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INCOMPLETE INVERSE PROBLEM FOR DIRAC OPERATOR

WITH CONSTANT DELAY

FENG WANG AND CHUAN-FU YANG

Abstract. In this work, we consider Dirac-type operators with a constant delay less

than two-fifths of the interval and not less than one-third of the interval. For our

considered Dirac-type operators, an incomplete inverse spectral problem is studied.

Specifically, when two complex potentials are known a priori on a certain subinterval,

reconstruction of the two potentials on the entire interval is studied from complete

spectra of two boundary value problems with one common boundary condition. The

uniqueness of the solution of the inverse problem is proved. A constructive method is

developed for the solution of the inverse problem.

1. introduction and main results

In the past decade, there appeared a significant interest in inverse problems for Sturm-
Liouville-type operators with constant delay:

− y′′(x) + q(x)y(x− a) = λy(x), x ∈ (0, π), (1.1)

under two-point boundary conditions (see [2-3, 7-12, 14, 19, 23-25, 29-30] and references
therein), which are often adequate for modelling various real-world processes frequently
possessing a nonlocal nature. Here q(x) is a complex-valued function in L2(a, π) van-
ishing on (0, a). It is well known that the potential q(x) is uniquely determined by
specifying the spectra of two boundary value problems for equation (1.1) with a com-
mon boundary condition at zero as soon as a ∈ [2π5 , π). The recent series of papers

[9-11] establishes, however, that it is never possible for a ∈ (0, 2π5 ). For more details,
see Introduction in [6].

To the best of our knowledge, the first attempt of defining Dirac-type operator with
constant delay was made in [5]. They consider the following Dirac-type system with a
delay constant a∈(0, π):

By′(x) +Q(x)y(x− a) = λy(x), x ∈ (0, π), (1.2)
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where

B =

[
0 1
−1 0

]
, Q(x) =

[
q(x) p(x)
p(x) −q(x)

]
, y(x) =

[
y1(x)
y2(x)

]
,

while q(x) and p(x) are complex-valued functions belong to L2(0, π), and Q(x) = 0
on (0, a). For any fixed j ∈ {1, 2}, denote by Lj(Q) the boundary value problem for
equation (1.2) with the boundary conditions

y1(0) = 0, yj(π) = 0. (1.3)

In [5], authors restrict themselves to the case a ∈ [π2 , π), when the dependence of the
characteristic functions of the problems Lj(Q) onQ(x) is linear. For the considered case,
however, they give answers to the full range of questions usually raised in the inverse
spectral theory. Specifically, reconstruction of two complex potentials q and p is studied
from either complete spectra or subspectra of two boundary value problems L1(Q) and
L2(Q). They give conditions on the subspectra that are necessary and sufficient for the
unique determination of the potentials. Moreover, necessary and sufficient conditions
for the solvability of both inverse problems are obtained. For the inverse problem of
recovering from the complete spectra, they establish also uniform stability in each ball
of a finite radius.

In [28], we restrict ourselves to the case a ∈ [2π5 , π2 ), when the dependence of the
characteristic functions of the problems Lj(Q) on Q(x) is nonlinear. For our considered
case, we study the inverse problem of restoring two complex potentials q and p from
complete spectra of two boundary value problems L1(Q) and L2(Q). We also provide
full answers for our considered inverse problem: uniqueness, solvability and uniform
stability.

In [13], by constructing counterexamples, authors prove that two spectra of the prob-
lems L1(Q) and L2(Q) cannot uniquely determine the potentials q and p in the case
a ∈ [π3 ,

2π
5 ). Therefore, in this case, a natural question is whether it is possible to add

some information of the potential functions so that two spectra of the problems L1(Q)
and L2(Q) can also uniquely determine the potentials q and p. This article aims to
address this issue.

