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Abstract. The second eigenvalue of the Robin Laplacian is shown to be maximal
for a spherical cap among simply connected Jordan domains on the 2-sphere, for
substantial intervals of positive and negative Robin parameters and areas. Geodesic
disks in the hyperbolic plane similarly maximize the eigenvalue on a natural interval
of negative Robin parameters. These theorems extend work of Freitas and Laugesen
from the Euclidean case (zero curvature) and the authors’ hyperbolic and spherical
results for Neumann eigenvalues (zero Robin parameter).

Complicating the picture is the numerically observed fact that the second Robin
eigenfunction on a large spherical cap is purely radial, with no angular dependence,
when the Robin parameter lies in a certain negative interval depending on the cap
aperture.

Dedicated to the memory of my friend and mentor Peter Duren, who generously shared
his knowledge of and fondness for special functions and conformal mappings. – R.S.L.

1. Introduction

Does the spherical cap maximize the second tone of vibration among membranes of
given area on the sphere, subject to elastic boundary constraints? To formulate the
problem mathematically, consider the second eigenvalue of the Laplacian under Robin
boundary conditions on a spherical domain of given area. We show for a substantial
range of areas and Robin parameters that the second eigenvalue is largest when the
domain is a spherical cap.

The analogous Euclidean result was proved by Freitas and Laugesen [16, 17], build-
ing on Neumann techniques of Szegő [27] and Weinberger [29].

The spherical situation in this paper is more difficult because the second Robin
eigenfunction need not have angular dependence — it can be purely radial. When the
eigenfunction does have angular dependence, its radial part need not be monotonic:
it can increase and then decrease and then increase once again. We handle such
complications by building on our proof for the second spherical Neumann eigenvalue
[22], where we showed that the spherical cap is the maximizer among simply connected
domains on the 2-sphere of given area provided the domain covers less than 16/17 '
94% of the whole sphere. That Neumann theorem improved on the 50% result of
Bandle [5, 6], and thus required techniques applicable to caps beyond the hemisphere.
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2 MAXIMIZING THE SECOND ROBIN EIGENVALUE

The main theorem. A Jordan–Lipschitz surface is a simply-connected, bounded
planar domain Ω with Lipschitz boundary that is a Jordan curve, endowed with a
mass density or weight ω ∈ C2(Ω) ∩ C(Ω) that is positive on Ω. We write Ωω when
it is desirable to indicate the weight. The weight generates a metric ω |dz|2 with area

|Ωω| =
ˆ

Ω

ω dA

and boundary length

Lω =

ˆ
∂Ω

√
ω ds.

The curvature of the surface is less than or equal to a constant K if

−∆ logω

2ω
≤ K.

For the Laplace–Beltrami operator ω−1∆, the Robin eigenvalue problem is
−∆u = λωu in Ω,

−∂u
∂n

= α
√
ωu on ∂Ω,

where ∂/∂n is the Euclidean normal derivative in the outward direction and α ∈ R
is the Robin parameter. The eigenvalues satisfy

λ1(Ωω, α) < λ2(Ωω, α) ≤ λ3(Ωω, α) ≤ · · · → ∞,
with variational characterization

λk(Ωω, α) = min
L

max
u∈L\{0}

´
Ω
|∇u|2 dA+ α

´
∂Ω
u2
√
ω ds´

Ω
u2 ω dA

(1)

where L ranges over k-dimensional subspaces of W 1,2(Ω). The Sobolev space imbeds
compactly into L2(ω dA) by the Lipschitz assumption, justifying discrete spectrum.

This paper aims to maximize the second eigenvalue λ2. Write MK for the complete
2-dimensional surface of constant curvature K, so that MK can be identified with a
sphere when K > 0, the Euclidean plane when K = 0, and a hyperbolic or Poincaré
disk when K < 0. Their Laplace–Beltrami operators are recalled in Section 2.

Theorem 1.1 below says that a constant curvature disk maximizes the second Robin
eigenvalue if the curvature of the surface is bounded above and the area and the Robin
parameter lie in certain regions of parameter space: a “Bandle–Szegő” set BS and a
“front-loaded” set FL. These two-dimensional parameter regions are specified pre-
cisely in Section 3 and illustrated in Figure 1. They involve the horizontal coordinates:

t2 = 4π sin2 Θ2/2 ' 10.081 (defined in Section 3),

t3 = 4π sin2 3π/8 = (2 +
√

2)π ' 10.726,

t4 ' 11.828 (approx. (16/17)4π, defined in Section 9).

The BS and FL sets lie to the left of t = 4π and above β = −2π, so that the next
theorem implicitly imposes an area restriction |Ωω|K < 4π and parameter restriction
β/Lω ≥ −2π.
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Figure 1. Theorem 1.1 proves that the geodesic disk maximizes the
second Robin eigenvalue for parameters lying in BS∪FL. Sets I–V lie in
BS by Theorem 3.1, although the plotting of V requires some numerical
work. The conditions for FL are verified numerically too, as explained
in Section 9. Notes. Set I is the halfstrip (−∞, t2] × [−2π, 0]. The
upper left boundary of V is the graph of t(4π− t)/(2π− t), which hits
the rightmost point of set IV at coordinates t ' 11.841 and β ' −1.544,
before the graph continues to increase to the point (4π, 0). The upper
boundary of FL intersects the horizontal axis at (t4, 0). Our method
is not applicable in the second quadrant, labelled NA, or in the red
region labelled R on the far right side, where the second eigenfunction
is found numerically to be purely radial (Figure 4 below).

Theorem 1.1 (Second Robin eigenvalue is maximal for constant curvature disk).
Assume K ∈ R and Ωω is a Jordan–Lipschitz surface with curvature ≤ K. If
(|Ωω|K, β) ∈ BS ∪ FL then

λ2(Ωω, β/Lω) ≤ λ2(DK , β/LK)

where DK is a geodesic disk in the constant curvature space MK whose boundary
length is denoted LK and whose area is chosen to equal |Ωω|. If in addition β > −2π,
then equality holds if and only if Ωω is isometric to the constant curvature disk DK.

Scaling the Robin parameter in the theorem by boundary length with α = β/Lω
makes a natural choice, since the parameter α in the Robin boundary condition must
have dimension matching that of the normal derivative ∂/∂n, namely 1/length.

The proof is in Section 5. On the sets BS and FL, hypothesis (3) below ensures
that the second eigenvalue λ2 of the geodesic disk is the lowest “angular” eigenvalue.
Thus the upper bound in the theorem is computable by separation of variables using
roots of associated Legendre functions (Appendix A). Level sets of the lowest angular
eigenvalue are shown in Figure 2, as a function of β and the signed area t = |DK |K.
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Figure 2. Contour plot of the lowest “angular” eigenvalue of a ge-
odesic disk of radius Θ, whose eigenfunction has the form g(θ) cosφ.
Positive t: unit sphere, area of spherical cap is t = 4π sin2 Θ/2, Robin
parameter α = β/2π sin Θ. Negative t: hyperbolic plane, area of geo-
desic disk is −t = 4π sinh2 Θ/2, Robin parameter α = β/2π sinh Θ. The
eigenvalue increases as one moves upward in the figure. The horizontal
line at height −2π is the contour λ = 0, corresponding to a Steklov
eigenvalue for the disk. The straight line through (2π, 0) is the contour
with eigenvalue 2, corresponding to the eigenfunction u = sin θ cosφ
(the first spherical harmonic, that is, the coordinate function x1 in R3).
The contour touching the horizontal axis at t2 is the graph β2(t) plotted
in the previous figure. For details on the construction see Section 9.

Open problems.

Problem 1 — spherical. In the first quadrant of Figure 1, for domains on the sphere
with positive Robin parameter, can a larger region be found on which Theorem 1.1
holds? The FL region gives a sufficient condition but is presumably not necessary.
We conjecture the theorem should hold on some larger region that attains a vertex at
(4π, 0). If true, then the theorem would apply in particular to the second Neumann
eigenvalue on all simply connected spherical domains, with no restriction on the area.
We raised that Neumann conjecture earlier [22, Conjecture 1.2].

Does the cap maximize the second eigenvalue in the exceptional region of the fourth
quadrant in Figure 1, that is, for spherical domains with negative Robin parameter
whose second eigenfunction is radial?

Problem 2 — hyperbolic. Our theorem does not apply in the second quadrant, for
domains in hyperbolic space with positive Robin parameter. The obstacle resides in
the ratio-of-areas Lemma 4.2, which holds only with nonnegative curvature. Surely
the theorem itself continues to hold for a large part of the second quadrant?
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Prior work maximizing second eigenvalue for simply connected domains.
The original result of Szegő [27] corresponds to the origin in Figure 1, since he handled
simply connected Euclidean domains (K = 0) with Neumann boundary condition
(β = 0). Later developments by Bandle [5, 6] correspond to the interval (−∞, 2π] on
the horizontal axis in Figure 1, that is, surfaces with Neumann boundary condition
and curvature bounded above by K and satisfying |Ωω|K ≤ 2π. Most recently, our
paper [22] extended Bandle’s Neumann theorem to the larger interval (−∞, t4] on
the horizontal axis. The Freitas–Laugesen paper [16] handled the interval [−2π, 2π]
on the vertical axis in Figure 1, in other words, it handled Euclidean domains with
Robin parameter β/L where |β| ≤ 2π.

The papers by Freitas–Laugesen [16] and Langford–Laugesen [22] relaxed the eigen-
function monotonicity assumption that was crucial to Bandle and Szegő’s work, by
developing a modified functional that “front loads” the monotonicity requirement:
one allows the radial part of the eigenfunction to decrease after it has first increased
sufficiently. This behavior of the radial part distinguishes the two regions in Theo-
rem 1.1: BS covers situations where the radial part of the eigenfunction is monotonic,
and FL applies in many cases where it is not monotonic.

In order for our methods to work, the second Robin eigenfunction of the geodesic
disk must have angular dependence. That angularity requirement is built into the
definitions of BS and FL in Section 3. Perhaps surprisingly, the second eigenfunction
can fail to have angular dependence. Numerical work shows:

the second Robin eigenfunction on a spherical cap is purely radial (no
angular dependence) when the cap fills almost the full sphere and the
Robin parameter is negative and lies in a certain interval.

This exceptional region of parameter space is shown in red in Figure 1, based on the
underlying plot in Figure 4 later in the paper.

