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ESTIMATES FOR THE LOWEST NEUMANN EIGENVALUES OF

PARALLELOGRAMS AND DOMAINS OF CONSTANT WIDTH

CORENTIN LÉNA AND JONATHAN ROHLEDER

Abstract. We prove sharp upper bounds for the first and second non-trivial
eigenvalues of the Neumann Laplacian in two classes of domains: parallelo-
grams and domains of constant width. This gives in particular a new proof of
an isoperimetric inequality for parallelograms recently obtained by A. Henrot,
A. Lemenant and I. Lucardesi.

1. Introduction

We are concerned in this article with planar domains Ω, that is, open, bounded
and connected subsets of R2. We always assume that Ω is a Lipschitz domain, and
we consider the sequence

0 = µ1(Ω) < µ2(Ω) ≤ µ3(Ω) ≤ . . . ,

consisting of the eigenvalues for the Neumann Laplacian, counted with multiplici-
ties. We recall that the corresponding eigenvalue problem is

{
−∆u = µu in Ω,
∂u
∂ν = 0 on ∂Ω,

where ∂u
∂ν denotes the outward-pointing normal derivative; in general, the derivative

on ∂Ω in the direction of ν is defined in a weak sense, see Section 2.
It was proved in 1954 by Szegő [10] that, among all simply-connected domains of

a given area, the disk is the unique maximizer of µ2(Ω). Equivalently, for simply-
connected domains Ω ⊂ R

2,

µ2(Ω)|Ω| ≤ µ2(D)π, (1.1)

where |Ω| denotes the area of Ω and D the unit disk in R
2. We can note that the

expression on the left-hand side of (1.1) is invariant under scaling of Ω. Inequality
(1.1) was extended to domains in any dimension, without the assumption of simple
connectedness, by Weinberger in 1956 [12]. Equality in (1.1) is attained only for
disks (in higher dimension, only for balls).

Following R. Laugesen and B. Siudeja [5], we investigate how large µ2(Ω) can be
when the perimeter is fixed, rather than the area. Equivalently, we look for upper
bounds of the product

L(Ω)2 µ2(Ω),

where L(Ω) denotes the perimeter of Ω (this product is also scaling-invariant). As
stressed by Laugesen and Siudeja in [5, Problem 9.2] and [11, p. 405, Problem 3],
this product is not maximized by disks. Indeed, the known formulas for the Neu-
mann eigenvalues of the unit disk D give

4π2 µ2(D) < 16π2,
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2 C. LÉNA AND J. ROHLEDER

while

L(Ω)2 µ2(Ω) = 16π2

when Ω is either a square or an equilateral triangle. In addition, Laugesen and
Siudeja proved that

L(T )2µ2(T ) ≤ 16π2,

for any triangle T , with equality only when T is equilateral [5, Theorem 3.1]. The
question asked by Laugesen in [11, p. 405, Problem 3] immediately suggests the
following conjecture.

Conjecture 1.1. For any convex domain Ω in R
2,

L(Ω)2 µ2(Ω) ≤ 16π2,

and equality is attained only for squares and equilateral triangles.

Besides the work of Laugesen and Siudeja mentioned above, Conjecture 1.1 was
verified by A. Raiko for parallelograms subject to certain geometrical restrictions
[8, Theorem 2]. As shown in [2, Section 3], [4, Proposition 3.3], [5, Problem 9.2] or
[7], the convexity hypothesis cannot be removed: one can construct sequences (Ωn)
of non-convex domains such that

L(Ωn)
2µ2(Ωn) → +∞.

Motivated by Conjecture 1.1, we find geometric upper bounds of µ2(Ω) and
µ3(Ω), for two classes of domains Ω. The first consists of all parallelograms. The
second consists, in a certain sense, of domains of constant width, some of which
are neither polygonal nor convex. We show that in these classes only the squares,
respectively the rectangles, realize equality. As a corollary, we verify Conjecture 1.1
for all parallelograms, namely, the product L(P)2 µ2(P), with P a parallelogram,
is maximized only by squares (see Theorem 3.6 below).

Our proofs use Rayleigh’s principle, with trial functions constructed from a suit-
able mapping of the domain onto the unit square. We introduce the necessary tools
in Section 2, then study parallelograms in Section 3 (Theorem 3.1) and domains of
constant width in Section 4 (Theorem 4.2). Finally, we sketch in Section 5 a simple
perturbation argument that shows the existence of non-convex domains Ω, close to
the unit square, satisfying L(Ω)2µ2(Ω) > 16π2.

During the preparation of this manuscript, we became aware of the recent work
by A. Henrot, A. Lemenant and I. Lucardesi [4]. The authors prove the existence
of a maximizer in the class of convex domains [4, Proposition 3.1]. They also verify
Conjecture 1.1 for all convex domains having two axes of symmetry (not necessarily
perpendicular) [4, Theorem 1.2] and, as in our Theorem 3.6, for all parallelograms
[4, Proposition 4.3]. However, our work uses a different method and leads to new
explicit estimates for µ2(Ω) and µ3(Ω) which, as far as we can tell, cannot be
directly deduced from [4].

2. Preliminaries

During the whole article, Ω ⊂ R
2 is a bounded, connected Lipschitz domain. The

main object of our interest is the Laplacian −∆N on Ω with Neumann boundary
conditions. This self-adjoint, non-negative operator can be defined via its quadratic
form

H1(Ω) ∋ u 7→
∫

Ω

|∇u|2.
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Its domain consists of all u ∈ H1(Ω) such that ∆u, taken distributionally, belongs
to L2(Ω) and satisfy the boundary condition ∂u

∂ν |∂Ω = 0 in a weak sense. We denote
by

0 = µ1(Ω) < µ2(Ω) ≤ . . .

the eigenvalues of −∆N, counted with multiplicities.
In the course of our investigations, certain auxiliary second-order elliptic differ-

ential operators with weight function will play a role, which we define now. For
w : Ω → (0,∞) measurable, the space L2

w(Ω) consists of all measurable u : Ω → R

such that

‖u‖2w :=

∫

Ω

w(x, y)|u(x, y)|2 d(x, y) < ∞.