In this paper, we restrict ourselves to the case a ∈ [π3 ,
2π
5 ). For this case, an incomplete

inverse spectral problem is studied. Specifically, when the two complex potentials q and
p are known a priori on a certain subinterval, reconstruction of the two potentials on the
entire interval is studied from two spectra of the problems L1(Q) and L2(Q) (for details,
see Inverse Problem 1 below). A uniqueness theorem is given for the incomplete inverse
problem (See Theorem 1.2 below). As well as, a constructive method is developed for
the solution of the incomplete inverse problem (for details, see Algorithm 1 in Section
3). The motivation for studying this incomplete inverse problem comes from the paper
[12], in which a similar inverse problem is studied for the Sturm-Liouville-type operators
with constant delay.
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Additionally, in the classical case a = 0, inverse problems for (1.2) were studied in [1,
15-18, 20-22] and other works. Meanwhile, it is worth mentioning that the first attempt
of defining operator (1.1) on a star-type graph was made in [26, 27], which could be
classified as locally nonlocal because the delay on each edge does not affect the other
edges. Afterwards, Buterin suggests another concept of operator with delay on graphs
that can be characterized as globally nonlocal, when the delay extends through vertices
of the graph (for details, please refer to [4]).

To begin with, let us give the following theorem about the asymptotic relations of
eigenvalues for the boundary value problems Lj(Q), j = 1, 2, which has been proved in
[28].

Theorem 1.1. For j ∈ {1, 2}, the boundary value problem Lj(Q) has infinitely many

eigenvalues λn,j, n ∈ Z, of the form

λn,j = n−
j − 1

2
+ κn,j, {κn,j}n∈Z ∈ l2. (1.4)

Throughout the article, we use the symbol f |S for denoting the restriction of the
function f to the set S. Assuming that the delay constant a ∈ [π3 ,

2π
5 ) is known a priori,

we consider the following inverse problem.
Inverse Problem 1. Given q|( 3a

2
,π
2
+ a

4
), p|( 3a

2
,π
2
+ a

4
) and the two spectra {λn,j}n∈Z,

j = 1, 2, find the potential functions q(x) and p(x) for x ∈ [a, π].
Next, we present the uniqueness theorem for Inverse Problem 1, which is also the

main result of this paper. To this end, for j = 1, 2, along with the problem Lj(Q),

we will consider other problem Lj(Q̃) of the same form but with a different potential
matrix

Q̃(x) =

[
q̃(x) p̃(x)
p̃(x) −q̃(x)

]
.

We agree that if a certain symbol α denotes an object related to the problem Lj(Q),
then this symbol with tilde α̃ will denote the analogous object related to the problem

Lj(Q̃) .

Theorem 1.2. If q(x)= q̃(x), p(x)= p̃(x) a.e. on (3a2 ,
π
2+

a
4 ), and λn,1= λ̃n,1, λn,2= λ̃n,2,

n ∈ Z, then q(x)= q̃(x) and p(x)= p̃(x) a.e. on [a, π]. In other words, if the potentials

q(x) and p(x) are known a priori on the subinterval (3a2 ,
π
2+

a
4 ), then the specification of

two spectra {λn,1}n∈Z and {λn,2}n∈Z uniquely determines the potentials q and p on the

interval [a, π].

The paper is organized as follows. In the next section, we introduce the characteristic
functions of the boundary value problems L1(Q) and L2(Q). In Section 3, we prove
Theorem 1.2 and provide a constructive method for the solution of Inverse Problem 1.
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2. characteristic functions

Let Y (x, λ) be the fundamental matrix-solution of equation (1.2) such that

Y (x, λ) =

[
y1,1(x, λ) y1,2(x, λ)
y2,1(x, λ) y2,2(x, λ)

]
, Y (0, λ) =

[
1 0
0 1

]
.

Then, for j ∈ {1, 2}, eigenvalues of the problem Lj(Q) coincide with zeros of the entire
function

∆j(λ) = yj,2(π, λ), (2.1)

which is called characteristic function of Lj(Q).
When a ∈ [π3 ,

π
2 ), it follows from the relation (12) in [5] that

Y (x, λ) = Y0(x, λ) + Y1(x, λ) + Y2(x, λ), (2.2)

where

Y0(x, λ) =

[
cos λx − sinλx
sinλx cos λx

]
, (2.3)

Y1(x, λ) = B

∫ x

a

Y0(x− t, λ)Q(t)Y0(t− a, λ)dt, (2.4)

Y2(x, λ) = B

∫ x

2a
Y0(x− t, λ)Q(t)Y1(t− a, λ)dt. (2.5)

Combining these relations (2.2)-(2.5) and taking the definition (2.1) into account, by
a rather tedious computation, we obtain

∆1(λ)=− sinλπ−

∫ π

a

q(t) cosλ(π−2t+a)dt+

∫ π

a

p(t) sinλ(π−2t+a)dt

−

∫ π

2a
dt

∫ t−a

a

(
q(t)q(s) + p(t)p(s)