Prior work maximizing the second eigenvalue for arbitrary domains. A
parallel strand of research has aimed to maximize the second eigenvalue of the Lapla-
cian for domains in all dimensions, without requiring that the domains be simply
connected. Weinberger [29] showed in Euclidean space that the second Neumann
eigenvalue is maximal for the ball of the same volume. The analogous result holds
for subdomains of hyperbolic space by Chavel [12], [13, p. 94] (see also [3, 30]), and
for subdomains of the sphere that fill at most half the sphere and either contain no
antipodal point-pairs (Ashbaugh and Benguria [3, Theorem 5.1]) or else lie outside
a spherical cap of the same area (Bucur, Martinet and Nahon [11, Corollary 3]).
See also Wang [28] for a variable curvature result. Interestingly, the spherical cap
does not always maximize the second Neumann eigenvalue among domains in S2 that
are permitted to have holes (not simply connected), as Martinet [26] has shown by
numerical counterexamples for domains having large enough area.

For the second Robin eigenvalue with a certain range of negative Robin parame-
ters, the geodesic ball is again the maximizer among Euclidean domains by Freitas
and Laugesen [17], whose method was extended to hyperbolic space for a smaller
parameter range by Li, Wang and Wu [25].
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The Bandle–Szegő conformal mapping approach in this paper is better than the
Weinberger-type approach in two key respects, for Neumann and Robin eigenvalues on
simply connected subdomains of the 2-sphere: it can treat positive Robin parameters
and can handle domains with area greater than half that of the sphere.

Prior work extremizing first and third Robin eigenvalues. To place the cur-
rent paper in context, we remark that the first Robin eigenvalue too can be extrem-
ized. The sensible question now concerns minimization. The geodesic ball provides
the minimizer among arbitrary domains of given volume, in spaces of constant cur-
vature in every dimension, assuming the Robin parameter is positive. That result in
Euclidean space is due to Bossel [8] and Daners [15], and on spheres and hyperbolic
space to Chen, Cheng, and Li [14].

The third Robin eigenvalue is maximized by a disjoint union of disks (in a limiting
sense), among simply connected planar domains, as proved by Girouard and Lauge-
sen [19] for a range of negative Robin parameters. The maximizer among arbitrary
Euclidean domains is unknown, although numerical work does suggest it is connected
[1, Figure 4]. Maximizing domains in hyperbolic space or the sphere are not known.

Maximization of the third Neumann eigenvalue (zero Robin parameter) is much
better understood: the optimal shape is a disjoint union of two equal-sized geodesic
balls, as shown for simply connected planar domains by Girouard, Nadirashvili and
Polterovich [20, 21] and by Bucur and Henrot [10] for arbitrary Euclidean domains,
and for domains in hyperbolic space by Freitas and Laugesen [18] and on the sphere
by Bucur, Martinet and Nahon [11].

An excellent survey article on Robin spectral problems can be found in the work
of Bucur, Freitas and Kennedy [9].

2. Laplacians on the hyperbolic space, plane and sphere

On 2-dimensional hyperbolic space H2 with curvature −1, let θ be the geodesic
distance from the origin and φ ∈ (−π, π] be the angle measured around the origin. In
the Euclidean plane, use polar coordinates with θ being the radial variable and φ the
angle around the origin. On the unit sphere S2 with curvature +1, write θ ∈ [0, π]
for the angle measured from the positive z-axis, that is, the geodesic distance from
the north pole, and write φ ∈ (−π, π] for the longitudinal angle.

After defining

snK θ =


sin θ if K = +1,

θ if K = 0,

sinh θ if K = −1,

(2)

the Laplace–Beltrami operators for the hyperbolic (K = −1), Euclidean (K = 0) and
spherical (K = +1) situations can be written in the unified form

∆K u =
1

snK θ

∂

∂θ

(
snK θ

∂u

∂θ

)
+

1

(snK θ)2

∂2u

∂φ2
.

We are particularly interested in eigenvalues of this operator on the geodesic disk
DK(Θ) of constant curvature K and radius Θ > 0. That disk has area 4π(snK Θ/2)2.
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In the spherical situation (K = +1), the radius of the disk is restricted to Θ < π.
The Robin boundary condition with parameter α says −∂u/∂θ = αu at θ = Θ.

Geodesic disks in hyperbolic space and the sphere are equivalent to Euclidean
disks with weight function wK and constant curvature K: the stereographic change
of variable can be found in [22, Section 2], and wK is stated later in (7). Thus just
as the competitor surface Ωω in Theorem 1.1 is a Jordan-Lipschitz surface, so is the
geodesic disk DK that provides the maximizer.

3. The BS and FL sets

Here we define the BS and FL regions on which Theorem 1.1 is valid, and develop
conditions for belonging to those sets.

Given K = −1, 0,+1 as in the preceding section, denote by

λk(Θ, α), k = 1, 2, 3, . . . ,

the k-th eigenvalue of ∆K on a geodesic disk DK(Θ) with Robin parameter α.

Definition of the BS set. The BS set consists of parameter values for which the
second eigenfunction on DK(Θ) has angular dependence and monotonic radial part:

BS = {(4π sin2 Θ/2, β) : −2π ≤ β ≤ 0, 0 < Θ < π, and (3)–(4) hold for K = +1}
∪ {(0, β) : −2π ≤ β ≤ 0, 0 < Θ <∞, and (3)–(4) hold for K = 0}

∪ {(−4π sinh2 Θ/2, β) : −2π ≤ β ≤ 0, 0 < Θ <∞, and (3)–(4) hold for K = −1}.
Here the first coordinate 4π(snK Θ/2)2K is the signed area of the disk DK(Θ).

Angular condition

A second eigenfunction for eigenvalue λ2(Θ, β/2π snK Θ) has the form g(θ) cosφ.
(3)

Monotonic condition
g and g′ are positive on (0,Θ), (4)

except that g′ might vanish at one point in the interval. In the Euclidean case (K = 0),
if the angular condition (3) holds for some Θ then by scaling invariance it holds for
all Θ, and similarly for the monotonic condition (4).

Shape of the BS set. To state the next theorem, which provides sufficient condi-
tions for belonging to BS, we need some special functions. Define

Θ2 ' 0.70π

to be the unique aperture Θ of a geodesic disk D+1(Θ) on the unit sphere for which the
second Neumann eigenvalue λ2(Θ, 0) equals csc2 Θ; see [22, Propositions 3.1, 4.2] and
[23, Theorem 1] for the construction of this number Θ2. The corresponding Neumann
eigenfunctions on the cap of aperture Θ2 have the form g2(θ) cosφ and g2(θ) sinφ,
where as shown in [22, Proposition 4.1(a)(c)], the radial part g2 has positive derivative:
g′2(θ) > 0 for all θ ∈ (0, π) except at Θ2, where the Neumann condition requires
g′2(Θ2) = 0. For no other aperture is the radial part of the Neumann eigenfunction
increasing on the whole interval (0, π).
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0 Θ2
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π
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1

g2(θ )

Θ2
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Θ

-5

α2(Θ )

Figure 3. Left: radial part g2(θ) of the second Neumann eigen-
function for a spherical cap of aperture Θ2. Right: Robin parameter
α2(Θ) = −g′2(Θ)/g2(Θ) for g2, at arbitrary aperture Θ.

The graph of g2 on the left of Figure 3 is obtained from the explicit formula (see
Appendix A or [22, Proof of Proposition 4.2]) that

g2(θ) = P−1
n2

(cos θ), θ ∈ [0, π),

where Pm
n is the associated Legendre function and we choose m = −1 and take

n = n2 such that g′2 has the required property of being positive except at one point
Θ2. Numerically, one finds

n2 ' 0.851187.

Define

α2(Θ) = −g′2(Θ)/g2(Θ),

so that α2(Θ) is the Robin parameter for g2(θ) cosφ at the boundary of the cap of
aperture Θ. In particular, the Neumann condition at aperture Θ2 says α2(Θ2) = 0,
as seen on the right of Figure 3.

The area of a spherical cap of aperture Θ ∈ (0, π) is given by the strictly increasing
function t(Θ) = 4π sin2 Θ/2 ∈ (0, 4π). Let

t2 = t(Θ2) = 4π sin2 Θ2/2 ' 10.081,

t3 = t(3π/4) = 4π sin2 3π/8 = (2 +
√

2)π ' 10.726,

and define β2 : (0, 4π)→ R by

β2(t(Θ)) = (2π sin Θ)α2(Θ).

Note this definition has the same form “α = β/L” as appears in Theorem 1.1, since
the cap of aperture Θ has boundary length 2π sin Θ.
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Theorem 3.1 (Shape of the BS region). The BS region contains the following sets:

I = {(t, β) : −∞ < t ≤ t2,−2π ≤ β ≤ 0}
II = {(t, β) : t2 < t ≤ t3,−2π ≤ β ≤ β2(t)},
III = {(t, β) : t3 < t < 4π,−2π ≤ β ≤ 2π − t},

IV =

{
(t, β) : t3 < t < 4π, t

4π − t
2π − t

≤ β ≤ β2(t)

}
,

V =

{
(t, β) : t3 < t < 4π, 2π − t ≤ β ≤ min

(
t

4π − t
2π − t

, β2(t)

)
and (3) holds

}
.

These sets are shown in Figure 1. The theorem is proved in Section 7.

Definition of the FL set. The FL set comprises those parameter values for which
the second eigenfunction has angular dependence and its radial part increases and
then decreases in a “front-loaded” way with more increase than decrease, according
to a certain integral criterion:

FL = {(4π sin2 Θ/2, β) : −2π ≤ β <∞, 0 < Θ < π, and (3), (5), (6) hold for K = +1}
∪ {(0, β) : −2π ≤ β <∞, 0 < Θ <∞, and (3), (5), (6) hold for K = 0}

where the angular condition (3) was stated above and the new conditions are as
follows.

Up-Down-(Up) condition

g > 0 on (0,Θ], g′ > 0 on (0, θmax), g
′ < 0 on (θmax, θmin), g′ > 0 on (θmin,Θ) (5)

for some numbers 0 < θmax < θmin ≤ Θ,

(If θmin < Θ then g goes up-down-up, while if θmin = Θ then the third interval
(θmin,Θ) is empty and g goes only up-down.)