Then ‖ · ‖w defines a norm, with which L2
w(Ω) is a Hilbert space, and we denote by

〈·, ·〉w the corresponding inner product. In the rest of this section, we assume that
f : Ω → R is a measurable function such that

c ≤ f(x, y) ≤ C

for some fixed constants 0 < c ≤ C and for almost every (x, y) ∈ Ω. Moreover, we
denote by A : Ω → R

2×2 a continuous matrix function such that A(x, y)⊤ = A(x, y)
and A(x, y) is a positive definite matrix for all (x, y) ∈ Ω.

Proposition 2.1. With the above hypotheses, the quadratic form tA,Ω in L2
1/f(Ω)

given by

tA,Ω[u, v] =

∫

Ω

〈A(x, y)∇u(x, y),∇v(x, y)〉d(x, y)

with

dom tA,Ω = H1(Ω)

is symmetric, non-negative (hence semi-bounded below) and closed.

The symmetry and the non-negativity of tA,Ω follow from that of A(x, y). The
fact that tA,Ω is closed is an immediate consequence of the following lemma, which
one can easily deduce from the hypotheses on f and A.

Lemma 2.2. The norm associated with the form tA,Ω, defined for u ∈ H1(Ω) by

‖u‖2A,Ω := tA,Ω[u, u] + ‖u‖21/f ,
is equivalent to the norm of H1(Ω).

As described in [9, Theorem VIII.15], we can associate with the form tA,Ω a
self-adjoint operator TA,Ω, formally given by

TA,Ωu = −f(·) div (A(·)∇u).

More precisely, we define

domTA,Ω =
{
u ∈ H1(Ω) : ∃v ∈ L2

1/f(Ω), ∀ϕ ∈ H1(Ω), tA,Ω[u, ϕ] = 〈v, ϕ〉1/f
}
,

and set TA,Ωu = v for u ∈ domTA,Ω.
In order to give a more concrete description of domTA,Ω, we note that for any

u ∈ H1(Ω), the mapping
ϕ 7→ tA,Ω[u, ϕ],

restricted to ϕ ∈ C∞
c (Ω), defines a distribution in D′(Ω) which we denote by Pu.

Moreover, it follows from Lemma 2.2 that Pu belongs to the dual of H1(Ω). From
this and [6, Lemma 4.3], there exists an element γ1u in H−1/2(∂Ω) such that, for
all ϕ ∈ H1(Ω),
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〈−Pu, ϕ〉(H1(Ω))′×H1(Ω) + tA,Ω[u, ϕ] = 〈γ1u, γ0ϕ〉H−1/2(∂Ω)×H1/2(∂Ω). (2.1)

In the previous formula,

(i) γ0 : H1(Ω) → H1/2(∂Ω) is the usual boundary trace operator,
(ii) 〈ζ, z〉Z′×Z denotes the image of an element z in a normed space Z by an

element ζ in the dual Z ′ (note that H−1/2(∂Ω) = (H1/2(∂Ω))′).

To understand the meaning of γ1u, let us assume for a moment that u ∈ C1(Ω).
Then γ1u is the co-normal derivative, defined on ∂Ω by

(s, t) 7→ 〈A(s, t)∇u(s, t), ν(s, t)〉,
where ν(s, t) denotes the outward-pointing normal unit vector on ∂Ω. We can
therefore see γ1u as a generalized co-normal derivative and (2.1) as a generalized
Green formula.

By a standard argument, we then obtain the following result.

Proposition 2.3. The self-adjoint operator TA,Ω can alternatively be defined by

domTA,Ω =
{
u ∈ H1(Ω) : Pu ∈ L2(Ω) and γ1u = 0

}

and

TA,Ωu = f Pu.

Next we consider instances of the operator TA,Ω that arise from diffeomorphic
transformation of the Neumann Laplacian.

Lemma 2.4. Let Ω,Ω′ ⊂ R
2 be two bounded, connected Lipschitz domains such

that there exists a C1-diffeomorphism Φ which maps Ω onto Ω′ such that both Φ
and Φ−1 have bounded partial derivatives of order one. Let

A(s, t) =

[
1∣∣detDΦ

∣∣ (DΦ)(DΦ)⊤

]
(Φ−1(s, t)), (s, t) ∈ Ω′, (2.2)

where DΦ denotes the Jacobi matrix of Φ. Then a function u belongs to H1(Ω′) if
and only if u ◦ Φ belongs to H1(Ω), and in this case

∫

Ω

|∇(u ◦ Φ)(x, y)|2 d(x, y) =
∫

Ω′

〈A(s, t)∇u(s, t),∇u(s, t)〉d(s, t). (2.3)

In particular, if we set f(s, t) = | det(DΦ)(Φ−1(s, t))|, then the Laplacian −∆N in
L2(Ω) with Neumann boundary conditions is isomorphic to the operator TA,Ω′ in
L2
1/f (Ω

′), and their spectra coincide.

Proof. Let u ∈ H1(Ω′). As Φ maps Ω onto the bounded domain Ω′, Φ is bounded.
Moreover, by assumption, Φ has bounded partial derivatives. Hence u◦Φ ∈ H1(Ω).
Moreover,
∫

Ω

|∇(u ◦ Φ)(x, y)|2 d(x, y) =
∫

Ω

|(DΦ)⊤(x, y)(∇u)(Φ(x, y))|2 d(x, y)

=

∫

Ω′

1

| detDΦ| |(DΦ)⊤(Φ−1(s, t))(∇u)(s, t)|2 d(s, t)

=

∫

Ω′

〈A(s, t)∇u(s, t),∇u(s, t)〉d(s, t).

Conversely, by analogous reasoning, for v ∈ H1(Ω) the function u = v◦Φ−1 belongs
to H1(Ω′). In particular, the mapping H1(Ω′) ∋ u 7→ u ◦ Φ ∈ H1(Ω) provides an
isomorphism between the quadratic forms corresponding to the operators TA,Ω′ in
L2
1/f (Ω

′) and −∆N in L2(Ω). Hence, the two operators are isomorphic. �
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A for us important consequence of Lemma 2.4 is the following.

