Suppose we have two chains Chj and Chk that can be
connected and a set of interpolated nodes between the endpoints of those chains (let’s call

18

CS-TRD: a Cross Sections Tree Ring Detection method

δRi
δRi+1

δNi

Ni
Ni−1

Ni+1

Chi

Chk

Chl

Chj

Figure 11: Quantities used to measure the connectivity between chains. δRi is the radial difference between two successive
chains along a ray Ri and δNi is the radial difference between two successive nodes Ni and Ni+1. Note that these nodes
can be part of the same chain or be part of two different chains that may be merged. Support chains are represented with
the name Chi. Chi visible chains are Chj , Chl and Chk. Chains Chj and Chk satisfy similarity conditions

.

Chjk the set of interpolated nodes between Chj and Chk, indicating that they form a new
”interpolating” chain). See Figure 12. The new virtual chain created by the connection
between chains Chj and Chk will encompass the nodes of those two chains and the new
interpolated nodes between both chains (Chjk, colored in red in the figure). To test the
regularity of the derivative, we define a set of nodes for each concerned chain. For the
chain Chj, this set is {N0

j , N
1
j , ..., N

nnodes
j } where nnodes is the number of nodes to be

considered, a parameter (nnodes = 20 in the current implementation). We use all its nodes
if the chain is shorter than nnodes. For each chain, we compute the centered derivative
in each node, δN s = ‖rs+1−rs−1‖

2
, where rs is the radial distance of the node N s to the

center (i.e., the Euclidean distance between the node and the center of the spider web).
Therefor radial distance to center of node N s−1 is represented as rs−1 and radial distance
to center of node N s+1 is represented as rs+1. The set of derivatives for the nodes of the
existing chains is Der(Chj, Chk) = {δN0

j , ..., δN
nnodes
j , δN0

k , ..., δN
nnodes
k }. The condition

Thregular derivative is asserted if the maximum of the derivatives in the interpolated chain
is less or equal to the maximum of the derivatives in the two neighboring chains times a
given tolerance:

max(Der(Chjk)) ≤ max(Der(Chj, Chk))× ThRegular derivative

Where ThRegular derivative is a parameter. We call this condition RegularDeriv.

In order to connect chains Chj and Chk, the following condition must be met:

RegularDeriv ∧ (SimilarRadialDist ∨ RadialTol) (8)

where ∨ and ∧ stands for the logical or and and symbols, respectively.

Another condition must be met: no other chain must exist between both chains to be connected.
If another chain exists in between, it must be connected to the closer one. For example, in

19

Henry Marichal, Diego Passarella, Gregory Randall

Chj

Chi

Chk

rs

rs−1

N0
k

N2
kN2

j N1
k

rs+1

N1
j N0

j

N3
k

Figure 12: Nomenclature used for the connect chains algorithm. Given the support chain, Chi, chains Chj and Chk are
candidates to be connected. Nn

j are the nodes of Chj , with n = 0 for the node corresponding to the endpoint to be
connected. Similarly, we note Nn

k the nodes of Chk. In red are the nodes created by an interpolation process between both
endpoints. We represent the radial distance to the center of Nodes as rs.

Figure 10, it is impossible to connect chains Ch3 and Ch5 because between them appear
Ch4. We call this condition ExistChainOverlapping. Consequently, Equation (8) is modified as
follows

notExistChainOverlapping ∧ RegularDeriv ∧ (SimilarRadialDist ∨ RadialTol) (9)

The symbol not stands for the not operator.

The method iterates this search for connectivity between chains over different neighborhood
sizes. The parameter NeighbourdhoodSize defines the maximum allowed distance, measured in
degrees, for connecting two chains. If the distance between two chains endpoints is longer than
NeighbourdhoodSize, those chains are not connected.

The parameter derivFromCenter controls how are estimated the interpolated nodes between
two chains, as the ones in red in Figure 12. If derivFromCenter = 1, ray angle and radial
distance from the center are used to estimate the position of the interpolated nodes. If it is set
to 0, the estimation is made by measuring the radial distance to the support chain.

We iterate this process for the whole image for five sets of parameters: ThRadial tolerance,
ThDistribution size, ThRegular derivative, NeighbourdhoodSize and derivFromCenter. In each iter-
ation, we relax the parameters. In the first iteration, there are a lot of small chains, but in
the second and third iterations, the concerned chains are already more extended and less noisy.
Once the merging process is advanced, we can relax the parameters to connect more robust
chains. Table 1 summarize the parameter sets.

5. We proceed in the same manner in the outward direction.

The former ideas are implemented in Algorithms 8 and 9. Algorithm 8 defines the logic for iterating

20

CS-TRD: a Cross Sections Tree Ring Detection method

1 2 3 4 5 6 7 8 9
ThRadial tolerance 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.2
ThDistribution size 2 2 3 3 3 3 2 3 3
ThRegular derivative 1.5 1.5 1.5 1.5 1.5 1.5 2 2 2
NeighbourdhoodSize 10 10 22 22 45 45 22 45 45
derivFromCenter 0 0 0 0 0 0 1 1 1

Table 1: Connectivity Parameters. Each column is the parameter set used on that iteration.

over the constraints defined in Table 1. In line 1, a square binary intersection matrix M is computed.
Precompute matrix M will speed up the procedure. Rows and columns of M span the chain list.
Chain Chj intersect chain Chk if M [j, k] = 1. We say that two chains intersect if at least one ray
crosses both chains. Lines 2 to 6 are iterated for each parameter set of Table 1. Line 3 defines the
parameters for each iteration. The dictionary iteration params has keys for the nodes and chains
lists. Both lists may be updated at each iteration because chains may be connected. When two
chains are connected, M is updated as well. In the final iteration (i = 9), the external border chain
is added to the chain list in order to be used as a support chain. In line 4, the function which connects
the chains is called, returning the updated nodes and chains lists and M after the connecting stage.
Finally, in line 5, nodes and chains lists are updated in the iteration params dictionary for the next
iteration.

Algorithm 8: Connect Chains

Input: l chs,// chains list
l nodess,// nodes list
c, // center of the spider web
nr// number of total rays
Output: A list l chfc , f = 1, 2, · · · , Nf , where each element is a chain;
l nodesfc , c = 1, 2, · · · , Nf , where each element is a Node

1 M ← compute intersection matrix(l chs, l nodess, nr).
/* Loop for connecting chain main logic, losing the restrictions at each iteration */

2 for i← 1 to 9 do
3 iteration params ← get iteration parameters(i)//Table (1)
4 l chc, l nodesc, M ← connect chain main logic(M , c, nr, iteration params) //see

Algorithm 9
5 update list for next iteration(l chc, l nodesc)

6 end
7 return l chc,l nodesc

Algorithm 9 shows the connectivity main logic. State class manages the support chain iteration logic.
It contains references to the lists of all the chains and nodes and stores the similarity parameters
and the intersection matrix, M . Essentially, the State class is the hub of our system, containing all
the necessary information to operate. The system comprises all the chains and nodes, and the M
intersection matrix.

The State class updates the chains and nodes lists and the matrix M whenever two chains are
connected. This update is critical for our operation and signifies that the system has been modified.

Lines 1 and 2 are initializations. Initialization consists of:

21

Henry Marichal, Diego Passarella, Gregory Randall

1. Sort the chain list by size (i.e. number of nodes) in descending order.

2. To optimize our method for searching visible chains from the chain support, we assign pointers
to the visible inward and outward chains at both endpoints (A and B) of each chain.

The loop between lines 4 and 20 is applied to all the chains as long as Statei 6= Statei−1. The condition
Statei = Statei−1 is true when no connections are made after an iteration. In line 4, we get a new
support chain, Chi, for the current iteration. The logic to get the next chains are grouped in the
methods get next chain (line 4) and update system state (line 20), described inAlgorithm 11 and
Algorithm 10 respectively. Support chains are iterated following a neighborhood logic for speeding
up purposes instead of iterating over the list sequentially.

In line 5, outward and inward visible chains are obtained and stored in l s outward and l s inward
lists. To this aim we iterate over l chs and check if visibility chain pointers (B outward, B inward,
A outward, A inward) refers to Chi. The loop between lines 7 and 19 explores the lists l s inward
and l s outward with iteration variable l candidates Chi. First, the j pointer index is set to 0.
Then, from lines 8 to 11, we set the variable location to signal if l candidateChi is the inward or the
outward list. We iterate over the set l candidates Chi to look for similar chains, using the similarity
criterion defined in Equation (9). The loop over the chains in the subset l candidates Chi goes from
line 12 to 19. The current chain, Chj, inside the inner while loop, is indexed by the j pointer index.
In line 14, all chains in the subset l candidates Chi not intersecting with chain Chj are chosen. As
rings do not intersect each other, candidates to be part of the same ring can not intersect between
them. Line 15 detects Chbk, the closest chain in l candidates Chi to endpoint B of Chj, that satisfies
the similarity constraints (Algorithm 16), and line 16 does the same for Chak concerning endpoint
A of Chj. Line 17 selects which is closest to its corresponding endpoint in Chj. Line 18 calls the
function that connects the closest one to the corresponding endpoint using the Euclidean distance
between them (Algorithm 14); finally, in line 19, j pointer is updated. If two chains are connected
over this iteration, then in the next iteration, we iterate again over Chj. Note that when two chains
are connected, the candidate chain (Chk) is deleted from the list of candidate chains, and their nodes
are added to chain Chj. In line 20, we update the outer while loop system variables to define if the
process is finished (i.e., all chains are connected). In line 21, we iterate over all the chains in list
l Chs, and if the chain has enough nodes, we complete it, following Algorithm 12. Finally, we return
the connected chain list and their nodes, l chc and l nodesc, respectively.