Front-Loaded condition
ˆ θmin

0

g(θ)g′(θ)

(
snK

θ

2

)2

dθ ≥ 0. (6)

The FL set lies in the right halfplane, relating to the spherical case in the first and
fourth quadrants and the Euclidean case on the vertical axis. The third quadrant,
meaning hyperbolic with negative Robin parameter, is handled already by the BS
region, thanks to the set I in Theorem 3.1.

In the second quadrant, that is, for the hyperbolic case with positive Robin param-
eter (t < 0, β > 0), we can offer no result. The obstacle is that the radial part g of
the second eigenfunction is non-monotonic due to the positive Robin parameter, while
our tool for handling non-monotonicity (Lemma 4.2) applies only to the Euclidean
and spherical cases.
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Shape of the FL set. The FL set extends downward from each point it contains,
as seen graphically in Figure 1.

Proposition 3.2 (Dropping downward in the FL set). Suppose −2π ≤ β < β∗.
(i) Let K = 0 and Θ > 0. If (0, β∗) ∈ FL then (0, β) ∈ BS ∪ FL provided the angular
condition (3) holds for this β.
(ii) Let K = +1 and 0 < Θ < π. If (4π sin2 Θ/2, β∗) ∈ FL then (4π sin2 Θ/2, β) ∈
BS ∪ FL provided (3) holds for this β and Θ.

The proposition is proved in Section 8. The angular condition (3) holds in particular
when β ≥ 0, by applying Proposition 6.1 later in the paper with α ≥ 0.

Some points belonging to the FL set can be established rigorously. For example,
the BS set contains the line segment with 0 < t ≤ t2 and β = 0, and the FL set
contains its continuation with t2 < t ≤ t4 and β = 0, by our work in the Neumann
case [22, Theorem 1.1]. Further, the FL set contains the vertical line segment with
t = 0 and 0 < β ≤ 2π by a result of Freitas and Laugesen [16, Theorem B] in the
Euclidean case. Additional first-quadrant regions in the FL set can be determined
rigorously with the help of Proposition 3.2, if desired, as explained in Section 9.

4. Curvature assumptions imply area comparisons

The proof of Theorem 1.1 relies on area growth inequalities that follow from the
upper curvature bound. The first inequality is due to Bandle and addresses a differ-
ence of areas. The second inequality appeared in a recent paper of ours and deals
with the ratio of areas.

The planar weight representing the sphere, Euclidean plane or hyperbolic plane is

wK(r) =


4

(1+r2)2
, 0 ≤ r <∞, when K = +1,

1, 0 ≤ r <∞, when K = 0,
4

(1−r2)2
, 0 ≤ r < 1, when K = −1.

(7)

One checks that the curvature −(∆ logwK)/2wK equals K in each case. The weighted
area of the Euclidean disk D(r) is

A(r) = |D(r)wK
| = 2π

ˆ r

0

wK(s)s ds

=


4πr2

1+r2
, 0 ≤ r <∞ when K = +1,

πr2, 0 ≤ r <∞, when K = 0,
4πr2

1−r2 , 0 ≤ r < 1, when K = −1.

(8)

Notice the area A(r) can take any value between 0 and ∞ when K = −1, 0, and any
value between 0 and 4π when K = +1.

Suppose K = −1, 0,+1. Given a surface Ω with weight ω as in Theorem 1.1, choose
a radius R > 0 such that

A(R) = |Ωω|,
noting in the case K = +1 that such an R exists because the assumptions in the
theorem ensure |Ωω| < 4π. Take F : D(R)→ Ω to be a conformal mapping onto the
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simply connected domain Ω. The ω-weighted area of the image of the subdisk D(r)
is

B(r) = |F (D(r))ω| =
ˆ
F (D(r))

ω dA =

ˆ
D(r)

(ω ◦ F )|F ′|2 dA. (9)

Since Ω = F (D(R)), we have the endpoint condition

B(R) = |Ωω| = A(R). (10)

Lemma 4.1 (Difference of areas; Bandle [6, pages 44, 119], or see [22, Lemma 6.1]).
The constant curvature disk has larger area: A(r) ≥ B(r) for 0 < r < R. Equality
holds for all r if and only if (ω ◦ F )|F ′|2 ≡ wK.

Lemma 4.2 (Ratio of areas; Langford and Laugesen [22, Lemma 6.3]). If K = 0, 1,
then the area ratio B(r)/A(r) is increasing. This area ratio is constant if and only if
(ω ◦ F )|F ′|2 ≡ wK.

5. Proof of Theorem 1.1 — second Robin eigenvalue maximal for
constant curvature disk

We follow the construction of trial functions from the Neumann case by Szegő [27]
and Bandle [5, 6]. In the hyperbolic Robin situation we can employ their method of
estimating the Rayleigh quotient, under the monotonicity condition (4). The spherical
situation is handled under either (4) on the BS set or else the new and distinctly
weaker Front-Loaded condition (6) on the FL set, which enables a certain integration
by parts step to be adapted from [16, 22].

Without loss of generality, we may assume the upper bound K on the curvature
equals −1, 0 or +1, since multiplying the metric by a positive constant c causes the
area and boundary length to change by factors of c and

√
c, while the curvature and

eigenvalue in the theorem change by 1/c, as is clear from the Rayleigh quotient (1).

Constructing trial functions. Assume (|Ωω|K, β) ∈ BS∪FL. The constant curva-
ture geodesic disk DK whose area equals |Ωω| lies in either the hyperbolic space of cur-
vature K = −1, in Euclidean space (K = 0), or in the unit sphere (curvature K = +1,
noting such a spherical cap DK exists since |Ωω| < 4π by hypothesis). Write Θ for the
radius of that geodesic disk. Second eigenfunctions of −∆Kv = λv on DK = DK(Θ)
with Robin parameter β/2π snK Θ can be taken in the form v2 = g(θ) cosφ and
v3 = g(θ) sinφ by the angular hypothesis (3) in the BS and FL sets, noting that since
cosine gives an eigenfunction, so must sine.

Transform the radial variable by r = tanh θ/2 (hyperbolic) or r = θ (Euclidean)
or r = tan θ/2 (spherical), and similarly define R in terms of Θ in each case. (In the
hyperbolic case, note that R = tanh Θ/2 < 1.) Writing

h(r) = g(θ),

one calculates (see for example [22, Section 2]) that the transformed eigenfunctions

f2 = h(r) cosφ, f3 = h(r) sinφ,
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are second eigenfunctions of −∆f = λwKf on the Euclidean disk D(R) having the

Robin parameter β/2πR
√
wK(R), where the weight wK was defined in the previous

section. Here ∆ is the Euclidean Laplacian. The radial part h is smooth, and has
h(0) = 0 since eigenfunctions are continuous at the origin.

This change of variable also implies that the weighted disk has the same area as the
geodesic disk, |D(R)wK

| = 4π(snK Θ/2)2 = |DK(Θ)|, and hence by our construction
has the same area as Ω with weight ω, that is, A(R) = |Ωω| in the notation of
Section 4. Hence A(R) = B(R) by formula (10).

Take a conformal mapping F : D(R) → Ω onto the simply connected domain.
Conformally transplant f2 and f3 to Ω by letting

ϕ2 = f2 ◦ F−1 and ϕ3 = f3 ◦ F−1.

Observe ϕ2, ϕ3 ∈ H1(Ω) by boundedness of h and by conformal invariance, which
yields equality and finiteness of the Dirichlet integrals:ˆ

Ω

|∇ϕ2|2 dA =

ˆ
D(R)

|∇f2|2 dA =

ˆ
D(R)

|∇f3|3 dA =

ˆ
Ω

|∇ϕ3|2 dA.

By a “center of mass” argument that goes back to Szegő [27] (see, for example, [16,
Lemma 5]), we may assume after precomposing the conformal map F with a suitable
Möbius self-map of the disk that ϕ2 and ϕ3 are each orthogonal in L2(ω dA) to the
eigenfunction u1 for the eigenvalue λ1(Ωω, β/Lω), meaningˆ

Ω

ϕ2u1 ω dA =

ˆ
Ω

ϕ3u1 ω dA = 0.

Substituting into the Rayleigh quotient. Applying the variational characteriza-
tion for the second eigenvalue, restricted to the space {ϕ ∈ H1(Ω) :

´
Ω
ϕu1 ω dA = 0}

of functions orthogonal to the first eigenfunction, one obtains using the trial functions
ϕ2 and ϕ3 that

λ2(Ωω, β/Lω) ≤
´

Ω
|∇ϕi|2 dA+ (β/Lω)

´
∂Ω
ϕ2
i

√
ω ds´

Ω
ϕ2
i ω dA

i = 2, 3. (11)

Recall here that Lω =
´

Ω

√
ω ds is the weighted length of the boundary.

Clearing the denominators and summing over i = 2, 3 yields that

λ2(Ωω, β/Lω) ≤
´

Ω
(|∇ϕ2|2 + |∇ϕ3|2) dA+ βh(R)2´

Ω
(ϕ2

2 + ϕ2
3)ω dA

where we used that on ∂Ω, one has ϕ2
2 + ϕ2

3 = h(R)2 by the definitions. Hence

λ2(Ωω, β/Lω) ≤

´
D(R)

(|∇f2|2 + |∇f3|2) dA+ βh(R)2

´
D(R)

(f 2
2 + f 2

3 )ω(F )|F ′|2 dA

by pulling the integrals back to D(R) via the conformal map F . After substituting
f2 = h(r) cosφ and f3 = h(r) sinφ, we find

λ2(Ωω, β/Lω) ≤

´
D(R)

(h′(r)2 + r−2h(r)2) dA+ βh(R)2

´
D(R)

h(r)2ω(F (reiφ))|F ′(reiφ)|2 dA
. (12)
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Equality holds in (11) when Ω = D(R), ω = wK , F (z) = z, ϕi = fi, and so

λ2(D(R)wK
, β/LwK

) =

´
D(R)

(h′(r)2 + r−2h(r)2) dA+ βh(R)2

´
D(R)

h(r)2wK(r) dA
. (13)

Nonnegativity of the numerators. The numerators in (12) and (13) are identical.
We show they are positive, except in a borderline case where they equal zero. The
underlying reason is that the first nonzero Steklov eigenvalue of the Euclidean disk of
radius R equals 1/R; rather than relying on that interpretation, for simplicity’s sake
we estimate the numerator explicitly:ˆ

D(R)

(
h′(r)2 + r−2h(r)2

)
dA ≥

ˆ
D(R)

2h′(r)r−1h(r) dA since a2 + b2 ≥ 2ab

= 2πh(R)2 ≥ −βh(R)2

because h(0) = 0 and β ≥ −2π in the BS and FL parameter sets. Thus the numerator
in (12) and (13) is nonnegative. Equivalently, the second eigenvalue of the disk is
nonnegative: λ2(D(R)wK

, β/LwK
) ≥ 0.

