

Published in Image Processing On Line on YYYY-MM-DD. Submitted on YYYY-MM-DD, accepted on YYYY-MM-DD. ISSN 2105-1232 © YYYY IPOL & the authors CC-BY-NC-SA This article is available online with supplementary materials, software, datasets and online demo at https://doi.org/10.5201/ipol

CS-TRD: a Cross Sections Tree Ring Detection method

Henry Marichal¹, Diego Passarella,² Gregory Randall¹

¹ Instituto de Ingeniería Eléctrica, Facultad de Ingeniería, Universidad de la República, Uruguay(henry.marichal@fing.edu.uy / randall@fing.edu.uy) ² Sede Tacuarembó, CENUR Noreste, Universidad de la República, Uruguay(diego.passarella@cut.edu.uy)

PREPRINT May 19, 2023

Abstract

This work describes a Tree Ring Detection method for complete Cross-Sections of trees (CS-TRD). The method is based on the detection, processing, and connection of edges corresponding to the tree's growth rings. The method depends on the parameters for the Canny Devernay edge detector (σ and two thresholds), a resize factor, the number of rays, and the pith location. The first five parameters are fixed by default. The pith location can be marked manually or using an automatic pith detection algorithm. Besides the pith localization, the CS-TRD method is fully automated and achieves an F-Score of 89% in the UruDendro dataset (of Pinus Taeda) with a mean execution time of 17 seconds and of 97% in the Kennel dataset (of Abies Alba) with an average execution time 11 seconds.

Source Code

A Python 3.11 implementation of CS-TRD is available at the web page of this article¹. Usage instructions are included in the README.md file of the archive. The associated online demo is accessible through the web site.

Keywords: image edge detection, dendrochronology, tree ring detection

1 Introduction

Most of the available methods for dendrochronology use images taken from cores (small cylinders crossing all the tree growth rings), as opposed to complete transverse cross sections. The image analysis on cores is performed on rectangular divisions as illustrated in Figure 1. Using cores for the analysis presents some advantages. The core is a small piece of the tree, keeping it alive. The rings are measured on a small portion that can be assumed as a sequence of bands with a repetitive contrast, simplifying the image analysis. The analysis of complete sections implies the felling of the tree and, from the image analysis point of view, includes the challenge of generating a pattern of concentric closed curves that represent the tree rings. Note in the examples shown in Figure 2

¹https://ipolcore.ipol.im/demo/clientApp/demo.html?id=77777000390

Figure 1: Examples of core tree-ring images taken from a dataset with 239 images [8].

that several factors make the task difficult: wood knots, fungi appearing as black spots with shapes following radial directions, and cracks that can be very wide. Some applications need the analysis of the whole cross sections, as when we are interested in studying the angular homogeneity of the ringtree pattern. An example of such a case is when we are interested in the detection of the so-called compression wood [6] for which the lack of homogeneity in the growing pattern produces differential mechanical properties on the wood.

Several methods exist for automatically detecting tree rings in core images [18, 19, 24, 20]. As the core approach is more popular, most available datasets are of that type, and machine learningbased methods need those datasets for training. In particular, most of the machine learning-based approaches are, to the best of our knowledge, designed for core images. Core images give partial information on the tree-ring structure, which is important for some applications.

This article presents a method for detecting tree rings on images of tree cross-sections. The approach takes advantage of the knowledge of the tree cross-section's general structure and the presence of redundant information on a radial profile for different angles around the tree's pith.

This paper is organized as follows: Section 2 contextualizes this method with the previous work in the field. Section 3 presents the proposed automatic cross section tree-ring detection algorithm (CS-TRD). The implementation details are explained in Section 4. Section 5 briefly presents a dataset for developing and testing the proposed algorithm. Experimental results are shown in Section 6 and Section 7 concludes and discuss future work.

2 Antecedents

Tree ring detection is an old and essential problem in forestry with multiple uses. Due to the particularity of the species of the concerned trees, many practitioners still use a manual approach, measuring the tree rings with a ruler or other (manual) tree-ring measuring system. This is a tedious and time-consuming task.

Cerda et al. [1] proposed a solution for detecting entire growth rings based on the Generalized Hough Transform. This work already suggests some general considerations that lead to the principal steps of our approach, as illustrated in Figure 4. The method was tested on ten images; neither the code nor the data are publicly available.

Figure 2: Some examples of the images in the UruDendro dataset. Note the variability of the images and the presence of fungus (for example, in the image L02b), knots (for example, in images F07b and F03c), and cracks (for example, in images F02e and L03c). The first five images are from the same tree at different heights, as the text explains in Section 5.

Norell [18] proposes a method to automatically compute the number of annual rings in end faces acquired in sawmill environments. The method applies the Grey Weighted Polar Distance Transform[19] to a rectangular section (core) that includes the pith and avoids knots or other disturbances. Norell used 24 images for training and 20 for testing its method, but the images are neither publicly available nor the method's code.

Zhou et al. [24] proposed a method based on the traditionally manual approach, i.e., tracing two perpendicular lines across the slice and counting the peaks using a watershed-based method. They show results on five discs. Neither the algorithm nor the data are available.

Henkel et al. [11] propose a semiautomatic method for detecting tree rings on full tree cross sections using an Active Contours approach. The authors report good results on several examples, but neither the data nor the algorithm is available.

Kennel et al. [13] uses the Dual-Tree Complex Wavelet Transform[14] as part of an active contour approach. This method, which works in the entire cross-section of the tree, gives very good results on a set of 7 publicly available images. We call it the Kennel dataset and try our method on it in this work in order to compare our results with the ones reported by the authors on those images. To the best of our knowledge, the code is unavailable, so it is impossible to see how it works with our data.

Makela et al. [15] proposed an automatic method based on Jacobi Sets for the location of the pith and the ring detection on full cross-sections of trees. Neither the code nor the data are publicly available.

Fabijańska et al. [8] proposed a fully automatic image-based approach for detecting tree rings over cores images. The method is based on image gradient peak detecting and linking and is applied over a dataset with three wood species representing the ring-porous species. The same authors also proposed a deep convolutional neural network for detecting tree-rings over cores images in [7]. Comparing both methods, they reported a precision of 43% and a recall of 51% for the classical approach and a precision of 97%, and a recall of 96% for the deep learning approach. Neither the code nor the data are publicly available.

In a recent work, Polek et al.[20] uses a machine learning-based approach for automatically detecting tree rings of coniferous species but, as most of the reviewed results, work on cores instead of the whole cross-section. This is the most comprehensive approach, and most algorithms and manual protocols use this type of image input. But if the aim is to detect compressed wood, we must mark the whole cross-section to study the asymmetries between rings.

Gillert et al, [9] proposed a method for tree-ring detection over the whole cross-section but applied to microscopy images. They apply a deep learning approach using an Iterative Next Boundary Detection Network, trained and tested with microscopy images.

There exist several dendrochronology commercially available software packages. Some consist of a set of tools that help the practitioners to trace the rings manually. Others are semiautomatic, including image-processing tools to propose the ring limits. The performance generally varies significantly with certain wood anatomical features linked to wood species, climate, etc. For example, MtreeRing [22] is built using the R statistical language. It uses mathematical morphology for noise reduction and includes several methods for helping in the detection of rings (watershed-based segmentation, Canny edge detector). Like many other algorithms, it proposes an interactive tool for manual marking. To the best of our knowledge, the code is not publicly available. The CooRecorder [17] is another software application of this class, with several tools to help practitioners in the dendrochronological task, for example, to precisely determine the earlywood-latewood limits, using a zoom visualization and interactive tools. All of these packages work on cores instead of the whole disc. Constantz et al., [3] develop a tool for measuring S. Paniculatum rings. Their software measures trace by constructing transects and the rings' areas. The input for this method is a sketch image in SVG format, with some information about the center and the rings represented by polylines, produced with Adobe Illustrator.

3 Approach

Our tree-ring detection algorithm, called CS-TRD for Cross-Section Tree-Ring Detector, is heavily based on some structural characteristics of the problem:

- The use of the whole horizontal cross-section of a tree (slice) instead of a wood dowel (or core), as most dendrochronology approaches do.
- The following properties generally define the rings on a slice:
 - 1. The rings are roughly concentric, even if their shape is irregular. This means that two rings can't cross.
 - 2. Several rays can be traced outwards from the slice pith. Those rays will cross each ring only once.
 - 3. We are interested only in the rings corresponding to the latewood to early wood transitions, namely the *annual rings*.

3.1 Definitions

To explain the approach, we need some naming definitions; see Figure 3. We call spider web the global structure of the tree-rings we are searching for, which is depicted in a general way in Figure 3a. It comprises a *center*, associated with the slice pith, which is the origin of a certain number of rays. The rings are concentric and closed curves that don't cross each other. Each ring is formed by a *curve* of connected points. Each ray crosses a *curve* only once. The rings can be viewed as a flexible *curve* of points with nodes in the intersection with the rays. A chain is a set of connected nodes. As Figure 3b illustrates, a *curve* is a set of chained nodes (small green dots in the figure, noted P_i). Depending on the position of the *curve* concerning the *center*, some of those points are nodes (bigger black dots in the figure, denoted N_i hereafter). The node can move along a ray in a radial direction, but the movement of a node in a tangential direction over the *chain* is forbidden. In other words, nodes can move along a ray as if it were hoops sliding along the rays. The bigger the number Nr of rays, the better precision of the reconstruction of the rings. We fix Nr = 360. Note that this is the ideal setting. In real images, rings can disappear without forming a closed curve, *cells* can have very varied shapes, given the deformation of the rings, undetected chains, etc.

Figure 3c, illustrate the nomenclature used in this paper: Chains Ch_k and Ch_{k+1} , intersect the rays R_{m-1} , R_m and R_{m+1} in nodes N_{i-1} , N_i and N_{i+1} . Those rays and chains (as well as the four corresponding nodes) define cells C_{l-1} , C_l and C_{l+1} . In general, a cell is limited by four nodes, but sometimes that is not the case. For example, when a chain doesn't complete a ring or is not well detected.

During the detection process, the algorithm uses this terminology to work. We talk of *chains* that merge to form a *ring*, of *rays* that determine a sampling of the *curve*, forming *chains*, of the distribution of a particular measure on the *cells* produced by a given set of *chains* and *rays*, etc.

Figure 3: (a) The whole structure, called *spider web*, is formed by a *center* (which corresponds to the slice pith), Nr rays (in the drawing Nr = 18) and the rings (concentric curves). In the scheme, the rings are circles, but in practice, they can be (strongly) deformed as long as they don't intersect another ring. Each ray intersects a ring only once in a point called node. The area limited by two consecutive rays and two consecutive rings is named a cell. (b) A curve is a set of connected points (small green dots). Some of those points are the intersection with rays, named nodes (black dots). A chain is a set of connected nodes. In this case, the node N_i is the point p_n . (c) Each Chain Ch_k and Ch_{k+1} , intersect the rays R_{m-1} , R_m and R_{m+1} in nodes N_{i-1} , N_i and N_{i+1} . Those rays and chains (as well as the four corresponding nodes) determines cells C_{l-1} , C_l and C_{l+1} .

3.2 Method

Figure 4 illustrates the intermediate results of the proposed method described by Algorithm 1. The input has to be an image of a tree slice without background. To subtract the background, many methods can be used. We apply a deep learning-based approach [21] based on two-level nested U-structures $(U^2 Net)$. Figure 5 shows an example of such a procedure.

Given a segmented image of a tree slice -i.e., an image without a background- we need to find the set of pixel chains representing the annual rings (dark to clear transitions). We also need the center cof the *spider web* (which corresponds to the tree's pith) as input. Detecting this fundamental point is a problem that can be tackled by automatic means [4] or manually marked. In this article, we consider that this point is given (in the demo, both options are available).

Some algorithms have debug parameters. For example, in the function *connect_chains* of Algorithm 1, it is possible to set a debug flag to save all the intermediate results. To do that, we need the location where debugging results and the image at different stages will be saved (in some situations, debug results are saved by writing over the image). This paper does not discuss debug parameters because they are not crucial for the method understanding. The debug flag passes the debug parameters.

The first step in the Pipeline corresponds to preprocessing the input image to increase the method's performance.

Preprocessing The size of acquired images can vary widely, and this has an impact on the performance. On one side, the bigger the image, the slower the algorithm, as more data must be processed. On the other hand, if the image is too small, the relevant structures will be challenging to detect.

Figure 4: Principal steps of the CS-TRD tree-ring detection algorithm: (a) original image, (b) pre-processed image (resized, equalized, and converted to a grayscale image), (c) the output of the Canny Devernay edge detector, (d) edges filtered by the direction of the gradient, (e) set of detected chains, (f) connected chains, (g) post-processed chains and (h) detected tree-rings.

Algorithm 1: Tree-ring detection algorithm **Input:** Im_{in} , // segmented input image. Background pixels are in white (255) c, // position of the *pith* in Im_{in} : center of the sypder web σ , // Canny edge detector gaussian kernel parameter th_{low} , // low threshold on the module of the gradient. Canny edge detector parameter th_{high} , // high threshold on the module of the gradient. Canny edge detector parameter height, // height of the image after the resize step width, // width of the image after the resize step α , // threshold on the collinearity of the edge filtering, see Equation (3) n_r , // number of rays m_c // minimum chain length **Output:** A list l_rings_k , $k = 1, 2, \dots, K$, where each element is a closed *chain* of points in the image, representing a tree-ring. 1 $im_{pre}, c \leftarrow \text{preprocessing}(Im_{in}, height, width, c) //\text{see Algorithm 2}$ 2 $m_ch_e, G_x, G_y \leftarrow \text{canny_deverney_edge_detector}(Im_{pre}, \sigma, th_{low}, th_{high}) // \text{described in [10]}$ **3** $l_ch_f \leftarrow \text{filter_edges}(m_ch_e, c, G_x, G_y, \alpha, Im_{pre}) //\text{see Algorithm 5}$ 4 $l_ch_s, l_nodes_s \leftarrow \text{sampling}_edges(l_ch_f, c, nr, m_c, Im_{pre}) //see Algorithm 7$ 5 $l_ch_c, l_nodes_c \leftarrow \text{connect_chains}(l_ch_s, l_nodes_s, c, nr) //\text{see Algorithm 8}$ 6 $l_ch_p \leftarrow \text{postprocessing}(l_ch_c, l_nodes_c, c) //\text{see Algorithm 19}$

7 $l_rings \leftarrow \text{chain_to_labelme_json}(l_ch_p, height, width, c, Im_{in})// \text{ convert closed chains to json }$ 8 return l_rings

Figure 5: Background removal stage. Input (a) and output (b) using the code available from [21]

Algorithm 2 shows the pseudo-code of the preprocessing stage. The first step is resizing the input image to a standard size of 1500x1500 pixels. In Section 6.2.1, we show a series of experiments that lead to choosing these dimensions. The size of the input image can vary, so zoom is applied in such a way as to zoom in or zoom out the input image so the image size for the rest of the processing is fixed. Pith coordinates must be resized as well. This step can be turned off by the user in the demo.