Methods get next chain and update system state contain the logic to get Chi at the current iter-
ation. The former is the primary one and is described in Algorithm 10 (a method of Statei). As
input, this function receives the support chain Chi, the outward and inward candidates lists l soutward
and l sinward, and the system status object Statei. This object is mainly used to point to important
variables in the connecting module as the chains and nodes lists, l chs and l nodess. In line 1, the list
l chs is extracted from Statei. System status changes if some chains are connected during the current
iteration. In other words, if the chain list length at the beginning of the iteration is more extended
than at the end, the system has changed. This is done in the method system status change() of
Statei. If the system status changes, lines 2 to 13 are executed. Because the system status has
changed, the chains in l chs are not in order anymore, so we sort them by size again (line 3). In
line 4, we define a list l current iteration whose elements are all the chains involved in the current
iteration, the ones belonging to lists l soutward and l sinward as well as the support chain Chi. In line
5, we sort them by size; in line 6, we get the longest, called longest chain. We are indexing the list
l current iteration, which has all its elements sorted by size. If longest chain equals Chi, we set as
next chain index (for the next iteration) the chain that follows in size the support chain Chi, line
8. If the support chain Chi is not the most extended (line 11), we set as next chain index the chain
index that follows in size, longest chain’s index. Finally, if the system status did not change at the

22

CS-TRD: a Cross Sections Tree Ring Detection method

Algorithm 9: Connect Chains Main Logic

Input: M //Binary Matrix with intersection chains info
c, // center of the sypder web
nr, // number of total rays
Parameters:
l chs, // chains list
l nodess, // nodes list
th radial tolerance, // Radial tolerance for connecting chains
th distribution size, // Chains Radial Difference Standard deviations for connecting chains
th regular derivative, // Chains Radial Derivative threshold for connecting chains
neighbourhood size, //Max Angular distance allowed for connecting chains
derivative from center // Related to how nodes are interpolated
Output: A list l chkc , k = 1, 2, · · · , Nf , where each element is a chain,
l nodeskc , k = 1, 2, · · · , Nf , where each element is a Node

1 Statei−1 ← 0
2 Statei ← init system(l chs, l nodess, M , c, nr,th radial tolerance, th distribution size,

th regular derivative, neighbourhood size, derivative from center)
3 while Statei 6= Statei−1 do
4 Chi ← get next chain(Statei)//See Algorithm 11
5 l s outward, l s inward ← get chains in and out wards(l chs,Chi)
6 for l candidates Chi in (l s outward, l s inward) do
7 j pointer ← 0
8 if l candidates Chi == l s inward then
9 location ← ”inward”

10 else
11 location ← ”outward”

12 while length(l candidates Chi) > j pointer do
13 Chj ← l candidates Chi[j pointer]
14 l no intersection j ← get non intersection chains(M , l candidates Chi, Chj)
15 Chbk ← get closest chain logic(Statei, l candidates Chi,

Chj, l no intersection j, Chi, location, B)//See Algorithm 15
16 Chak ← get closest chain logic(Statei, l candidates Chi,

Chj, l no intersection j, Chi, location, A)//See Algorithm 15
17 Chk, endpoint ← select closest one(Chj, Ch

a
k, Ch

b
k)

18 connect two chains(Statei, Chj, Chk, l candidates Chi, endpoint, Chi)//See
Algorithm 14

19 j pointer ← update pointer(Chj, Chk, l candidates Chi)

20 Statei, Statei−1 ← update system status(Statei, Chi, l s outward, l s inward)//See
Algorithm 10

21 l chc,l nodesc ← iterate over chains list and complete them if met conditions(Statei)

22 return l chc,l nodesc

23

Henry Marichal, Diego Passarella, Gregory Randall

current iteration, in line 15, we repeat the same sentence as in line 8. Output next chain index is
returned as an attribute of Statei.

Algorithm 10: update system status

Input: Statei,// class object that has a pointer to all the system objects
Chi, // current support chain
l s outward,// outward chain list
l s inward,// inward chain list
Output: chain for next iteration. Stored in class Statei

1 l chs ← Statei.get list chains()
2 if Statei.system status change() then
3 sort chain list by descending size(l chs)
4 l current iteration ← Chi + Soutward + Sinward
5 sort chain list by descending size(l current iteration)
6 longest chain ← l current iteration[0]//l current iteration is sorted by size
7 if Chi = longest chain then
8 next chain index ← get next chain index in list(l chs, Chi)
9 end

10 else
11 next chain index ← get chain index in list(l chs,longest chain)
12 end

13 end
14 else
15 next chain index ← get next chain index in list(l chs, Chi)
16 end
17 Statei.next chain index ← next chain index
18 return

Algorithm 11 implements the function get next chain, executed at line 5 of Algorithm 9, in order to
find the next support chain. It is a method of class Statei. In line 1, l chs is extracted from Statei. In
line 2, the next support chain Chi is extracted from the list l chs using the next chain index variable
(output of Algorithm 10). In line 3, the size of the list l chs is stored in the variable size l chain init,
an attribute of Statei. The longer the support chain, the better. So, in line 4, if Chi is large enough
and between its endpoints do not exist overlapping chains, the chain becomes a closed chain (ring),
with size equal to Nr, interpolating the nodes (Algorithm 12). Finally, we return the support chain
Chi for the current iteration.

Algorithm 11: get next chain

Input: Statei,// class object that has pointers to all the system objects
Output: next support chain

1 l chs ← Statei.get list chains()
2 Chi ← l chs[Statei.next chain index]
3 Statei.size l chain init ← length(l chs)
4 Statei.fill chain if there is no overlapping(Chi),// See Algorithm 12
5 return Chi

Algorithm 12 checks if overlapping chains exist between the endpoints of a given chain and, if it’s
the case, completes the chain. Lines 2 to 7 check the chain size. The function returns if it is bigger

24

CS-TRD: a Cross Sections Tree Ring Detection method

or equal to the number of rays Nr or chain is not closed. Class chain has the method is closed(),
which returns True if the chain has more than threshold∗Nr nodes. threshold is a method parameter
and, on line 5, is set to 0.9. In lines 8 and 10, we check that between the interpolated nodes does
not exist another chain. If it exists, we do not add new nodes to chain. To check if a chain exists
between both chains, we build a virtual band between the endpoints to be connected, as illustrated
in Figure 13. Let’s name Chj and Chk the two chains to be connected, even if they can be part
of the same (long) chain. Chain Chi is the support chain. Blue and green nodes define the virtual
band between the endpoints to be connected. Red nodes are the nodes to be added to chain if
there are no overlapping chains in the band. The width of the band is a % of the radial distance to
the support chain Chi. In our experiment, we set band width = 0.1 if the support chain is of type
Normal and band width = 0.05 if the support chain is of type Center. Nodes in red are generated
interpolating between the endpoints by a line in polar coordinates (with origin in c). In line 8, we set
all the elements utilized to check for overlapping chains. All the red nodes plus both endpoints are
added to the list l nodes, the support chain is Chi and endpoint type indicates the type of the Chj
endpoint, in this case, is of type B (Figure 8). In line 9, the function exist chain overlapping checks
if overlapping chains exist in the defined band. We say that a chain exists in the band if some node
within the band defined in Figure 13 belongs to a different chain than Chj or Chk. In this line we
are passing chain twice because Chj is equal to Chk (Algorithm 13). Finally, if overlapping chains
do not exist, we add the red nodes to the global nodes list and the inner chain node list (line 13). As
we said, the l nodes list also includes both chain endpoints. The function add nodes list to system
modifies the (system) in two ways: it incorporates new nodes to the global nodes list (l nodess) and
updates the visibility information in the chains which have endpoints on the rays in which new nodes
were added.

Algorithm 12: fill chain if there is no overlapping

Input: Statei,// class object that has pointers to all the system objects
chain, // chain to be completed if conditions are met. Passed by reference.
Output: Void. If nodes are created, they are added to chain and Statei directly

1 l chs ← Statei.get list chains()
2 if chain.size ≥ chain.Nr then
3 return
4 end
5 if not chain.is closed(threshold=0.9) then
6 return
7 end
8 Chi, l nodes, endpoint type ←

Statei.compute all elements needed to check if exist chain overlapping(chain)
9 exist chain ← exist chain overlapping(l chs, l nodes, chain, chain, endpoint type, Chi)//See

Algorithm 13
10 if exist chain then
11 return
12 end
13 Statei.add nodes list to system(chain, l nodes)
14 return

Figure 13 describes how an overlapping chain is tested between two chains that are candidates to
be connected, named here Chj and Chk. Algorithm 13 shows the method. As input, it receives the
chain’s list, l ch s, in which to iterate to identify any chain overlapping with a given band. The

25

Henry Marichal, Diego Passarella, Gregory Randall

band is defined by a nodes list, l nodes, which includes the (interpolated) red nodes plus Chj and
Chk node endpoints (Figure 13). This band is built by the class InfoVirtualBand. The parameter
band width is a % of the radial distance to the support chain Chi. If Chi is of type center, band width
is equal to 5%, else to 10%. Once the width of the band is defined, we iterate over the nodes of
l nodes, generating two nodes for each one of them. These two generated nodes belong to the same
ray but have different radial distances to the center, as shown in the figure. Suppose the radial
difference between the node belonging to l nodes and the node over the support chain, Ni, belonging
to the same ray is δRi. In that case, the generated nodes have the following radial distances:

• R (N green
i) ← δRi*(1+band width) + R(Ni)

• R
(
N blue
i

)
← δRi*(1-band width) + R(Ni)

Where R(.) is the radial distance to the center of a given node, Equation (6). The band information
(green and blue nodes) is stored in the info band object. The function exist chain in band logic
returns the list of chains belonging to l ch s that overlap with the band defined by info band. This
is made by iterating over the chains belonging to l chs and checking if they have nodes between
the blue and green nodes. The chains that intersect the band are added to list l chains in band.
Therefore, if the length of l chains in band is larger than 0, at least one overlapping chain exists
over the given band.