The numerator equals zero if and only if β = −2π, as we now explain. Note that
h(R) = g(Θ) > 0 by hypothesis (4) for the BS set or (5) for the FL set. Hence from
the inequalities in the argument above we deduce that if the numerator equals zero
then β = −2π and h′(r) = r−1h(r), so that h(r) = r for all r. In the reverse direction,
if β = −2π then the disk has second eigenvalue λ2(D(R)wK

,−2π/LwK
) ≤ 0, since

u = r cosφ is a sign-changing eigenfunction with eigenvalue zero: ∆u = 0 and at
r = R the Robin condition ∂u/∂r− (2π/LwK

)
√
wKu = 0 holds. Hence the numerator

of (13) equals 0.

Numerators positive. Suppose β > −2π, so that the numerators of (12) and (13)
are positive. To complete the proof, it is enough to compare denominators and showˆ

D(R)

h(r)2ω(F (reiφ))|F ′(reiφ)|2 dA−
ˆ
D(R)

h(r)2wK(r) dA ≥ 0 (14)

with equality if and only if ω(F (z))|F ′(z)|2 ≡ wK(z). (Regarding the equality state-
ment in the theorem, notice (ω ◦ F )|F ′|2 ≡ wK means the surface Ω with met-
ric ω(z)|dz|2 is isometric via the conformal map F to the disk D(R) with metric
wK(z)|dz|2, while in the other direction, if the two surfaces are isometric then their
eigenvalues are the same and so equality holds in the theorem.)

Recalling the definitions of the area functionals A and B in (8) and (9), the left
side of (14) equals

−
ˆ R

0

h(r)2 (A′(r)−B′(r)) dr =

ˆ R

0

2h(r)h′(r) (A(r)−B(r)) dr

after an integration by parts, where the boundary terms vanish because A(0) =
B(0) = 0 and also A(R) = B(R) by the area normalization (10). Therefore the task
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for (14) is to show ˆ R

0

2h(r)h′(r) (A(r)−B(r)) dr ≥ 0

with equality if and only if (ω ◦F )|F ′|2 = wK . We convert back to the geodesic radial
variable θ by substituting h(r) = g(θ), so that the goal becomes to show

ˆ Θ

0

2g(θ)g′(θ)(A−B) dθ ≥ 0 (15)

with equality if and only if (ω ◦ F )|F ′|2 = wK . Here the areas A and B are regarded
as functions of θ. Explicitly, one computes A = 4π(snK θ/2)2 by substituting r =
tanh θ/2 or r = θ or r = tan θ/2, respectively, into the area formula (8).

BS case. In the hyperbolic case (K = −1) the hypotheses on the BS region ensure
that (3) and (4) hold, so that g and g′ are positive (except that g′ might vanish at
one point). We know A − B ≥ 0 by Lemma 4.1, with equality for all θ if and only
if (ω ◦ F )|F ′|2 = wK . Inequality (15) and its equality statement follow immediately.
The same holds in the Euclidean and spherical cases.

FL case. Consider now the Euclidean and spherical cases assuming the FL set hy-
potheses (3), (5), (6). Define

G(ψ) =

ˆ ψ

0

2g(θ)g′(θ)Adθ

and note G(0) = 0. The left side of inequality (15) can be rewritten in terms of G by
first pulling out a factor of A, obtaining

ˆ Θ

0

2g(θ)g′(θ)A

(
1− B

A

)
dθ =

ˆ Θ

0

G′(θ)

(
1− B

A

)
dθ

=

ˆ Θ

0

G(θ)
d

dθ

(
B

A

)
dθ,

where the final step uses integration by parts and the normalization that B/A =
1 when θ = Θ, by (10). The area ratio is increasing, with (d/dθ)(B/A) ≥ 0 by
Lemma 4.2, remembering that the lemma needs K = 0,+1; equality holds for all θ
if and only if (ω ◦ F )|F ′|2 ≡ wK . Thus to prove (15), it suffices to show G(θ) > 0 for
all θ ∈ (0,Θ) except perhaps at one θ value.

Since G′(θ) = 2g(θ)g′(θ)A, the Up-Down-Up hypothesis (5) implies G is strictly
increasing for 0 < θ < θmax, strictly decreasing for θmax < θ < θmin, and strictly
increasing for θmin < θ < Θ. Because G(0) = 0 by construction and G(θmin) ≥ 0 by
the Front-Loaded hypothesis (6), it follows that G > 0 on the interval (0,Θ) except
perhaps at θmin, which completes the proof.
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Numerators equal zero. Lastly, if the numerators of (12) and (13) equal zero then
those formulas imply

λ2(Ωω, β/Lω) ≤ 0 = λ2(D(R)wK
, β/LwK

), (16)

so that the second eigenvalue is maximal for the constant curvature disk. Further,
h(r) = r for all r, as shown above, and β = −2π.

Remark. The theorem asserts no equality statement when β = −2π. Equality obvi-
ously holds in (16) “if” Ωω is isometric to the constant curvature disk D(R)wK

, but
we do not assert “only if”. An equality statement can be developed, though, in terms
of the conformal map F . For suppose equality holds in the eigenvalue inequality (16).
By imposing equality in the variational principle (11), we find the trial functions ϕ2

and ϕ3 must be Robin eigenfunctions on Ωω with eigenvalue 0. The weak formulation
of the eigenfunction equation for ϕ2, with β = −2π and eigenvalue 0, saysˆ

Ω

∇ϕ2 · ∇ϕ̃ dx−
2π

Lω

ˆ
∂Ω

ϕ2ϕ̃
√
ω ds = 0, ϕ̃ ∈ H1(Ω).

Adapting an argument of Freitas and Laugesen [16, p. 1038–1039] for Jordan–Lipschitz
domains, one deduces that√

(ω ◦ F )(Reiφ)|F ′(Reiφ)| = Lω
2πR

(17)

for almost every φ ∈ [0, 2π], and that log |F ′| equals the Poisson integral of its bound-

ary values. By (17), the boundary function is log
(
Lω/2πR

√
(ω ◦ F )(Reiφ)

)
, which

depends continuously on φ. Hence the harmonic function log |F ′| extends continu-
ously to the closed disk, and so we have proved that that when β = −2π and equality
holds in the theorem, the product (ω ◦ F )|F ′|2 extends continuously to the closure
of the disk and equals a constant on the boundary. But that information does not
determine its values in the interior of the disk, as happened in the equality case when
β > −2π.

6. Robin eigenfunctions on disks with constant curvature

Angular dependence of the second Robin eigenfunction on constant curvature disks
is established in this section for most (but not all) parameter values, along with
monotonicity of the radial part in some (but not all) parameter regimes.

The hyperbolic and Euclidean situations are relatively straightforward. The spher-
ical case is not. Proofs are given later in this section and the results are subsequently
applied in Section 7 to establish subsets of BS, for Theorem 3.1.

Angular dependence of the second eigenfunction: mostly but not always.
Recall that λk(Θ, α) is the k-th eigenvalue of ∆K on a geodesic disk DK(Θ), under a
Robin boundary condition with parameter α. In geometric terms, when K = +1 the
geodesic disk is the spherical cap {(x1, x2, x3) ∈ S2 : x3 > cos Θ} having aperture or
geodesic radius 0 < Θ < π.



16 MAXIMIZING THE SECOND ROBIN EIGENVALUE

Proposition 6.1 (Second eigenfunction has angular dependence in most cases).
Let α ∈ R. If:

(a) [Hyperbolic] K = −1 and Θ > 0, or
(b) [Euclidean] K = 0 and Θ > 0, or
(c) [Spherical] K = +1, and either 0 < Θ ≤ 3π/4 or else

3π/4 < Θ < π and α /∈ (cot Θ, tan Θ),

then the second eigenspace of −∆K u = λu on the geodesic disk DK(Θ) with Robin
parameter α is spanned by two functions of the form

g(θ) cosφ and g(θ) sinφ,

where the radial part g is smooth and satisfies the Robin boundary condition

g′(Θ) + αg(Θ) = 0.

The hyperbolic and Euclidean cases of the proposition include all real Robin pa-
rameters α, and the spherical case includes all nonnegative parameters α ≥ 0, since if
3π/4 < Θ < π then the excluded interval from cot Θ to tan Θ contains only negative
numbers.

We do not understand rigorously what happens in the spherical case when 3π/4 <
Θ < π and α ∈ (cot Θ, tan Θ). According to numerical work, the second eigenfunction
has angular dependence for a subset of that parameter region but the eigenfunction
is instead radial for some parameter values, specifically when the cap fills almost the
whole sphere (Θ close to π) and the Robin parameter lies in a certain negative range.
Figure 4 illustrates the proposition and our numerical findings.

Regions D and E in the figure are found by numerically computing the lowest
angular mode and lowest two radial modes on a spherical cap in order to determine
where the second eigenfunction has angular dependence and where it is radial. The
red region labeled “E” in the figure is the exceptional parameter set where the second
eigenfunction is radial. It yields the red region in Figure 1, after transforming the
horizontal and vertical parameters to t = 4π sin2 Θ/2 and β = (2π sin Θ)α.

A different proof for the Euclidean part (b) of the proposition was given by Freitas
and Laugesen [16], using Bessel functions.

Monotonicity in the radial direction for the first angular eigenfunction.
Next we aim for monotonicity properties of the radial part g of the lowest eigen-
function having angular dependence. This eigenfunction has the form u = g(θ) cosφ
or g(θ) sinφ, since functions of the form g(θ) cosmφ,m ≥ 2, would generate larger
eigenvalues; see Step 5 in the proof of Proposition 6.1. Importantly, the next results
do not assume that this lowest angular eigenfunction gives the second eigenfunction.