From lines 1 to 6, the former logic is implemented. The resize function (Line 5) is shown in Algorithm 3. The dimensions of the input image can vary, so image resize (Line 1, Algorithm 3) is applied using the function *resize* from Pillow library [2]. The method involves filtering to avoid aliasing if the flag *image*. ANTIALIAS is set. The center coordinates must be modified accordingly as well. To this aim, we use the following equations:

$$cy_{output} = cy * \frac{height_{output}}{height}$$
 $cx_{output} = cx * \frac{width_{output}}{width}$ (1)

Where (height, width) is the input image dimensions, $(height_{output}, width_{output})$ is the output image dimension, and (cy, cx) is the (original resolution) disk pith location coordinates in pixels.

In line 7, the RGB image is converted to grayscale using the OpenCV [12] function:

cv2.cvtColor(imq, cv2.COLOR_BGR2GRAY)

Finally, in line 8, an histogram equalization step is applied to enhance contrast. The method is described in Algorithm 4. The first step (Line 1) changes the background pixels to the mean grayscale value to avoid undesirable background effects during equalization. Both equalized, and masked background images are returned. Then, in Line 2, the Contrast Limited Adaptive Histogram Equalization (CLAHE) [25] method for equalizing images is applied. We use the OpenCV implementation [12]². The threshold for contrast limiting is set to 10 by means of the *clipLimit* parameter. Finally, in Line 3, the background of the equalized image is set to white (255).

Algorithm 2: preprocessing

Input: Im_{in} , // input image without background. Background pixel set to white (255) Parameter: height_{output}, // output image height, in pixels $width_{output}$, // output image width, in pixels cy, // pith's coordinate y, in pixeles cx, // pith's coordinate x, in pixeles **Output:** Preprocessed Image, pith coordinates scaled to the size of the preprocessed image 1 if None in [height_output, width_output] then $Im_r, cy_{output}, cx_{output} \leftarrow (Im_{in}, cy, cx)$ $\mathbf{2}$ 3 end 4 else $Im_r, cy_{output}, cx_{output} \leftarrow resize(Im_{in}, height_{output}, width_{output}, cy, cx) // See Algorithm 3$

6 end

 $\mathbf{5}$

7 $Im_q \leftarrow rgb2gray(Im_r)$

s $Im_{pre} \leftarrow equalize(Im_g) // See Algorithm 4$

9 return $[Im_{pre}, cy_{output}, cx_{output}]$

²https://www.geeksforgeeks.org/clahe-histogram-equalization-opencv/

Algorithm 3: resize	
Input: Im_{in} , // the input image	
Parameter:	
$height_{output}$: // output image height, in pixels	
$width_{output}$: // output image width, in pixels	
cy: // pith's coordinate y, in pixeles	
cx: // pith's coordinate x, in pixeles	
Output: Resize image using Pillow Library	
$Im_r \leftarrow \text{resize_image_using_pil_lib}(Im_{in}, height_{output}, width_{output})$	
$height, width \leftarrow \text{get_image_shape}(Im_{in})$	
$cy_{output}, cx_{output} \leftarrow$	
$convert_center_coordinate_to_output_coordinate(cy, cx, height, width, height_{output}, width_{output}) / / $	
See Equation (1)	
return $[Im_r, cy_{output}, cx_{output}]$	

Algorithm 4: equalize

Input: Im_g , // gray scale input image. The background is white (255) **Output:** Equalized image using OpenCV CLAHE [25] method

- 1 $Im_{pre}, mask \leftarrow change_background_intensity_to_mean(Im_q)$
- 2 $Im_{pre} \leftarrow \text{equalize_image_using_clahe}(Im_{pre})$
- **3** $Im_{pre} \leftarrow \text{change_background_to_value}(Im_{pre}, mask, 255)$
- 4 return $[Im_{pre}]$

Canny-Devernay edge detector. Line 2 of Algorithm 1, correspond to the edge detection stage. We apply the sub-pixel precision Canny Devernay edge detector [5, 10]. The output of this step is a list of pixel chains corresponding to the edges present in the image. Besides some noise-derived ones, we can group those edges into the following classes:

- $Edges_T$: edges produced by the tree growing process. It includes the edges that form the rings. Considering a direction from the pith outward, these edges are of two types: those produced by early wood to late wood transitions, expressed in the images as clear to dark transitions, and the latewood to early wood transitions, expressed as transitions from dark to clear in the images. We are interested in detecting the former ones, hereon called annual rings.
- $Edges_R$: mainly radial edges produced by cracks, fungi, or other phenomena.
- Other edges produced by wood knots.

The gradient vector is normal to the edge and encodes the local direction and sense of the transition. The Canny Devernay filter gives as output both the gradient of the image (composed by two matrices with the x and y components of the gradient, named G_x and G_y) as well as the edge chains, in the form of a matrix, called $m_c ch_e$. Successive rows refer to chained pixels belonging to the same edge, and the row [-1,-1] marks the division between edges.

The Canny Devernay edge detector has the following parameters:

- σ : The standard deviation of the Gaussian kernel.
- th_{low} : Gradient threshold low, applied to the gradient modulus and associated with the two threshold hysteresis filtering on the edge points.

• th_{high} : Gradient threshold high, applied to the gradient modulus and associated to the two threshold hysteresis filtering on the edge points.

To use the Devernay-Canny implementation from [10], we needed to build a Python wrapper to execute that code. That code uses as input a PGM image. We feed the Devernay-Canny with the preprocessed image Im_{pre} saved in disk with that format.

Regarding the output, $m_c ch_e$ is a matrix, where each row refers to the pairs (x, y), the coordinates of the edges. Each Devernay curve in the list is separated from the next one by a (-1, -1). Minor code modifications were needed in the IPOL implementation of the Canny Devernay filter [10] to get the image gradient matrices G_x and G_y as output.

Filtering the edge chains We filter out all the points of the edge chains for which the angle between the gradient vector and the direction of the ray touching that point are greater than α (30 degrees in our experiments). The $Edges_T$ produced by the early wood transitions points inward, and the $Edges_R$, for which the normal vector is roughly normal to the rays, are filtered out. Note that this process breaks an edge chain into several fragments. This is done by Algorithm 5.

Given the center c and a point p_i over an edge *curve*, the angle $\delta(c\vec{p}_i, \vec{G}_{p_i})$ between the vector \vec{cp}_i at the point p_i and the gradient vector \vec{G}_{p_i} (Figure 6) at the same point is given by:

$$\delta(c\vec{p}_i, \vec{G_{p_i}}) = \arccos\left(\frac{c\vec{p}_i \times \vec{G_{p_i}}}{\|c\vec{p}_i\| \|\vec{G_{p_i}}\|}\right)$$
(2)

We filter out all the *points* p_i for which the angle $\delta(c\vec{p}_i, \vec{G}_{p_i})$ is greater than the parameter α :

$$\delta(c\vec{p}_i, \vec{G}_{p_i}) \ge \alpha \tag{3}$$

The filter edges method is shown at Algorithm 5. It gets as input the Deverney edges $m_c ch_e$, the pith center, the image gradient components in the form of two matrices G_x and G_y and the preprocessed image Im_{pre} . It needs the α threshold of Equation (3) as a parameter. From lines 1 to 5, it computes the angle between vector $c\vec{p}_i$ and the gradient \vec{G}_{p_i} at point p_i . We use the Python numpy library matrix operations to speed up computation. In line 1, we change the edge reference axis. Figure 6 shows vectors $\vec{Op_i}$ and $c\vec{p}_i$, as well as the gradient $\vec{G_{p_i}}$ at edge point p_i . The function change_reference_axis change the vector coordinate reference from $\vec{Op_i}$ to $c\vec{p}_i$ and produces a new matrix Xb. This is made by subtracting the pith vector from each row. Matrix Xb still has the delimiting edges curve rows with the value [-1,-1]

Each edge gradient is saved in matrix G (line 2), keeping the same edge order of the matrix $m_c ch_e$; this means that

$$p_i = m_-ch_e[i] \to \vec{G_{p_i}} = G[i]$$

Where p_i is the i-row of matrix $m_c ch_e$ and $\vec{G_{p_i}}$ is the i-row of matrix G[i].

In Lines 3 and 4, the matrices Xb.T(Xb transposed matrix) and G are normalized, dividing the vector by the norm as shown in Equation (4), simplifying Equation (2):

$$\delta(R_i, \vec{G_{p_i}}) = \arccos\left(\frac{c\vec{p}_i \times \vec{G_{p_i}}}{\|c\vec{p}_i\| \|\vec{G_{p_i}}\|}\right) = \arccos\left(\frac{c\vec{p}_i}{\|c\vec{p}_i\|} \times \frac{\vec{G_{p_i}}}{\|\vec{G_{p_i}}\|}\right) = \arccos\left(c\vec{p}_{iunit} \times \vec{G_{p_iunit}}\right) \tag{4}$$

In line 5, Equation (4) is computed in matrix form, and the angle between normalized vectors $\vec{G}_{p_{iunit}}$ and $c\vec{p}_{iunit}$ is returned in degrees in the matrix θ . In line 6, the edge filtering is applied, following Equation (3). If the edge point p_i is filtered out, then $X_{edges_filtered}[i] = [-1, -1]$. The edges are converted to **curve** objects in line 7. We say that two edge pixels belong to the same edge if, between them, it does not exist a row in matrix $X_{edges_filtered}$ with values [-1,-1]. The object **Curve** inherits the properties of the class **LineString** from the **shapely** package, which is used in the *sampling* edges stage.

Finally, in lines 8 and 9, the curve belonging to the border edges is computed and added to the curve list, l_ch_f . In this context, we name *border*, the limits of the segmented image concerning the background. The function *get_border_curve* is shown in Algorithm 6. We use a simple method to compute the border edges. First, we generate a mask which is an image of the same dimensions as Im_{pre} , enlarged by 3 lines and 3 columns before the first and after the last line and columns to avoid border effects of the filtering. The mask image has two values, 0 for the region of the wood slice and 255 for the background. Lines 1 to 4 calculate the mask image. In line 1 we threshold Im_{pre} masking all the pixels with a value equal to 255, particularly the background. Some internal pixels can also have a value equal to 255. To avoid those pixels in the mask, we blur the mask (line 2), using a Gaussian Kernel with a high σ (in our implementation $\sigma = 11$), and we set to 255 all the pixels with a value fight σ (in our implementation $\sigma = 11$), and we set to 255 all the pixels with a value higher than 0 (lines 2 and 3). In line 4, the mask is padded with pad = 3. Finally, in line 5, we apply an OpenCV finding contour method to get the border contour on the mask. The OpenCV implementation returns all the contours it finds, including the image's border. We select the contour for which the enclosed area is closest to half the image. This is a criterion that works fine for this purpose. In line 6, the contour object is converted to a **Curve** object.

Algorithm 5: filter_edges

Input: m_ch_e , // matrix of edge curves c_{x} // center of the spider web, in pixels: c_{x} and c_{y} G_x , // X component of the gradient, a matrix G_{u} , // Y component of the gradient, a matrix Im_{pre} , // Preprocessed image Parameter: α , //Threshold edge filter, Equation (3) **Output:** A list $l_{-}ch_{f}^{k}$, $k = 1, 2, \dots, N$, where each element is a filtered edge *curve* 1 $Xb \leftarrow \text{change_reference_axis}(m_ch_e, c_y, c_x)$ 2 $G \leftarrow \text{get_gradient_vector_for_each_edge_pixel}(l_ch_e, G_x, G_y)$ **3** $Xb_{normalized} \leftarrow \text{normalized_row_matrix(Xb.T)}$ 4 $G_{normalized} \leftarrow \text{normalized}_row_matrix(G)$ **5** $\theta \leftarrow \text{compute_angle_between_gradient_and_edges}(Xb_{normalized}, G_{normalized})$ 6 $X_{edges_{filtered}} \leftarrow \text{filter_edges_by_threshold}(m_ch_e, \theta, \alpha)$ 7 $l_ch_f \leftarrow \text{convert}_{\text{masked}_{\text{pixels}_{to}_{curves}}(X_{edges_{filtered}})$ **s** border_curve \leftarrow get_border_curve $(Im_{pre}, l_ch_f)//$ See Algorithm 6 9 $l_ch_f \leftarrow l_ch_f + border_curve$ 10 return l_ch_f

Sampling edges Given the set of filtered chained edge points l_ch_f , a list of *curves*, we sample each *curve* using the number of rays Nr. The Algorithm 7 describe the procedure. Two parameters are included in this algorithm: Nr, the number of rays (360 by default), and *min_chain_lenght*, the

Figure 6: Coordinates reference of edge p_i , vector $\vec{Op_i}$. Edge filtering computation use vector $\vec{cp_i}$. O represents the origin of the image coordinate axis. C represents the pith position

Algorithm 6: get_border_curve

Input: Im_{pre} , // Preprocessed image l_ch_f , //list of object Curves **Output:** $border_curve$

- 1 $mask \leftarrow mask_background(Im_{pre})$
- **2** $mask \leftarrow blur(mask)$
- **3** $mask \leftarrow thresholding(mask)$
- $\texttt{4} \ mask \gets \texttt{padding_mask}(mask)$
- **5** border_contour \leftarrow find_border_contour(mask, Im_{pre})
- 6 border_curve \leftarrow contour_to_curve(border_contour, len(l_ch_f))
- 7 return border_curve

minimum number of nodes in a *chain* (the object **chain** is described in the following paragraph). Every *chain* has two endpoints, so we fix $min_chain_lenght = 2$.

This algorithm produces as output two lists: one of the objects **Chain** named l_ch_s and one of the objects **Nodes** named l_nodes_s , which includes all the nodes in all the chains. The object **Chain** contains a list of pointers to all the nodes belonging to that *chain* (l_nodes). This allows us to find all the nodes of a given *chain*. The object **Node** contains the identifier of the *chain* to which it belongs (*chain_id*). There is no *chain* without nodes, nor nodes belonging to more than one *chain*.

An object **Chain** has the following attributes:

- *l_nodes*: chained list of the nodes belonging to the chain.
- *id*: identification of the chain.
- Nr: total number of rays on the disk.
- *extA*: first endpoint of the chain, named node A.
- *extB*: second endpoint of the chain, named node B.
- *type*: We define three chain types: border, normal, and center.
- *B_outward*: Pointer to the next chain above the B node.
- $B_{-inward}$: Pointer to the next chain below the B node.
- A_outward: Pointer to the next chain above the A node.
- *A_inward*: Pointer to the next chain below the A node.

We use the concepts of *outward* and *inward* in the attributes of a chain. Both are related to a given endpoint (A or B). Given a *chain* endpoint and the corresponding *ray*, we find the first *chain* that intersects that *ray* going from the chain to the center (named here as *inward*) and the first *chain* that intersects that *ray* going from the chain moving away from the center (named here as *outward*). Figure 8 illustrate this. Chains are superposed over the gray-level image. The ray at endpoint A is in blue, the nodes are in red at the intersection between the rays, and the chains are in orange, black, and yellow. Orange and yellow chains are the *visible* chains for the black chain at endpoint A (outward and inward, respectively); this concept is explained later. Every chain has two endpoint nodes, A and B. Endpoint A is always the furthest node clockwise, while endpoint B is the most distant node counterclockwise.

An Object **Node** has the following attributes:

- (x, y) node coordinates. Floating point numbers.
- *chain_id*: identification of the chain to which the node belongs.
- *radial_distance*: Euclidean distance to the center. It is a floating point number.
- *angle*: angle orientation of the ray passing by that node, in degrees. It is a floating point number.