Corollary 2.5. Let Ω,Ω′ ⊂ R
2 be two bounded, connected Lipschitz domains such

that there exists a C1-diffeomorphism Φ which maps Ω onto Ω′ such that both Φ
and Φ−1 have bounded partial derivatives of order one. Moreover, assume that A
and f are defined as in Lemma 2.4. Then

µk(Ω) = min
F⊂H1(Ω′)
dimF=k

max
u∈F
u6=0

∫
Ω′
〈A(s, t)∇u(s, t),∇u(s, t)〉d(s, t)∫

Ω′

1
f(s,t) |u(s, t)|2 d(s, t)

holds for all k ∈ N. In particular,

µ2(Ω) = min
u∈H1(Ω′)\{0}∫

Ω′

1

f u=0

∫
Ω′
〈A(s, t)∇u(s, t),∇u(s, t)〉d(s, t)∫

Ω′

1
f(s,t) |u(s, t)|2 d(s, t)

. (2.4)

Moreover, a non-trivial function u ∈ H1(Ω′) which satisfies
∫
Ω′

1
f u = 0 is a mini-

mizer of (2.4) if and only if u ∈ ker(TA,f − µ2(Ω)).

3. Bounds for low eigenvalues of parallelograms

In this section we derive eigenvalue bounds for the lowest non-zero eigenvalues
µ2(P) and µ3(P) of the Neumann Laplacian on any parallelogram P . Our main
result are the following sharp estimates.

Theorem 3.1. Let P ⊂ R
2 be any parallelogram with side lengths ℓ1, ℓ2, area |P|

and one angle ϕ. Without loss of generality, let us assume ℓ1 ≤ ℓ2. Define

λ± =
π2

2|P|2

(
ℓ21 + ℓ22 ±

√
(
ℓ21 − ℓ22

)2
+

256

π4
ℓ21ℓ

2
2 cos

2 ϕ

)

and

η± =
6

|P|2
(
ℓ21 + ℓ22 ±

√(
ℓ21 − ℓ22

)2
+ 4ℓ21ℓ

2
2 cos

2 ϕ

)
.

Then

µ2(P) ≤ min{λ−, η−} (3.1)

and

µ3(P) ≤ λ+. (3.2)

In particular,

µ2(P) + µ3(P)

2
≤ π2

|P|2
ℓ21 + ℓ22

2
. (3.3)

In (3.1) equality holds if, and only if, P is a rectangle, in which case

µ2(P) = λ− =
π2

ℓ22
.

In (3.2) and (3.3) equality holds if, and only if, P is a rectangle and ℓ2 ≤ 2ℓ1. In
this case,

µ2(P) = λ− =
π2

ℓ22
and µ3(P) = λ+ =

π2

ℓ21
.

Proof. Let P ⊂ R
2 be the parallelogram spanned by the vectors (a, b)⊤ and (c, d)⊤,

and let ℓ1 =
√
a2 + b2 and ℓ2 =

√
c2 + d2 be its side lengths; without loss of

generality, ℓ1 ≤ ℓ2. Then the linear transformation given by

Φ(x, y) =
1

ad− bc

(
d −c
−b a

)(
x

y

)
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maps P onto the unit square Q := (0, 1)2. The constant matrix A associated with
Φ in (2.2) is then given by

A =
1

|ad− bc|

(
c2 + d2 −ac− bd
−ac− bd a2 + b2

)
=

1

|P|

(
ℓ22 −ℓ1ℓ2 cosϕ

−ℓ1ℓ2 cosϕ ℓ21

)
, (3.4)

where ϕ is the angle of (a, b)⊤ towards (c, d)⊤ and |P| denotes the area of P . For
using Corollary 2.5, note that, in the notation of the corollary, f(s, t) = |ad−bc|−1 =
|P|−1 constantly.

In order to obtain eigenvalue estimates, we use two types of test functions.
Firstly, we consider the function

u(s, t) = α cos(πs) + β cos(πt), (s, t) ∈ Q, (3.5)

where α and β are arbitrary real numbers. Note that u is an eigenfunction of the
Neumann Laplacian on Q corresponding to µ2(Q) = π2 (in particular,

∫
Q u = 0 =∫

Q
1
f u) and that

∇u(s, t) = −π

(
α sin(πs)
β sin(πt)

)
.

Then∫

Q

〈A∇u,∇u〉 = 1

|P|

∫

Q

(
ℓ22(∂1u)

2 − 2ℓ1ℓ2 cosϕ(∂1u)(∂2u) + ℓ21(∂2u)
2
)

=
π2

|P|
(
ℓ22
α2

2
− 2ℓ1ℓ2 cosϕ

4αβ

π2
+ ℓ21

β2

2

)

=
π2

2|P|

〈
Ã

(
α
β

)
,

(
α
β

)〉
,

(3.6)

where the matrix Ã is given by

Ã =

(
ℓ22 − 8

π2 ℓ1ℓ2 cosϕ
− 8

π2 ℓ1ℓ2 cosϕ ℓ21

)
.

Furthermore,
∫

Q

1

f
|u|2 =

|P|
2

(α2 + β2).

The matrix Ã has the eigenvalues

|P|2
π2

λ±,

and we choose corresponding mutually orthogonal eigenvectors (α−, β−)
⊤ and

(α+, β+)
⊤. Let, moreover, u±(s, t) = α± cos(πs) + β± cos(πt) be the versions

of (3.5) with coefficients corresponding to the chosen eigenvectors of Ã. Then
we get

∫
Q〈A∇u−,∇u−〉∫

Q
1
f |u−|2

= λ− (3.7)

and ∫
Q
〈A∇u+,∇u+〉∫

Q
1
f |u+|2

= λ+.