Proposition 6.2 (Monotonicity of first angular eigenfunction: hyperbolic/Euclidean).
Suppose K = −1 or K = 0, and let Θ > 0 and α ∈ R.

If g(θ) cosφ is a first angular eigenfunction of ∆K on a geodesic disk DK(Θ) with
Robin parameter α, then one may take g to be positive: 0 = g(0) < g(θ) whenever
θ ∈ (0,Θ]. Furthermore:

If α ≤ 0 then g(θ) is strictly increasing for θ ∈ (0,Θ), with g′ > 0 there.
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Figure 4. Consider K = −1, 0,+1. The second Robin eigenfunction
of the geodesic disk DK(Θ) with Robin parameter α has angular depen-
dence in parameter regions A,B,C,D, by Proposition 6.1. The left side
corresponds to hyperbolic disks (K = −1) and the right side to spher-
ical caps (K = +1). For spherical caps with aperture 3π/4 < Θ < π,
region B is where α ≤ cot Θ and region C is where α ≥ tan Θ. Angular
dependence continues to hold in parameter region D (see the comments
on numerical work in Section 9). In the exceptional region E, which
corresponds to large spherical caps with suitably negative Robin pa-
rameter, the second Robin eigenfunction is not angular but instead
(according to our numerical work) is radial.

If α > 0 then g(θ) first strictly increases and then strictly decreases: a maximum
point θmax exists such that g′ > 0 on (0, θmax) and g′ < 0 on (θmax,Θ].

The spherical case exhibits more complicated behavior, when the Robin parameter
α is negative in part (iii) of the next proposition. Recall the aperture Θ2 ' 0.70π
and the function α2(Θ) that were defined before Theorem 3.1. Again we study the
first angular mode, which is not necessarily the second eigenfunction.

Proposition 6.3 (Monotonicity of first angular eigenfunction: spherical). Let K =
+1 and take Θ ∈ (0, π) and α ∈ R.

If g(θ) cosφ is a first angular eigenfunction of ∆+1 on a spherical cap of aperture
Θ with Robin parameter α, then one may take g to be positive: 0 = g(0) < g(θ)
whenever θ ∈ (0,Θ].

Furthermore, the behavior of g depends on the sign of α as follows:
(i) If α > 0 then g(θ) first strictly increases and then strictly decreases: a maximum
point θmax exists such that g′ > 0 on (0, θmax) and g′ < 0 on (θmax,Θ].
(ii) If α = 0 and 0 < Θ ≤ Θ2 then g(θ) is strictly increasing, with g′ > 0 on (0,Θ).
If α = 0 and Θ2 < Θ < π then g(θ) first strictly increases and then strictly decreases:
a maximum point θmax exists such that g′ > 0 on (0, θmax) and g′ < 0 on (θmax,Θ).
(iii) If α2(Θ) < α < 0 and 0 < Θ < Θ2, or if α ≤ α2(Θ) and 0 < Θ < π, then g(θ)
is strictly increasing for θ ∈ (0,Θ] with g′ > 0 on that interval (except g′ vanishes at
θ = Θ2 when α = α2(Θ) and Θ2 ≤ Θ < π).
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(i)
(ii)

(iii)

(iii)
(iv)

α2(Θ )

Θ2
π

2
π
Θ

α

Figure 5. The regions for Proposition 6.3 parts (i)–(iv).

(iv) If α2(Θ) < α < 0 and Θ2 < Θ < π, then g(θ) first strictly increases and then
strictly decreases and then strictly increases again: a local maximum point θmax and
local minimum point θmin exist such that g′ > 0 on (0, θmax) and g′ < 0 on (θmax, θmin)
and g′ > 0 on (θmin,Θ].

Figure 5 illustrates the regions in the proposition.

Relevant literature on the form of the eigenfunction. The Neumann and
Dirichlet cases of the preceding propositions are known in all three constant cur-
vature situations, by work of Bandle [6, pp. 122-124], Ashbaugh and Benguria [3,
Section 3], Ashbaugh and Benguria [2, p. 562], [4, Section 3], Benguria and Linde
[7, Section 3]. See the summary by Langford and Laugesen [22], who completed the
Neumann case by handling spherical caps larger than a hemisphere.

The Robin case in curvature zero (Proposition 6.1 for disks in Euclidean space) was
treated by Freitas and Laugesen [16, Section 5], [17, Section 5], using explicit formulas
for Bessel functions. For geodesic disks in hyperbolic space with α ∈ [−σ1(Θ), 0), see
Li, Wang and Wu [25, Propositions 3.1 and 3.2]; here σ1(Θ) is the first positive Steklov
eigenvalue.

For spherical caps, we know of no prior work identifying properties of the second
Robin eigenfunction or of the first angular Robin eigenfunction.

The proofs below avoid special functions and instead rely on qualitative properties
determined by the eigenfunction equation.

Proof of Proposition 6.1. The first Robin eigenfunction is positive and hence by
separation of variables it must be radial. Suppose f(θ) is a radial eigenfunction on
the geodesic disk DK(Θ) that is not the first eigenfunction, so that f satisfies

−∆Kf = ρf, f ′(Θ) + αf(Θ) = 0,

for some eigenvalue ρ, and f changes sign since it is L2-orthogonal to the first eigen-
function. The first four steps of this proof will show ρ > λ2(Θ, α) under the hypotheses
of the proposition, so that the second Robin eigenfunction is definitely not radial.

Step 1. Observe f ′(0) = 0 since the radial eigenfunction f is smooth at the origin.
Let

v = f ′(θ) cosφ
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and notice v 6≡ 0 since f is nonconstant. This v satisfies the eigenfunction equation
−∆Kv = ρv with eigenvalue ρ, because

−∆Kv =
d

dθ
(−∆Kf) cosφ = ρf ′(θ) cosφ = ρv,

where the first equality relies on direct calculation and the Pythagorean identity
(snK

′)2 − snK snK
′′ = 1.

Step 2. Suppose f ′(θ̃) = 0 for some θ̃ ∈ (0,Θ], so that v satisfies a Dirichlet

condition on the boundary of the disk DK(θ̃). Because v changes sign (due to the
factor cosφ), it cannot be the first Dirichlet eigenfunction of ∆K on that disk and so ρ
must be a second or higher Dirichlet eigenvalue there. Hence by domain monotonicity
for Dirichlet eigenvalues,

ρ ≥ λ2(θ̃,∞) ≥ λ2(Θ,∞)

> λ2(Θ, α),

where the final inequality relies on strict monotonicity of the spectrum with respect
to the Robin parameter. Thus ρ > λ2(Θ, α), as desired.

Step 3. Suppose next that f ′ 6= 0 on (0,Θ], which means f ′ does not change sign.
We may take f ′ > 0, so that the sign-changing property of f implies f(0) < 0 < f(Θ).
The Robin condition therefore implies

α = −f
′(Θ)

f(Θ)
< 0.

Further, since f(θ0) = 0 for some θ0 ∈ (0,Θ) we know f is a Dirichlet eigenfunction
on the disk DK(θ0) and so its eigenvalue must be positive:

ρ > 0.

Let us determine the Robin condition satisfied by v. The eigenfunction equation
∆Kf + ρf = 0 gives that

f ′′ +

(
snK

′

snK
+ ρ

f

f ′

)
f ′ = 0.

Evaluating at the boundary and using the Robin condition for f shows that

f ′′(Θ) + γf ′(Θ) = 0

where the constant is
γ = ctK Θ− ρ

α
and we defined

ctK θ =
snK

′θ

snK θ
=


cot θ if K = +1,

θ−1 if K = 0,

coth θ if K = −1.

Thus v is a sign-changing Robin eigenfunction on DK(Θ) with parameter γ and
eigenvalue ρ. It follows that

ρ ≥ λ2(Θ, γ).
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We want to show γ > α, because then ρ > λ2(Θ, α).
In the hyperbolic and Euclidean cases we have ctK Θ ≥ 0. The same holds in the

spherical case when 0 < Θ ≤ π/2. Thus in these cases, the proof that the second
Robin eigenfunction is nonradial is complete, because γ ≥ −ρ/α > 0 > α.

Step 4. Consider now the spherical case (K = +1) with π/2 < Θ < π. If α ≤ cot Θ
then since γ > cot Θ we have γ > α, as needed.

If tan Θ ≤ α < 0 then ρ ≥ 2, as follows. The radial eigenfunction f satisfies
−∆+1f = ρf with eigenvalue ρ and Robin parameter α at θ = Θ, and the radial
function c(θ) = − cos θ satisfies the eigenfunction equation −∆+1c = 2c with eigen-
value 2 and its Robin parameter at θ = Θ is

−c
′(Θ)

c(Θ)
= tan Θ.

This Robin parameter is less than or equal to α by assumption and so the eigenvalue
2 of c is less than or equal to the eigenvalue ρ of f , as we now justify.

Suppose first that f has its zero at some radius θ ∈ [π/2,Θ). Then on the annulus
between θ and Θ the function f is a positive eigenfunction satisfying a Dirichlet
condition (Robin parameter +∞) at the inner boundary and a Robin condition at
radius Θ with parameter α, while on the same annulus, c is a positive eigenfunction
whose Robin parameter at Θ is less than or equal to α; since positive eigenfunctions
are automatically ground states, monotonicity of the spectrum with respect to the
Robin parameter on each boundary portion implies that the eigenvalue of c is less
than or equal to that of f , meaning 2 ≤ ρ.

Suppose next that f has its zero at some radius θ ∈ (0, π/2). Then on the disk of
radius θ, the function f is a negative eigenfunction satisfying a Dirichlet condition
while c is a negative radial eigenfunction satisfying some Robin condition at the
boundary; hence again the eigenvalue of c is less than or equal to that of f , giving
2 ≤ ρ in this case too.

By our assumption that α ≥ tan Θ and the fact that ρ ≥ 2, we obtain that

γ = cot Θ− ρ

α
≥ 1

α
− 2

α
> 0 > α.

Thus again γ > α, as we wanted.
Lastly, the assumption in Proposition 6.1(c) that α /∈ (cot Θ, tan Θ) is needed only

when 3π/4 < Θ < π, because if π/2 < Θ ≤ 3π/4 then tan Θ ≤ cot Θ and the excluded
interval is empty.