Algorithm 13: exist chain overlapping

Input: l chs,//list chains
l nodes, // list of interpolated nodes plus the endpoints
Chj,// source chain. Check Figure 13
Chk,// destination chain. Check Figure 13
endpoint type,// source chain endpoint (A or B)
Chi,// support chain
Output: Boolean. True if exist chain belonging to l chs in band

1 info band ← InfoVirtualBand(l nodes, Chj, Chk, endpoint type,Chi)
2 l chains in band ← exist chain in band logic(l ch s, info band)
3 exist chain ← len(l chains in band) > 0
4 return exist chain

Algorithm 14 describes the procedure to connect two chains. In line 1, new nodes to connect both
chains are generated and added to chain Chj. Nodes are generated through polar coordinates linear
interpolation. Visibility chain information over the rays in which new nodes are generated is also
updated. In line 2, nodes from chain Chk are added to chain Chj, and the neighborhood information
is updated, particularly the visible chains (as both chains are merged). Neighborhood chains list
information is updated in line 3, and the Chk chain is deleted from all lists (line 4). The intersection
matrix, M, is updated in line 5, as new intersections can appear. Therefore visibility chains pointer
may need to be updated. Additionally, as one chain is deleted, matrix M reduces its dimension by
one. Finally, all chain ids are updated, given the new situation in line 6. Chains id are organized in a
sequential manner and without holes between them. This is because chain id is used for indexing the
interpolation matrix. All the objects involved in this logic are passed by reference and are updated,
including the Chj chain.

The method to find the (closest) candidate chain to be connected to chain Chj, given a support
chain Chi, is implemented in get closest chain logic (Algorithm 15). It finds the Chk chain to be
connected to the corresponding Chj endpoint and checks if a symmetric condition is fulfilled. The

26

CS-TRD: a Cross Sections Tree Ring Detection method

Chj

Chi

Chk

Figure 13: Red nodes are the interpolated ones between Chj and Chk chains. Blue chains are the ones that define the
outer band (outward), while green defines the inward band. Chi is the support chain.

Algorithm 14: connect two chains

Input: Statei,
Chj, // current chain to be connected
Chk, // closest chain to be connected with Chj
l candidates Chi, // set of chains where to pick chains to connect with Chj
endpoint, //Chj endpoint to be connected
Chi, //support chain Chi
Output: Void. Nodes are added to Chj and system list are updated in Statei

1 generate new nodes(Statei, Chj, Chk, endpoint, Chi)
2 updating chain nodes(Statei, Chj, Chk)
3 update chain after connect(Statei, Chj, Chk)
4 delete closest chain(Statei, Chk, l candidates Chi)
5 update intersection matrix(Statei, Chj, Chk)
6 update chains ids(Statei, Chk)
7 return

27

Henry Marichal, Diego Passarella, Gregory Randall

symmetric condition means that if Chk chain is the closest to the Chj endpoint, then Chj must be
the closest to the Chk’s corresponding endpoint. In line 1, get closest chain, find the nearest chain
to the corresponding endpoint of Chj, called Chk, within the chain set l no intersection j. In line
2, all the chains included in l candidates chi that do not intersect with Chk are added to the set
l no intersecetion k. From lines 4 to 9, Chk endpoint type is defined, named endpointk. In line
10, the closest chain to Chk called symmetric chain, is obtained from the set l no intersection k.
Finally, in line 11 is checked that symmetric chain is Chj and that the addition of Chk and Chj
lengths is smaller than Nr. If all the former conditions are met, the Chk chain is returned.

Algorithm 15: get closest chain logic

Input: Statei,
Chj, // current chain
l candidates Chi, // set of visible chains from Chi
l no intersection j,//list of chains belonging to l candidates Chi that do not intersect with Chj
Chi, //support chain
location, // location of set l candidates Chi with respect to Chi (inward or outward)
enpoint,// Chj endpoint A or B to be connected
Output: closest chain to Chj

1 M ← Statei.M
2 Chk ← get closest chain(Statei, Chj, l no intersection j, Chi, location, endpoint, M) // See

Algorithm 16
3 l no intersection k ← get non intersection chains(M , l candidates Chi, Chk)
4 if endpoint = B then
5 endpointk = A
6 end
7 else
8 endpointk = B
9 end

10 symmetric chain ← get closest chain(Statei, Chk, l no intersection k, Chi, location,
endpointk, M)// See Algorithm 16

11 if not (symmetric chain == Chj) and not (lenght(Chk) + lenght(Chj)) ≤ Nr then
12 Chk = None
13 end
14 return Chk

Algorithm 16 describes the logic to search for the closest candidate chain that met some conditions,
as described in item 3. In line 2, all the chains in the neighborhood are selected. The neighbor-
hood is defined by the Chj endpoint and the neighbourhood size Statei attribute. For example,
given endpoint A with an angle of 0 degrees and neighbourhood size = 20, all the chains included
in l candidates Chi with endpoint B angle in [0 − 20, 0] = [340, 360] are selected and returned in
ascending angular order with respect to the Chj endpoint. From lines 5 to 12, the main loop logic is
defined. Two conditions allow to exit of the loop: a chain that satisfies conditions from Equation (9)
is found, or no chains in the set l sorted chains in neighbourhood satisfy the conditions. The Equa-
tion (9) is implemented in function connectivity goodness condition (line 7). If candidate chain
satisfies the conditions, it could happen that exists a chain in the subset l no intersection j closer
to Chj in terms of the connectivity goodness conditions but further in the angular distance. So in
line 9, a control mechanism is added (Algorithm 17).

The control mechanism (line 9, Algorithm 16) to solve the issue shown in Figure 14 is implemented

28

CS-TRD: a Cross Sections Tree Ring Detection method

Algorithm 16: get closest chain

Input: Statei,
Chj, // current chain
l no intersection j, // chains that no intersect with Chj, set of candidates to connect with Chj
Chi, // support chain
location, // inward o outward position of Chj regarding to the support chain
endpoint, // Chj endpoint
M ,// intersection matrix
Output: closest chain to Chj that satisfies the connectivity goodness conditions.

1 neighbourhood size ← Statei.neighbourhood size
2 l sorted chains in neighbourhood ← get chains in neighbourhood(neighbourhood size,

l no intersection j, Chj, Chi, endpoint, location)
3 next id ← 0
4 Chk ← None
5 while len(l sorted chains in neighbourhood) > next id do
6 candidate chain ← l sorted chains in neighbourhood[next id]
7 pass control, radial distance ← connectivity goodness condition(Statei, Chj,

candidate chain, Chi, endpoint)// See Algorithm 18
8 if pass control then
9 Chk ← get the closest chain by radial distance that does not intersect(Chj, endpoint,

location, radial distance, candidate chain, M , l sorted chains neighbourhood)// See
Figure 14 and Algorithm 17

10 break

11 end
12 next id ← next id + 1

13 end
14 return Chk

rj
rl

rk

Chj

Chl

Chk

Chi

Figure 14: Chi is the support chain. The candidates chains for connection with Chj , are Chk and Chl. The angular closest
chain to Chj is the noisy Chl. Chk is the radially closest chain to Chj , these means that ‖rj − rk‖ < ‖rj − rl‖. Where
ri is the chain’s endpoint distance to the support chain.

29

Henry Marichal, Diego Passarella, Gregory Randall

by Algorithm 17. In angular terms, the closest chain to Chj that satisfies Equation (9) is Chl.
However, another chain exists, Chk, which is more similar but not the closest in terms of angular
distance, Equation (7). To fix this, we get all the chains that intersect to Chl and satisfy Equation (9)
with Chj. We sort them by radial proximity to Chj, Equation (6), and return the best candidate
chain as the closer one in terms of radial distance. Line 1 of Algorithm 17, get the chains that
intersect with candidate chain. Note that candidate chain is the closest chain of angular distance,
Equation (7), to Chj. In line 2, the former chains subset, l intersections candidate, is filtered by
the Equation (9) condition. In line 3, chains that satisfy that condition are sorted in ascending order
by radial difference with the Chj endpoint. Therefore, in Figure 14, Chk would be the first element
and Chl the second. In line 4, the radially closest one to Chj is returned.

Algorithm 17: get the closest chain by radial distance that does not intersect

Input: Statei,
Chj, // current chain
Chi, // support chain
endpoint, // Chj endpoint
candidate chain radial distance, //radial difference between Chj and candidate chain
endpoints
candidate chain, // angular closer chain to Chj
M ,// intersection matrix
l sorted chains in neighbourhood, // chains in Chj endpoint neighbourhood sorted by angular
distance
Output: closest chain to Chj that satisfies connectivity goodness conditions.

1 l intersections candidate ← intersection chains(M , candidate chain,
l sorted chains in neighbourhood)

2 l intersections candidate set ← get all chain in subset that satisfy condition(Statei, Chj, Chi,
endpoint, candidate chain radial distance, candidate chain, l intersections candidate)

3 sort set list by distance(l intersections candidate set)
4 Chk ← l intersections candidate set[0].cad
5 return Chk

The connectivity goodness condition function is described by Algorithm 18. From lines 1 to 4,
the parameters (Table 1) are extracted from the Statei class. In line 6, the chain size condition is
verified and saved in size condition. In line 7, the endpoint condition is verified. Figure 15 shows
an example of this check where Chi is the support chain for Chi+1 and Chi+2. Both endpoints Ai+1

from chain Chi+1 and endpoint Bi+2 from chain Chi+2 are visible. It is not possible to connect
chains Chi+1 and Chi+2 through endpoints Bi+1 and Ai+2 because these endpoints do not belong to
the chain support Chi angular domain. In line 8, the Equation (9) condition is verified. A boolean
result about the similarity condition and the distribution of the radial distance between Chj and
candidate chain are returned. The later is defined as distribution distance = ‖mean(radialschj)−
mean(radialscandidate chain)‖. Finally, in line 9, all conditions are verified. The function returns both
the boolean check of the conditions and the value of distribution distance.

postprocessing This last stage aims to complete the remaining chains relaxing the conditions even
more. At this stage, many chains are closed, i.e., chains with size = Nr, which we call rings. We
have some nonclosed chains that can be noisy or be part of a ring but have not been completed for
some reason. We use the information on the neighborhood chains to finish or discard these remaining
chains. We talk about region to describe the area between two rings.