Applying the min-max principle we get

µ2(P) ≤ λ− (3.8)
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and, noting that
∫
Q

1
f u−u+ = 0 due to orthogonality of (α−, β−)

⊤ and (α+, β+)
⊤,

µ3(P) ≤ λ+. (3.9)

The latter estimates constitute (3.2) and parts of (3.1) and yield in their combina-
tion (3.3).

Secondly, consider the function

u(s, t) = α(s− 1/2) + β(t− 1/2), (s, t) ∈ Q,

where α, β are again arbitrary real coefficients. Clearly,
∫
Q
u = 0 =

∫
Q

1
f u holds

and ∇u(x) = (α, β)⊤. Hence,
∫

Q

〈A∇u,∇u〉 =
〈
A

(
α

β

)
,

(
α

β

)〉
.

On the other hand,
∫

Q

1

f
|u|2 =

|P|
12

(α2 + β2).

The eigenvalues of the matrix A are given by

|P|
12

η±.

We choose an eigenvector (α−, β−)
⊤ corresponding to |P|η−/12 and let u−(s, t) =

α−(s− 1/2) + β−(t− 1/2). As in the previous case we get
∫
Q〈A∇u−,∇u−〉∫

Q
1
f |u−|2

= η−. (3.10)

From this identity we conclude

µ2(P) ≤ η−.

The latter together with (3.8) proves (3.1).
Let us now consider the cases of equality. We can put aside the case where

λ+ = λ−: an examination of the formulas reveals that, in this case, ℓ1 = ℓ2 and
cosϕ = 0, so that P is a square and µ2(P) = λ− = µ3(P) = λ+ = π2/ℓ2, where ℓ
is the length of an arbitrary side. Hence, we assume in the rest of the proof that
λ− < λ+, or equivalently that P is not a square.

Let us first assume that equality holds in (3.1). Then µ2(P) = λ− or µ2(P) = η−;
in the second case, the function α−(s − 1/2) + β−(t − 1/2) is an eigenfunction of
u 7→ −f(·)div (A∇u) on Q with vanishing co-normal derivative corresponding to
µ2(P), which is impossible, as the left-hand side of the equation −f(·)div (A∇u) =
µ2(P)u is constantly zero in this case. Therefore we must have µ2(P) = λ−, and
from the equation (3.7) we then get that u−(s, t) = α− cos(πs) + β− cos(πt) is an
eigenfunction of u 7→ −f(·)div (A∇u) on Q with vanishing co-normal derivative
corresponding to µ2(P), i.e.

−f(·)div (A∇u−) = µ2(P)u− in Q, 〈A∇u−, ν〉 = 0 on ∂Q.

The eigenvalue equation is

0 = −f(s, t)div (A∇u−)(s, t)− λ±u−(s, t)

= α−

(
π2ℓ22
|P|2 − λ−

)
cos(πs) + β−

(
π2ℓ21
|P|2 − λ−

)
cos(πt)

for all (t, s) ∈ Q. Since u− is not zero, one of α− and β− is not zero. If none of
them are zero,

λ− =
π2ℓ22
|P|2 =

π2ℓ21
|P|2 ,
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so that ℓ1 = ℓ2 and, from the explicit formula for λ−, cosϕ = 0. Then, P is
a square, which contradicts our initial assumption. Therefore either α− = 0 or

β− = 0, meaning that either (1, 0)⊤ or (0, 1)⊤ is an eigenvector of the matrix Ã,
corresponding respectively to the eigenvalue ℓ22 or ℓ21. Using the explicit formula

for Ã, this implies cosϕ = 0, so that P is a rectangle. It is easy to check, however,
that in this case µ2(P) = λ− is true.

Next, let us assume that equality holds in (3.2). Then the variational character-
ization of Corollary 2.5 yields that there exists a linear combination u = γu−+δu+

of u− and u+ which is an eigenfunction of u 7→ −f(·)div (A∇u) on Q with vanishing
co-normal derivative corresponding to λ+ = µ3(P); in particular,

∫

Q

〈A∇u,∇u〉 = λ+

∫

Q

1

f
|u|2.

Since, similarly to (3.6),
∫

Q

〈A∇u−,∇u+〉 =
π2

2|P|

〈
Ã

(
α−

β−

)
,

(
α+

β+

)〉
=

|P|
2

λ+

〈(
α−

β−

)
,

(
α+

β+

)〉
= 0

and
∫
Q

1
f u−u+ = 0, it follows from the previous two formulas that

λ+

∫

Q

1

f

(
γ2|u−|2 + δ2|u+|2

)
=

∫

Q

〈A∇u,∇u〉

= λ−

∫

Q

1

f
γ2|u−|2 + λ+

∫

Q

1

f
δ2|u+|2.

As λ− < λ+ by assumption, it follows γ = 0, i.e., u+(s, t) = α+ cos(πs)+β+ cos(πt)
is an eigenfunction of u 7→ −f(·)div (A∇u) on Q with vanishing co-normal deriva-
tive corresponding to µ3(P). Repeating the argument from the previous case, we
obtain that P is a rectangle. Then

µ3(P) = min

{
π2

ℓ21
,
4π2

ℓ22

}
,

while

λ+ =
π2

ℓ21
.

Since µ3(P) = λ+ by hypothesis, we necessarily have π2/ℓ21 ≤ 4π2/ℓ22, that is
ℓ2 ≤ 2ℓ1.

Let us finally assume that equality holds in (3.3). Since µ2(P) ≤ λ−, µ3(P) ≤ λ+

and
π2

|P|2
ℓ21 + ℓ22

2
=

λ− + λ+

2
,

this implies µ2(P) = λ− and µ3(P) = λ+, so that the previous case applies and we
obtain the same conclusion. �

Remark 3.2. Using the affine linear test functions in the second part of the previous
proof one can easily derive the additional estimate µ3(P) ≤ η+ for each parallel-
ogram. However, it is easy to see that the estimate (3.2) is always better, i.e.
λ+ < η+ for each choice of the side lengths ℓ1, ℓ2 and the angle ϕ. On the other
hand, depending on these parameters, one or the other estimate given in (3.1) may
be stronger. This depends on the side lengths and the angle. Roughly speaking,
the estimate µ2 ≤ λ− obtained from cosinoidal test functions is better as long as P
is close enough to a square. However, for instance if ℓ1 = ℓ2 = 1 and ϕ = π

4 , then

λ− =
1

|P|2
(
π2 − 8√

2

)
>

1

|P|2
(
12− 12√

2

)
= η−.
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Remark 3.3. The estimates in Theorem 3.1 are sharp as they yield the exact eigen-
values in the case of a square and for certain rectangles.