Step 5. By a standard argument with separation of variables in the Rayleigh
quotient, one finds that the second eigenfunction is a linear combination of some
functions g(θ) cosφ and g(θ) sinφ. (Angular factors cosmφ and sinmφ with m ≥ 2
would give larger eigenvalues.) The Robin condition then says g′(Θ) + αg(Θ) = 0.

Proof of Proposition 6.2 (Hyperbolic/Euclidean). Let K = −1 or 0. The
proposition concerns the first angular eigenfunction, which has the form of a radial
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function g(θ) multiplied by the angular part cosφ or sinφ. Continuity of the eigen-
function at the origin demands that g(0) = 0. Write λang(Θ, α) for this first angular
eigenvalue.

We begin by showing that after multiplying by −1 if necessary, one must have
g(θ) > 0 when 0 < θ ≤ Θ. For suppose g(θ0) = 0 for some θ0 ∈ (0,Θ]. Then v =
g(θ) cosφ is a Dirichlet eigenfunction with angular dependence on the disk DK(θ0),
having eigenvalue λang(Θ, α). Hence

λang(Θ, α) ≥ λang(Θ,∞) > λang(Θ, α),

where the first inequality holds by domain monotonicity of Dirichlet eigenvalues as we
enlarge the disk DK(θ0) to DK(Θ), and the second inequality holds by monotonicity
of the eigenvalue with respect to the Robin parameter. This contradiction shows that
g(θ0) 6= 0. Since θ0 was arbitrary, we see g vanishes only at the origin, and so after
replacing g with −g if necessary, we obtain that g(θ) > 0 whenever 0 < θ ≤ Θ.

Next, applying the eigenfunction equation −∆Ku = λang(Θ, α)u to the eigenfunc-
tion u = g(θ) cosφ gives

− 1

snK θ

(
(snK θ) g

′)′ + 1

(snK θ)2
g = λang(Θ, α)g.

This equation holds for all θ > 0, since the ordinary differential equation is linear and
so its solution extends to all positive θ.

Changing variable with

s =

{
log(tanh θ/2) if K = −1,

log θ if K = 0,

we find that
d2g

ds2
= qg

for −∞ < s <∞ where

q(θ) = 1− λang(Θ, α)(snK θ)
2.

Notice q is positive for small θ and so g is a strictly convex function of s near −∞.
Further, g → g(0) = 0 as s→ −∞ and so g must be increasing when s is near −∞.

If λang(Θ, α) ≤ 0, then q(θ) ≥ 1 for all θ. In particular, g remains a strictly convex,
strictly increasing function of s all the way to the boundary, so that g′(θ) > 0 on
(0,Θ]. Note that g′(Θ) > 0 implies α < 0.

If λang(Θ, α) > 0 then q(θ) is positive until θ becomes large enough that q(θ)
changes sign and is thereafter negative. Thus g is a strictly convex function of s until
it changes to become strictly concave, after which g continues to be strictly concave
for as long as it is positive. Thus either dg/ds stays positive for the whole interval
θ ∈ (0,Θ) or else dg/ds is first positive and then changes sign to remain negative
through to the endpoint θ = Θ. That is, either g′(θ) > 0 for θ ∈ (0,Θ), or else g′ > 0
on (0, θmax) and g′ < 0 on (θmax,Θ]. The first case has g′(Θ) ≥ 0 and so α ≤ 0, while
the second case has g′(Θ) < 0 and hence α > 0.
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Proof of Proposition 6.3 (Spherical). The proof that g(0) = 0 and g is posi-
tive on (0,Θ] proceeds exactly as for the hyperbolic/Euclidean case in the proof of
Proposition 6.2, and adapting that proof shows that d2g/ds2 = qg where now

s = log(tan θ/2) ∈ (−∞,∞)

and

q(θ) = 1− λang(Θ, α) sin2 θ.

Again q is positive for small θ and so g is a strictly convex function of s near −∞,
with g → g(0) = 0 as s→ −∞, and so g must be increasing when s is near −∞.

Proposition 6.3 parts (i) and (ii). If α ≥ 0 then the Robin boundary condition
forces dg/ds to be nonpositive at the right endpoint s(Θ), and so at some point g
must switch from convex to concave. That is, q(θ) must change sign at least once
on the interval (0,Θ). Noting that sin2 θ increases from zero before decreasing again
to zero on (0, π), we deduce q has two roots θ± satisfying 0 < θ− < π/2 < θ+ < π
and that the smaller root θ− must lie in (0,Θ). Write s± = s(θ±) for the s-values
corresponding to the roots, so that

−∞ < s− < 0 < s+ <∞

and s− < s(Θ) = log tan(Θ/2).
Suppose first that λang(Θ, α) sin2 Θ ≥ 1, so that q(Θ) ≤ 0. Hence q is positive

on (0, θ−) and negative on (θ−,Θ). The preceding paragraph shows that g is strictly
convex as a function of s ∈ (−∞, s−) and strictly concave for s ∈ (s−, s(Θ)). If α > 0
then dg/ds < 0 at the endpoint s(Θ) and so we deduce that g reaches a maximum at
some point θmax such that g′ > 0 on (0, θmax) and g′ < 0 on (θmax,Θ]. If α = 0 then
dg/ds = 0 at the endpoint s(Θ) and so we deduce that g is strictly increasing, with
g′ > 0 on (0,Θ).

Suppose next that λang(Θ, α) sin2 Θ < 1, so that q(Θ) > 0 and so θ+ < Θ, with q
being positive on (0, θ−), negative on (θ−, θ+) and positive on (θ+,Θ). Our work above
implies that g is strictly convex as a function of s on (−∞, s−), strictly concave on
(s−, s+) and strictly convex on (s+, s(Θ)). Recalling that the slope dg/ds is positive
when s is near −∞ and is nonpositive at s = s(Θ), we deduce that for some number
smax ∈ (−∞, s(Θ)) one has dg/ds > 0 on (−∞, smax) and dg/ds < 0 on (smax, s(Θ)).
Determining θmax from the relation smax = s(θmax), we see g′(θ) is positive on (0, θmax)
and negative on (θmax,Θ).

Parts (i) and (ii) are now proved, noting for part (ii) in the proof above that the crit-
ical aperture Θ2 is defined so that λang(Θ2, 0) sin2 Θ2 = 1, with λang(Θ, 0) sin2 Θ > 1
when Θ ∈ (0,Θ2) and λang(Θ, 0) sin2 Θ < 1 when Θ ∈ (Θ2, π), using here [22, Proposi-
tion 3.1] and the fact that λang = λ2 in the Neumann case α = 0 (by Proposition 6.1).

Proposition 6.3 parts (iii) and (iv). Suppose α < 0 and 0 < Θ < π. Note g′(Θ) > 0
since the Robin parameter α is negative.

Recall from Section 3 that the second Neumann eigenfunction g2(θ) cosφ on the
cap of aperture Θ2 is also a Robin eigenfunction on the cap of aperture Θ ∈ (0, π),
with Robin parameter α2(Θ), and that g′2 > 0 except at Θ2 where g′2 vanishes.
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First suppose α < α2(Θ), so that g′2/g2 < g′/g at θ = Θ. Lemma B.1 says that
the same inequality must hold for all θ ∈ (0,Θ], and so in particular 0 < g′(θ). Next
suppose α = α2(Θ) < 0. Then g′2/g2 = g′/g at θ = Θ and so the equiality statement
in the lemma implies that g must be a positive multiple of g2 and so g′(θ) > 0 for all
θ except θ = Θ2.

Now suppose α2(Θ) < α < 0 and 0 < Θ < Θ2. Further suppose g′ vanishes at some
θ < Θ. It follows that g must change from convex (as a function of s) to concave
in order for g′ to vanish, and then must change again to convex in order for g′ to
become positive at the endpoint Θ. Since q can change sign at most twice, we deduce
g must remain convex on [Θ, π) and hence also positive and strictly increasing there.
In particular, g′(Θ2) > 0. The assumption α2(Θ) < α means that g′2/g2 > g′/g at
Θ, and so Lemma B.1 implies that the same inequality must hold at Θ2, giving the
contradiction g′2(Θ2) > 0. Therefore g′ cannot vanish as we supposed, and hence
g′ > 0 on the whole interval (0,Θ].

Finally, suppose α2(Θ) < α < 0 and Θ2 < Θ < π. The inequality α2(Θ) < α
means that g′2/g2 > g′/g at Θ, which by Lemma B.1 implies the same inequality at
Θ2, giving g′(Θ2) < 0. Hence g must change from strictly convex (as a function of
s) to strictly concave in order for g′ to be negative at Θ2, after which g must change
back to strictly convex in order to ensure g′ is positive at the endpoint Θ. It follows
easily now that g(θ) first strictly increases and then strictly decreases and then strictly
increases again, as claimed in part (iv) of the proposition.

Properties of the radial part for aperture Θ2. As above, g2 is the radial part
of the second Neumann eigenfunction for the spherical cap of aperture Θ2, and g2

extends to a positive, increasing function on the whole interval (0, π), as graphed in
Figure 3. The next section needs the following facts about α2(Θ) = −g′2(Θ)/g2(Θ).

Lemma 6.4. For Θ ∈ [Θ2, π) one has α2(Θ) > cot Θ. Hence when t ∈ [t2, 4π) one
has β2(t) > 2π − t, and also β2(t)→ −2π as t→ 4π.

The lemma helps explain Figure 1, where the graph of β2(t) lies above the upper
boundary of region III and approaches height −2π in the bottom right corner.

Proof. By applying the eigenfunction equation ∆+1(g2(θ) cosφ) = −λ2(Θ2, 0)g2(θ) cosφ
with Robin parameter α = 0 (for the Neumann boundary condition), one finds after
some reorganization that

1

sin θ

( 1

sin θ

(
g2(θ) sin θ

)′)′
= −λ2(Θ2, 0)

g2(θ)

sin θ
< 0

when 0 < θ < π, and so
d2

dt2
(
g2(θ) sin θ

)
< 0

where the new variable t = t(θ) = 4π sin2 θ/2 satisfies dt/dθ = 2π sin θ. Thus
g2(θ) sin θ is a strictly concave function of t. Its first θ-derivative at θ = Θ2 equals

g′2(Θ2) sin Θ2 + g2(Θ2) cos Θ2 < 0
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since g′2(Θ2) = 0 by the Neumann boundary condition and Θ2 is larger than π/2 by
definition in Section 3. Hence the first t-derivative is negative at t2 = t(Θ2), and so
by concavity the t-derivative remains negative for all t ∈ [t2, 4π), which means the
first θ-derivative is negative for all θ ∈ [Θ2, π). That is,

g′2(θ) sin θ + g2(θ) cos θ < 0,

which is equivalent to cot θ < α2(θ), as claimed in the lemma.
Next, if t ∈ [t2, 4π) then t = 4π sin2 θ/2 for some θ ∈ [Θ2, π). Multiplying the pre-

ceding inequality by 2π sin θ gives (2π sin θ) cot θ < (2π sin θ)α2(θ), which simplifies
to 2π − t = 2π cos θ < β2(t), giving the desired lower bound on β2. Letting t → 4π
implies −2π ≤ lim inft→4π β2(t).