)
sinλ(π−2t+2s)ds

+

∫ π

2a
dt

∫ t−a

a

(
q(t)p(s)− p(t)q(s)

)
cosλ(π−2t+2s)ds,

and

∆2(λ)=cosλπ−

∫ π

a

q(t) sinλ(π−2t+a)dt−

∫ π

a

p(t) cosλ(π−2t+a)dt

+

∫ π

2a
dt

∫ t−a

a

(
q(t)p(s)− p(t)q(s)

)
sinλ(π−2t+2s)ds

+

∫ π

2a
dt

∫ t−a

a

(
q(t)q(s) + p(t)p(s)

)
cosλ(π−2t+2s)ds.



INCOMPLETE INVERSE PROBLEM FOR DIRAC OPERATORS 5

Changing the variable and interchanging the order of integration, we obtain

∆1(λ)=− sinλπ+

∫ π−a

a−π

v1(x) sinλxdx+

∫ π−a

a−π

v2(x) cosλxdx, (2.6)

and

∆2(λ)=cosλπ+

∫ π−a

a−π

v2(x) sinλxdx−

∫ π−a

a−π

v1(x) cosλxdx, (2.7)

where

v1(x) =





1
2p(

π+a−x
2 )− 1

2

∫ π
π+2a−x

2

[
q(t)q(x+2t−π

2 )

+p(t)p(x+2t−π
2 )

]
dt, x∈(2a−π, π−2a),

1
2p(

π+a−x
2 ), x∈ [a−π, 2a−π] ∪ [π−2a, π−a],

(2.8)

v2(x) =





−1
2q(

π+a−x
2 )+ 1

2

∫ π
π+2a−x

2

[
q(t)p(x+2t−π

2 )

−p(t)q(x+2t−π
2 )

]
dt, x∈(2a−π, π−2a),

−1
2q(

π+a−x
2 ), x∈ [a−π, 2a−π] ∪ [π−2a, π−a].

(2.9)

Using Euler’s formula, the relations (2.6) and (2.7) take the forms

∆1(λ) = − sinλπ +

∫ π−a

a−π

u1(x) exp(iλx)dx (2.10)

and

∆2(λ) = cos λπ +

∫ π−a

a−π

u2(x) exp(iλx)dx, (2.11)

where

u1(x) =
v1(x)− v1(−x)

2i
+

v2(x) + v2(−x)

2
, (2.12)

u2(x) =
v2(x)− v2(−x)

2i
−

v1(x) + v1(−x)

2
. (2.13)

The following lemma has been obtained (see Lemma 3.3 in [28]).

Lemma 2.1. The characteristic functions ∆1(λ) and ∆2(λ) are uniquely determined

by specifying their zeros. Moreover, the following representations hold:

∆1(λ) = π(λ0,1 − λ)
∏

|n|∈N

λn,1 − λ

n
exp

(
λ

n

)
, (2.14)
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∆2(λ) =
∏

n∈Z

λn,2 − λ

n− 1
2

exp

(
λ

n− 1
2

)
. (2.15)

From Lemma 2.1, we immediately obtain the following lemma, which plays an im-
portant role in proving Theorem 1.2.

Lemma 2.2. If λn,1 = λ̃n,1, λn,2 = λ̃n,2, n ∈ Z, then u1(x) = ũ1(x) and u2(x) = ũ2(x)
a.e. on [a− π, π − a].

Proof. Since λn,1 = λ̃n,1, λn,2 = λ̃n,2, n ∈ Z, according to Lemma 2.1, we have

∆1(λ) = ∆̃1(λ), ∆2(λ) = ∆̃2(λ),

which yields

∆1(λ)+sinλπ=∆̃1(λ)+sin λπ, ∆2(λ)−cos λπ=∆̃2(λ)−cos λπ.

From (2.10) and (2.11), one has
∫ π−a

a−π

u1(x) exp(iλx)dx =

∫ π−a

a−π

ũ1(x) exp(iλx)dx,

∫ π−a

a−π

u2(x) exp(iλx)dx =

∫ π−a

a−π

ũ2(x) exp(iλx)dx.