Three metric distances between chains are defined. Given a chain endpoint $EndPoint_j$ (the selected endpoint for the current chain Ch_j) and $EndPoint_k$ (the selected endpoint for chain Ch_k) distances are defined as:

Figure 7: Ray references axis. C is the pith center. θ_j is the angle of Ray_j

• Euclidean Given endpoint cartesian coordinates (x,y), the distance between endpoints is defined as

$$\sqrt{(x_j - x_k)^2 + (y_j - y_k)^2}$$
(5)

Where (x_j, y_j) are the cartesian coordinates of $Endpoint_j$ and (x_k, y_k) are the cartesian coordinates of $Endpoint_k$.

• **Radial Difference** Given the endpoint Euclidean distance to the pith center, this distance is defined as

$$\|r_j - r_k\| \tag{6}$$

Where r_j is the Euclidean distance of $Endpoint_j$ to the pith center, and r_k is the Euclidean distance of $Endpoint_k$ to the pith center.

• Angular Given the endpoints ray support angle, θ (radii angular direction) this distance is defined as

$$(\theta_j - \theta_k + 360) \mod 360 \tag{7}$$

Where θ_j is the direction of the ray supporting $Endpoint_j$ (in degrees), θ_k is the direction of the ray supporting $Endpoint_k$ (in degrees), and *mod* refers to the module operation. Figure 7 illustrates angle θ_j of Ray_j given the disk pith position C.

Algorithm 7 extract the image dimensions from the preprocessed image Im_{pre} . Then we proceed to build the rays. A ray object is a semi-line, with one endpoint at the center c (the pith) and the other at the image border. This gives a list of Nr rays. Then, we compute the intersections between *curves* and rays using the **Shapely** python library. Note that a *curve* produced by Devernay is a set of chained pixels, and some of them are also nodes, as shown in Figure 3b. Once the Nodes are found, we create a *chain* including only the nodes and not all the points of the corresponding Devernay *curve*. In this sense, a *chain* is a sampled *curve*. If a *chain* has less than *min_chain_lenght* nodes, we delete it. Finally, we build two artificial *chains*. One of type *center*. This artificial *chain* has Nr nodes, all with the same (x, y) coordinates but different angular orientations. The second one is

Figure 8: A given chain (in black) with two endpoints A and B. Its nodes (in red) appear at the intersection between the Canny Devernay curve and the rays. The ray at endpoint A is in blue. Other chains detected by Canny Devernay are colored in white. Endpoint A's inward and outward chains are in yellow and orange, respectively.

the disk border. Both artificial chains are beneficial at the connecting chain stage. The field *type* in the **Chain** object identifies if the *chain* is a normal one or is one of the two artificial chains just described.

Algorithm 7: sampling_edges

Input: l_ch_f , // list of curves c, // center of the sypder web Im_{pre} // preprocessed image Parameters: min_chain_lenght , // minimum length of a chain nr // number of total rays **Output:** A list $l_ch_s^k$, $k = 1, 2, \dots, N$, where each element is a chain; $l_nodes_s^k$, $k = 1, 2, \dots, N_n$, where each element is a Node

- 1 height, width $\leftarrow Im_{pre}$.shape
- $\mathbf{2} \ l_rays \leftarrow \text{build}_rays(nr, height, width, c)$
- $\label{eq:l_ch_s_l_nodes_s} \textbf{``intersections_between_rays_and_devernay_curves(c, l_rays, l_ch_f, min_chain_lenght, nr, height, width) }$
- 4 $l_ch_s, l_nodes_s \leftarrow generate_virtual_center_chain(c, nr, l_nodes_s, l_ch_s)$
- 5 return l_ch_s, l_nodes_s

Connect chains We must now group this set of chains to form the rings. Some of these chains are spurious, produced by noise, small cracks, knots, etc., but most are part of the desired rings, as seen in Figure 4.

To connect chains, we must decide if the endpoints of two given chains can be connected, as illustrated by Figure 9. We use a support chain, Ch_0 in the figure, to decide whether or not those chains must be connected.

Figure 9: An illustration of the *connectivity* issue. (a) The question is if endpoint A of Ch_3 must be connected to endpoint B of Ch_2 (red dashed line) or to endpoint B of Ch_1 (blue dashed line). In figure (b), the same question can be posed for the connection between endpoint B of Ch_1 and endpoint A of Ch_2 , but Ch_1 and Ch_2 intersect (the endpoints are crossed by the same *ray*), and so this connection is forbidden. Note that we represent the connections by line segments for clarity, but in fact, these are curves in the image space, as we interpolate between *chain* endpoints in polar geometry

Figure 10: For the *chain support* Ch_0 , the set of *chain candidates* is formed by Ch_1 , Ch_2 , Ch_4 , Ch_5 and Ch_6 . *Chain* Ch_3 is shadowed by Ch_1 but Ch_5 is not shadowed by Ch_6 because at least one endpoint of Ch_5 is visible from Ch_0 . Note that a *chain* becomes part of the *candidate chains set* if at least one of its endpoints is visible from the *chain support*.

To group chains that belong to the same ring, we proceed as follows:

- 1. We order all the chains by length and begin processing the longest. The processed chain is called *Chain support*, Ch_i . Once we finish merging all the possible *candidate chains* related to that one (*candidates_{Chi}*), we do the same with the next longest *chain*.
- 2. We find the chains that are visible from the *Chain support* inwards (i.e., in the direction from *Chain support* to the center). The concept of *visibility* here means that at least one endpoint of the *candidate chain* is visible from the *Chain support*. Visible means that a *ray* that goes through the endpoint of the *candidate chain* crosses the *chain support* without crossing any other *chains* in between. The set of *candidate chains* of the *Chain support* Ch_i is named *candidates* Ch_i . This is illustrated by Figure 10, in which case, the *chains candidates* generated inwards by Ch_0 is:

 $candidates_{Ch_0} = \{Ch_1, Ch_2, Ch_4, Ch_5, Ch_6\}$

Chain Ch_3 is shadowed by Ch_1 and Ch_5 is not shadowed by Ch_6 because at least one of its endpoints are visible from Ch_0 . The same process is made for the chains visible from the *Chain support* outwards.

- 3. We go through the set $candidates_{Ch_i}$ searching for connections between them. By construction, the *chain support* is not a candidate to be merged in this step. From the endpoint of a chain, we move forward angularly. The next endpoint of a nonintersecting *chain* in the *candidates_{Ch_i}* set is a candidate to be connected to the first one. We say that two *chains* intersect if there exists at least one *ray* that cross both *chains*. For example, in Figure 10, Ch_6 intersects with Ch_5 and non-intersects with Ch_4 . To decide if both chains must be connected, we must measure the *connectivity goodness* between them.
- 4. To define a notion of connectivity goodness, we combine three criteria:
 - (a) Radial tolerance for connecting chains. The radial difference between the distance from each chain to be merged (measured at the endpoint to be connected) and the support chain must be small. For example, in Figure 11, if we want to connect node N_i of Ch_l and node N_{i+1} of Ch_k , we must verify that

$$\delta R_i * (1 - Th_{Radial_tolerance}) \le \delta R_{i+1} \le \delta R_i * (1 + Th_{Radial_tolerance})$$

Where $Th_{Radial_tolerance}$ is a parameter of the algorithm. We call this condition RadialTol.

- (b) Similar radial distances of nodes in both chains. For each chain, we define a set of nodes. For the chain Ch_j , this set is $N_j = \{N_j^0, N_j^1, ..., N_j^{n_{nodes}}\}$ where n_{nodes} is the number of nodes to be considered, a parameter. See Figure 12. We use the whole chain if it is shorter than n_{nodes} . We measure δR_i , the radial distance between a node in the given chain and the corresponding node for the same ray in the support chain, as illustrated in Figure 11. This defines two sets, one for each considered chain *i* and *k*: $Set_j = \{\delta R_j^0, ..., \delta R_j^{n_{nodes}}\}$ and $Set_k = \{\delta R_k^0, ..., \delta R_k^{n_{nodes}}\}$. We calculate the mean and the standard deviation $Set_j(\mu_j, \sigma_j)$ and $Set_k(\mu_k, \sigma_k)$. The size of the distribution is defined by the parameter $Th_{Distribution_size}$. This defines a range of radial distances associated with each chain: $Range_j = (\mu_j - Th_{Distribution_size} * \sigma_j, \mu_j + Th_{Distribution_size} * \sigma_j)$ and $Range_k = (\mu_k - Th_{Distribution_size} * \sigma_k, \mu_k + Th_{Distribution_size} * \sigma_k)$. To connect both chains, there must be a non-null intersection between both distributions: $Range_j \cap Range_k \neq 0$. We call this condition SimilarRadialDist.
- (c) Regularity of the derivative. Suppose we have two chains Ch_j and Ch_k that can be connected and a set of interpolated nodes between the endpoints of those chains (let's call

Figure 11: Quantities used to measure the connectivity between *chains*. δR_i is the radial difference between two successive *chains* along a *ray* R_i and δN_i is the radial difference between two successive *nodes* N_i and N_{i+1} . Note that these nodes can be part of the same *chain* or be part of two different *chains* that may be merged. Support chains are represented with the name Ch_i . Ch_i visible chains are Ch_j , Ch_l and Ch_k . Chains Ch_j and Ch_k satisfy similarity conditions

 Ch_{jk} the set of interpolated nodes between Ch_j and Ch_k , indicating that they form a new "interpolating" chain). See Figure 12. The new virtual chain created by the connection between chains Ch_j and Ch_k will encompass the nodes of those two chains and the new interpolated nodes between both chains $(Ch_{jk}, \text{ colored in red in the figure})$. To test the regularity of the derivative, we define a set of nodes for each concerned chain. For the chain Ch_j , this set is $\{N_j^0, N_j^1, ..., N_j^{n_{nodes}}\}$ where n_{nodes} is the number of nodes to be considered, a parameter $(n_{nodes} = 20 \text{ in the current implementation})$. We use all its nodes if the chain is shorter than n_{nodes} . For each chain, we compute the centered derivative in each node, $\delta N^s = \frac{\|r_{s+1} - r_{s-1}\|}{2}$, where r_s is the radial distance of the node N^s to the center (i.e., the Euclidean distance between the node and the center of the spider web). Therefor radial distance to center of node N^{s-1} is represented as r_{s-1} and radial distance to center of node N^{s+1} is represented as r_{s+1} . The set of derivatives for the nodes of the existing chains is $Der(Ch_j, Ch_k) = \{\delta N_j^0, ..., \delta N_j^{n_{nodes}}, \delta N_k^0, ..., \delta N_k^{n_{nodes}}\}$. The condition $Th_{regular_derivative}$ is asserted if the maximum of the derivatives in the interpolated chain is less or equal to the maximum of the derivatives in the two neighboring chains times a given tolerance:

$$max(Der(Ch_{jk})) \leq max(Der(Ch_j, Ch_k)) \times Th_{Regular_derivative}$$

Where $Th_{Regular_derivative}$ is a parameter. We call this condition RegularDeriv.

In order to connect chains Ch_i and Ch_k , the following condition must be met:

$RegularDeriv \land (SimilarRadialDist \lor RadialTol)$ (8)

where \vee and \wedge stands for the logical *or* and *and* symbols, respectively.

Another condition must be met: no other chain must exist between both chains to be connected. If another chain exists in between, it must be connected to the closer one. For example, in

Figure 12: Nomenclature used for the connect chains algorithm. Given the support chain, Ch_i , chains Ch_j and Ch_k are candidates to be connected. N_j^n are the nodes of Ch_j , with n = 0 for the node corresponding to the endpoint to be connected. Similarly, we note N_k^n the nodes of Ch_k . In red are the nodes created by an interpolation process between both endpoints. We represent the radial distance to the center of $Node^s$ as r_s .

Figure 10, it is impossible to connect chains Ch_3 and Ch_5 because between them appear Ch_4 . We call this condition *ExistChainOverlapping*. Consequently, Equation (8) is modified as follows

$\mathbf{not} Exist Chain Overlapping \land Regular Deriv \land (Similar Radial Dist \lor Radial Tol)$ (9)

The symbol **not** stands for the *not* operator.

The method iterates this search for connectivity between chains over different neighborhood sizes. The parameter *NeighbourdhoodSize* defines the maximum allowed distance, measured in degrees, for connecting two chains. If the distance between two chains endpoints is longer than *NeighbourdhoodSize*, those chains are not connected.

The parameter *derivFromCenter* controls how are estimated the interpolated nodes between two chains, as the ones in red in Figure 12. If *derivFromCenter* = 1, ray angle and radial distance from the center are used to estimate the position of the interpolated nodes. If it is set to 0, the estimation is made by measuring the radial distance to the support chain.

We iterate this process for the whole image for five sets of parameters: $Th_{Radial_tolerance}$, $Th_{Distribution_size}$, $Th_{Regular_derivative}$, NeighbourdhoodSize and derivFromCenter. In each iteration, we relax the parameters. In the first iteration, there are a lot of small chains, but in the second and third iterations, the concerned chains are already more extended and less noisy. Once the merging process is advanced, we can relax the parameters to connect more robust chains. Table 1 summarize the parameter sets.

5. We proceed in the same manner in the outward direction.

The former ideas are implemented in Algorithms 8 and 9. Algorithm 8 defines the logic for iterating

	1	2	3	4	5	6	7	8	9
$Th_{Radial_tolerance}$	0.1	0.2	0.1	0.2	0.1	0.2	0.1	0.2	0.2
$Th_{Distribution_size}$	2	2	3	3	3	3	2	3	3
$Th_{Regular_derivative}$	1.5	1.5	1.5	1.5	1.5	1.5	2	2	2
NeighbourdhoodSize	10	10	22	22	45	45	22	45	45
derivFromCenter	0	0	0	0	0	0	1	1	1

Table 1: Connectivity Parameters. Each column is the parameter set used on that iteration.

over the constraints defined in Table 1. In line 1, a square binary intersection matrix M is computed. Precompute matrix M will speed up the procedure. Rows and columns of M span the chain list. Chain Ch_j intersect chain Ch_k if M[j,k] = 1. We say that two chains intersect if at least one ray crosses both chains. Lines 2 to 6 are iterated for each parameter set of Table 1. Line 3 defines the parameters for each iteration. The dictionary *iteration_params* has keys for the nodes and chains lists. Both lists may be updated at each iteration because chains may be connected. When two chains are connected, M is updated as well. In the final iteration (i = 9), the external border chain is added to the chain list in order to be used as a support chain. In line 4, the function which connects the chains is called, returning the updated nodes and chains lists and M after the connecting stage. Finally, in line 5, nodes and chains lists are updated in the *iteration_params* dictionary for the next iteration.