If P is a rhombus, i.e. an equilateral parallelogram, then the estimates simplify:

Corollary 3.4. Assume that P is a rhombus. If ℓ denotes the length of an arbitrary
side and ϕ is one of the angles then the estimates

µ2(P) ≤ min

{
π2

|P|2 ℓ
2

(
1− 8

π2
| cosϕ|

)
,
12

|P|2 ℓ
2 (1− | cosϕ|)

}
,

µ3(P) ≤ π2

|P|2 ℓ
2

(
1 +

8

π2
| cosϕ|

)
,

and

µ2(P) + µ3(P)

2
≤ π2

|P|2 ℓ
2.

In each estimate, equality holds if and only if P is a square.

The following may be compared with [5, Theorem 3.5], where triangular domains
are considered; note that the quantity on the left-hand side of (3.11) below is
scaling-invariant.

Corollary 3.5. Let P be any parallelogram and let S :=
√
ℓ21 + ℓ22. Then

µ2(P) + µ3(P)

2

|P|2
S2

≤ π2

2
, (3.11)

with equality if and only if P is a rectangle with ℓ2 ≤ 2ℓ1, where ℓ1 ≤ ℓ2 are its side
lengths.

As a further indication of sharpness, we deduce an isoperimetric inequality from
the above spectral estimates. More specifically, we prove that among all parallelo-
grams of fixed perimeter, the square is the only maximizer of µ2(P).

As mentioned in the introduction, the same result was proved recently in [4,
Proposition 4.3], using a different technique. It complements [5, Theorem 3.1],
which shows that among all triangles T of fixed perimeter L(T ), the equilateral
one is the only maximizer of µ2(T ) and gives the same value of µ2(T )L(T )2 as the
square. This partially answers the question, raised by R. Laugesen in [11, p. 405,
Problem 3], of whether those two shapes maximize µ2(Ω)L(Ω)

2 among all bounded
convex domains Ω.

Theorem 3.6. Let P ⊂ R
2 be any parallelogram and let L(P) denote its perimeter.

Then

µ2(P)L(P)2 ≤ 16π2.

Equality holds if and only if P is a square.

Proof. Since the quantity µ2(P)L(P)2 is scaling-invariant, after possible rotation,
reflection and rescaling we may assume that P is spanned by the vectors (a, b)⊤

and (1, 0)⊤, where a ≥ 0, b > 0, and a2 + b2 ≤ 1. In this case, the estimates in
Theorem 3.1 yield

µ2(P)L(P)2 ≤ 2π2

b2
(1 +

√
a2 + b2)2

(
a2 + b2 + 1−

√
(
a2 + b2 − 1

)2
+

256

π4
a2

)

(3.12)
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and

µ2(P)L(P)2 ≤ 24

b2
(1 +

√
a2 + b2)2

(
a2 + b2 + 1−

√(
a2 + b2 − 1

)2
+ 4a2

)
,

(3.13)

where we have used ℓ1 =
√
a2 + b2, ℓ2 = 1, cosϕ = a/ℓ1, |P| = b, and L(P) =

2(1 +
√
a2 + b2).

We distinguish three (not mutually distinct) cases. Firstly, consider the case

b >

√
1− 64

π4
≈ 0.59. (3.14)

By this assumption we have

(a2 + b2 − 1)2 +
256

π4
a2 = a4 + 2a2

(
b2 − 1 +

128

π4

)
+ (b2 − 1)2

= a4 + 2a2
(
2b2 − 1 +

128

π4
− b2

)
+ (b2 − 1)2

≥ a4 + 2a2(1− b2) + (1− b2)2

= (a2 + 1− b2)2,

where equality is only possible if a = 0. Hence (3.12) implies

µ2(P)L(P)2 ≤ 4π2(1 +
√
a2 + b2)2 ≤ 16π2, (3.15)

where we have used a2 + b2 ≤ 1; equality in (3.15) holds if and only if a = 0 and
a2 + b2 = 1, that is, if (a, b) = (0, 1), which is the case that P is a square.

Secondly, let
√
a2 + b2 <

π√
3
− 1 ≈ 0.81. (3.16)

Note that

(a2 + b2 − 1)2 + 4a2 = a4 + 2a2(b2 − 1) + (b2 − 1)2 + 4a2

= a4 + 2a2(b2 + 1) + (b2 − 1)2

≥ a4 + 2a2(1− b2) + (1− b2)2

= (a2 + 1− b2)2.

Then (3.13) together with (3.16) gives

µ2(P)L(P)2 ≤ 48(1 +
√
a2 + b2)2 < 48

π2

3
= 16π2.

In the third and final case we assume

a >
12

π2
+ 1− π√

3
≈ 0.40 and

√
a2 + b2 ≥ π√

3
− 1. (3.17)

Writing r = ℓ1 =
√
a2 + b2 ≤ 1, note first that

0 ≥ 4(a− r)(1 − r)2 = 4(r − a)
(
r + a+ r − a− r2 − 1

)

= 4
(
r2 − a2 + (r − a)2 − (r2 + 1)(r − a)

)

= (r2 + 1)2 − (r2 − 1)2 + 4(r − a)2 − 4(r2 + 1)(r − a)− 4a2,

and thus

(r2 + 1)2 − 4(r2 + 1)(r − a) + 4(r − a)2 ≤ (r2 − 1)2 + 4a2.