To get an upper bound on the lim sup, let 0 < δ < ε < 1. By the proof of
Proposition 6.3 above (choosing there the aperture Θ = Θ2 and Robin parameter
α = 0), we have q(θ) → 1 > ε2 as θ → π and hence d2g2/ds

2 > ε2g2 for all θ
near π, where we recall that s = log(tan θ/2) and d/ds = (sin θ)d/dθ. Writing
y(s) = (1/g2)dg2/ds > 0, we deduce that

y′(s) + y(s)2 > ε2

for all large s. Fix s0 to be such a large number. If 0 < y(s0) < δ then the
differential inequality for y(s) forces its derivative to exceed a positive constant:
y′(s) > ε2 − δ2 > 0, with this inequality holding not only at s = s0 but on the
whole open interval to the right of s0 on which the value of y(s) remains below δ.
Thus y(s) must eventually exceed δ in value, after which its value remains above δ,
by invoking the differential inequality once more. Hence y(s) > δ for all large s,
which means (sin θ)(1/g2)dg2/dθ > δ for all θ near π and hence β2(t) < −2πδ for
all t near 4π. Hence lim supt→4π β2(t) ≤ −2πδ. Since δ < 1 was arbitrary, we have
lim supt→4π β2(t) ≤ −2π as desired, so that limt→4π β2(t) = −2π. �

7. Proof of Theorem 3.1 — shape of the BS region

Set I. The portion of set I lying in the left halfplane is the semi-infinite strip

(−∞, 0)× [−2π, 0] = {(−4π sinh2 Θ/2, β) : Θ > 0,−2π ≤ β ≤ 0},
where we have expressed t as 4π sinh2 Θ/2. To satisfy the definition of the BS region,
we show that (3) and (4) hold in the hyperbolic case (K = −1) on a geodesic disk
of radius Θ > 0 with Robin parameter α = β/(2π sinh Θ) ≤ 0. Indeed, for (3) the
angular form g(θ) cosφ for the second eigenfunction holds by Proposition 6.1(a) while
the positivity of g and g′ on (0,Θ) was shown in Proposition 6.2.

The part of I on the vertical axis is the interval {(0, β) : −2π ≤ β ≤ 0}. Let Θ > 0
and note that (3) and (4) hold in the Euclidean case (K = 0) on a disk of radius Θ
with Robin parameter α = β/2πΘ ≤ 0 by Proposition 6.1(b) and Proposition 6.2.

For the remainder of the proof we deal with sets in the open right halfplane. Take
K = +1 from now on. The portion of set I lying in the right halfplane can be
expressed as the strip

{(4π sin2 Θ/2, β) : 0 < Θ ≤ Θ2,−2π ≤ β ≤ 0}
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after writing t = 4π sin2 Θ/2. For such Θ and β values, we see condition (3) holds by
Proposition 6.1(c) since Θ2 < 0.71π < 3π/4 by [22, Proposition 4.2], while condition
(4) holds by Proposition 6.3(ii)(iii).

Set II. This set lies in the right halfplane. Converting t to Θ, the set can be written
as

II = {(4π sin2 Θ/2, β) : Θ2 < Θ ≤ 3π/4,−2π ≤ β ≤ (2π sin Θ)α2(Θ)}.
The angular form of the second eigenfunction for (3), on a spherical cap of aperture
Θ with Robin parameter α = β/(2π sin Θ) ≤ α2(Θ), holds by Proposition 6.1(c) since
Θ ≤ 3π/4. Positivity of g and of g′ on (0,Θ) (except perhaps at one point, for g′)
follows from Proposition 6.3(iii).

Set III. This set may be written as

III = {(4π sin2 Θ/2, β) : 3π/4 < Θ < π,−2π ≤ β ≤ 2π cos Θ}
since 2π cos Θ = 2π(1−2 sin2 Θ/2) = 2π−t. The angular form of the second eigenfunc-
tion on a spherical cap of aperture Θ with Robin parameter α = β/(2π sin Θ) ≤ cot Θ
holds by Proposition 6.1(c). Positivity of g and g′ on (0,Θ) follows from Proposi-
tion 6.3(iii) since α ≤ cot Θ < α2(Θ) by Lemma 6.4.

Set IV . With t = 4π sin2 Θ/2, this final region in the right halfplane becomes

IV = {(4π sin2 Θ/2, β) : 3π/4 < Θ < π, tan Θ ≤ β/(2π sin Θ) ≤ α2(Θ)}
where we used the definition of β2(t) in terms of α2(Θ) and used also that

t
4π − t
2π − t

= 4π sin2 Θ/2
4π(1− sin2 Θ/2)

2π cos Θ
= 2π sin Θ tan Θ.

By Proposition 6.1(c), the second eigenfunction has angular form as in (3) on a spher-
ical cap of aperture Θ with Robin parameter α = β/(2π sin Θ) ≥ tan Θ. Positivity of
g and g′ on (0,Θ) follows from Proposition 6.3(iii) since α ≤ α2(Θ), except that g′

might vanish at one point.

Set V . The angular condition (3) holds by definition of set V , while the monotonic
condition (4) holds by Proposition 6.3(iii) since set V lies below the curve β2(t).

8. Proof of Proposition 3.2 — dropping downward in the FL set

According to the angular hypothesis (3), we may write g and g∗, respectively, for
the radial parts of the second eigenfunctions on the disk of radius Θ corresponding
to Robin parameters α = β/(2π snK Θ) and α∗ = β∗/(2π snK Θ). Both g and g∗ are
positive on (0,Θ], by Proposition 6.2 and Proposition 6.3.

If the monotonicity condition (4) holds then g′(Θ) ≥ 0 and so β ≤ 0 by the Robin
boundary condition; recall also that β ≥ −2π by hypothesis in this proposition.
Hence by the definition of the BS set, (0, β) ∈ BS if K = 0 or (4π sin2 Θ/2, β) ∈ BS
if K = +1, so that the proposition is proved. Thus from now on we may suppose (4)
does not hold, so that g′ changes sign and hence by Proposition 6.3, the Up-Down-
(Up) condition (5) holds.
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To finish the proof, we must verify the remaining criterion for belonging to the
set FL, which is condition (6). Normalize g by a multiplicative constant so that the
value at its local minimum point θmin equals the value of g∗ at that point, meaning
g(θmin) = g∗(θmin). At the right endpoint θ = Θ, the Robin boundary condition and
the assumption β < β∗ yield that

g′∗(Θ)

g∗(Θ)
= −α∗ < −α =

g′(Θ)

g(Θ)
.

Hence Lemma B.1 implies g′∗/g∗ < g′/g for all θ ∈ (0,Θ], so that g′∗ < g′ at every
point where g∗ = g. In particular g′∗ < g′ at θmin, and so by a short argument one
concludes that g∗ > g on the interval (0, θmin).

Integrating the left side of (6) by parts yields thatˆ θmin

0

g(θ)g′(θ)

(
snK

θ

2

)2

dθ

=
1

4

ˆ θmin

0

(g(θmin)2 − g(θ)2) snK θ dθ

>
1

4

ˆ θmin

0

(g∗(θmin)2 − g∗(θ)2) snK θ dθ since g∗ > g > 0

=

ˆ θmin

0

g∗(θ)g
′
∗(θ)

(
snK

θ

2

)2

dθ

by parts again. By the Up-Down-(Up) hypothesis (5) for g∗ we know g′∗ is positive
until the local maximum θ∗max of g∗, then negative until the local minimum θ∗min,
and then positive again. Hence the last displayed integral is greater than or equal to
0 if θmin ≤ θ∗max, and if θmin > θ∗max then the integral is greater than or equal to the
integral over (0, θ∗min), which is nonnegative by the FL hypothesis (6) for g∗. Thus in
either case the last displayed integral is nonnegative. Hence, as we needed to prove,
condition (6) holds for g.

9. Construction of Figure 1 and Figure 2

Readers are encouraged to download a Mathematica notebook [24] in order to
follow along with the explanations below of how the figures were created.

Construction of Figure 1. BS set. The sets I–IV appearing in Figure 1 are
specified in Theorem 3.1 and can be plotted straightforwardly in Mathematica. The
curves β2 and β4 and the set V require some explanation.

The curve β2(t) = −(2π sin Θ) g′2(Θ)/g2(Θ) that forms the upper boundary for
sets II, IV , V is defined prior to the statement of Theorem 3.1, with t and Θ related
by t = 4π sin2 Θ/2 and with g2(θ) = P−1

n2
(cos θ) defined in terms of an associated

Legendre function. The parameter n2 for the Legendre function is known theoretically
to exist and be the unique value such that g2 increases until some aperture Θ2 at which
g′2 = 0, and g2 continues to increase thereafter. Thus the curve β2(t) is negative
until t2, where it equals 0, after which β2(t) becomes negative again. An exact
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formula for n2 is not known, but by numerical experimentation one finds an accurate
approximation to be n2 ' 0.851187, which is the value used to plot β2(t) in the figure.

The curve β4(t) is constructed analogously to β2(t), except with g4(θ) = P−1
n4

(cos θ)
where n4 = 0.908729. This parameter choice is an approximation to the largest n
for which the Front-Loaded condition (6) holds with β = 0; for explanation, see our
Neumann result [22, proof of Theorem 1.1]. The curve β4(t) crosses the horizontal
axis at t4 ' 11.828. Note our earlier Neumann result used the slightly smaller number
(16/17)4π in order to obtain a rigorous result.