Algorithm 8: Connect Chains

Input: l_ch_s ,// chains list $l_nodes_s, //$ nodes list c, // center of the spider web nr// number of total rays **Output:** A list $l_ch_c^f$, $f = 1, 2, \dots, N_f$, where each element is a *chain*; $l_nodes_c^f, c = 1, 2, \cdots, N_f$, where each element is a Node 1 $M \leftarrow \text{compute_intersection_matrix}(l_ch_s, l_nodes_s, nr).$ /* Loop for connecting chain main logic, losing the restrictions at each iteration */ 2 for $i \leftarrow 1$ to 9 do $iteration_params \leftarrow \text{get_iteration_parameters}(i) / / \text{Table}(1)$ 3 $l_ch_c, l_nodes_c, M \leftarrow \text{connect_chain_main_logic}(M, c, nr, iteration_params) //see$ 4 Algorithm 9 update_list_for_next_iteration(l_ch_c, l_nodes_c) $\mathbf{5}$

6 end

7 return l_ch_c, l_nodes_c

Algorithm 9 shows the connectivity main logic. **State** class manages the support chain iteration logic. It contains references to the lists of all the chains and nodes and stores the similarity parameters and the intersection matrix, M. Essentially, the **State** class is the hub of our system, containing all the necessary information to operate. The *system* comprises all the chains and nodes, and the M intersection matrix.

The **State** class updates the chains and nodes lists and the matrix M whenever two chains are connected. This update is critical for our operation and signifies that the *system* has been modified.

Lines 1 and 2 are initializations. Initialization consists of:

- 1. Sort the chain list by size (i.e. number of nodes) in descending order.
- 2. To optimize our method for searching visible chains from the chain support, we assign pointers to the *visible* inward and outward chains at both endpoints (A and B) of each chain.

The loop between lines 4 and 20 is applied to all the chains as long as $State_i \neq State_{i-1}$. The condition $State_i = State_{i-1}$ is true when no connections are made after an iteration. In line 4, we get a new support chain, Ch_i , for the current iteration. The logic to get the next chains are grouped in the methods get_next_chain (line 4) and update_system_state (line 20), described inAlgorithm 11 and Algorithm 10 respectively. Support chains are iterated following a neighborhood logic for speeding up purposes instead of iterating over the list sequentially.

In line 5, outward and inward visible chains are obtained and stored in l_{s} -outward and l_{s} -inward lists. To this aim we iterate over l_ch_s and check if visibility chain pointers (*B_outward*, *B_inward*, A_outward, A_inward) refers to Ch_i . The loop between lines 7 and 19 explores the lists l_s_inward and $l_s_outward$ with iteration variable $l_candidates_Chi$. First, the *j_pointer* index is set to 0. Then, from lines 8 to 11, we set the variable *location* to signal if $l_{-candidate_{Ch_i}}$ is the inward or the outward list. We iterate over the set *l_candidates_Chi* to look for similar chains, using the similarity criterion defined in Equation (9). The loop over the chains in the subset $l_{candidates}$. Chi goes from line 12 to 19. The current chain, Ch_i , inside the inner while loop, is indexed by the *j_pointer* index. In line 14, all chains in the subset $l_{candidates}Chi$ not intersecting with chain Ch_j are chosen. As rings do not intersect each other, candidates to be part of the same ring can not intersect between them. Line 15 detects Ch_k^b , the closest chain in *l_candidates_Chi* to endpoint B of Ch_i , that satisfies the similarity constraints (Algorithm 16), and line 16 does the same for Ch_k^a concerning endpoint A of Ch_i . Line 17 selects which is closest to its corresponding endpoint in Ch_i . Line 18 calls the function that connects the closest one to the corresponding endpoint using the Euclidean distance between them (Algorithm 14); finally, in line 19, $j_{-pointer}$ is updated. If two chains are connected over this iteration, then in the next iteration, we iterate again over Ch_i . Note that when two chains are connected, the candidate chain (Ch_k) is deleted from the list of candidate chains, and their nodes are added to chain Ch_i . In line 20, we update the outer while loop system variables to define if the process is finished (i.e., all chains are connected). In line 21, we iterate over all the chains in list $l_{-}Ch_{s}$, and if the chain has enough nodes, we complete it, following Algorithm 12. Finally, we return the connected chain list and their nodes, l_ch_c and l_nodes_c , respectively.

Methods get_next_chain and $update_system_state$ contain the logic to get Ch_i at the current iteration. The former is the primary one and is described in Algorithm 10 (a method of $State_i$). As input, this function receives the support chain Ch_i , the outward and inward candidates lists $l_{-soutward}$ and $l_{-s_{inward}}$, and the system status object $State_i$. This object is mainly used to point to important variables in the connecting module as the chains and nodes lists, $l_{-}ch_{s}$ and $l_{-}nodes_{s}$. In line 1, the list l_{-ch_s} is extracted from State_i. System status changes if some chains are connected during the current iteration. In other words, if the chain list length at the beginning of the iteration is more extended than at the end, the system has changed. This is done in the method $system_status_change()$ of $State_i$. If the system status changes, lines 2 to 13 are executed. Because the system status has changed, the chains in $l_{-}ch_{s}$ are not in order anymore, so we sort them by size again (line 3). In line 4, we define a list $l_{-current_{-iteration}}$ whose elements are all the chains involved in the current iteration, the ones belonging to lists $l_{soutward}$ and $l_{sinward}$ as well as the support chain Ch_i . In line 5, we sort them by size; in line 6, we get the longest, called *longest_chain*. We are indexing the list *l_current_iteration*, which has all its elements sorted by size. If longest_chain equals Ch_i , we set as *next_chain_index* (for the next iteration) the chain that follows in size the support chain Ch_i , line 8. If the support chain Ch_i is not the most extended (line 11), we set as next_chain_index the chain index that follows in size, *longest_chain*'s index. Finally, if the system status did not change at the

Algorithm 9	: Connect	Chains	Main	Logic
-------------	-----------	--------	------	-------

Input: M //Binary Matrix with intersection chains info c, // center of the sypder web nr, // number of total rays **Parameters**: l_ch_s , // chains list $l_nodes_s, // \text{ nodes list}$ th_radial_tolerance, // Radial tolerance for connecting chains th_distribution_size, // Chains Radial Difference Standard deviations for connecting chains th_regular_derivative, // Chains Radial Derivative threshold for connecting chains neighbourhood_size, //Max Angular distance allowed for connecting chains derivative_from_center // Related to how nodes are interpolated **Output:** A list $l_ch_c^k$, $k = 1, 2, \dots, N_f$, where each element is a *chain*, $l_nodes_c^k, k = 1, 2, \cdots, N_f$, where each element is a Node 1 $State_{i-1} \leftarrow 0$ 2 $State_i \leftarrow init_system(l_ch_s, l_nodes_s, M, c, nr, th_radial_tolerance, th_distribution_size,$ th_regular_derivative, neighbourhood_size, derivative_from_center) **3 while** $State_i \neq State_{i-1}$ **do** $Ch_i \leftarrow \text{get_next_chain}(State_i) / / \text{See Algorithm 11}$ 4 $l_s_outward, l_s_inward \leftarrow get_chains_in_and_out_wards(l_ch_s, Ch_i)$ 5 for *l_candidates_Ch_i* in (*l_s_outward*, *l_s_inward*) do 6 $j_pointer \leftarrow 0$ 7 if $l_candidates_Ch_i == l_s_inward$ then 8 $location \leftarrow$ "inward" 9 else 10 $location \leftarrow$ "outward" 11 while length($l_candidates_Ch_i$) > $j_pointer$ do 12 $Ch_i \leftarrow l_candidates_Ch_i[j_pointer]$ 13 $l_no_intersection_j \leftarrow \text{get_non_intersection_chains}(M, l_candidates_Ch_i, Ch_j)$ $\mathbf{14}$ $Ch_k^b \leftarrow \text{get_closest_chain_logic}(State_i, l_candidates_Ch_i,$ 15 $Ch_i, l_{no_intersection_j}, Ch_i, location, B) // See Algorithm 15$ $Ch_k^a \leftarrow \text{get_closest_chain_logic}(State_i, l_candidates_Ch_i)$ 16 $Ch_i, l_no_intersection_j, Ch_i, location, A)//See Algorithm 15$ Ch_k , endpoint \leftarrow select_closest_one (Ch_i, Ch_k^a, Ch_k^b) 17 connect_two_chains($State_i, Ch_i, Ch_k, l_candidates_Ch_i, endpoint, Ch_i$)//See 18 Algorithm 14 $j_pointer \leftarrow update_pointer(Ch_j, Ch_k, l_candidates_Ch_i)$ 19 $State_i, State_{i-1} \leftarrow update_system_status(State_i, Ch_i, l_s_outward, l_s_inward)//See$ 20 Algorithm 10 21 $l_ch_c, l_nodes_c \leftarrow \text{iterate_over_chains_list_and_complete_them_if_met_conditions}(State_i)$ **22 return** l_ch_c, l_nodes_c

current iteration, in line 15, we repeat the same sentence as in line 8. Output $next_chain_index$ is returned as an attribute of $State_i$.

Algorithm 10: update_system_status

Input: $State_i$, // class object that has a pointer to all the system objects Ch_i , // current support chain $l_s_outward, //$ outward chain list $l_s_inward, //$ inward chain list **Output:** chain for next iteration. Stored in class $State_i$ 1 $l_ch_s \leftarrow State_i.get_list_chains()$ **2** if *State_i*.system_status_change() then sort_chain_list_by_descending_size(l_ch_s) 3 $l_current_iteration \leftarrow Ch_i + S_{outward} + S_{inward}$ 4 sort_chain_list_by_descending_size(*l_current_iteration*) $\mathbf{5}$ $longest_chain \leftarrow l_current_iteration[0]//l_current_iteration$ is sorted by size 6 if $Ch_i = longest_chain$ then 7 $next_chain_index \leftarrow get_next_chain_index_in_list(l_ch_s, Ch_i)$ 8 end 9 else 10 $next_chain_index \leftarrow get_chain_index_in_list(l_ch_s, longest_chain)$ 11 end 1213 end 14 else 15 $next_chain_index \leftarrow get_next_chain_index_in_list(l_ch_s, Ch_i)$ 16 end $State_i.next_chain_index \leftarrow next_chain_index$ 17 return 18

Algorithm 11 implements the function get_next_chain , executed at line 5 of Algorithm 9, in order to find the next support chain. It is a method of class $State_i$. In line 1, l_ch_s is extracted from $State_i$. In line 2, the next support chain Ch_i is extracted from the list l_ch_s using the $next_chain_index$ variable (output of Algorithm 10). In line 3, the size of the list l_ch_s is stored in the variable $size_l_chain_init$, an attribute of $State_i$. The longer the support chain, the better. So, in line 4, if Ch_i is large enough and between its endpoints do not exist overlapping chains, the chain becomes a closed chain (ring), with size equal to Nr, interpolating the nodes (Algorithm 12). Finally, we return the support chain Ch_i for the current iteration.

Algorithm 11: get_next_chain

Input: $State_i$,// class object that has pointers to all the system objects **Output:** next support chain

- 1 $l_ch_s \leftarrow State_i.get_list_chains()$
- 2 $Ch_i \leftarrow l_ch_s[State_i.next_chain_index]$
- **3** State_i.size_l_chain_init \leftarrow length(l_ch_s)
- 4 $State_i.fill_chain_if_there_is_no_overlapping(Ch_i),// See Algorithm 12$
- 5 return Ch_i

Algorithm 12 checks if overlapping chains exist between the endpoints of a given chain and, if it's the case, completes the chain. Lines 2 to 7 check the *chain* size. The function returns if it is bigger

or equal to the number of rays Nr or chain is not closed. Class chain has the method is_closed(), which returns True if the chain has more than threshold * Nr nodes. threshold is a method parameter and, on line 5, is set to 0.9. In lines 8 and 10, we check that between the interpolated nodes does not exist another chain. If it exists, we do not add new nodes to *chain*. To check if a chain exists between both chains, we build a virtual band between the endpoints to be connected, as illustrated in Figure 13. Let's name Ch_j and Ch_k the two chains to be connected, even if they can be part of the same (long) chain. Chain Ch_i is the support chain. Blue and green nodes define the virtual band between the endpoints to be connected. Red nodes are the nodes to be added to *chain* if there are no overlapping chains in the band. The width of the band is a % of the radial distance to the support chain Ch_i . In our experiment, we set *band_width* = 0.1 if the support chain is of type Normal and $band_width = 0.05$ if the support chain is of type Center. Nodes in red are generated interpolating between the endpoints by a line in polar coordinates (with origin in c). In line 8, we set all the elements utilized to check for overlapping chains. All the red nodes plus both endpoints are added to the list *l_nodes*, the support chain is Ch_i and *endpoint_type* indicates the type of the Ch_i endpoint, in this case, is of type B (Figure 8). In line 9, the function exist_chain_overlapping checks if overlapping chains exist in the defined band. We say that a chain exists in the band if some node within the band defined in Figure 13 belongs to a different chain than Ch_i or Ch_k . In this line we are passing chain twice because Ch_j is equal to Ch_k (Algorithm 13). Finally, if overlapping chains do not exist, we add the red nodes to the global nodes list and the inner *chain* node list (line 13). As we said, the l_nodes list also includes both chain endpoints. The function add_nodes_list_to_system modifies the (system) in two ways: it incorporates new nodes to the global nodes list (l_nodes_s) and updates the visibility information in the chains which have endpoints on the rays in which new nodes were added.

Algorithm 12: fill_chain_if_there_is_no_overlapping

Input: $State_i$,// class object that has pointers to all the system objects *chain*, // chain to be completed if conditions are met. Passed by reference. **Output:** Void. If nodes are created, they are added to *chain* and *State_i* directly

- 1 $l_ch_s \leftarrow State_i.get_list_chains()$
- **2** if $chain.size \geq chain.Nr$ then
- 3 return
- 4 end
- 5 if not chain.is_closed(threshold=0.9) then
- 6 return
- 7 end
- **s** Ch_i , l_nodes , $endpoint_type \leftarrow$

 $State_i.compute_all_elements_needed_to_check_if_exist_chain_overlapping(chain)$

- 9 $exist_chain \leftarrow exist_chain_overlapping(l_ch_s, l_nodes, chain, chain, endpoint_type, Ch_i)//See Algorithm 13$
- 10 if $\underline{exist_chain}$ then
- 11 return
- 12 end
- 13 $State_i.add_nodes_list_to_system(chain, l_nodes)$
- 14 return

Figure 13 describes how an overlapping chain is tested between two chains that are candidates to be connected, named here Ch_j and Ch_k . Algorithm 13 shows the method. As input, it receives the chain's list, $l_{-}ch_{-}s$, in which to iterate to identify any chain overlapping with a given band. The

band is defined by a nodes list, l_nodes , which includes the (interpolated) red nodes plus Ch_j and Ch_k node endpoints (Figure 13). This band is built by the class **InfoVirtualBand**. The parameter band_width is a % of the radial distance to the support chain Ch_i . If Ch_i is of type center, band_width is equal to 5%, else to 10%. Once the width of the band is defined, we iterate over the nodes of l_nodes , generating two nodes for each one of them. These two generated nodes belong to the same ray but have different radial distances to the center, as shown in the figure. Suppose the radial difference between the node belonging to l_nodes and the node over the support chain, N_i , belonging to the same ray is δR_i . In that case, the generated nodes have the following radial distances:

- $R(N_i^{green}) \leftarrow \delta R_i^*(1+band_width) + R(N_i)$
- $R(N_i^{blue}) \leftarrow \delta R_i^*(1\text{-}band_width) + R(N_i)$

Where R(.) is the radial distance to the center of a given node, Equation (6). The band information (green and blue nodes) is stored in the $info_band$ object. The function $exist_chain_in_band_logic$ returns the list of chains belonging to l_ch_s that overlap with the band defined by $info_band$. This is made by iterating over the chains belonging to l_ch_s and checking if they have nodes between the blue and green nodes. The chains that intersect the band are added to list $l_chains_in_band$. Therefore, if the length of $l_chains_in_band$ is larger than 0, at least one overlapping chain exists over the given band.