As the left-hand side equals (r2 +1− 2(r− a))2 and both sides are positive, we get

r2 + 1− 2(r − a) ≤
√
(r2 − 1)2 + 4a2
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or, equivalently,

a2 + b2 + 1−
√
(a2 + b2 − 1)2 + 4a2 ≤ 2

(√
a2 + b2 − a

)
.

From this and (3.13) we conclude

µ2(P)L(P)2 ≤ 48

(
√
a2 + b2 − a)(

√
a2 + b2 + a)

(1 +
√
a2 + b2)2

(√
a2 + b2 − a

)

= 48
(1 +

√
a2 + b2)2√

a2 + b2 + a
.

Applying the assumption (3.17) and a2 + b2 ≤ 1 to the latter estimate yields

µ2(P)L(P)2 <
192
12
π2

= 16π2.

Since one easily observes that each choice of (a, b)⊤ with a ≥ 0, b > 0 and a2+b2 ≤ 1
satisfies one of the assumptions (3.14), (3.16) or (3.17), the proof is complete. �

As a direct consequence, among all parallelograms of fixed area, the square
maximizes µ2(P).

Corollary 3.7. Let P ⊂ R
2 be any parallelogram and let |P| denote its area. Then

µ2(P)|P| ≤ π2.

Equality holds if and only if P is a square.

Proof. Let now Q denote a square with the same perimeter as P . Then, by Theo-
rem 3.6, µ2(P) ≤ µ2(Q). As |Q| ≥ |P|,

µ2(P)|P| ≤ µ2(Q)|Q| = π2.

Moreover, in all these estimates, equality holds if and only if P is a square. �

4. Domains of constant width

In this section we use the approach of tranforming the Laplacian on a domain
into an elliptic operator with a weight function on a square discussed in Section 2
to obtain spectral estimates for another class of domains. We make the following
assumption.

Assumption 4.1. Ω ⊂ R
2 has the form

Ω =
{
(x, y)⊤ : 0 < x < ℓ, g(x) < y < h(x)

}
,

where g, h ∈ C1([0, ℓ]) are real-valued functions such that d(x) := h(x) − g(x) is
uniformly positive on [0, ℓ].

To map a domain as in Assumption 4.1 onto a square, consider the mapping

Φ(x, y) =

(
x/ℓ

y−g(x)
d(x)

)
, (x, y)⊤ ∈ Ω.

It maps Ω one-to-one onto the square Q := (0, 1)2. The Jacobian of Φ is given by

(DΦ)(x, y) =

(
1/ℓ 0

−g′(x)d(x)−(y−g(x))d′(x)
d(x)2 1/d(x)

)
.

Note that Φ is a C1-diffeomorphism and that all first-order partial derivatives of
Φ and Φ−1 are bounded due to the assumption that d is uniformly positive and
bounded. Furthermore,

det(DΦ)(x, y) =
1

ℓd(x)
.
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Then the matrix A(s, t) defined in (2.2) is given by

(A ◦ Φ)(x, y) =




d(x)
ℓ

−g′(x)d(x)−(y−g(x))d′(x)
d(x)

−g′(x)d(x)−(y−g(x))d′(x)
d(x)

ℓ
d(x) +

(
g′(x)d(x)+(y−g(x))d′(x)

)
2

d(x)3 ℓ





for (x, y)⊤ ∈ Ω and, hence,

A(s, t) =

(
d(ℓs)

ℓ −g′(ℓs)− td′(ℓs)

−g′(ℓs)− td′(ℓs) ℓ
d(ℓs)

(
1 +

(
g′(ℓs) + td′(ℓs)

)2)
)

for (s, t)⊤ ∈ (0, 1)2. This transformation can be used to obtain estimates for the
eigenvalues of the Neumann Laplacian on Ω. We will now illustrate this at the
example of domains of constant width; cf. Figure 1. Let us point out that all these

Ω

Figure 1. A domain of constant width.

domains are non-convex, except for the rectangle.

Theorem 4.2. Suppose Assumption 4.1 holds and d is constant. Define

λ± =
π2

2ℓd

(
d

ℓ
+

1

d

∫ ℓ

0

(
1 + g′(x)2

)
dx

±

√(
d

ℓ
− 1

d

∫ ℓ

0

(
1 + g′(x)2

)
dx

)2

+
64

π2ℓ2

(∫ ℓ

0

g′(x) sin(πx/ℓ)dx

)2
)
.

Then

µ2(Ω) ≤ λ− and µ3(Ω) ≤ λ+. (4.1)

In particular,

µ2(Ω) ≤ min

{
π2

ℓ2
,
π2

d2ℓ

∫ ℓ

0

(
1 + g′(x)2

)
dx

}
(4.2)

and

µ2(Ω) + µ3(Ω)

2
≤ π2

2

(
1

ℓ2
+

1

ℓd2

∫ ℓ

0

(
1 + g′(x)2

)
dx

)
(4.3)

hold. Moreover, equality in the first estimate in (4.1) or in (4.2) holds if, and only
if, Ω is a rectangle.
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Proof. As d is constant, in the notation of Lemma 2.4 also 1/f = ℓd is constant.
Thus the function

u(s, t) = α cos(πs) + β cos(πt), (4.4)

where α, β are arbitrary real constants, satisfies
∫
Q

1
f u = 0, and

∫

Q

1

f
|u|2 =

ℓd

2
(α2 + β2).

Moreover,
∫

Q

〈A∇u,∇u〉 = π2

(
α2 d

ℓ

∫ 1

0

sin2(πs) ds− 2αβ

∫ 1

0

g′(ℓs) sin(πs) ds

∫ 1

0

sin(πt) dt

+ β2 ℓ

d

∫ 1

0

(
1 + g′(ℓs)2

)
ds

∫ 1

0

sin2(πt) dt

)

= π2

(
α2 d

2ℓ
− 4αβ

πℓ

∫ ℓ

0

g′(x) sin(πx/ℓ) dx+
β2

2d

∫ ℓ

0

(
1 + g′(x)2

)
dx

)

=

〈
M

(
α

β

)
,

(
α

β

)〉
,

where

M =
π2

2

(
d
ℓ − 4

πℓ

∫ ℓ

0 g′(x) sin(πx/ℓ) dx

− 4
πℓ

∫ ℓ

0
g′(x) sin(πx/ℓ) dx 1

d

∫ ℓ

0

(
1 + g′(x)2

)
dx

)
.