30

CS-TRD: a Cross Sections Tree Ring Detection method

Figure 15: Endpoint condition check. See the text for an explanation.

Algorithm 18: connectivity goodness condition

Input: Statei,
Chj, // current chain
candidate chain, // chain closer to Chj
Chi, // support chain of Chj and candidate chain
endpoint, // Chj endpoint
Output: a boolean indicating if conditions are met, distribution distance (radial difference

between both chains)

/* Parameter extraction, from Table 1 */

1 th radial tolerance ← Statei.th radial tolerance
2 th distribution size←Statei.th distribution size
3 th regular derivative←Statei.th regular derivative
4 derivative from center←Statei.derivative from center
/* Condition checks */

5 distribution distance ← None
6 size condition ← Chj.size + candidate chain.size ≤ Nr
7 endpoint conditions ← check endpoints(Chi, Chj, candidate chain, endpoint)
8 similarity condition, distribution distance ← similarity conditions(Statei,

th radial tolerance,th distribution size, th regular derivative, derivative from center, Chi,
Chj, candidate chain, endpoint) // Equation (9)

9 check ← size condition and endpoint condition and similarity condition
10 return check, distribution distance

31

Henry Marichal, Diego Passarella, Gregory Randall

Figure 16: a) F03d disk after connecting stage. b) There is a ring that cannot be closed because of chain intersection
issues. c) Ring is closed after the postprocessing stage.

1. It can remain some chains belonging to the same ring but not forming a closed chain. In
many cases, this is due to small overlapping between chains. To solve this problem, we cut
the overlapping chains in such a way as to avoid intersections between them and then try to
reconnect the resulting chains that respect the connectivity goodness conditions. Figure 16
illustrates the problem.

2. Given two closed chains which contain a set of chains between them. Suppose the added angular
length of the non-overlapping chains between the rings is more significant than 180 degrees. In
that case, we consider that those uncompleted chains have enough information about the ring,
so we complete it. The completion is based on the interpolation between both rings and the
location of the existing chains. The chains that become part of the closed chain are the ones
that meet the connectivity goodness conditions.

3. To test the connectivity goodness in this stage, we use the values on the last column of Table
1.

The method is described by Algorithm 19. It uses the center of the spider web and the chains and
nodes lists. In line 1, the function is initialized,

• l chc is copied into new list l chp

• Function variables are initialized as chain was completed = FALSE, idx start = NONE

32

CS-TRD: a Cross Sections Tree Ring Detection method

The main loop spans all the closed chains and includes lines 2 to 14. In line 3, the DiskContext
object is instantiated. This object handles the logic to iterate over the regions delimited by the closed
chains and go from the smaller to the bigger area (defined between the chain and the center). The
two neighboring closed chains, and all the chains between them are identified in line 5 (ctx.update()).
Some information is stored in the following variables

• inward ring: The inward closed chain. If it is the first iteration, the chain is of type center
(an artificial chain in the center with area = 0).

• outward ring: The outward closed chain. If the chain is of type border, this is the last iteration.

• l within chains: chain subset delimited by inward ring and outward ring.

A ring defines an internal area from the chain to the center. All closed chains (rings) are sorted by
their inner area. The current index iteration is stored in the variable idx of object DiskContext.

The shapely python library is used to get the chains in regions between two rings. A region is
determined by two shapely Polygon, one external and one internal. A Polygon is a list of points.
Each closed chain is codified as a shapely Polygon. A method of the object Polygon allows us to
find the set of uncompleted chains inside a region.

The loop defined between lines 4 and 12 iterates over the closed chains. In line 6, the func-
tion for split and connect chains is called. If a chain inside l within chains is closed during
the call to split and connect chains, we exit the inner loop. If a chain was completed during a
call, chain was completed is set to TRUE in line 6. The next iteration will work with the same
inward ring, but the formerly closed chain is used as outward ring. The set l within chains is
modified accordingly. In line 8, idx start variable is set for the DiskContext object in the next
iteration.

The chains are connected if enough information between inward and outward chains and connectivity
goodness conditions are met (line 10). In line 15, all the chains with enough nodes (more than 0.95Nr
nodes) are closed. In that case, new nodes are added to obtain a chain with Nr nodes. To this aim,
we linearly interpolate between the inward and outward rings, going from one endpoint to another.
Finally, the list of all post-processed chains, both closed and not closed, l chp is returned.

The method split and connect chains is described in Algorithm 20. It iterates over all the chains
within a region to connect them. At every chain endpoint, the method cuts all the chains that
intersect the ray passing through that endpoint and checks the connectivity goodness condition,
Equation (8), between the divided chains to find connections between them. Notice that this module
removes the chain overlapping constraint. The parameters used by this module are:

1. neighbourhood size = 45

2. ThRadial tolerance = 0.2

3. ThDistribution size = 3

4. ThRegular derivative = 2

The parameter neighbourhood size defines the maximum angular distance (Equation (7)) to consider
candidate chains departing from an endpoint in both directions. Given a source chain (the current
chain Chj), every chain in the region that overlaps Chj in more than neighbourhood size is not
considered a candidate chain to connect because if there is a very long overlapping, that chain
is probably part of another ring. In line 1, the method is initialized, and variables connected,
completed chain, and Chj are set to FALSE. Also, the chains in l within chains list are sorted

33

Henry Marichal, Diego Passarella, Gregory Randall

Algorithm 19: Posprocessing Main Logic

Input: l chc, // chains list
l nodesc, // nodes list
c // center of the sypder web
Output: A list of post-processed chains l chkp, k = 1, 2, · · · , Nf

1 l chp ← initialization(l chc)
2 while True do
3 ctx ← DiskContext(l chp, idx start)
4 while len(ctx.completed chains) > 0 do
5 l within chains, inward ring, outward ring ← ctx.update()
6 chain was completed ← split and connect chains(l within chains, inward ring,

outward ring, l chp, l nodesc,ctx.neighbourhood size) // See Algorithm 20
7 if chain was completed then
8 idx start ← ctx.idx
9 break

10 connect chains if there is enough data(ctx, l nodesc, l chp)
11 if ctx.exit() then
12 break

13 if not chain was completed then
14 break

15 complete chains if required(l chp)

16 return l chp

34

CS-TRD: a Cross Sections Tree Ring Detection method

by size in descending order. The chain nodes inside the region are stored in the l inward nodes
list (line 2). The main loop, lines 3 to 15, iterates over the chains in l within chains. The loop
terminates when either current chain Chj is closed or all chains in list l within chains have been
tested. In line 10, a new (non-treated) chain is extracted for the current iteration and stored in
Chj. The splitting and connecting logic called split and connect neighbouring chains is executed
in line 13. The best candidate chain for endpoint A (Chak) is determined at this point, while the best
candidate chain for endpoint B (Chbk) is obtained in line 14. Chai and Chbi are the support chains
of chains Chak and Chbk respectively. The radial distance (Equation (6)) of chain Chak(Ch

b
k) to Chj

trough endpoint A(B) is diffa(diffb). The radially closest candidate chain is connected in function
connect radially closest chain (line 15), and the maximum number of nodes (Nr = 360) constraint
is verified. The same node interpolation as in line 15 of Algorithm 19 is used.

Algorithm 20: split and connect chains

Input: l within chains, // uncompleted chains delimited by inward ring and outward ring
inward ring, // inward ring of the region
outward ring, // outward ring of the region
l chp, // chain list
l nodesc, // full nodes list
Parameter:
neighbourhood size // size to search for chains that intersect the other endpoint
Output: boolean value indicating if a chain has been completed on the region

1 connected, completed chain, Chj ← initialization step(l within chains)
2 l inward nodes ← get nodes from chain list(l within chains)
3 while True do
4 if not connected then
5 if Chj is not None and Chj.is closed() then
6 complete chain using 2 support ring(inward ring, outward ring, Chj)
7 completed chain ← True
8 Chj ← None

9 else
10 Chj ← get next chain(l within chains)

11 if Chj == None then
12 break

13 Chak, diff a, Chai ← split and connect neighbouring chains(l inward nodes,
l within chains, Chj, A, outward ring, inward ring, neighbourhood size)

14 Chbk, diff b, Ch
b
i ← split and connect neighbouring chains(l inward nodes,

l within chains, Chj, B, outward ring, inward ring, neighbourhood size,
aux chain = Chak)//See Algorithm 21

15 connected, Chi, endpoint ← connect radially closest chain(Chj, Ch
a
k, diff a, Chai , Ch

b
k,

diff b, Chbi , l chp, l within chains, l nodesc, inward ring, outward ring)

16 return completed chain

Given a source chain, Chj, the logic for splitting neighborhood chains and searching for candidates
is implemented by Algorithm 21. Chains that intersect the ray supporting Chj endpoint are split.
In line 1, the angle domain of Chj is stored in Chj angle domain. In line 2, variable Chj node
stores the Chj node endpoint. The closest chain ring to the Chj endpoint (in Euclidean distance)
is selected as the support chain, Chi. From lines 4 to 7, we have the logic to get all chains in the

35

Henry Marichal, Diego Passarella, Gregory Randall

region delimited by two rings intersecting the ray Raye supporting the endpoint. First, we store in
l nodes ray all the nodes over Raye, pinpointing the chains supporting those nodes, and keep those
chains in l endpoint chains. To be cut, the overlapping between a chain in the set l endpoint chains
and Chj must be smaller than neighbourhood size. Otherwise, it is filtered because that chain
belongs to another ring (line 7). The method in line 8 effectively cut the chosen chains. Once a chain
is cut, it produces a sub chain nonintersecting Chj, stored as a candidate chain in l candidates
(line 8) and in the list l no intersections j (line 9). In line 10, all chains that intersect Chj in the
second endpoint and are in the neighborhood of the first endpoint are added to l candidates. Also,
the chains in the Chj chain neighborhood, which does not intersect its endpoint but intersects in
the other endpoint, are split (line 11). In line 12, all chains in l no intersections j that are far
away in terms of angular distance (Equation (7)) from the given endpoint of Chj are removed. The
nonintersecting chains in the endpoint neighborhood are stored in l filtered no intersection j. In
line 13, chains in l filtered no intersection j are added to l candidates. In line 14, all chains from
l candidates which do not satisfy the connectivity goodness conditions of Equation (8) are discarded.
In line 15, the closest chain that meets the connectivity goodness conditions is returned, Chk, and
diff , the radial difference between Chk and Chj endpoints(Equation (6)), and the support chain,
Chi.