Algorithm 13: exist_chain_overlapping

Input: l_ch_s ,//list chains l_nodes , // list of interpolated nodes plus the endpoints Ch_j ,// source chain. Check Figure 13 ch_k ,// destination chain. Check Figure 13 $endpoint_type$,// source chain endpoint (A or B) Ch_i ,// support chain **Output:** Boolean. True if exist chain belonging to l_ch_s in band 1 $info_band \leftarrow InfoVirtualBand(l_nodes, Ch_j, Ch_k, endpoint_type, Ch_i)$ 2 $l_chains_in_band \leftarrow exist_chain_in_band_logic(l_ch_s, info_band)$ 3 $exist_chain \leftarrow len(l_chains_in_band) > 0$ 4 **return** $exist_chain$

Algorithm 14 describes the procedure to connect two chains. In line 1, new nodes to connect both chains are generated and added to chain Ch_j . Nodes are generated through polar coordinates linear interpolation. Visibility chain information over the rays in which new nodes are generated is also updated. In line 2, nodes from chain Ch_k are added to chain Ch_j , and the neighborhood information is updated, particularly the visible chains (as both chains are merged). Neighborhood chains list information is updated in line 3, and the Ch_k chain is deleted from all lists (line 4). The intersection matrix, M, is updated in line 5, as new intersections can appear. Therefore visibility chains pointer may need to be updated. Additionally, as one chain is deleted, matrix M reduces its dimension by one. Finally, all chain ids are updated, given the new situation in line 6. Chains id are organized in a sequential manner and without holes between them. This is because chain id is used for indexing the interpolation matrix. All the objects involved in this logic are passed by reference and are updated, including the Ch_i chain.

The method to find the (closest) candidate chain to be connected to chain Ch_j , given a support chain Ch_i , is implemented in get_closest_chain_logic (Algorithm 15). It finds the Ch_k chain to be connected to the corresponding Ch_j endpoint and checks if a symmetric condition is fulfilled. The

Figure 13: Red nodes are the interpolated ones between Ch_j and Ch_k chains. Blue chains are the ones that define the outer band (outward), while green defines the inward band. Ch_i is the support chain.

Algorithm 14: connect_two_chains

Input: State_i, Ch_j , // current chain to be connected Ch_k , // closest chain to be connected with Ch_j $l_candidates_Ch_i$, // set of chains where to pick chains to connect with Ch_j endpoint, //Ch_j endpoint to be connected Ch_i , //support chain Ch_i **Output:** Void. Nodes are added to Ch_j and system list are updated in State_i

1 generate_new_nodes($State_i, Ch_j, Ch_k, endpoint, Ch_i$)

- 2 updating_chain_nodes($State_i, Ch_j, Ch_k$)
- **3** update_chain_after_connect($State_i, Ch_j, Ch_k$)
- 4 delete_closest_chain($State_i, Ch_k, l_candidates_Ch_i$)
- 5 update_intersection_matrix($State_i, Ch_j, Ch_k$)
- 6 update_chains_ids $(State_i, Ch_k)$

7 return

symmetric condition means that if Ch_k chain is the closest to the Ch_j endpoint, then Ch_j must be the closest to the Ch_k 's corresponding endpoint. In line 1, get_closest_chain, find the nearest chain to the corresponding endpoint of Ch_j , called Ch_k , within the chain set $l_no_intersection_j$. In line 2, all the chains included in $l_candidates_ch_i$ that do not intersect with Ch_k are added to the set $l_no_intersection_k$. From lines 4 to 9, Ch_k endpoint type is defined, named endpoint_k. In line 10, the closest chain to Ch_k called symmetric_chain, is obtained from the set $l_no_intersection_k$. Finally, in line 11 is checked that symmetric_chain is Ch_j and that the addition of Ch_k and Ch_j lengths is smaller than Nr. If all the former conditions are met, the Ch_k chain is returned.

Algorithm 15: get_closest_chain_logic

Input: $State_i$, Ch_j , // current chain $l_candidates_Ch_i$, // set of visible chains from Ch_i $l_no_intersection_j//list$ of chains belonging to $l_candidates_Ch_i$ that do not intersect with Ch_i Ch_i , //support chain location, // location of set $l_candidates_Ch_i$ with respect to Ch_i (inward or outward) $enpoint_{i}//Ch_{i}$ endpoint A or B to be connected **Output:** closest chain to Ch_i 1 $M \leftarrow State_i.M$ 2 $Ch_k \leftarrow \text{get_closest_chain}(State_i, Ch_i, l_no_intersection_j, Ch_i, location, endpoint, M) // See$ Algorithm 16 **3** $l_{no_intersection_k} \leftarrow \text{get_non_intersection_chains}(M, l_candidates_Ch_i, Ch_k)$ 4 if endpoint = B then $endpoint_k = A$ $\mathbf{5}$ 6 end 7 else $\mathbf{s} \quad endpoint_k = \mathbf{B}$ 9 end 10 symmetric_chain \leftarrow get_closest_chain(State_i, Ch_k, l_no_intersection_k, Ch_i, location, $endpoint_k, M) / /$ See Algorithm 16 11 if <u>not</u> $(symmetric_chain == Ch_j)$ and not $(lenght(Ch_k) + lenght(Ch_j)) \leq Nr$ then $Ch_k = None$ 1213 end 14 return Ch_k

Algorithm 16 describes the logic to search for the closest candidate chain that met some conditions, as described in item 3. In line 2, all the chains in the neighborhood are selected. The neighborhood is defined by the Ch_j endpoint and the neighbourhood_size State_i attribute. For example, given endpoint A with an angle of 0 degrees and neighbourhood_size = 20, all the chains included in $l_candidates_Ch_i$ with endpoint B angle in [0 - 20, 0] = [340, 360] are selected and returned in ascending angular order with respect to the Ch_j endpoint. From lines 5 to 12, the main loop logic is defined. Two conditions allow to exit of the loop: a chain that satisfies conditions from Equation (9) is found, or no chains in the set $l_sorted_chains_in_neighbourhood$ satisfy the conditions. The Equation (9) is implemented in function connectivity_goodness_condition (line 7). If candidate_chain satisfies the conditions, it could happen that exists a chain in the subset $l_no_intersection_j$ closer to Ch_j in terms of the connectivity goodness conditions but further in the angular distance. So in line 9, a control mechanism is added (Algorithm 17).

The control mechanism (line 9, Algorithm 16) to solve the issue shown in Figure 14 is implemented

Algorithm 16: get_closest_chain	
Input: $State_i$,	
Ch_j , // current chain	
$l_no_intersection_j$, // chains that no intersect with Ch_j , set of candidates to connect with Ch_j	
Ch_i , // support chain	
location, // inward o outward position of Ch_j regarding to the support chain	
$endpoint, // Ch_j$ endpoint	
$M_{,//}$ intersection matrix	
Output: closest chain to Ch_j that satisfies the connectivity goodness conditions.	
1 neighbourhood_size \leftarrow State _i .neighbourhood_size	
2 $l_sorted_chains_in_neighbourhood \leftarrow get_chains_in_neighbourhood(neighbourhood_size,$	
$l_{no_intersection_j}, Ch_i, Ch_i, endpoint, location)$	
s $next_id \leftarrow 0$	
4 $Ch_k \leftarrow None$	
5 while $len(l_sorted_chains_in_neighbourhood) > next_id$ do	
$6 candidate_chain \leftarrow l_sorted_chains_in_neighbourhood[next_id]$	
7 $pass_control, radial_distance \leftarrow connectivity_goodness_condition(State_i, Ch_j,$	
$candidate_chain, Ch_i, endpoint) / / See Algorithm 18$	
$\mathbf{s} \mathbf{if} \; \underline{pass_control} \; \mathbf{then}$	
9 $Ch_k \leftarrow \text{get_the_closest_chain_by_radial_distance_that_does_not_intersect}(Ch_j, endpoint,$	
$location, radial_distance, candidate_chain, M, l_sorted_chains_neighbourhood)// See$	
Figure 14 and Algorithm 17	
10 break	
11 end	
$12 next_id \leftarrow next_id + 1$	
13 end	
14 return $\underline{Ch_k}$	

Figure 14: Ch_i is the support chain. The candidates chains for connection with Ch_j , are Ch_k and Ch_l . The angular closest chain to Ch_j is the noisy Ch_l . Ch_k is the radially closest chain to Ch_j , these means that $||r_j - r_k|| < ||r_j - r_l||$. Where r_i is the chain's endpoint distance to the support chain.

by Algorithm 17. In angular terms, the closest chain to Ch_j that satisfies Equation (9) is Ch_l . However, another chain exists, Ch_k , which is more similar but not the closest in terms of angular distance, Equation (7). To fix this, we get all the chains that intersect to Ch_l and satisfy Equation (9) with Ch_j . We sort them by radial proximity to Ch_j , Equation (6), and return the best candidate chain as the closer one in terms of radial distance. Line 1 of Algorithm 17, get the chains that intersect with candidate_chain. Note that candidate_chain is the closest chain of angular distance, Equation (7), to Ch_j . In line 2, the former chains subset, l_i intersections_candidate, is filtered by the Equation (9) condition. In line 3, chains that satisfy that condition are sorted in ascending order by radial difference with the Ch_j endpoint. Therefore, in Figure 14, Ch_k would be the first element and Ch_l the second. In line 4, the radially closest one to Ch_j is returned.

Algorithm 17: get_the_closest_chain_by_radial_distance_that_does_not_intersect

Input: State_i,

 Ch_j , // current chain Ch_i , // support chain endpoint, // Ch_j endpoint $candidate_chain_radial_distance$, //radial difference between Ch_j and $candidate_chain$ endpoints $candidate_chain$, // angular closer chain to Ch_j M_j // intersection matrix $l_sorted_chains_in_neighbourhood$, // chains in Ch_j endpoint neighbourhood sorted by angular distance **Output:** closest chain to Ch_j that satisfies connectivity goodness conditions.

- $1 \ l_intersections_candidate \leftarrow intersection_chains(M, candidate_chain, l_sorted_chains_in_neighbourhood)$
- 2 $l_intersections_candidate_set \leftarrow get_all_chain_in_subset_that_satisfy_condition(State_i, Ch_j, Ch_i, endpoint, candidate_chain_radial_distance, candidate_chain, l_intersections_candidate)$

3 sort_set_list_by_distance(*l_intersections_candidate_set*)

4 $Ch_k \leftarrow l_intersections_candidate_set[0].cad$

5 return Ch_k

The connectivity_goodness_condition function is described by Algorithm 18. From lines 1 to 4, the parameters (Table 1) are extracted from the $State_i$ class. In line 6, the chain size condition is verified and saved in *size_condition*. In line 7, the endpoint condition is verified. Figure 15 shows an example of this check where Ch_i is the support chain for Ch_{i+1} and Ch_{i+2} . Both endpoints A_{i+1} from chain Ch_{i+1} and endpoint B_{i+2} from chain Ch_{i+2} are visible. It is not possible to connect chains Ch_{i+1} and Ch_{i+2} through endpoints B_{i+1} and A_{i+2} because these endpoints do not belong to the chain support Ch_i angular domain. In line 8, the Equation (9) condition is verified. A boolean result about the similarity condition and the distribution of the radial distance between Ch_j and candidate_chain are returned. The later is defined as distribution_distance = $||mean(radials_{ch_j}) - mean(radials_{candidate_chain})||$. Finally, in line 9, all conditions are verified. The function returns both the boolean check of the conditions and the value of distribution_distance.

postprocessing This last stage aims to complete the remaining chains relaxing the conditions even more. At this stage, many chains are closed, i.e., chains with size = Nr, which we call rings. We have some nonclosed chains that can be noisy or be part of a ring but have not been completed for some reason. We use the information on the neighborhood chains to finish or discard these remaining chains. We talk about *region* to describe the area between two rings.

Figure 15: Endpoint condition check. See the text for an explanation.

Algorithm 18: connectivity_goodness_condition

Input: State_i, Ch_j , // current chain $candidate_chain, //$ chain closer to Ch_j Ch_i , // support chain of Ch_j and candidate_chain endpoint, $// Ch_i$ endpoint **Output:** a boolean indicating if conditions are met, *distribution_distance* (radial difference between both chains) /* Parameter extraction, from Table 1 */ 1 th_radial_tolerance \leftarrow State_i.th_radial_tolerance 2 $th_distribution_size \leftarrow State_i.th_distribution_size$ **3** th_regular_derivative \leftarrow State_i.th_regular_derivative 4 $derivative_from_center \leftarrow State_i.derivative_from_center$ /* Condition checks */ **5** $distribution_distance \leftarrow$ None 6 size_condition $\leftarrow Ch_i.size + candidate_chain.size \leq Nr$ 7 endpoint_conditions \leftarrow check_endpoints($Ch_i, Ch_j, candidate_chain, endpoint$) s similarity_condition, distribution_distance \leftarrow similarity_conditions(State_i, $th_radial_tolerance, th_distribution_size, th_regular_derivative, derivative_from_center, Ch_i$ Ch_i , candidate_chain, endpoint) // Equation (9) 9 $check \leftarrow size_condition$ and $endpoint_condition$ and $similarity_condition$

10 return check, $distribution_distance$

Figure 16: a) F03d disk after connecting stage. b) There is a ring that cannot be closed because of chain intersection issues. c) Ring is closed after the postprocessing stage.

- 1. It can remain some chains belonging to the same ring but not forming a closed chain. In many cases, this is due to small overlapping between chains. To solve this problem, we cut the overlapping chains in such a way as to avoid intersections between them and then try to reconnect the resulting chains that respect the connectivity goodness conditions. Figure 16 illustrates the problem.
- 2. Given two closed chains which contain a set of chains between them. Suppose the added angular length of the non-overlapping chains between the rings is more significant than 180 degrees. In that case, we consider that those uncompleted chains have enough information about the ring, so we complete it. The completion is based on the interpolation between both rings and the location of the existing chains. The chains that become part of the closed chain are the ones that meet the connectivity goodness conditions.
- 3. To test the connectivity goodness in this stage, we use the values on the last column of Table 1.

The method is described by Algorithm 19. It uses the center of the spider web and the chains and nodes lists. In line 1, the function is initialized,

- l_ch_c is copied into new list l_ch_p
- Function variables are initialized as $chain_was_completed = FALSE, idx_start = NONE$

The main loop spans all the closed chains and includes lines 2 to 14. In line 3, the **DiskContext** object is instantiated. This object handles the logic to iterate over the regions delimited by the closed chains and go from the smaller to the bigger area (defined between the chain and the center). The two neighboring closed chains, and all the chains between them are identified in line 5 (ctx.update()). Some information is stored in the following variables

- *inward_ring*: The inward closed chain. If it is the first iteration, the chain is of type center (an artificial chain in the center with area = 0).
- *outward_ring*: The outward closed chain. If the chain is of type border, this is the last iteration.
- *l_within_chains*: chain subset delimited by *inward_ring* and *outward_ring*.