The matrix M has eigenvalues ℓd
2 λ±, with λ± given in the theorem. Choosing

(α, β)⊤ equal to the corresponding eigenvectors and applying Corollary 2.5 yields
the estimates (4.1). On the other hand, choosing (α, β) equal to the standard basis
vectors gives

µ2(Ω) ≤ π2 d

2ℓ

2

ℓd

and

µ2(Ω) ≤
π2

2d

∫ ℓ

0

(
1 + g′(x)2

)
dx

2

ℓd
,

respectively, which yields (4.2). Finally, the estimate (4.3) is a direct consequence
of (4.1).

It remains to discuss the cases of equality. First we show that µ2(Ω) = λ− is only
possible if Ω is a rectangle. Assume for a contradiction that this equality holds for a
non-rectangle Ω. Then there exists a nonempty open interval I ⊂ (0, ℓ) on which g′

is nowhere vanishing. Moreover, there exists a coefficient pair (α, β) 6= (0, 0) such
that the function u in (4.4) is an eigenfunction of − 1

ℓddiv (A(·)∇u) on Q = (0, 1)2

with vanishing co-normal derivative; for (s, 0) ∈ ∂Q the latter read
(

d
ℓ −g′(ℓs)

−g′(ℓs) ℓ
d

(
1 + g′(ℓs)2

)
)
∇u ·

(
0

−1

)
= 0

and can be written

πg′(ℓs)α sin(πs) = 0.

Choosing ℓs ∈ I this implies α = 0, i.e. u(s, t) = β cos(πt). Let us now show that
the eigenvalue equation, of which u is a distributional solution, implies that g is
linear. To simplify notation, we temporarily set

a(s) :=− 1

ℓd
g′(ℓs);
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b(s) :=
1

d2
(
1 + g′(ℓs)2

)
.

Then, for any ϕ ∈ C∞
c (Q),

β

∫

Q

(π sin(πt) (a(s)∂sϕ(s, t) + b(s)∂tϕ(s, t)) + µ2(Ω) cos(πt)ϕ(s, t)) d(s, t) = 0.

Integrating by parts,
∫ 1

0

sin(πt)∂tϕ(s, t) dt = −π

∫ 1

0

cos(πt)ϕ(s, t) dt = 0.

Using Fubini’s theorem and the previous equality, we find that for any ϕ ∈ C∞
c (Q),

β

∫

Q

(
π sin(πt)a(s)∂sϕ(s, t) + cos(πt)

(
µ2(Ω)− π2b(s)

)
ϕ(s, t)

)
d(s, t) = 0.

We now apply the previous formula to ϕ(s, t) = ξ(s)χn(t), where ξ is an arbitrary
function in C∞

c ((0, 1)) and (χn) is a sequence in C∞
c ((0, 1)) converging to the δ-

distribution centered at t = 1/2. Taking n → ∞, we get that

β

∫ 1

0

a(s)ξ′(s) ds = 0

for any ξ ∈ C∞
c ((0, 1)). Since β cannot be 0, this means that the distributional

derivative of the function a is 0, which implies that a is a constant. Therefore g′

is a constant and g is linear. On the other hand, on the boundary lines s = 0 and
s = 1 the boundary condition gets

∓πg′(ℓs)β sin(πt) = 0,

t ∈ (0, 1) and, thus, g′(0) = 0 = g′(ℓ); but then the linear function g is constant
and Ω a rectangle, another contradiction.

Now assume that equality holds in (4.2) and that Ω is not a rectangle. Then
either cos(πs) or cos(πt) is an eigenfunction of − 1

ℓddiv (A(·)∇u) with Neumann
boundary conditions and a reasoning analogous to the above one leads to a contra-
diction.

To complete the proof of the theorem, it remains to note that if Ω is a rectangle,
i.e. g is constant, then the bounds for µ2(Ω) in both the first estimate in (4.1) and
(4.2) read min{π2/ℓ2, π2/d2}, being equal to the lowest positive eigenvalue of the
rectangle of length ℓ and width d. �

Example 4.3. Although all the domains that are admissible in the theorem have

area ℓd, the estimate for µ2(Ω) given in the theorem is not necessarily below π2

ℓd , the
first eigenvalue of the square of the same area. Consider, for instance, the domain
given by

Ωε =
{
(x, y)⊤ : 0 < x < π, sin(x) −

(π
2
+ ε
)
< y < sin(x) +

(π
2
+ ε
)}

for sufficiently small ε > 0. In this case, d = π+2ε and ℓ = π. Moreover, note that
∫ ℓ

0

g′(x) sin(πx/ℓ)dx = 0

in this case. Therefore Theorem 4.2 yields

µ2(Ωε) ≤
π2

2ℓd

(
d

ℓ
+

1

d

∫ ℓ

0

(
1 + g′(x)2

)
dx−

∣∣∣∣
d

ℓ
− 1

d

∫ ℓ

0

(
1 + g′(x)2

)
dx

∣∣∣∣

)

=
π2

2ℓd

(
d

ℓ
+

1

d

3π

2
−
∣∣∣∣
d

ℓ
− 1

d

3π

2

∣∣∣∣

)
.
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Note that for sufficiently small ε the term inside the modulus is negative and, hence,
the estimate yields

µ2(Ωε) ≤
π2

ℓ2
.

Since ℓ < d, the latter is larger than π2

ℓd , the first eigenvalue of the square with the
same area as Ω.

Despite the previous example, the estimate (4.2) in Theorem 4.2 has the following
immediate implication.

Corollary 4.4. Suppose that Ω is a domain of the form as given in Assumption 4.1
with constant d and with ℓ ≥ d. Then

µ2(Ω) ≤
π2

ℓ2
. (4.5)

Equality holds if and only if Ω is a rectangle.