Taking λ = n ∈ Z in the above two equations, we have
∫ π−a

a−π

u1(x) exp(inx)dx =

∫ π−a

a−π

ũ1(x) exp(inx)dx, (2.16)

∫ π−a

a−π

u2(x) exp(inx)dx =

∫ π−a

a−π

ũ2(x) exp(inx)dx. (2.17)

Since the system {exp(inx)}n∈Z is complete in L2[a−π, π− a], the relations (2.16) and
(2.17) imply u1(x)= ũ1(x), u2(x)= ũ2(x), a.e. on [a− π, π − a]. �

3. Proof of Theorem 1.2

Before proceeding directly to the proof of Theorem 1.2, we fulfil some preparatory
work. Let

w1(x) = −(u1 + iu2)(π + a− 2x)− (u1 − iu2)(2x− π − a), (3.1)

w2(x) = (iu1 − u2)(π + a− 2x)− (iu1 + u2)(2x− π − a), (3.2)

then the functions u1(x) and u2(x) in L2(a−π, π−a) uniquely determine the functions
w1(x) and w2(x) in L2(a, π).
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When x∈ [a−π, 2a−π] ∪ [π−2a, π−a], according to (2.8)-(2.9) and (2.12)-(2.13), one
can calculate

−2(u1(x) + iu2(x)) = (q+ip)

(
π+a−x

2

)
,

−2(u1(x)− iu2(x)) = (q−ip)

(
π+a+x

2

)
.

The changes of variables t = π+a−x
2 and t = π+a+x

2 , respectively, lead to

(q+ip)(t) = −2(u1 + iu2)(π+a−2t), t ∈ [a,
3a

2
] ∪ [π −

a

2
, π],

(q−ip)(t) = −2(u1 − iu2)(2t−π−a), t ∈ [a,
3a

2
] ∪ [π −

a

2
, π].

Summing up two equations above and subtracting one from the other, and taking (3.1)-
(3.2) into account, we get

q(t) = w1(t), p(t) = w2(t), t ∈ [a,
3a

2
] ∪ [π −

a

2
, π].

Thus, we have proved the following lemma.

Lemma 3.1. The following relations hold:

q|[a, 3a
2
]∪[π− a

2
,π] = w1|[a, 3a

2
]∪[π− a

2
,π], p|[a, 3a

2
]∪[π− a

2
,π] = w2|[a, 3a

2
]∪[π− a

2
,π]. (3.3)

When x∈(2a−π, π−2a), according to (2.8)-(2.9) and (2.12)-(2.13), one can calculate

−2(u1(x) + iu2(x)) = (q+ip)

(
π+a−x

2

)

−

∫ π

π+2a−x

2

(q(t)+ip(t))(iq+p)

(
x+2t−π

2

)
dt,

−2(u1(x)− iu2(x)) = (q−ip)

(
π+a+x

2

)

−

∫ π

π+2a+x

2

(q(t)−ip(t))(−iq+p)

(
2t−x−π

2

)
dt.

The changes of variables ξ = π+a−x
2 and ξ = π+a+x

2 , respectively, lead to

−2(u1 + iu2)(π + a− 2ξ)=(q+ip)(ξ)

−

∫ π

ξ+ a

2

(q(t)+ip(t))(iq+p)
(
t−ξ+

a

2

)
dt,

−2(u1 − iu2)(2ξ − π − a)=(q−ip)(ξ)
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−

∫ π

ξ+ a

2

(q(t)−ip(t))(−iq+p)
(
t−ξ+

a

2

)
dt

for ξ∈(3a2 , π−
a
2). Summing up two equations above and subtracting one from the other,

and taking (3.1)-(3.2) into account, we get

w1(ξ) = q(ξ)−

∫ π

ξ+ a

2

[
q(t)p

(
t−ξ+

a

2

)
−p(t)q

(
t−ξ+

a

2

)]
dt, (3.4)

w2(ξ) = p(ξ)−

∫ π

ξ+ a

2

[
q(t)q

(
t−ξ+

a

2

)
+p(t)p

(
t−ξ+

a

2

)]
dt (3.5)

for ξ∈(3a2 , π−
a
2 ).

When ξ∈ [π−a, 2a] ∪ [π2+
3a
4 , π−

a
2 ), it is easy to find that

π −
a

2
≤ ξ +

a

2
≤ t ≤ π, a ≤ t− ξ +

a

2
≤

3a

2
.