A ring defines an internal area from the chain to the center. All closed chains (rings) are sorted by their inner area. The current index iteration is stored in the variable idx of object **DiskContext**.

The **shapely** python library is used to get the chains in regions between two rings. A region is determined by two shapely **Polygon**, one external and one internal. A **Polygon** is a list of points. Each closed chain is codified as a shapely **Polygon**. A method of the object **Polygon** allows us to find the set of uncompleted chains inside a region.

The loop defined between lines 4 and 12 iterates over the closed chains. In line 6, the function for split and connect chains is called. If a chain inside l_within_chains is closed during the call to *split_and_connect_chains*, we exit the inner loop. If a chain was completed during a call, *chain_was_completed* is set to TRUE in line 6. The next iteration will work with the same *inward_ring*, but the formerly closed chain is used as *outward_ring*. The set l_within_chains is modified accordingly. In line 8, *idx_start* variable is set for the **DiskContext** object in the next iteration.

The chains are connected if enough information between inward and outward chains and connectivity goodness conditions are met (line 10). In line 15, all the chains with enough nodes (more than 0.95Nr nodes) are closed. In that case, new nodes are added to obtain a chain with Nr nodes. To this aim, we linearly interpolate between the inward and outward rings, going from one endpoint to another. Finally, the list of all post-processed chains, both closed and not closed, l_cch_p is returned.

The method *split_and_connect_chains* is described in Algorithm 20. It iterates over all the chains within a region to connect them. At every chain endpoint, the method cuts all the chains that intersect the ray passing through that endpoint and checks the connectivity goodness condition, Equation (8), between the divided chains to find connections between them. Notice that this module removes the chain overlapping constraint. The parameters used by this module are:

- 1. $neighbourhood_size = 45$
- 2. $Th_{Radial_tolerance} = 0.2$
- 3. $Th_{Distribution_size} = 3$
- 4. $Th_{Regular_derivative} = 2$

The parameter *neighbourhood_size* defines the maximum angular distance (Equation (7)) to consider candidate chains departing from an endpoint in both directions. Given a source chain (the current chain Ch_j), every chain in the region that overlaps Ch_j in more than *neighbourhood_size* is not considered a candidate chain to connect because if there is a very long overlapping, that chain is probably part of another ring. In line 1, the method is initialized, and variables *connected*, *completed_chain*, and Ch_j are set to FALSE. Also, the *chains* in *l_within_chains* list are sorted

I	Algorithm 19: Posprocessing Main Logic
Ī	input: l_ch_c , // chains list
l	$_nodes_c, // \text{ nodes list}$
C	e // center of the sypder web
(Dutput: A list of post-processed chains $l_{-}ch_{p}^{k}$, $k = 1, 2, \cdots, N_{f}$
1 l	$_ch_p \leftarrow \text{initialization}(l_ch_c)$
2 1	while $\underline{\text{True}} \mathbf{do}$
3	$\operatorname{ctx} \leftarrow \operatorname{DiskContext}(l_{ch_{p}}, idx_{start})$
4	while $len(ctx.completed_chains) > 0$ do
5	$l_within_chains, inward_ring, outward_ring \leftarrow ctx.update()$
6	$chain_was_completed \leftarrow split_and_connect_chains(l_within_chains, inward_ring,$
	$outward_ring, l_ch_p, l_nodes_c, ctx.neighbourhood_size) // See Algorithm 20$
7	$\mathbf{if} \operatorname{\underline{chain_was_completed}} \mathbf{then}$
8	$idx_start \leftarrow ctx.idx$
9	break
10	connect_chains_if_there_is_enough_data(ctx , l_nodes_c , l_ch_p)
11	$\mathbf{if} \underline{\mathrm{ctx.exit}()} \mathbf{then}$
12	break
13	if not chain_was_completed then
14	break
15 (\sim complete_chains_if_required(l_ch_p)
16 I	$return \ \underline{l_ch_p}$

by size in descending order. The chain nodes inside the region are stored in the l_inward_nodes list (line 2). The main loop, lines 3 to 15, iterates over the chains in l_within_chains . The loop terminates when either current chain Ch_j is closed or all chains in list l_within_chains have been tested. In line 10, a new (non-treated) chain is extracted for the current iteration and stored in Ch_j . The splitting and connecting logic called $split_and_connect_neighbouring_chains$ is executed in line 13. The best candidate chain for endpoint A (Ch_k^a) is determined at this point, while the best candidate chain for endpoint B (Ch_k^b) is obtained in line 14. Ch_i^a and Ch_i^b are the support chains of chains Ch_k^a and Ch_k^b respectively. The radial distance (Equation (6)) of chain $Ch_k^a(Ch_k^b)$ to Ch_j trough endpoint A(B) is $dif f_a(dif f_b)$. The radially closest candidate chain is connected in function $connect_radially_closest_chain$ (line 15), and the maximum number of nodes (Nr = 360) constraint is verified. The same node interpolation as in line 15 of Algorithm 19 is used.

Algorithm 20: split_and_connect_chains

Input: *l_within_chains*, // uncompleted chains delimited by inward_ring and outward_ring inward_ring, // inward ring of the region outward_ring, // outward ring of the region $l_{-}ch_{p}$, // chain list l_nodes_c , // full nodes list Parameter: neighbourhood_size // size to search for chains that intersect the other endpoint **Output:** boolean value indicating if a chain has been completed on the region 1 connected, completed_chain, $Ch_i \leftarrow \text{initialization_step}(l_within_chains)$ 2 $l_inward_nodes \leftarrow get_nodes_from_chain_list(l_within_chains)$ while True do 3 if not *connected* then $\mathbf{4}$ if Ch_i is not None and $Ch_i.is_closed()$ then $\mathbf{5}$ complete_chain_using_2_support_ring(inward_ring, outward_ring, Ch_i) 6 completed_chain \leftarrow True 7 $Ch_i \leftarrow None$ 8 else 9 $Ch_i \leftarrow \text{get_next_chain}(\ l_within_chains)$ 10if $Ch_j ==$ None then 11 break 12 $Ch_k^a, diff_a, Ch_i^a \leftarrow \text{split}_and_connect_neighbouring_chains(l_inward_nodes,$ $\mathbf{13}$ *l_within_chains*, *Ch_j*, *A*, *outward_ring*, *inward_ring*, *neighbourhood_size*) $Ch_k^b, diff_b, Ch_i^b \leftarrow \text{split}_and_connect_neighbouring_chains(l_inward_nodes,$ $\mathbf{14}$ *l_within_chains*, *Ch_j*, *B*, *outward_ring*, *inward_ring*, *neighbourhood_size*, $aux_chain = Ch_k^a)//See$ Algorithm 21 connected, Ch_i , endpoint \leftarrow connect_radially_closest_chain $(Ch_j, Ch_k^a, diff_a, Ch_i^a, Ch_k^b)$ 15 $diff_b, Ch_i^b, l_ch_p, l_within_chains, l_nodes_c, inward_ring, outward_ring)$

16 return *completed_chain*

Given a source chain, Ch_j , the logic for splitting neighborhood chains and searching for candidates is implemented by Algorithm 21. Chains that intersect the ray supporting Ch_j endpoint are split. In line 1, the angle domain of Ch_j is stored in Ch_j -angle_domain. In line 2, variable Ch_j -node stores the Ch_j node endpoint. The closest chain ring to the Ch_j endpoint (in Euclidean distance) is selected as the support chain, Ch_i . From lines 4 to 7, we have the logic to get all chains in the region delimited by two rings intersecting the ray Ray_e supporting the endpoint. First, we store in l_nodes_ray all the nodes over Ray_e , pinpointing the chains supporting those nodes, and keep those chains in *l_endpoint_chains*. To be cut, the overlapping between a chain in the set *l_endpoint_chains* and Ch_i must be smaller than *neighbourhood_size*. Otherwise, it is filtered because that chain belongs to another ring (line 7). The method in line 8 effectively cut the chosen chains. Once a chain is cut, it produces a sub_chain nonintersecting Ch_j , stored as a candidate chain in *l_candidates* (line 8) and in the list $l_{no_intersections_j}$ (line 9). In line 10, all chains that intersect Ch_i in the second endpoint and are in the neighborhood of the first endpoint are added to *l_candidates*. Also, the chains in the Ch_i chain neighborhood, which does not intersect its endpoint but intersects in the other endpoint, are split (line 11). In line 12, all chains in $l_{-no_{-}intersections_{-}j}$ that are far away in terms of angular distance (Equation (7)) from the given endpoint of Ch_i are removed. The nonintersecting chains in the endpoint neighborhood are stored in $l_{-filtered_no_intersection_j}$. In line 13, chains in $l_filtered_no_intersection_j$ are added to $l_candidates$. In line 14, all chains from $l_{-candidates}$ which do not satisfy the connectivity goodness conditions of Equation (8) are discarded. In line 15, the closest chain that meets the connectivity goodness conditions is returned, Ch_k , and diff, the radial difference between Ch_k and Ch_j endpoints (Equation (6)), and the support chain, Ch_i .

Method $split_intersecting_chains$ is described in Algorithm 22. Given an endpoint ray direction, we iterate over all the intersecting chains in that *direction*. Given a chain to be split, *inter_chain*, and the node, $split_node$, we divide the chain nodes in two chains cutting the nodes list in the position of $split_node$. Remember that the list of nodes within a chain is clockwise sorted. After splitting the chain in sub_ch1 and sub_ch2 , we select the sub chain that does not intersect *inter_chain*, line 5. Then, if Ch_k intersects Ch_j in the other endpoint, this means that *inter_chain* intersects Ch_j at both endpoints, we repeat the logic over the other endpoint but for Ch_k instead of *inter_chain*. The split chain list is returned in l_search_chains .

Another critical method from Algorithm 19 is *connect_chains_if_there_is_enough_data*. When there is a unique chain longer than *information_threshold* (180 in our experiments), we interpolate between its endpoints using both inward and outward support chains. When there are several chains in the region, we get the largest subset of chains in the region that non intersect each other. Suppose the chains over this subset have an angular domain bigger than *information_threshold* (180 in our experiments). In that case, we iterate over the chains within the subset (sorted by size) and connect all the chains that satisfy the similarity condition using the last column of Table 1.

3.3 Pith detection

The pith position is an input for the method. In the demo it can be set manually or using the method proposed for Decelle et al, [4], which is at the IPOL site.

4 Implementation

The implementation was made in Python 3.11.

4.1 Input and Output

The demo requires as input, a segmented image and the pith position. A command line execution example is:

\$ python main.py — input IMAGE_PATH — cx CX — cy CY

Algorithm 21: split_and_connect_neighbouring_chains

Input: *l_within_nodes*, // nodes within region *l_within_chain*, // uncompleted chains delimited by inward and outward rings Ch_i , // current source chain. The one that is being connected if conditions are met endpoint,// endpoint of source chain to find candidate chains to connect outward_ring, // outward support chain ring inward_ring, // inward support chain ring neighbourhood_size, // total nodes size to search for chains that intersect the other endpoint **Output:** Source chain Ch_k , radial_distance and closest support chain to endpoint, Ch_i 1 Ch_{i} -angle_domain \leftarrow get_angle_domain (Ch_{i}) 2 Ch_{j} -node \leftarrow get_node_endpoint $(Ch_{j}, endpoint)$ **3** $Ch_i \leftarrow$ select_support_chain(*outward_ring*, *inward_ring*, *Ch_j_node*) 4 $l_nodes_ray \leftarrow$ select_nodes_within_region_over_ray($Ch_i, Ch_i_node, l_within_nodes$) 5 $l_chain_id_ray \leftarrow extract_chains_ids_from_nodes(l_nodes_ray)$ 6 $l_endpoint_chains \leftarrow get_chains_from_ids(l_within_chains, l_chain_id_ray)$ 7 $l_filtered_chains \leftarrow$ remove_chains_with_higher_overlapping_threshold($Ch_i_angle_domain$, *l_endpoint_chain,neighbourhood_size*) s $l_{candidates} \leftarrow \text{split_intersecting_chains}(Ch_{j}_node.angle, l_filtered_chains, Ch_j)//See$ Algorithm 22 9 $l_{no_intersections_j} \leftarrow \text{get_chains_that_no_intersect_src_chain}(Ch_i, Ch_i_angle_domain,$ *l_within_chains,l_endpoint_chains*) 10 add_chains_that_intersect_in_other_endpoint(l_within_chains, l_no_intersections_j, l_candidates, Ch_i , neighbourhood_size, endpoint) 11 $l_candidates \leftarrow$ split_intersecting_chain_in_other_endpoint(endpoint, Ch_i , l_within_chains , *l_within_nodes*, *l_candidates*) 12 $l_filtered_no_intersection_j \leftarrow filter_no_intersected_chain_far(l_no_intersections_j, Ch_i)$ endpoint, neighbourhood_size) **13** $l_candidates \leftarrow l_candidates + l_filtered_no_intersection_j$ 14 l_ch_k _Euclidean_distances, l_ch_k _radial_distances, $l_ch_k \leftarrow$

- 14 $i_Ch_k_Euclidean_alistances, i_ch_k_radial_alistances, i_ch_k \leftarrow$ get_chains_that_satisfy_similarity_conditions($Ch_i, Ch_j, _candidates, endpoint$)
- **15** Ch_k , $diff \leftarrow$ select_closest_candidate_chain(l_ch_k , $l_ch_k_Euclidean_distances$, $l_ch_k_radial_distances$, l_within_chains , aux_chain)

16 return $Ch_k, diff, Ch_i$

	Algorithm 22: split_intersecting_chains
	Input: direction, // endpoint direction for split chains
	<i>l_filtered_chains</i> , // list of chains to be split
	Ch_j , // source chain. The one that is being to connect if conditions are met
	Output: split chain list
1	$l_search_chains \leftarrow []$
2	for $inter_chain$ in $l_filtered_chains$ do
3	$split_node \leftarrow get_node_by_angle(direction)$
4	$sub_ch1, sub_ch2 \leftarrow split_chain(inter_chain, split_node)$
5	$Ch_k \leftarrow \text{select_no_intersection_chain_at_endpoint}(sub_ch1, sub_ch2, Ch_j, direction)$
	/* Longest chains intersect two times */
6	if intersection_between_chains (Ch_k, Ch_j) then
7	$split_node_2 \leftarrow get_node_by_angle(node_direction_2)$
8	$sub_ch1, sub_ch2 \leftarrow split_chain(Ch_k, split_node_2)$
9	$Ch_k \leftarrow \text{select_no_intersection_chain_at_endpoint}(sub_ch1, sub_ch2, Ch_j, node_direction_2)$
10	$change_id(Ch_k)$
11	$ l_search_chains \leftarrow l_search_chains + Ch_k $

12 return <u>*l_search_chains*</u>

---output_dir OUTPUT_DIR ---root REPO_ROOT_DIR

As output, the method returns a JSON file with the tree-rings position in Labelme format [23].