Method split intersecting chains is described in Algorithm 22. Given an endpoint ray direction, we
iterate over all the intersecting chains in that direction. Given a chain to be split, inter chain, and
the node, split node, we divide the chain nodes in two chains cutting the nodes list in the position
of split node. Remember that the list of nodes within a chain is clockwise sorted. After splitting
the chain in sub ch1 and sub ch2, we select the sub chain that does not intersect inter chain, line
5. Then, if Chk intersects Chj in the other endpoint, this means that inter chain intersects Chj at
both endpoints, we repeat the logic over the other endpoint but for Chk instead of inter chain. The
split chain list is returned in l search chains.

Another critical method from Algorithm 19 is connect chains if there is enough data. When there
is a unique chain longer than information threshold (180 in our experiments), we interpolate be-
tween its endpoints using both inward and outward support chains. When there are several chains
in the region, we get the largest subset of chains in the region that non intersect each other. Suppose
the chains over this subset have an angular domain bigger than information threshold (180 in our
experiments). In that case, we iterate over the chains within the subset (sorted by size) and connect
all the chains that satisfy the similarity condition using the last column of Table 1.

3.3 Pith detection

The pith position is an input for the method. In the demo it can be set manually or using the method
proposed for Decelle et al, [4], which is at the IPOL site.

4 Implementation

The implementation was made in Python 3.11.

4.1 Input and Output

The demo requires as input, a segmented image and the pith position. A command line execution
example is:

$ python main . py −−input IMAGE PATH −−cx CX −−cy CY

36

CS-TRD: a Cross Sections Tree Ring Detection method

Algorithm 21: split and connect neighbouring chains

Input: l within nodes, // nodes within region
l within chain, // uncompleted chains delimited by inward and outward rings
Chj, // current source chain. The one that is being connected if conditions are met
endpoint,// endpoint of source chain to find candidate chains to connect
outward ring, // outward support chain ring
inward ring, // inward support chain ring
neighbourhood size, // total nodes size to search for chains that intersect the other endpoint
Output: Source chain Chk, radial distance and closest support chain to endpoint, Chi

1 Chj angle domain ← get angle domain(Chj)
2 Chj node ← get node endpoint(Chj,endpoint)
3 Chi ← select support chain(outward ring, inward ring, Chj node)
4 l nodes ray ← select nodes within region over ray(Chj, Chj node, l within nodes)
5 l chain id ray←extract chains ids from nodes(l nodes ray)
6 l endpoint chains ← get chains from ids(l within chains, l chain id ray)
7 l filtered chains ← remove chains with higher overlapping threshold(Chj angle domain,

l endpoint chain,neighbourhood size)
8 l candidates ← split intersecting chains(Chj node.angle, l filtered chains, Ch j)//See

Algorithm 22
9 l no intersections j ← get chains that no intersect src chain(Chj, Chj angle domain,

l within chains,l endpoint chains)
10 add chains that intersect in other endpoint(l within chains, l no intersections j, l candidates,

Chj, neighbourhood size, endpoint)
11 l candidates ← split intersecting chain in other endpoint(endpoint, Chj, l within chains,

l within nodes, l candidates)
12 l filtered no intersection j ← filter no intersected chain far(l no intersections j, Chj,

endpoint, neighbourhood size)
13 l candidates ← l candidates + l filtered no intersection j
14 l chk Euclidean distances, l chk radial distances, l chk ←

get chains that satisfy similarity conditions(Chi, Chj, candidates, endpoint)
15 Chk, diff ← select closest candidate chain(l chk, l chk Euclidean distances,

l chk radial distances, l within chains, aux chain)

16 return Chk,diff ,Chi

37

Henry Marichal, Diego Passarella, Gregory Randall

Algorithm 22: split intersecting chains

Input: direction, // endpoint direction for split chains
l filtered chains, // list of chains to be split
Chj, // source chain. The one that is being to connect if conditions are met
Output: split chain list

1 l search chains ← []
2 for inter chain in l filtered chains do
3 split node ←get node by angle(direction)
4 sub ch1, sub ch2 ← split chain(inter chain, split node)
5 Chk ← select no intersection chain at endpoint(sub ch1, sub ch2, Chj, direction)

/* Longest chains intersect two times */

6 if intersection between chains(Chk, Chj) then
7 split node 2 ← get node by angle(node direction 2)
8 sub ch1, sub ch2 ← split chain(Chk, split node 2)
9 Chk ← select no intersection chain at endpoint(sub ch1, sub ch2, Chj, node direction 2)

10 change id(Chk)
11 l search chains ← l search chains + Chk

12 return l search chains

−−output d i r OUTPUT DIR −−root REPO ROOT DIR

As output, the method returns a JSON file with the tree-rings position in Labelme format [23].

The parameters of the program are the following:

• –input: path to the segmented image.

• –cx: pith x’s coordinate.

• –cy: pith y’s coordinate.

• –output dir: directory where intermediate and final results are saved.

• –root: repository root path

4.2 Parameters

Table 2 summarises parameters that the user can modify if needed. Program command line param-
eters are the following:

• –sigma: Gaussian filtering standard deviation σ.

• –th low: Low threshold on the gradient module for the Canny Devernay filter.

• –th high: High threshold on the gradient module for the Canny Devernay filter.

• –height: image height after the resizing process.

• –width: image width after the resizing process.

• –alpha: threshold on the collinearity of the edge filtering (Equation (3)).

• –nr: total number of rays.

38

CS-TRD: a Cross Sections Tree Ring Detection method

stage Parameter Default
Basic edges detector Gaussian filtering σ 3

preprocessing height None
width None

filtering, sampling, connect Pith Position Required
Advanced edges detector Gradient threshold low 5

Gradient threshold high 15
edges filtering collinearity threshold (α) 30°

sampling rays number (nr) 360
min chain length 2

Table 2: Method parameters. Basic parameters can be modified by the user in the demo.

• –min chain lenght: minimun chain lenght.

4.3 Installation and Use

The main program language is Python. However, the edge detector stage uses the code in C from
IPOL ([10]) and must be compiled. The source code is included in our repository because some
minor modifications were made to extract the image gradient.

The procedure to install the application is the following:

$ cd r epo roo t /

$ apt−get update && apt−get i n s t a l l −y $ (cat . i p o l / packages . txt) &&
rm −r f / var / l i b /apt/ l i s t s /∗

$ pip3 i n s t a l l −−no−cache−d i r −r requ i rements . txt

$ cd . / exte rnas / devernay 1 . 0 && make c l ean && make

5 Datasets

To test the proposed method, we use two datasets:

1. The UruDendro dataset. An online database [16] with images of cross-sections of commer-
cially grown Pinus taeda trees from northern Uruguay, ranging from 13 to 24 years old, com-
posed of twelve individual trees collected in February 2020 in Uruguay. Six trees correspond
to a lumber company (denoted by the letter F), and the other six correspond to a plywood
company (denoted by the letter L). Each company applied different silviculture practices. The
individuals were identified by the letter of the company, a two-digit number, and a lowercase
letter corresponding to the height where each cross-section was obtained. Heights were coded
as follows: a = 10 cm above the ground, b = 165 cm, c = 200 cm, d = 400 cm, and e = 435 cm.
The cross-sections were about 5 to 20 cm thick and were dried at room temperature without
further preparation. As a consequence of the drying process, radial cracks and blue fungus
stains were developed in the cross-sections. Surfaces were smoothed with a handheld planer
and a rotary sander. Photographs were taken under different lighting conditions; cross-sections
a, b, and e were photographed indoors and moistened to maximize contrast between early-
and late-wood. Pictures of dry cross-sections c and d were taken outdoors. The dataset has 64

39

Henry Marichal, Diego Passarella, Gregory Randall

images of different resolutions, described in Table 4. The collection contains several challenging
features for automatic ring detection, including illumination and surface preparation variation,
fungal infection (blue stains), knot formation, missing bark and interruptions in outer rings,
and radial cracking. The proposed CS-TRD tree-ring detection method was checked against
manual delineation of all rings by users of varying expertise using the Labelme tool [23]. At
least two experts annotate all images. Figure 2 show some images in this UruDendro dataset.

2. The Kennel dataset. Kennel et al. [13] made available a public dataset of 7 images of Abies
alba and presented a method for detecting tree rings. We were unable to process the annotations
given by the authors. The characteristics of this dataset are described in Table 3. We label the
dataset with the same procedure as the UruDendro dataset to evaluate the results.