Hence, according to Lemma 3.1, the relations (3.4) and (3.5) yield

q(ξ) = w1(ξ)+

∫ π

ξ+ a

2

[
w1(t)w2

(
t−ξ+

a

2

)
−w2(t)w1

(
t−ξ+

a

2

)]
dt,

p(ξ) = w2(ξ)+

∫ π

ξ+ a

2

[
w1(t)w1

(
t−ξ+

a

2

)
+w2(t)w2

(
t−ξ+

a

2

)]
dt.

Thus, we have proved the following lemma.

Lemma 3.2. The following relations hold:
{
q|[π−a,2a]∪[π

2
+ 3a

4
,π− a

2
) = (w1 + γ1)|[π−a,2a]∪[π

2
+ 3a

4
,π− a

2
),

p|[π−a,2a]∪[π
2
+3a

4
,π−a

2
) = (w2 + γ2)|[π−a,2a]∪[π

2
+ 3a

4
,π− a

2
),

(3.6)

where
{
γ1(x) =

∫ π

x+ a

2

[
w1(t)w2

(
t−x+ a

2

)
−w2(t)w1

(
t−x+ a

2

)]
dt,

γ2(x) =
∫ π

x+ a

2

[
w1(t)w1

(
t−x+ a

2

)
+w2(t)w2

(
t−x+ a

2

)]
dt

(3.7)

for x ∈ [π−a, 2a] ∪ [π2 +
3a
4 , π−

a
2 ).

Let I1 = [a, 3a2 ] ∪ [π − a, 2a] ∪ [π2+
3a
4 , π]. Since a ∈ [π3 ,

2π
5 ), three subintervals [a, 3a2 ],

[π − a, 2a] and [π2 +
3a
4 , π] are not intersecting with each other. By combining Lemmas

2.2, 3.1 and 3.2, and taking (3.1)-(3.2) into account, we can obtain the following lemma.

Lemma 3.3. If λn,1 = λ̃n,1, λn,2 = λ̃n,2, n ∈ Z, then q|I1 = q̃|I1 and p|I1 = p̃|I1.
Thus, the specification of two spectra {λn,1}n∈Z and {λn,2}n∈Z uniquely determines the

potentials q and p on the interval I1.
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Proof. Since λn,1 = λ̃n,1, λn,2 = λ̃n,2, n ∈ Z, according to Lemma 2.2, we have

u1(x) = ũ1(x), u2(x) = ũ2(x), a.e. on [a− π, π − a]. (3.8)

In view of (3.1), (3.2) and (3.8), we get

w1(x) = w̃1(x), w2(x) = w̃2(x), a.e. on [a, π]. (3.9)

According to Lemma 3.1, it follows from (3.9) that

q(x) = q̃(x), p(x) = p̃(x), a.e. on [a,
3a

2
] ∪ [π −

a

2
, π].

According to Lemma 3.2, it follows from (3.9) that

q(x) = q̃(x), p(x) = p̃(x), a.e. on [π − a, 2a].

So, we have q|I1 = q̃|I1 and p|I1 = p̃|I1 . �

Next, for simplicity, we denote

f1 = q|[π
2
+ 3a

4
,π], f2 = p|[π

2
+ 3a

4
,π], (3.10)

When ξ∈I2 := (2a, π2+
3a
4 ), it is easy to find that

π

2
+

3a

4
≤ ξ +

a

2
≤ t ≤ π, a ≤ t− ξ +

a

2
≤

3a

2
.

Hence, according to Lemma 3.1 and the equation (3.10), the relations (3.4) and (3.5)
yield

q(ξ) = w1(ξ)+

∫ π

ξ+ a

2

[
f1(t)w2

(
t−ξ+

a

2

)
−f2(t)w1

(
t−ξ+

a

2

)]
dt,

p(ξ) = w2(ξ)+

∫ π

ξ+ a

2

[
f1(t)w1

(
t−ξ+

a

2

)
+f2(t)w2

(
t−ξ+

a

2

)]
dt.

Thus, we have proved the following lemma.

Lemma 3.4. The following relations hold:

q|I2 = (w1 + δ1)|I2 , p|I2 = (w2 + δ2)|I2 , (3.11)

where
{
δ1(x) =

∫ π

x+ a

2

[
f1(t)w2

(
t−x+ a

2

)
−f2(t)w1

(
t−x+ a

2

)]
dt,

δ2(x) =
∫ π

x+ a

2

[
f1(t)w1

(
t−x+ a

2

)
+f2(t)w2

(
t−x+ a

2

)]
dt,

(3.12)

for x ∈ I2.