The parameters of the program are the following:

- –input: path to the segmented image.
- -cx: pith x's coordinate.
- -cy: pith y's coordinate.
- -output_dir: directory where intermediate and final results are saved.
- –root: repository root path

4.2 Parameters

Table 2 summarises parameters that the user can modify if needed. Program command line parameters are the following:

- $\bullet\,$ –sigma: Gaussian filtering standard deviation $\sigma.$
- -th_low: Low threshold on the gradient module for the Canny Devernay filter.
- -th_high: High threshold on the gradient module for the Canny Devernay filter.
- -height: image height after the resizing process.
- -width: image width after the resizing process.
- -alpha: threshold on the collinearity of the edge filtering (Equation (3)).
- –nr: total number of rays.

	stage	Parameter	Default
Basic	edges detector	Gaussian filtering σ	3
	preprocessing	height	None
		width	None
	filtering, sampling, connect	Pith Position	Required
Advanced	edges detector	Gradient threshold low	5
		Gradient threshold high	15
	edges filtering	collinearity threshold (α)	30°
	sampling	rays number (nr)	360
		min chain length	2

Table 2: Method parameters. Basic parameters can be modified by the user in the demo.

• -min_chain_lenght: minimun chain lenght.

4.3 Installation and Use

The main program language is Python. However, the edge detector stage uses the code in C from IPOL ([10]) and must be compiled. The source code is included in our repository because some minor modifications were made to extract the image gradient.

The procedure to install the application is the following:

```
$ cd repo_root/
```

\$ apt-get update && apt-get install -y \$(cat .ipol/packages.txt) &&
rm -rf /var/lib/apt/lists/*

\$ pip3 install --- no--cache-dir -r requirements.txt

 $\$ cd ./externas/devernay_1.0 && make clean && make

5 Datasets

To test the proposed method, we use two datasets:

1. The **UruDendro** dataset. An online database [16] with images of cross-sections of commercially grown *Pinus taeda* trees from northern Uruguay, ranging from 13 to 24 years old, composed of twelve individual trees collected in February 2020 in Uruguay. Six trees correspond to a lumber company (denoted by the letter F), and the other six correspond to a plywood company (denoted by the letter L). Each company applied different silviculture practices. The individuals were identified by the letter of the company, a two-digit number, and a lowercase letter corresponding to the height where each cross-section was obtained. Heights were coded as follows: a = 10 cm above the ground, b = 165 cm, c = 200 cm, d = 400 cm, and e = 435 cm. The cross-sections were about 5 to 20 cm thick and were dried at room temperature without further preparation. As a consequence of the drying process, radial cracks and blue fungus stains were developed in the cross-sections. Surfaces were smoothed with a handheld planer and a rotary sander. Photographs were taken under different lighting conditions; cross-sections a, b, and e were photographed indoors and moistened to maximize contrast between earlyand late-wood. Pictures of dry cross-sections c and d were taken outdoors. The dataset has 64 images of different resolutions, described in Table 4. The collection contains several challenging features for automatic ring detection, including illumination and surface preparation variation, fungal infection (blue stains), knot formation, missing bark and interruptions in outer rings, and radial cracking. The proposed CS-TRD tree-ring detection method was checked against manual delineation of all rings by users of varying expertise using the Labelme tool [23]. At least two experts annotate all images. Figure 2 show some images in this UruDendro dataset.

2. The **Kennel** dataset. Kennel et al. [13] made available a public dataset of 7 images of Abies alba and presented a method for detecting tree rings. We were unable to process the annotations given by the authors. The characteristics of this dataset are described in Table 3. We label the dataset with the same procedure as the UruDendro dataset to evaluate the results.

Table 3: The Kennel dataset, are signaled the name and dimensions of each image as well as the number of expert marks and the number of rings in each one.

Image	Marks	Rings	Height (pixels)	Width (pixels)
AbiesAlba1	4	52	1280	1280
AbiesAlba2	2	22	1280	1280
AbiesAlba3	3	27	1280	1280
AbiesAlba4	1	12	1024	1024
AbiesAlba5	3	30	1280	1280
AbiesAlba6	2	21	1280	1280
AbiesAlba7	1	48	1280	1280

6 Experiments and Results

6.1 Metric

To evaluate the method, we develop a metric based on the one proposed by Kennel et al., [13]. To say if a ring is detected, we define an influence area for each ring as the set of pixels closer to that ring. For each ray, the frontier is the middle point between the nodes of consecutive ground truth rings. Figure 17.b show the influence area for disk F03d. Each ground truth ring is colored in black and is the center of its influence area. Figure 17.a shows the red detections and the green ground truth marks for the same image.

The influence area associates a detected curve with a ground truth ring. In both cases, the nodes are associated with the Nr rays. Given a ground truth ring, we assign it to the closest detection using:

$$Dist = \sqrt{\frac{1}{Nr} \sum_{i=0}^{Nr-1} (dt_i - gt_i)^2}$$
(10)

Where *i* represents the ray direction, dt_i is the radial distance (Equation (6)) of detected node *i*, and gt_i is the radial distance (Equation (6)) of the corresponding ground truth node *i*.

The closest detection can be extremely far away. To assign a detected curve to a ground truth ring, we must guarantee that the given chain is the closest one to the ring and that it is close enough. To this aim, we use the influence area of each ground truth ring (see Figure 17). Given a detected curve, we compute the proportion of nodes of that chain that belongs to the influence region of the closest ring. If that measure exceeds a parameter ($th_{-pre} = 60\%$), we assign the detected curve to

Table 4: The UruDendro dataset, are signaled the name and dimensions of each image as well as the number of expert marks and the number of rings in each one.

Image	Marks	Rings	Height (pixels)	Width (pixels)
F02a	2	23	2364	2364
F02b	2	22	1644	1644
F02c	4	22	2424	2408
F02d	2	20	2288	2216
F02e	2	20	2082	2082
F03a	2	24	2514	2514
F03b	2	23	1794	1794
F03c	1	24	2528	2596
F03d	1	21	2476	2504
F03e	3	21	1961	1961
F04a	2	24	2478	2478
F04b	1	23	1760	1762
F04c	3	21	913	900
F04d	2	21	921	899
F04e	1	21	2070	2072
F07a	1	24	2400	2400
F07b	3	23	1740	1740
F07c	1	23	978	900
F07d	1	22	997	900
F07e	1	22	2034	2034
F08a	3	24	2383	2383
F08b	2	23	1776	1776
F08c	2	23	2624	2736
F08d	2	22	2388	2400
F08e	2	22	1902	1902
F09a	1	24	2106	2106
F09b	4	23	1858	1858
F09c	1	24	2370	2343
F09d	1	23	2256	2288
F09e	1	22	1610	1609
F10a	2	22	2136	2136
F10b	2	22	1677	1677
F10e	1	20	1800	1800
L02a	1	10	2088	2088
L02D	3	10	1842	1842
L02C	1	13	021	900
L020	2	14	1014	1014
L02e	2	14	2296	2206
L03h	2	16	2088	2088
L03c	2	16	2400	2416
L03d	2	16	2503	2436
L03e	2	14	1944	1944
L04a	4	17	2418	2418
L04b	2	16	1986	1986
L04c	2	16	2728	2704
L04d	2	16	2544	2512
L04e	1	15	1992	1992
L07a	2	17	2328	2328
L07b	2	16	2118	2118
L07c	3	17	2492	2481
L07d	1	16	2480	2456
L07e	2	15	1980	1980
L08a	2	17	2268	2268
L08b	2	16	1836	1836
L08c	1	16	2877	2736
L08d	2	14	2707	2736
L08e	1	15	1666	1666
L09a	1	17	1963	1964
L09b	3	16	1802	1802
L09c	1	16	943	897
LU9d	2	15	1006	900
L09e		15	1002	1002

Figure 17: Measuring the error between automatic detection and the ground truth for image F03d. (a): In green, the ground truth; in red, the marks produced by the method (detections). (b): Areas of influence of the ground truth rings. (c): Error, in pixels, between the detection and the ground truth.

the ground truth ring. If not, the detected curve is not assigned to any ground truth ring. In other words, at least 60% of the nodes of a detected curve must be in the influence area of the ground truth ring to be assigned to it and to say that we have detected that ring (hence to declare a true positive).

Figure 17.c show the error in pixels between the ground truth rings and the detected curves assigned to them. The red color represents a low error, while the yellow-green color represents a high error. Note how the error is concentrated around the knoth, which perturbs the precise detection of some rings.

Once all the detected chains are assigned to the ground truth rings, we calculate the following indicators:

- 1. True Positive (TP): if the detected closed chain is assigned to the ground truth ring.
- 2. False Positive (FP): if the detected closed chain is not assigned to a ground truth ring.
- 3. False Negative (FN): if a ground truth ring is not assigned to any detected closed chain.

Finally, the Precision measurement is given by $P = \frac{TP}{TP+FP}$, the Recall measurement by $R = \frac{TP}{TP+FN}$ and the F-Score by $F = \frac{2PR}{P+R}$.

Results for the Kennel dataset are shown in Table 6 and for the UruDendro dataset in Table 7. For example, in the image F03d, the method fails to detect two ground truth rings, so FN = 2. The other rings are correctly detected. The table also shows the execution time for each image and the RMSE error(Equation (10)) between the detected and ground truth rings.

6.2 Experiments

This section presents some experiments to understand the method and its limitations better. At the end of the section, an experiment shows the dependence of the results with the threshold th_{pre} . All experiments were made using a workstation with Intel Core is 10300H and RAM 16GB.

(a) Average F1 vs σ curve for different image sizes.

(b) Average execution time (in seconds) vs σ curve for different images sizes.

original 640

1000

1500

35

Figure 18: Experiment results over the UruDendro dataset. Each curve represents different image sizes: 640×640, 1000×1000, 1500×1500, and original resolution. The blue curve refers to the original image size.

(a) Average F1 vs σ curve for different image sizes.

(b) Average execution time (in seconds) vs σ curve for different image sizes.

2.5

30

Figure 19: Experiment results over Kennel dataset. Each curve represents a different image resolution: 640x640, 1000x1000, 1500x1500, and original resolution. The blue curve refers to the original image size.

6.2.1 Edge detector optimization stage

The algorithm relies heavily on the edge detector stage. The first experiment tests different σ values for the Canny Devernay edge detector to get the one that maximizes the F-Score for the dataset UruDendro. This dataset presents significant variations in image resolution and allows us to study the global performance with different dimensions of the input images. We compute the average F-Score for the original image sizes and when all the images in the dataset are scaled to several sizes: 640x640, 1000x1000, 1500x1500. Results are shown in Figure 18. The best result (average F-Score of 0.89) is obtained for size 1500x1500 and $\sigma = 3.0$. The execution time varies with image size, as shown in the figure. The average execution time for the 1500x1500 size is 17 seconds. The same experiment is done over Kennel et al., [13] dataset. Results are shown in Figure 19. As before, the best F-Score is obtained for the 1500x1500 resolution, but with $\sigma = 2.5$. The lower optimal σ can be related to the Kennel dataset having images with more rings on the disk, 30 on average, while the UruDendro dataset has 19 rings per disk on average. The more the disks, the less their width. Table 5 summarizes the results of this experiment for both datasets.

dataset	image sizes	σ	Р	R	F	RMSE	ExecTime(s)
UruDendro dataset	1500 x 1500	3.0	0,95	0,86	0,89	5.27	17.3
Kennel dataset	1500×1500	2.5	0,97	0,97	0,97	2.4	11.1

Table 5: Mean performance values for both datasets' optimal image resolution.

Figure 20: Pith position experiment. Given six ray directions, eight different pith positions are marked. The method is executed for each marked pith position. Ground Truth ring are marked in green

6.2.2 Pith position sensibility

The next experiment measures how sensitive the method is to errors in the pith estimation. Figure 20 shows 48 different pith positions used in this experiment. We selected eight different pith positions over six rays. These radial displaced pith positions are selected as follows:

- Three positions are marked inside ring 1, with an error over the ray direction of 25%, 50%, and 75%.
- One is marked on ring 1.
- Three positions are marked between the first and second rings, with increasing errors of 25% over the ray direction.
- another position is marked on ring 2.

We run the algorithm for each disk with each of these pith positions, giving 48 results. We get the average RMSE and F-Score measures over the six ray directions for each radially displaced pith position, i.e., the mean for the six pith positions that are 25% off the center and so on. In this manner, we have two vectors (one for RMSE and the other for the F-Score) with eight coordinates for each one. Experiments are made over the UruDendro dataset, using an image size of 1500x1500 and $\sigma = 3.0$. Figure 21a shows the average F-Score over the whole dataset for each error position, while Figure 21b shows the average RMSE over the same dataset. As was expected, F-Score decreases as the error in the pith estimation increases. Figure 21b shows that the RMSE is less sensitive to pith error.

6.2.3 Metric precision threshold

In this experiment, we see how the performance varies with different values of th_pre . This parameter controls the number of nodes of the ring that lie within the Influence Area to be considered in the

(a) Average F-Score over the UruDendro dataset.

(b) Average RMSE over the UruDendro dataset.

Figure 21: For each disk of the UruDendro dataset, we run the method using the 48 different pith positions. Results are averaged over the six rays' directions per error position.

Figure 22: Performance metrics computed for different values of th_pre parameter. UruDendro dataset.

detection-to-ground-truth assignation step. Figure 22 and Figure 23 show results for UruDendro and Kennel datasets, respectively. As can be expected, higher precision implies higher RMSE but lower F-Score. Given these results, we fix $th_pre = 60\%$ as a default value, which seems a good compromise.

6.3 Results

The results for the Kennel dataset are shown in Table 6 and Figure 31. The mean F-Score is 0.97. There are three non-detected rings per disk as a maximum. And one ring is erroneously detected per image in the worst case, generally corresponding to the border or/and the core. At Figure 24, we illustrate an example, the disk *AbiesAlba1*. The edge parameter is too high ($\sigma = 2.5$), and the edge detector step fails to detect pith. In addition, the red chain in Figure 24.c is not closed because its size is smaller than 180 degrees (the *information_threshold* parameter). On the other hand, the method successfully detects the rings over the knot. Table 6 shows that the *AbiesAlba1* disk has three false negatives. The third one is the last ring which is not detected, note that it detects the border and that is a false positive, as illustrated in Figure 31.a.

The results for the UruDendro dataset are shown in Table 7. The mean F-Score is lower, 0.89, but the images in this dataset are much more complex and include knots, fungus, and cracks.

Figure 23: Performance metrics computed for different values of *th_pre* parameter on the Kennel dataset.