Table 3: The Kennel dataset, are signaled the name and dimensions of each image as well as the number of expert marks
and the number of rings in each one.

Image Marks Rings Height (pixels) Width (pixels)
AbiesAlba1 4 52 1280 1280
AbiesAlba2 2 22 1280 1280
AbiesAlba3 3 27 1280 1280
AbiesAlba4 1 12 1024 1024
AbiesAlba5 3 30 1280 1280
AbiesAlba6 2 21 1280 1280
AbiesAlba7 1 48 1280 1280

6 Experiments and Results

6.1 Metric

To evaluate the method, we develop a metric based on the one proposed by Kennel et al., [13]. To
say if a ring is detected, we define an influence area for each ring as the set of pixels closer to that
ring. For each ray, the frontier is the middle point between the nodes of consecutive ground truth
rings. Figure 17.b show the influence area for disk F03d. Each ground truth ring is colored in black
and is the center of its influence area. Figure 17.a shows the red detections and the green ground
truth marks for the same image.

The influence area associates a detected curve with a ground truth ring. In both cases, the nodes are
associated with the Nr rays. Given a ground truth ring, we assign it to the closest detection using:

Dist =

√√√√ 1

Nr

Nr−1∑
i=0

(dti − gti)2 (10)

Where i represents the ray direction, dti is the radial distance (Equation (6)) of detected node i,
and gti is the radial distance (Equation (6)) of the corresponding ground truth node i.

The closest detection can be extremely far away. To assign a detected curve to a ground truth ring,
we must guarantee that the given chain is the closest one to the ring and that it is close enough.
To this aim, we use the influence area of each ground truth ring (see Figure 17). Given a detected
curve, we compute the proportion of nodes of that chain that belongs to the influence region of the
closest ring. If that measure exceeds a parameter (th pre = 60%), we assign the detected curve to

40

CS-TRD: a Cross Sections Tree Ring Detection method

Table 4: The UruDendro dataset, are signaled the name and dimensions of each image as well as the number of expert
marks and the number of rings in each one.

Image Marks Rings Height (pixels) Width (pixels)
F02a 2 23 2364 2364
F02b 2 22 1644 1644
F02c 4 22 2424 2408
F02d 2 20 2288 2216
F02e 2 20 2082 2082
F03a 2 24 2514 2514
F03b 2 23 1794 1794
F03c 1 24 2528 2596
F03d 1 21 2476 2504
F03e 3 21 1961 1961
F04a 2 24 2478 2478
F04b 1 23 1760 1762
F04c 3 21 913 900
F04d 2 21 921 899
F04e 1 21 2070 2072
F07a 1 24 2400 2400
F07b 3 23 1740 1740
F07c 1 23 978 900
F07d 1 22 997 900
F07e 1 22 2034 2034
F08a 3 24 2383 2383
F08b 2 23 1776 1776
F08c 2 23 2624 2736
F08d 2 22 2388 2400
F08e 2 22 1902 1902
F09a 1 24 2106 2106
F09b 4 23 1858 1858
F09c 1 24 2370 2343
F09d 1 23 2256 2288
F09e 1 22 1610 1609
F10a 2 22 2136 2136
F10b 2 22 1677 1677
F10e 1 20 1800 1800
L02a 1 16 2088 2088
L02b 3 15 1842 1842
L02c 1 13 1016 900
L02d 2 14 921 900
L02e 2 14 1914 1914
L03a 2 17 2296 2296
L03b 2 16 2088 2088
L03c 2 16 2400 2416
L03d 2 16 2503 2436
L03e 2 14 1944 1944
L04a 4 17 2418 2418
L04b 2 16 1986 1986
L04c 2 16 2728 2704
L04d 2 16 2544 2512
L04e 1 15 1992 1992
L07a 2 17 2328 2328
L07b 2 16 2118 2118
L07c 3 17 2492 2481
L07d 1 16 2480 2456
L07e 2 15 1980 1980
L08a 2 17 2268 2268
L08b 2 16 1836 1836
L08c 1 16 2877 2736
L08d 2 14 2707 2736
L08e 1 15 1666 1666
L09a 1 17 1963 1964
L09b 3 16 1802 1802
L09c 1 16 943 897
L09d 2 15 1006 900
L09e 1 15 1662 1662
L11b 4 16 1800 1800

41

Henry Marichal, Diego Passarella, Gregory Randall

(a) (b) (c)

Figure 17: Measuring the error between automatic detection and the ground truth for image F03d. (a): In green, the
ground truth; in red, the marks produced by the method (detections). (b): Areas of influence of the ground truth rings.
(c): Error, in pixels, between the detection and the ground truth.

the ground truth ring. If not, the detected curve is not assigned to any ground truth ring. In other
words, at least 60% of the nodes of a detected curve must be in the influence area of the ground
truth ring to be assigned to it and to say that we have detected that ring (hence to declare a true
positive).

Figure 17.c show the error in pixels between the ground truth rings and the detected curves assigned
to them. The red color represents a low error, while the yellow-green color represents a high error.
Note how the error is concentrated around the knoth, which perturbs the precise detection of some
rings.

Once all the detected chains are assigned to the ground truth rings, we calculate the following
indicators:

1. True Positive (TP): if the detected closed chain is assigned to the ground truth ring.

2. False Positive (FP): if the detected closed chain is not assigned to a ground truth ring.

3. False Negative (FN): if a ground truth ring is not assigned to any detected closed chain.

Finally, the Precision measurement is given by P = TP
TP+FP

, the Recall measurement by R = TP
TP+FN

and the F-Score by F = 2PR
P+R

.

Results for the Kennel dataset are shown in Table 6 and for the UruDendro dataset in Table 7. For
example, in the image F03d, the method fails to detect two ground truth rings, so FN = 2. The
other rings are correctly detected. The table also shows the execution time for each image and the
RMSE error(Equation (10)) between the detected and ground truth rings.

6.2 Experiments

This section presents some experiments to understand the method and its limitations better. At the
end of the section, an experiment shows the dependence of the results with the threshold th pre. All
experiments were made using a workstation with Intel Core i5 10300H and RAM 16GB.

42

CS-TRD: a Cross Sections Tree Ring Detection method

(a) Average F1 vs σ curve for different image sizes.
(b) Average execution time (in seconds) vs σ curve for
different images sizes.

Figure 18: Experiment results over the UruDendro dataset. Each curve represents different image sizes: 640x640, 1000x1000,
1500x1500, and original resolution. The blue curve refers to the original image size.

(a) Average F1 vs σ curve for different image sizes.
(b) Average execution time (in seconds) vs σ curve for
different image sizes.

Figure 19: Experiment results over Kennel dataset. Each curve represents a different image resolution: 640x640, 1000x1000,
1500x1500, and original resolution. The blue curve refers to the original image size.

6.2.1 Edge detector optimization stage

The algorithm relies heavily on the edge detector stage. The first experiment tests different σ values
for the Canny Devernay edge detector to get the one that maximizes the F-Score for the dataset
UruDendro. This dataset presents significant variations in image resolution and allows us to study
the global performance with different dimensions of the input images. We compute the average F-
Score for the original image sizes and when all the images in the dataset are scaled to several sizes:
640x640, 1000x1000, 1500x1500. Results are shown in Figure 18. The best result (average F-Score
of 0.89) is obtained for size 1500x1500 and σ = 3.0. The execution time varies with image size, as
shown in the figure. The average execution time for the 1500x1500 size is 17 seconds. The same
experiment is done over Kennel et al., [13] dataset. Results are shown in Figure 19. As before, the
best F-Score is obtained for the 1500x1500 resolution, but with σ = 2.5. The lower optimal σ can
be related to the Kennel dataset having images with more rings on the disk, 30 on average, while
the UruDendro dataset has 19 rings per disk on average. The more the disks, the less their width.
Table 5 summarizes the results of this experiment for both datasets.

43

Henry Marichal, Diego Passarella, Gregory Randall

dataset image sizes σ P R F RMSE ExecTime(s)
UruDendro dataset 1500x1500 3.0 0,95 0,86 0,89 5.27 17.3
Kennel dataset 1500x1500 2.5 0,97 0,97 0,97 2.4 11.1

Table 5: Mean performance values for both datasets’ optimal image resolution.

Figure 20: Pith position experiment. Given six ray directions, eight different pith positions are marked. The method is
executed for each marked pith position. Ground Truth ring are marked in green

6.2.2 Pith position sensibility

The next experiment measures how sensitive the method is to errors in the pith estimation. Figure
20 shows 48 different pith positions used in this experiment. We selected eight different pith positions
over six rays. These radial displaced pith positions are selected as follows:

• Three positions are marked inside ring 1, with an error over the ray direction of 25%, 50%, and
75%.

• One is marked on ring 1.

• Three positions are marked between the first and second rings, with increasing errors of 25%
over the ray direction.

• another position is marked on ring 2.

We run the algorithm for each disk with each of these pith positions, giving 48 results. We get
the average RMSE and F-Score measures over the six ray directions for each radially displaced pith
position, i.e., the mean for the six pith positions that are 25% off the center and so on. In this
manner, we have two vectors (one for RMSE and the other for the F-Score) with eight coordinates
for each one. Experiments are made over the UruDendro dataset, using an image size of 1500x1500
and σ = 3.0. Figure 21a shows the average F-Score over the whole dataset for each error position,
while Figure 21b shows the average RMSE over the same dataset. As was expected, F-Score decreases
as the error in the pith estimation increases. Figure 21b shows that the RMSE is less sensitive to
pith error.