Using Lemmas 2.2, 3.3 and 3.4, we immediately obtain the following lemma.
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Lemma 3.5. If λn,1 = λ̃n,1, λn,2 = λ̃n,2, n ∈ Z, then q|I2 = q̃|I2 and p|I2 = p̃|I2.
Thus, the specification of two spectra {λn,1}n∈Z and {λn,2}n∈Z uniquely determines the

potentials q and p on the interval I2.

Proof. Since λn,1 = λ̃n,1, λn,2 = λ̃n,2, n ∈ Z, according to Lemmas 2.2 and 3.3, and
taking the equations (3.1), (3.2) and (3.10) into account, we have

w1(x) = w̃1(x), w2(x) = w̃2(x), a.e. on [a, π], (3.13)

and

f1(x) = f̃1(x), f2(x) = f̃2(x), a.e. on [
π

2
+
3a

4
, π]. (3.14)

Using Lemma 3.4, it is from (3.13) and (3.14) that

q(x) = q̃(x), p(x) = p̃(x), a.e. on I2,

i.e. q|I2 = q̃|I2 and p|I2 = p̃|I2 . �

For simplicity, we denote

g1 = q|[a,π
2
+ a

4
), g2 = p|[a,π

2
+ a

4
), (3.15)

When ξ∈I3 := [π2+
a
4 , π−a), it is easy to find that

π

2
+

3a

4
≤ ξ +

a

2
≤ t ≤ π, a ≤ t− ξ +

a

2
≤

π

2
+

a

4
.

Hence, according to the equations (3.10) and (3.15), the relations (3.4) and (3.5) yield

q(ξ) = w1(ξ)+

∫ π

ξ+ a

2

[
f1(t)g2

(
t−ξ+

a

2

)
−f2(t)g1

(
t−ξ+

a

2

)]
dt,

p(ξ) = w2(ξ)+

∫ π

ξ+ a

2

[
f1(t)g1

(
t−ξ+

a

2

)
+f2(t)g2

(
t−ξ+

a

2

)]
dt.

Thus, we have proved the following lemma.

Lemma 3.6. The following relations hold:

q|I3 = (w1 + η1)|I3 , p|I3 = (w2 + η2)|I3 , (3.16)

where
{
η1(x) =

∫ π

x+ a

2

[
f1(t)g2

(
t−x+ a

2

)
−f2(t)g1

(
t−x+ a

2

)]
dt,

η2(x) =
∫ π

x+ a

2

[
f1(t)g1

(
t−x+ a

2

)
+f2(t)g2

(
t−x+ a

2

)]
dt,

(3.17)

for x ∈ I3.
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Now we are in position to give the proof of Theorem 1.2.
Proof of Theorem 1.2. According to Lemmas 3.3 and 3.5, the conditions λn,1 =

λ̃n,1, λn,2 = λ̃n,2, n ∈ Z, imply that

w1(x) = w̃1(x), w2(x) = w̃2(x), a.e. on [a, π], (3.18)

and

q(x) = q̃(x), p(x) = p̃(x), a.e. on I1 ∪ I2. (3.19)

Since q(x)= q̃(x), p(x)= p̃(x) a.e. on (3a2 ,
π
2+

a
4 ), it follows from (3.15) and (3.19) that

g1(x) = g̃1(x), g2(x) = g̃2(x), a.e. on [a,
π

2
+
a

4
). (3.20)

Additionally, the relations (3.10)and (3.19) yield

f1(x) = f̃1(x), f2(x) = f̃2(x), a.e. on [
π

2
+
3a

4
, π]. (3.21)

In view of (3.17) and (3.20)-(3.21), we have

η1(x) = η̃1(x), η2(x) = η̃2(x), a.e. on I3. (3.22)

According Lemmas 3.6 along with the relations (3.18) and (3.22), we obtain

q(x) = q̃(x), p(x) = p̃(x), a.e. on I3. (3.23)

Note that [a, π] = I1 ∪ I2 ∪ I3 ∪ (3a2 ,
π
2+

a
4 ). The relations (3.19) and (3.23) arrive at the

assertion of Theorem 1.2. ✷

Based on the above discussion process, we have the following algorithm for solving
Inverse Problem 1.