Figure 24: Method result for disk AbiesAlba1 (zoom in over pith center). a) Filter stage output. b) Chain stage output. c) Postprocessing stage output. At a) and b), we can see how the method fails to detect edges for pith. It is possible because the σ threshold is too high to detect things at this resolution. At c), we can see how the red chain was not closed due to a size smaller than *information_threshold* (180)

Table 6: Results on the Kennel dataset with $th_pre=60.$ Images resized to 1500x1500 and edge detector parameter $\sigma=2.5$

Name	TP	FP	TN	FN	P	R	F	RMSE	Time (sec.)
AbiesAlba1	49	1	0	3	0.98	0.94	0.96	3.66	18.01
AbiesAlba2	20	0	0	2	1.00	0.91	0.95	0.95	9.21
AbiesAlba3	26	1	0	1	0.96	0.96	0.96	1.30	8.93
AbiesAlba4	11	0	0	1	1.00	0.92	0.96	5.88	8.96
AbiesAlba5	30	1	0	0	0.97	1.00	0.98	1.29	9.06
AbiesAlba6	20	0	0	1	1.00	0.95	0.98	1.26	7.63
AbiesAlba7	45	0	0	3	1.00	0.94	0.97	3.58	13.78
Average					0.99	0.95	0.97	2.56	10.80

Name	TP	FP	TN	FN	P	R	F	RMSE	Time (sec.)
F10b	19	2	0	3	0.91	0.86	0.88	4.75	20.39
F10a	17	1	0	5	0.94	0.77	0.85	4.24	15.23
F10e	18	0	0	2	1.00	0.90	0.95	2.13	12.57
F02c	21	0	0	1	1.00	0.96	0.98	3.76	12.26
F02b	21	1	0	1	0.96	0.96	0.96	4.02	13.26
F02a	20	0	0	3	1.00	0.87	0.93	1.50	15.29
F02d	20	1	0	0	0.95	1.00	0.98	2.11	8.34
F02e	20	1	0	0	0.95	1.00	0.98	7.62	23.31
F03c	23	0	0	1	1.00	0.96	0.98	10.69	7.34
F03b	20	0	0	3	1.00	0.87	0.93	2.15	13.95
F03a	22	2	0	2	0.92	0.92	0.92	8.11	19.37
F03d	19	1	0	2	0.95	0.91	0.93	7.81	11.26
F03e	20	2	0	1	0.91	0.95	0.93	1.66	15.70
F04c	18	1	0	3	0.95	0.86	0.90	5.60	26.88
F04b	19	0	0	4	1.00	0.83	0.91	4 60	40.24
F04a	21	1	0	2	0.96	0.88	0.01	7.71	28.90
F04d	17	2	0	4	0.90	0.80	0.91	2.00	55 38
F04u	10	0	0	4	0.00	0.01	0.05	2.90	24.33
F04e	19	2	0	2	0.91	0.91	0.91	3.34 4.85	24.55
F07C	20	2	0	5	0.91	0.87	0.89	4.65	45 74
F070 F07a	10	3	0	0	0.85	0.74	0.79	1.99	40.74
F07a F07d	18	1	0	0	0.95	0.75	0.84	11.08	18.27
FU/d	20	0	0	2	1.00	0.91	0.95	1.04	19.95
F07e	8	4	0	14	0.67	0.36	0.47	8.17	40.29
F08c	21	1	0	2	0.96	0.91	0.93	2.05	13.25
F08b	21	1	0	2	0.96	0.91	0.93	1.72	23.57
F08a	21	1	0	3	0.96	0.88	0.91	5.28	17.13
F08d	20	0	0	2	1.00	0.91	0.95	2.10	9.54
F08e	22	0	0	0	1.00	1.00	1.00	6.70	17.65
F09c	21	0	0	3	1.00	0.88	0.93	2.83	9.11
F09b	22	1	0	1	0.96	0.96	0.96	2.91	11.98
F09a	21	0	0	3	1.00	0.88	0.93	2.20	16.13
F09e	14	5	0	8	0.74	0.64	0.68	7.08	38.73
L11b	15	1	0	1	0.94	0.94	0.94	1.54	10.96
L02c	11	0	0	2	1.00	0.85	0.92	5.33	21.33
L02b	4	2	0	11	0.67	0.27	0.38	9.41	21.90
L02a	14	1	0	2	0.93	0.88	0.90	16.95	26.21
L02d	7	3	0	7	0.70	0.50	0.58	5.66	28.80
L02e	11	0	0	3	1.00	0.79	0.88	4.92	18.66
L03c	15	1	0	1	0.94	0.94	0.94	9.01	8.28
L03b	15	1	0	1	0.94	0.94	0.94	2.22	10.17
L03a	14	0	0	3	1.00	0.82	0.90	3.45	16.20
L03d	14	0	0	1	1.00	0.93	0.97	10.63	8.26
L03e	13	0	0	1	1.00	0.93	0.96	3.97	14.96
L04c	14	0	0	2	1.00	0.88	0.93	3.30	8.26
L04b	15	0	0	1	1.00	0.00	0.00	6.35	10.66
L04a	15	0	0	2	1.00	0.88	0.94	6.00	7.98
L04d	14	1	0	2	0.03	0.88	0.94	7.88	6.19
1040	10	1	0	5	0.95	0.67	0.30	1.00	10.13
L04e	10	1	0	2	0.91	0.07	0.11	9.41	5.56
L070	14	1	0	3 9	0.93	0.82	0.00	6.56	0.01
L070	10	1	0	3	1.00	0.81	0.90	0.30	9.01
LUTA	15	1	0	4	0.95	0.11	0.84	1.69	13.90
LUIA	14	0	0	2	1.00	0.88	0.93	1.73	0.22
LU7e	11	0	0	3	1.00	0.79	0.88	13.26	17.80
LU8c	15	0	0	1	1.00	0.94	0.97	2.52	8.74
L08b	14	1	0	2	0.93	0.88	0.90	11.99	24.48
L08a	15	0	0	2	1.00	0.88	0.94	2.38	8.94
L08d	13	0	0	1	1.00	0.93	0.96	9.57	5.45
L08e	14	1	0	1	0.93	0.93	0.93	8.14	17.82
L09c	15	2	0	1	0.88	0.94	0.91	2.90	12.02
L09b	15	1	0	1	0.94	0.94	0.94	2.26	13.54
L09a	14	0	0	3	1.00	0.82	0.90	3.29	10.03
L09d	13	1	0	2	0.93	0.87	0.90	2.12	12.03
L09e	13	0	0	2	1.00	0.87	0.93	4.14	14.66
F09d	21	0	0	2	1.00	0.91	0.96	3.44	8.71
Average		t -	L _	-	0.95	0.86	0.80	5.27	17.27
age	1	1	1	1	0.00	0.00	0.00	0.21	

Table 7: Results over our dataset with $th_{-}pre = 60\%$. Images resized to 1500x1500 and edge detector parameter $\sigma = 3$.

Figure 25 illustrates some results of the CS-TRD ring-tree detection algorithm over the UruDendro dataset. Disks F02a, F02b, F02c, F02d, F02e, F03c, and L03c have an F-Score above 93%, which indicates that the method detects almost all the disk rings. Metric results over the database are shown in Table 7. The algorithm successfully detects rings over cracks (disks F02a, F02b, and F02e) and knots (disk L03c).

Figure 26 illustrates how the method behaves under the presence of knots. It fails to detect the first (pith) and third rings. In addition, it detects a false ring over the knot and fails to detect the last ring. Despite the former error, the method succeeded in detecting 18 rings, which makes an F1-Score of 90%.

Figure 27 illustrates our method results for disk L09e. Despite the presence of two important cracks and some fungus stains, the method successfully detects 13/15 rings, which means an F1-Score of 93%.

As seen in Table 7, the CS-TRD algorithm generally works fine even if for some images it has problems. Let's discuss some examples, such as images L02b, F07e, and L02d.

Figure 28 illustrates the results for disk L02b. Figure 28c, shows the detected rings in red and the ground truth in green. Four detections are closed curves and determined as correct (TP), while two are determined as incorrect (FP). Counting from the center to the border, the first detection is correct, and the next two are bad, corresponding to the second and third rings. Analyzing the chains step output shown in Figure 28a, it seems clear that there is not enough edge information to see the rings due to the fungus stain.

A similar situation happens for disk F07e, Figure 29. There is a strong fungus stain presence which makes that some rings do not have enough edges to form a closed curve.

The method results are slightly better for disk L02d with an F-Score of 58% in the presence of the same fungus stain issue that former disks. Figure 30a illustrates this case and how the fungus perturbs the edge detection step in the middle of the disk.

7 Conclusions and future work

An automatic method (besides the pith detection, for which an automatic algorithm exists [4]) for Tree Ring Detection of cross-section wood images is presented, which achieves an F-Score of 97% in the Kennel dataset and an F-Score of 89% in the (more difficult) UruDendro dataset.

The method executes at an average execution time of 17 seconds in the UruDendro dataset and 11 seconds in Kennel dataset. Compared with the time that each annotator needed to delineate every disk manually, 3 hours on average, is a vast improvement. CS-TRD method can be fully implemented in C++ to accelerate the execution time compared to a Python implementation³. This will allow using the method in real-time applications.

In the future, we will include the automatic detection of the pith, extend the method to other tree species and explore machine-learning techniques to learn the pattern in the data.

 $^{^{3}} https://medium.com/agents-and-robots/the-bitter-truth-python-3-11-vs-cython-vs-c-performance-for-simulations-babc85cdfef5$

Figure 25: Some results for the UruDendro dataset.

Figure 26: Method result for disk F04c. Note how the knot stain perturbs the edge detection step.

Figure 27: Method result for disk L09e. Note how the method succeeds in detecting almost all the rings (FN=2 and FP=0) despite the cracks and fungus stain

Figure 28: Method result for disk L02b. Note how the fungus stain perturbs the edge detection step.

Figure 29: Method result for disk F07e. Note how the fungus stain perturbs the edge detection step.

(c) Gt and Dt

Figure 30: Method result for disk L02d. Note how the fungus stain perturbs the edge detection step.

Figure 31: Results over images from the Kennel dataset with 1500x1500 image size and $\sigma=2.5.$

References

- MAURICIO CERDA, NANCY HITSCHFELD-KAHLER, AND DOMINGO MERY, <u>Robust tree-ring detection</u>, in Advances in Image and Video Technology, Second Pacific Rim Symposium, PSIVT 2007, Santiago, Chile, December 17-19, 2007, Proceedings, Domingo Mery and Luis Rueda, eds., vol. 4872 of Lecture Notes in Computer Science, Springer, 2007, pp. 575–585.
- [2] ALEX CLARK, Pillow (pil fork) documentation, 2015.
- [3] BROOK M. CONSTANTZ, ANDREW A. PORT, AND RANDALL S. SENOCK, <u>Comparing automatically</u> generated and manually measured tree-ring transects of growth trends with hawaiian sandalwood as an example species, Dendrochronologia, 68 (2021), p. 125831.
- [4] RÉMI DECELLE, PHUC NGO, ISABELLE DEBLED-RENNESSON, FRÉDÉRIC MOTHE, AND FLEUR LONGUETAUD, <u>Ant Colony Optimization for Estimating Pith Position on Images of Tree Log Ends</u>, Image Processing On Line, 12 (2022), pp. 558–581. https://doi.org/10.5201/ipol.2022.338.
- [5] FRÉDÉRIC DEVERNAY, <u>A non-maxima suppression method for edge detection with sub-pixel accuracy</u>, tech. report, INRIA RESEARCH REP. 2724, SOPHIAANTIPOLIS, 1995.
- [6] PHILIPP DUNCKER, Detection and Grading of Compression Wood, 11 2014, pp. 201–224.
- [7] ANNA FABIJAŃSKA AND MAŁGORZATA DANEK, <u>Deepdendro a tree rings detector based on a deep</u> convolutional neural network, Computers and Electronics in Agriculture, 150 (2018), pp. 353–363.
- [8] ANNA FABIJAŃSKA, MAŁGORZATA DANEK, JOANNA BARNIAK, AND ADAM PIÓRKOWSKI, <u>Towards</u> <u>automatic tree rings detection in images of scanned wood samples</u>, Computers and Electronics in Agriculture, 140 (2017), pp. 279–289.
- [9] ALEXANDER GILLERT, GIULIA RESENTE, ALBA ANADON-ROSELL, MARTIN WILMKING, AND UWE FREIHERR VON LUKAS, Iterative next boundary detection for instance segmentation of tree rings in microscopy images of shrub cross sections, 2022.
- [10] RAFAEL GROMPONE VON GIOI AND GREGORY RANDALL, A Sub-Pixel Edge Detector: an Implementation of th Image Processing On Line, 7 (2017), pp. 347–372. https://doi.org/10.5201/ipol.2017.216.
- [11] MICHAEL HENKE AND BRANISLAV SLOBODA, <u>Semiautomatic tree ring segmentation using active</u> contours and an optimised gradient operator, Forestry Journal, 60 (2014), pp. 185 190.
- [12] ITSEEZ, Open source computer vision library. https://github.com/itseez/opencv, 2015.
- [13] POL KENNEL, PHILIPPE BORIANNE, AND GÉRARD SUBSOL, <u>An automated method for tree-ring</u> delineation based on active contours guided by DT-CWT complex coefficients in photographic images: <u>Application to abies alba wood slice images</u>, Comput. Electron. Agric., 118 (2015), pp. 204–214.
- [14] NICK G. KINGSBURY, Complex wavelets for shift invariant analysis and filtering of signals, Applied and Computational Harmonic Analysis, 10 (2001), pp. 234–253.

- [15] KAYLA MAKELA, TIM OPHELDERS, MICHELLE QUIGLEY, ELIZABETH MUNCH, DANIEL CHITWOOD, AND ASIA DOWTIN, Automatic tree ring detection using jacobi sets, 2020.
- [16] HENRY MARICHAL, DIEGO PASSARELLA, CHRISTINE LUCAS, LUDMILA PROFUMO, VERONICA CASARAVILLA, MARIA NOEL ROCHA GALLI, SERRANA AMBITE, AND GREGORY RANDALL, UruDendro: An Uruguayan Disk Wood Database For Image Processing. https://iie.fing.edu.uy/ proyectos/madera.
- [17] R. STOCKTON MAXWELL AND LARS-ÅKE LARSSON, <u>Measuring tree-ring widths using the coorecorder</u> software application, Dendrochronologia, 67 (2021), p. 125841.
- [18] KRISTIN NORELL, <u>An automatic method for counting annual rings in noisy sawmill images</u>, in Image Analysis and Processing – ICIAP 2009, Pasquale Foggia, Carlo Sansone, and Mario Vento, eds., Berlin, Heidelberg, 2009, Springer Berlin Heidelberg, pp. 307–316.
- [19] KRISTIN NORELL, JOAKIM LINDBLAD, AND STINA SVENSSON, Grey weighted polar distance transform for outlining circular and approximately circular objects, 14th International Conference on Image Analysis and Processing (ICIAP 2007), (2007), pp. 647–652.
- [20] MIROSLAV POLÁEK, ALEXIS H. ARIZPE, PATRICK HÜTHER, LISA WEIDLICH, SONJA STEINDL, AND KELLY L. SWARTS, <u>Automation of tree-ring detection and measurements using deep learning</u>, bioRxiv, (2022).
- [21] XUEBIN QIN, ZICHEN ZHANG, CHENYANG HUANG, MASOOD DEHGHAN, OSMAR R. ZAÏANE, AND MARTIN JÄGERSAND, <u>U²-net: Going deeper with nested u-structure for salient object detection</u>, CoRR, abs/2005.09007 (2020).
- [22] JINGNING SHI, WEI XIANG, QIJING LIU, AND SHER SHAH, <u>Mtreering: An r package with graphical</u> user interface for automatic measurement of tree ring widths using image processing techniques, Dendrochronologia, 58 (2019), p. 125644.
- [23] KENTARO WADA, Labelme: Image Polygonal Annotation with Python.
- [24] HONG ZHOU, RONG FENG, HUA HONG HUANG, ER PEI LIN, AND JUN LIN YU, Method of tree-ring image analysis for dendrochronology, Optical Engineering, 51 (2012), p. 077202.
- [25] KAREL ZUIDERVELD, Contrast Limited Adaptive Histogram Equalization, Academic Press Professional, Inc., USA, 1994, p. 474–485.