6.2.3 Metric precision threshold

In this experiment, we see how the performance varies with different values of th pre. This parameter
controls the number of nodes of the ring that lie within the Influence Area to be considered in the

44

CS-TRD: a Cross Sections Tree Ring Detection method

(a) Average F-Score over the UruDendro dataset. (b) Average RMSE over the UruDendro dataset.

Figure 21: For each disk of the UruDendro dataset, we run the method using the 48 different pith positions. Results are
averaged over the six rays’ directions per error position.

(a) Average F-Score over the UruDendro dataset. (b) Average RMSE over the UruDendro dataset.

Figure 22: Performance metrics computed for different values of th pre parameter. UruDendro dataset.

detection-to-ground-truth assignation step. Figure 22 and Figure 23 show results for UruDendro
and Kennel datasets, respectively. As can be expected, higher precision implies higher RMSE but
lower F-Score. Given these results, we fix th pre = 60% as a default value, which seems a good
compromise.

6.3 Results

The results for the Kennel dataset are shown in Table 6 and Figure 31. The mean F-Score is 0.97.
There are three non-detected rings per disk as a maximum. And one ring is erroneously detected
per image in the worst case, generally corresponding to the border or/and the core. At Figure 24,
we illustrate an example, the disk AbiesAlba1. The edge parameter is too high (σ = 2.5), and the
edge detector step fails to detect pith. In addition, the red chain in Figure 24.c is not closed because
its size is smaller than 180 degrees (the information threshold parameter). On the other hand, the
method successfully detects the rings over the knot. Table 6 shows that the AbiesAlba1 disk has
three false negatives. The third one is the last ring which is not detected, note that it detects the
border and that is a false positive, as illustrated in Figure 31.a.

The results for the UruDendro dataset are shown in Table 7. The mean F-Score is lower, 0.89, but
the images in this dataset are much more complex and include knots, fungus, and cracks.

45

Henry Marichal, Diego Passarella, Gregory Randall

(a) Average F-Score over Kennel dataset. (b) Average RMSE over Kennel dataset.

Figure 23: Performance metrics computed for different values of th pre parameter on the Kennel dataset.

(a) Filter (b) Chains (c) Postprocessing

Figure 24: Method result for disk AbiesAlba1 (zoom in over pith center). a) Filter stage output. b) Chain stage output. c)
Postprocessing stage output. At a) and b), we can see how the method fails to detect edges for pith. It is possible because
the σ threshold is too high to detect things at this resolution. At c), we can see how the red chain was not closed due to a
size smaller than information threshold (180)

Table 6: Results on the Kennel dataset with th pre = 60. Images resized to 1500x1500 and edge detector parameter
σ = 2.5

Name TP FP TN FN P R F RMSE Time (sec.)
AbiesAlba1 49 1 0 3 0.98 0.94 0.96 3.66 18.01
AbiesAlba2 20 0 0 2 1.00 0.91 0.95 0.95 9.21
AbiesAlba3 26 1 0 1 0.96 0.96 0.96 1.30 8.93
AbiesAlba4 11 0 0 1 1.00 0.92 0.96 5.88 8.96
AbiesAlba5 30 1 0 0 0.97 1.00 0.98 1.29 9.06
AbiesAlba6 20 0 0 1 1.00 0.95 0.98 1.26 7.63
AbiesAlba7 45 0 0 3 1.00 0.94 0.97 3.58 13.78
Average 0.99 0.95 0.97 2.56 10.80

46

CS-TRD: a Cross Sections Tree Ring Detection method

Table 7: Results over our dataset with th pre = 60%. Images resized to 1500x1500 and edge detector parameter σ = 3.

Name TP FP TN FN P R F RMSE Time (sec.)
F10b 19 2 0 3 0.91 0.86 0.88 4.75 20.39
F10a 17 1 0 5 0.94 0.77 0.85 4.24 15.23
F10e 18 0 0 2 1.00 0.90 0.95 2.13 12.57
F02c 21 0 0 1 1.00 0.96 0.98 3.76 12.26
F02b 21 1 0 1 0.96 0.96 0.96 4.02 13.26
F02a 20 0 0 3 1.00 0.87 0.93 1.50 15.29
F02d 20 1 0 0 0.95 1.00 0.98 2.11 8.34
F02e 20 1 0 0 0.95 1.00 0.98 7.62 23.31
F03c 23 0 0 1 1.00 0.96 0.98 10.69 7.34
F03b 20 0 0 3 1.00 0.87 0.93 2.15 13.95
F03a 22 2 0 2 0.92 0.92 0.92 8.11 19.37
F03d 19 1 0 2 0.95 0.91 0.93 7.81 11.26
F03e 20 2 0 1 0.91 0.95 0.93 1.66 15.70
F04c 18 1 0 3 0.95 0.86 0.90 5.60 26.88
F04b 19 0 0 4 1.00 0.83 0.91 4.60 40.24
F04a 21 1 0 3 0.96 0.88 0.91 7.71 28.90
F04d 17 3 0 4 0.85 0.81 0.83 2.90 55.38
F04e 19 2 0 2 0.91 0.91 0.91 9.94 24.33
F07c 20 2 0 3 0.91 0.87 0.89 4.85 35.81
F07b 17 3 0 6 0.85 0.74 0.79 7.99 45.74
F07a 18 1 0 6 0.95 0.75 0.84 11.68 18.27
F07d 20 0 0 2 1.00 0.91 0.95 1.04 19.95
F07e 8 4 0 14 0.67 0.36 0.47 8.17 40.29
F08c 21 1 0 2 0.96 0.91 0.93 2.05 13.25
F08b 21 1 0 2 0.96 0.91 0.93 1.72 23.57
F08a 21 1 0 3 0.96 0.88 0.91 5.28 17.13
F08d 20 0 0 2 1.00 0.91 0.95 2.10 9.54
F08e 22 0 0 0 1.00 1.00 1.00 6.70 17.65
F09c 21 0 0 3 1.00 0.88 0.93 2.83 9.11
F09b 22 1 0 1 0.96 0.96 0.96 2.91 11.98
F09a 21 0 0 3 1.00 0.88 0.93 2.20 16.13
F09e 14 5 0 8 0.74 0.64 0.68 7.08 38.73
L11b 15 1 0 1 0.94 0.94 0.94 1.54 10.96
L02c 11 0 0 2 1.00 0.85 0.92 5.33 21.33
L02b 4 2 0 11 0.67 0.27 0.38 9.41 21.90
L02a 14 1 0 2 0.93 0.88 0.90 16.95 26.21
L02d 7 3 0 7 0.70 0.50 0.58 5.66 28.80
L02e 11 0 0 3 1.00 0.79 0.88 4.92 18.66
L03c 15 1 0 1 0.94 0.94 0.94 9.01 8.28
L03b 15 1 0 1 0.94 0.94 0.94 2.22 10.17
L03a 14 0 0 3 1.00 0.82 0.90 3.45 16.20
L03d 14 0 0 1 1.00 0.93 0.97 10.63 8.26
L03e 13 0 0 1 1.00 0.93 0.96 3.97 14.96
L04c 14 0 0 2 1.00 0.88 0.93 3.30 8.26
L04b 15 0 0 1 1.00 0.94 0.97 6.35 10.66
L04a 15 0 0 2 1.00 0.88 0.94 6.21 7.98
L04d 14 1 0 2 0.93 0.88 0.90 7.88 6.19
L04e 10 1 0 5 0.91 0.67 0.77 4.09 10.14
L07c 14 1 0 3 0.93 0.82 0.88 2.41 5.56
L07b 13 0 0 3 1.00 0.81 0.90 6.56 9.01
L07a 13 1 0 4 0.93 0.77 0.84 1.89 13.96
L07d 14 0 0 2 1.00 0.88 0.93 1.73 5.22
L07e 11 0 0 3 1.00 0.79 0.88 13.26 17.80
L08c 15 0 0 1 1.00 0.94 0.97 2.52 8.74
L08b 14 1 0 2 0.93 0.88 0.90 11.99 24.48
L08a 15 0 0 2 1.00 0.88 0.94 2.38 8.94
L08d 13 0 0 1 1.00 0.93 0.96 9.57 5.45
L08e 14 1 0 1 0.93 0.93 0.93 8.14 17.82
L09c 15 2 0 1 0.88 0.94 0.91 2.90 12.02
L09b 15 1 0 1 0.94 0.94 0.94 2.26 13.54
L09a 14 0 0 3 1.00 0.82 0.90 3.29 10.03
L09d 13 1 0 2 0.93 0.87 0.90 2.12 12.03
L09e 13 0 0 2 1.00 0.87 0.93 4.14 14.66
F09d 21 0 0 2 1.00 0.91 0.96 3.44 8.71
Average 0.95 0.86 0.89 5.27 17.27

47

Henry Marichal, Diego Passarella, Gregory Randall

Figure 25 illustrates some results of the CS-TRD ring-tree detection algorithm over the UruDendro
dataset. Disks F02a, F02b, F02c, F02d, F02e, F03c, and L03c have an F-Score above 93%, which
indicates that the method detects almost all the disk rings. Metric results over the database are
shown in Table 7. The algorithm successfully detects rings over cracks (disks F02a, F02b, and F02e)
and knots (disk L03c).

Figure 26 illustrates how the method behaves under the presence of knots. It fails to detect the first
(pith) and third rings. In addition, it detects a false ring over the knot and fails to detect the last
ring. Despite the former error, the method succeeded in detecting 18 rings, which makes an F1-Score
of 90%.

Figure 27 illustrates our method results for disk L09e. Despite the presence of two important cracks
and some fungus stains, the method successfully detects 13/15 rings, which means an F1-Score of
93%.

As seen in Table 7, the CS-TRD algorithm generally works fine even if for some images it has
problems. Let’s discuss some examples, such as images L02b, F07e, and L02d.