Finally, we point out that this corollary yields the inequality of Conjecture 1.1
when Ω is a domain, of the previous form, close to a sufficiently elongated rectangle.
Let us give a more precise and quantitative statement.

Proposition 4.5. For any ρ ∈ (0, 1), let Aρ denote the set of domains satisfying
Assumption 4.1, with constant d, and for which, in addition,

d

ℓ
≤ ρ and ‖g′‖∞ ≤ Mρ,

with

Mρ :=
√
(2 − ρ)2 − 1.

Then, for any Ω ∈ Aρ,

L(Ω)2µ2(Ω) < 16π2.

Remark 4.6. For any ρ ∈ (0, 1), Aρ mostly contains non-convex domains. Indeed,
the only convex domains in Aρ are rectangles.

Proof of Proposition 4.5. Let Ω be a set in Aρ. From Corollary 4.4, it follows that

L(Ω)2µ2(Ω) ≤
π2

ℓ2

(
2d+ 2

∫ ℓ

0

√
1 + g′(x)2 dx

)2

≤ 4π2

(
d

ℓ
+
√
1 + ‖g′‖2∞

)2

≤ 4π2
(
ρ+

√
1 +M2

ρ

)2
= 16π2.

To obtain the strict inequality, we recall that equality in (4.5) implies that Ω is a
rectangle, in which case

L(Ω)2µ2(Ω) < 16π2,

since Ω is not a square. �

5. Perturbation approach

Let us conclude with some remarks concerning the behavior of the shape func-
tional Ω 7→ µ2(Ω)L(Ω)

2 when Ω is a small perturbation of the unit square Q =
(0, 1)2. We use here a Hadamard-type formula for the shape derivative of a Neu-
mann eigenfunction (see [3, Sec. 2.5.3] for a general discussion and [1, p. 1596, Eq.
(3.12)] for the specific formula). We are not attempting a full justification of its
validity. Our goal is merely to check formally that we can find a suitable small
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perturbation of Q into a non-convex domain Ω such that µ2(Ω)L(Ω)
2 > 16π2 and

we are therefore not overly concerning ourselves with regularity assumptions.
In complement to this discussion, we recall that [2, 4, 7] provide sequences of

non-convex domains along which the functional diverges to +∞, as described in
more detail in the introduction.

In general, we can deform Q in the following way. We fix a smooth vector field
χ : R2 → R

2 with compact support, and define the mapping Φt(x, y) = (x, y) +
tχ(x, y), depending on a real parameter t. It is easily checked that Φt is a C∞-
diffeomorphism for |t| small enough. We then set Ωt := Φt(Q) and L(t) := L(Ωt).
To avoid regularity issues, we assume that χ vanishes near the corners of Q. We
have therefore reduced the problem to studying F (t) := µ2(Ωt)L(t)

2 for t close to
0.

We first note that, according to classical differential geometry,

L′(0) =

∫

∂Q

h(χ · ν),

where h is the curvature of ∂Q and ν the unit normal vector to ∂Q, pointing
outwards. Since ∂Q is straight in the support of χ,

L′(0) = 0. (5.1)

When writing the Hadamard formula, we have to account for the fact that
µ2(Q) = µ3(Q) = π2 is a double eigenvalue. We denote it by µ and recall that the
functions

u1(x, y) :=
√
2 cos(πx);

u2(x, y) :=
√
2 cos(πy);

form an orthonormal basis of the associated eigenspace. Then, we can find two
differentiable (indeed, real-analytic) functions t 7→ µ1(t), µ2(t) satisfying the fol-
lowing.

(i) For |t| small enough, {µ1(t), µ2(t)} = {µ2(Ωt), µ3(Ωt)} (note that the la-
beling of µ1(t), µ2(t) does not necessarily coincide with their order in the
Neumann spectrum of Ωt).

(ii) The derivatives µ′
1(0) and µ′

2(0) are the eigenvalues of the 2× 2 matrix
( ∫

∂Q

(
|∇u1|2 − µu2

1

)
(χ · ν)

∫
∂Q

(∇u1 · ∇u2 − µu1u2) (χ · ν)∫
∂Q

(∇u1 · ∇u2 − µu1u2) (χ · ν)
∫
∂Q

(
|∇u2|2 − µu2

2

)
(χ · ν)

)
,

which we denote by M .

To carry on with our analysis, we write

∂Q = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4,

with Γ1 = [0, 1]×{0}, Γ2 = {1}× [0, 1], Γ3 = [0, 1]×{1} and Γ4 = {0}× [0, 1], and
we start imposing additional conditions on χ. First, we assume that the support of
χ intersects only one side of Q, say Γ1, and that we have, on Γ1,

χ(x, 0) = (0,−f(x)),

with f a non-negative smooth function supported in (0, 1), symmetric with respect
to the midpoint x = 1/2. Using these hypotheses, and the explicit formulas for u1

and u2, we find

M = 2π2

(
−
∫ 1

0
cos(2πx)f(x) dx 0

0 −
∫ 1

0
f(x) dx

)
.
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If we make the additional assumption that f is not identically 0 and is supported
in (0, 1/4) ∪ (3/4, 1), we find

M =

(
−α1 0
0 −α2

)
, (5.2)

with α2 > α1 > 0. Up to relabeling the functions t 7→ µ1(t), t 7→ µ2(t), we can
assume that µ′

1(0) = −α1 and µ′
2(0) = −α2.

Under the previous hypotheses on χ, the above computations imply that the
function t 7→ F (t) has a left derivative at 0, given by

F ′
−(0) = µ′

1(0)L(0)
2 + 2µ1(0)L

′(0)L(0) = −16α1 < 0.

Thus, we have F (t) > F (0) = 16π2 for t negative and close enough to 0. Since the
vector field χ, by construction, points outwards ofQ, the corresponding deformation
pushes the side Γ1 inwards, making the domain Ωt slightly non-convex.
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