To plot the set V in Figure 1, we needed to identify the parameter values (t, β) at
which the angular condition (3) holds, that is, at which the first eigenvalue among
angular modes is smaller than the second eigenvalue among radial modes. These
eigenvalues were computed numerically in Mathematica with the NDEigenvalues com-
mand, after substituting g(θ) = ρ(θ)h(θ) for a suitably chosen weight ρ in order to
convert the Robin condition on g into a Neumann condition on h, at θ = Θ.

FL set. To determine the set FL, one must verify the angular condition (3), Up-
Down(-Up) condition (5), and Front-Loaded condition (6). In the first quadrant,
where t ≥ 0 and β > 0, the angular condition holds by Proposition 6.1 and the Up-
Down condition with θmin = Θ holds by Proposition 6.2 and Proposition 6.3(i). Thus
only the Front-Loaded condition need be checked. To avoid numerical differentiation,
first integrate by parts in (6). Then given a t value, evaluate the corresponding Θ and
apply a numerical bisection method to find the largest n value for which (6) holds for
g(θ) = P−1

n (cos θ) with θmin = Θ. This n value and Θ determine β from the Robin
boundary condition β/(2π sin Θ) = −g′(Θ)/g(Θ). By Proposition 3.2(ii), the FL set
contains the segment dropping down from the point (t, β) to the horizontal axis, and
so (t, β) lies on the upper boundary of the FL set. Performing this procedure for
60 reasonably-spaced t-values between 0 and t4 and then joining the resulting points
yields an accurate representation of the FL set in the first quadrant in Figure 1.

Next we handle the part of the FL set in the fourth quadrant. The region above
the curve β2(t) and to the right of t2 satisfies the Up-Down-Up condition by Propo-
sition 6.3(ii)(iv). Points on the curve β4(t) satisfy the Front-Loaded condition by the
choice of n4, and satisfy the angular condition too provided we stay above the graph
of t(4π− t)/(2π− t). Thus the region in the fourth quadrant bounded by that graph,
the horizontal axis and the graphs of β2 and β4 belongs to FL, by dropping downward
from the graph of β4 via Proposition 3.2(ii). Finally, the same reasoning also applies
below the graph of t(4π − t)/(2π − t) provided the angular condition can be verified
numerically, thus obtaining the additional small piece of the FL set in Figure 1.

Which aspects above required numerical work? In the FL region, numerics were needed
primarily to verify the Front-Loaded condition, while in the BS region for set V ,
numerics were needed to verify that the second mode is angular.

Remark. The Front-Loaded condition (6) holds for g4 at (t4, 0), as mentioned above
for the Neumann condition. Hence the Front-Loaded condition holds at (t, β4(t)) for
all t < t4 (smaller apertures) because the integral in (6) would include less negative
contribution than when t = t4, and it holds for all t4 < t < π (larger apertures)
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because the integral would include more positive contributions. Similar reasoning
can be applied on other curves constructed like β4 but with different values of n.
By combining this approach with Proposition 3.2(ii), one may justify large parts of
the FL set by evaluating the integral in (6) at just finitely many points (t, β) in the
first quadrant. In this sense, the derivation of the FL set shown in Figure 1 can be
regarded as partly numerical and partly rigorous.

Construction of Figure 2: contour plot of the lowest angular eigenvalue.
The first angular mode on a spherical cap has the form u = g(θ) cosφ (see Section 6)
where g(θ) = P−1

n (cos θ) (see Appendix A) with an analogous formula in the hyper-
bolic case. Recalling that t = 4π sin2 Θ/2, we see that each point (t, β(t)) along the
graph of β(t) = −(2π sin Θ) g′(Θ)/g(Θ) corresponds to a spherical cap with aperture
Θ ∈ (0, π) and Robin parameter α(Θ) = −g′(Θ)/g(Θ). The Robin eigenvalue is the
same on each of these caps, namely λ = n(n+1) by Appendix A, since the underlying
eigenfunction u is the same for each cap. Thus the graph (t, β(t)) is a level curve or
contour for the eigenvalue of the first angular mode.
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Appendix A. Legendre functions — radial and angular modes

Separation of variables yields eigenfunctions as stated below on the 2-dimensional
sphere and hyperbolic space, in terms of the radial variable θ and angular variable
φ. The eigenfunction equation −∆Ku = λu (see Section 2) can be verified straight-
forwardly for the functions below, using the associated Legendre ODE for y = P−mn
(see [31, eq. 14.2.2]):

(1− x2)y′′(x)− 2xy′(x) +

(
n(n+ 1)− m2

1− x2

)
y(x) = 0.

Spherical eigenfunctions (K = +1).

u = P−mn (cos θ)eimφ, m = 0, 1, 2, . . . ,

λ = n(n+ 1) =

{
−1

4
− k2 when n = −1

2
+ ik with k ≥ 0,

−1
4

+ k2 when n = −1
2

+ k with k ≥ 0.

For radial modes one takes m = 0, while m = 1 yields the first angular mode. The
eigenvalue λ is determined (implicitly) when a boundary condition is imposed on u.

Hyperbolic eigenfunctions (K = −1).

u = i−mP−mn (cosh θ)eimφ, m = 0, 1, 2, . . . ,

λ = −n(n+ 1) =

{
1
4

+ k2 when n = −1
2

+ ik with k ≥ 0,
1
4
− k2 when n = −1

2
+ k with k ≥ 0.
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Steklov case λ = 0. The Steklov spectrum on a surface consists of the (negatives
of the) Robin parameters whose corresponding eigenvalues equal 0.

In the spherical case, making the choice n = 0 (so that λ = 0) yields

u = P−m0 (cos θ)eimφ =
1

m!

(
tan

θ

2

)m
eimφ,

which is analogous to the usual Steklov eigenfunction rmeimφ in the Euclidean case.
In particular, when m = 1 the eigenfunction (tan θ/2)eiφ has Robin parameter α =
−(tan θ/2)′/(tan θ/2) = −1/ sin Θ at aperture θ = Θ.

Similarly, the hyperbolic case yields a Steklov eigenfunction

u = i−mP−m0 (cosh θ)eimφ =
1

m!

(
tanh

θ

2

)m
eimφ,

and when m = 1 the Robin parameter at geodesic radius Θ is α = −1/ sinh Θ.

Appendix B. A lemma relating eigenvalues and endpoint values

The next lemma relates the eigenvalues to the endpoint values of the eigenfunctions,
for the lowest “angular” mode. Recall the function snK θ defined earlier in (2).

Lemma B.1. Fix K = −1, 0,+1 and λ, λ∗ ∈ R. Assume Θ > 0, and further suppose
when K = +1 that 0 < Θ < π. Suppose g, g∗ ∈ C2[0,Θ] satisfy

− 1

snK θ

(
(snK θ)g

′(θ)
)′

+
1

(snK θ)2
g(θ) = λg(θ),

− 1

snK θ

(
(snK θ)g

′
∗(θ)

)′
+

1

(snK θ)2
g∗(θ) = λ∗g∗(θ),

when θ ∈ (0,Θ). If g and g∗ are positive on (0,Θ] then

sign

(
g′∗
g∗
− g′

g

)
= sign(λ− λ∗) on (0,Θ].

Thus if g′∗/g∗ < g′/g for some θ ∈ (0,Θ] then that inequality holds for all θ, and if
g′∗/g∗ = g′/g for some θ ∈ (0,Θ] then equality holds for all θ and hence g∗ = (const.)g.

Results of this kind are well known. We include a short proof for the reader’s
convenience.

Proof. Multiply the differential equation for g by (snK θ)g∗(θ) and multiply the dif-
ferential equation for g∗ by (snK θ)g(θ), and then subtract and integrate from 0 to τ ,
for an arbitrary τ ≤ Θ. Henceˆ τ

0

(
g(θ)

(
(snK θ)g

′
∗(θ)

)′ − g∗(θ)((snK θ)g′(θ))′)dθ = (λ− λ∗)
ˆ τ

0

g(θ)g∗(θ)snK θ dθ.

On the right side, the integral is positive since g and g∗ are positive, recalling also
when K = +1 that τ ≤ Θ < π. Thus the sign of the right side equals sign(λ− λ∗).



30 MAXIMIZING THE SECOND ROBIN EIGENVALUE

The fundamental theorem evaluates the left side to

g(θ)(snK θ)g
′
∗(θ)− g∗(θ)(snK θ)g′(θ)

∣∣∣τ
0

= (snK τ)g(τ)g∗(τ)

(
g′∗
g∗
− g′

g

)
(τ).

Since snK τ, g(τ) and g∗(τ) are positive, the sign of this side equals sign(g′∗/g∗ −
g′/g)(τ). The remaining statements in the lemma follow easily. �
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extension du théorème isopérimétrique de Rayleigh-Faber–Krahn, Z. Angew. Math. Phys. 39
(1988), 733–742.

[9] D. Bucur, P. Freitas and J. Kennedy, The Robin problem. Chapter 4 in: Shape Optimization
and Spectral Theory, ed. A. Henrot. De Gruyter Open, Warsaw/Berlin, 2017.

[10] D. Bucur and A. Henrot, Maximization of the second non-trivial Neumann eigenvalue, Acta
Math. 222 (2019), 337–361.

[11] D. Bucur, E. Martinet and M. Nahon, Sharp inequalities for Neumann eigenvalues on the sphere,
ArXiv:2208.11413.

[12] I. Chavel, Lowest-eigenvalue inequalities. In: Geometry of the Laplace operator (Proc. Sympos.
Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979), pp. 79–89, Proc. Sympos. Pure Math.,
XXXVI, Amer. Math. Soc., Providence, R.I., 1980.

[13] I. Chavel, Eigenvalues in Riemannian Geometry, including a chapter by Burton Randol, with
an appendix by Jozef Dodziuk, Pure and Applied Mathematics 115, Academic Press, Inc.,
Orlando, FL, 1984.

[14] D. Chen, Q. M. Cheng, and H. Li, Faber–Krahn inequalities for the Robin Laplacian on bounded
domain in Riemannian manifolds, J. Differential Equations 336 (2022), 374–386.

[15] D. Daners, A Faber–Krahn inequality for Robin problems in any space dimension, Math. Ann.
335 (2006), 767–785.

[16] P. Freitas and R. S. Laugesen, From Steklov to Neumann and beyond, via Robin: the Szegő way,
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