Figure 28 illustrates the results for disk L02b. Figure 28c, shows the detected rings in red and the
ground truth in green. Four detections are closed curves and determined as correct (TP), while
two are determined as incorrect (FP). Counting from the center to the border, the first detection is
correct, and the next two are bad, corresponding to the second and third rings. Analyzing the chains
step output shown in Figure 28a, it seems clear that there is not enough edge information to see the
rings due to the fungus stain.

A similar situation happens for disk F07e, Figure 29. There is a strong fungus stain presence which
makes that some rings do not have enough edges to form a closed curve.

The method results are slightly better for disk L02d with an F-Score of 58% in the presence of
the same fungus stain issue that former disks. Figure 30a illustrates this case and how the fungus
perturbs the edge detection step in the middle of the disk.

7 Conclusions and future work

An automatic method (besides the pith detection, for which an automatic algorithm exists [4]) for
Tree Ring Detection of cross-section wood images is presented, which achieves an F-Score of 97% in
the Kennel dataset and an F-Score of 89% in the (more difficult) UruDendro dataset.

The method executes at an average execution time of 17 seconds in the UruDendro dataset and 11
seconds in Kennel dataset. Compared with the time that each annotator needed to delineate every
disk manually, 3 hours on average, is a vast improvement. CS-TRD method can be fully implemented
in C++ to accelerate the execution time compared to a Python implementation3. This will allow
using the method in real-time applications.

In the future, we will include the automatic detection of the pith, extend the method to other tree
species and explore machine-learning techniques to learn the pattern in the data.

3https://medium.com/agents-and-robots/the-bitter-truth-python-3-11-vs-cython-vs-c-performance-for-
simulations-babc85cdfef5

48

CS-TRD: a Cross Sections Tree Ring Detection method

(a) F02a (b) F02b (c) F02c

(d) F02d (e) F02e (f) F03c

(g) F07b (h) L02b (i) L03c

Figure 25: Some results for the UruDendro dataset.

49

Henry Marichal, Diego Passarella, Gregory Randall

(a) Chains (b) Output

(c) Gt and Dt

Figure 26: Method result for disk F04c. Note how the knot stain perturbs the edge detection step.

(a) Chains (b) Output

(c) Gt and Dt

Figure 27: Method result for disk L09e. Note how the method succeeds in detecting almost all the rings (FN=2 and FP=0)
despite the cracks and fungus stain

(a) Chains (b) Output

(c) Gt and Dt

Figure 28: Method result for disk L02b. Note how the fungus stain perturbs the edge detection step.

50

CS-TRD: a Cross Sections Tree Ring Detection method

(a) Chains (b) Output

(c) Gt and Dt

Figure 29: Method result for disk F07e. Note how the fungus stain perturbs the edge detection step.

(a) Chains (b) Output

(c) Gt and Dt

Figure 30: Method result for disk L02d. Note how the fungus stain perturbs the edge detection step.

51

Henry Marichal, Diego Passarella, Gregory Randall

(a) AbiesAlba1 (b) AbiesAlba2 (c) AbiesAlba3

(d) AbiesAlba4 (e) AbiesAlba5 (f) AbiesAlba6

(g) AbiesAlba7

Figure 31: Results over images from the Kennel dataset with 1500x1500 image size and σ = 2.5.

52

CS-TRD: a Cross Sections Tree Ring Detection method

Image Credits

Images from the UruDendro dataset.

Images taken from a [8]

original images from the Kennel dataset.

References

[1] Mauricio Cerda, Nancy Hitschfeld-Kahler, and Domingo Mery, Robust tree-ring detection,
in Advances in Image and Video Technology, Second Pacific Rim Symposium, PSIVT 2007, Santiago,
Chile, December 17-19, 2007, Proceedings, Domingo Mery and Luis Rueda, eds., vol. 4872 of Lecture
Notes in Computer Science, Springer, 2007, pp. 575–585.

[2] Alex Clark, Pillow (pil fork) documentation, 2015.

[3] Brook M. Constantz, Andrew A. Port, and Randall S. Senock, Comparing automatically
generated and manually measured tree-ring transects of growth trends with hawaiian sandalwood as
an example species, Dendrochronologia, 68 (2021), p. 125831.

[4] Rémi Decelle, Phuc Ngo, Isabelle Debled-Rennesson, Frédéric Mothe, and Fleur
Longuetaud, Ant Colony Optimization for Estimating Pith Position on Images of Tree Log Ends,
Image Processing On Line, 12 (2022), pp. 558–581. https://doi.org/10.5201/ipol.2022.338.

[5] Frédéric Devernay, A non-maxima suppression method for edge detection with sub-pixel accuracy,
tech. report, INRIA RESEARCH REP. 2724, SOPHIAANTIPOLIS, 1995.

[6] Philipp Duncker, Detection and Grading of Compression Wood, 11 2014, pp. 201–224.

[7] Anna Fabijańska and Ma lgorzata Danek, Deepdendro – a tree rings detector based on a deep
convolutional neural network, Computers and Electronics in Agriculture, 150 (2018), pp. 353–363.

[8] Anna Fabijańska, Ma lgorzata Danek, Joanna Barniak, and Adam Piórkowski, Towards
automatic tree rings detection in images of scanned wood samples, Computers and Electronics in
Agriculture, 140 (2017), pp. 279–289.

[9] Alexander Gillert, Giulia Resente, Alba Anadon-Rosell, Martin Wilmking, and
Uwe Freiherr von Lukas, Iterative next boundary detection for instance segmentation of tree
rings in microscopy images of shrub cross sections, 2022.

[10] Rafael Grompone von Gioi and Gregory Randall, A Sub-Pixel Edge Detector: an Implementation of the Canny/Devernay Algorithm,
Image Processing On Line, 7 (2017), pp. 347–372. https://doi.org/10.5201/ipol.2017.216.

[11] Michael Henke and Branislav Sloboda, Semiautomatic tree ring segmentation using active
contours and an optimised gradient operator, Forestry Journal, 60 (2014), pp. 185 – 190.

[12] Itseez, Open source computer vision library. https://github.com/itseez/opencv, 2015.

[13] Pol Kennel, Philippe Borianne, and Gérard Subsol, An automated method for tree-ring
delineation based on active contours guided by DT-CWT complex coefficients in photographic images:
Application to abies alba wood slice images, Comput. Electron. Agric., 118 (2015), pp. 204–214.

[14] Nick G. Kingsbury, Complex wavelets for shift invariant analysis and filtering of signals, Applied
and Computational Harmonic Analysis, 10 (2001), pp. 234–253.

53

https://doi.org/10.5201/ipol.2022.338
https://doi.org/10.5201/ipol.2017.216
https://github.com/itseez/opencv

Henry Marichal, Diego Passarella, Gregory Randall

[15] Kayla Makela, Tim Ophelders, Michelle Quigley, Elizabeth Munch, Daniel Chitwood,
and Asia Dowtin, Automatic tree ring detection using jacobi sets, 2020.

[16] Henry Marichal, Diego Passarella, Christine Lucas, Ludmila Profumo, Veronica
Casaravilla, Maria Noel Rocha Galli, Serrana Ambite, and Gregory Randall,
UruDendro: An Uruguayan Disk Wood Database For Image Processing. https://iie.fing.edu.uy/

proyectos/madera.

[17] R. Stockton Maxwell and Lars-Åke Larsson, Measuring tree-ring widths using the coorecorder
software application, Dendrochronologia, 67 (2021), p. 125841.

[18] Kristin Norell, An automatic method for counting annual rings in noisy sawmill images, in Image
Analysis and Processing – ICIAP 2009, Pasquale Foggia, Carlo Sansone, and Mario Vento, eds., Berlin,
Heidelberg, 2009, Springer Berlin Heidelberg, pp. 307–316.

[19] Kristin Norell, Joakim Lindblad, and Stina Svensson, Grey weighted polar distance transform
for outlining circular and approximately circular objects, 14th International Conference on Image Anal-
ysis and Processing (ICIAP 2007), (2007), pp. 647–652.

[20] Miroslav Poláek, Alexis H. Arizpe, Patrick Hüther, Lisa Weidlich, Sonja Steindl, and
Kelly L. Swarts, Automation of tree-ring detection and measurements using deep learning, bioRxiv,
(2022).

[21] Xuebin Qin, Zichen Zhang, Chenyang Huang, Masood Dehghan, Osmar R. Zäıane, and

Martin Jägersand, U2-net: Going deeper with nested u-structure for salient object detection, CoRR,
abs/2005.09007 (2020).

[22] Jingning Shi, Wei Xiang, Qijing Liu, and Sher Shah, Mtreering: An r package with graphical
user interface for automatic measurement of tree ring widths using image processing techniques, Den-
drochronologia, 58 (2019), p. 125644.

[23] Kentaro Wada, Labelme: Image Polygonal Annotation with Python.

[24] Hong Zhou, Rong Feng, Hua hong Huang, Er pei Lin, and Jun lin Yu,
Method of tree-ring image analysis for dendrochronology, Optical Engineering, 51 (2012), p. 077202.

[25] Karel Zuiderveld, Contrast Limited Adaptive Histogram Equalization, Academic Press Professional,
Inc., USA, 1994, p. 474–485.

54

https://iie.fing.edu.uy/proyectos/madera
https://iie.fing.edu.uy/proyectos/madera

	1 Introduction
	2 Antecedents
	3 Approach
	3.1 Definitions
	3.2 Method
	3.3 Pith detection

	4 Implementation
	4.1 Input and Output
	4.2 Parameters
	4.3 Installation and Use

	5 Datasets
	6 Experiments and Results
	6.1 Metric
	6.2 Experiments
	6.2.1 Edge detector optimization stage
	6.2.2 Pith position sensibility
	6.2.3 Metric precision threshold

	6.3 Results

	7 Conclusions and future work