Algorithm 1. Let the two spectra {λn,j}n∈Z, j = 1, 2 and partial potentials
q|( 3a

2
,π
2
+ a

4
), p|( 3a

2
,π
2
+ a

4
) be given.

(i) Construct the functions ∆1(λ) and ∆2(λ) by (2.14) and (2.15);
(ii) In accordance with (2.10) and (2.11), find the functions u1(x) and u2(x) by the

formulae

u1(x) =
1

2π

∞∑

n=−∞

∆1(n) exp(−inx),

u2(x) =
1

2π

∞∑

n=−∞

(
∆2(n)− (−1)n

)
exp(−inx);

(iii) Construct the functions w1(x) and w2(x) by the formulae (3.1) and (3.2);
(iv) Construct the functions q|[a, 3a

2
]∪[π− a

2
,π] and p|[a, 3a

2
]∪[π− a

2
,π] by the formula (3.3);

(v) Construct the functions q|[π−a,2a]∪[π
2
+ 3a

4
,π− a

2
) and p|[π−a,2a]∪[π

2
+ 3a

4
,π− a

2
) by the for-

mulae (3.6) and (3.7);
(vi) Construct the functions q|(2a,π

2
+ 3a

4
) and p|(2a,π

2
+ 3a

4
) by the formulae (3.10), (3.11)and

(3.12);
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(vii) Construct the functions q|[π
2
+ a

4
,π−a) and p|[π

2
+ a

4
,π−a) by the formulae (3.10),

(3.15), (3.16) and (3.17).

Acknowledgments. This work was supported in part by the National Natural Science
Foundation of China (11871031) and the National Natural Science Foundation of Jiang
Su (BK20201303).

References

[1] Albeverio S., Hryniv R. and Mykytyuk Ya., Inverse spectral problems for Dirac
operators with summable potentials, Russ. J. Math. Phys. 12 (2005) no.4, 406-
423.

[2] Bondarenko N.P. and Yurko V.A., An inverse problem for Sturm-Liouville differ-
ential operators with deviating argument, Appl. Math. Lett. 83 (2018) 140-144.

[3] Bondarenko N.P. and Yurko V.A., Partial inverse problems for the Sturm-Liouville
equation with deviating argument, Math. Meth. Appl. Sci. 41 (2018) 8350-8354.

[4] Buterin S.A., Functional-differential operators on geometrical graphs with global
delay and inverse spectral problems, Results Math. (2023) 78:79.
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[10] Djurić N. and Buterin S.A., On non-uniqueness of recovering Sturm-Liouville op-

erators with delay, Commun. Nonlin. Sci. Numer. Simul. 102 (2021) 105900.
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[25] Vladičić V., Pikula M. and Vojvodić B., Inverse spectral problems for Sturm-
Liouville operators with a constant delay less than half the length of the interval
and Robin boundary conditions, Results Math. (2019) 74:45.

[26] Wang F. and Yang C.-F., Traces for Sturm-Liouville operators with constant delays
on a star graph, Results Math. (2021) 76:220.

[27] Wang F. and Yang C.-F., A partial inverse problem for the Sturm-Liouville operator
with constant delays on a star graph, Results Math. (2022) 77:192.

[28] Wang F. and Yang C.-F., Inverse problems for Dirac operators with a constant
delay less than half of the interval, (2023). arXiv:2305.10752 [math.SP].

[29] Yang C.-F., Inverse nodal problems for the Sturm-Liouville operator with a con-
stant delay, J. Diff. Eqns. 257 (2014) no.4, 1288-1306.

[30] Yurko V.A., An inverse spectral problem for second order differential operators
with retarded argument, Results Math. (2019) 74:71.

http://arxiv.org/abs/2305.10752


14 F. WANG AND C. F. YANG

School of Mathematics and Statistics, Nanjing University of Science and Technology,

Nanjing, 210094, Jiangsu, China

Email address: wangfengmath@njust.edu.cn

Department of Mathematics, School of Mathematics and Statistics, Nanjing University

of Science and Technology, Nanjing, 210094, Jiangsu, People’s Republic of China

Email address: chuanfuyang@njust.edu.cn

mailto:wangfengmath@njust.edu.cn
mailto:chuanfuyang@njust.edu.cn

	1. introduction and main results
	2. characteristic functions
	3. Proof of Theorem 1.2
	References

