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In this work we investigate the ground state of a momentum-confined interacting 2D electron gas,
a momentum-space analog of an infinite quantum well. The study is performed by combining analyt-
ical results with a numerical exact diagonalization procedure. We find a ferromagnetic ground state
near a particular electron density and for a range of effective electron (or hole) masses. We argue
that this observation may be relevant to the generalized Stoner ferromagnetism recently observed in
multilayer graphene systems. The collective magnon excitations exhibit a linear dispersion, which
originates from a diverging spin stiffness.

Introduction.– The ground state of a 2D electron gas
is determined by a competition between kinetic and in-
teraction energies. In the absence of external fields or
ionic potentials, numerical calculations[1–5] suggest the
ground state is either a paramagnetic Fermi liquid or
a Wigner crystal[6], depending on the density, while a
Stoner ferromagnetic[7] Fermi liquid state is a close com-
petitor. By applying an out-of-plane magnetic field, the
energy spectrum of the electron gas forms Landau levels.
In the absence of Zeeman coupling the ground state is
known to be ferromagnetic for densities near one elec-
tron per flux quantum[8, 9].

Recent experiments in Bernal bilayer and rhombohe-
drally stacked multilayer graphene show spin and valley
ferromagnetic phases for certain regimes of electron den-
sity and out-of-plane displacement field[10–15]. Further-
more, superconductivity has been experimentally demon-
strated for the bilayer in Refs. [11, 12, 16] and the tri-
layer in Ref. [17], and theoretically discussed for various
graphene multilayers in Refs. [18–29]. The band disper-
sion of the rhombohedrally stacked multilayer graphene
systems is approximately flat up to some momentum
scale, at which point the kinetic energy increases rapidly
with momentum. This corresponds to a high density of
states in a bounded region of momentum space, and is an
example of a partially flat band. Here, we argue that such
dispersion is favorable for Stoner ferromagnetism when
the flat region is nearly fully occupied. We summarize
these results in Fig. 1. Examples of various correlated
phenomena that had been previously studied on models
with partially flat bands can be found in Refs.[30–35].

Motivated by multilayer rhombohedrally stacked
graphene, we present a toy model for an interacting 2D
electron gas in which the kinetic energy of the electrons
diverges beyond a limited region in momentum space.
We will refer to this as a momentum-confined gas. We
find the ground state of this gas to be spin-polarized.
We find a linearly dispersing magnon branch of excita-
tions, in contrast with the commonly predicted quadratic
dispersion[36]. We trace this apparent anomaly to a di-
vergence of the spin stiffness associated with the infinite
slope of the kinetic energy dispersion. We show that the
spin polarization is robust to an addition of weak disper-
sion to the kinetic energy within the allowed momentum
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FIG. 1. Comparison of dispersion and Stoner ferromag-
netism between different 2D systems. The dashed horizon-
tal line represents the chemical potential. *Based on state of
the art quantum Monte Carlo studies [5]. **Experimentally
known for bilayer[11–14] and trilayer[10] graphene, both with
a strong perpendicular displacement field, and analytically
shown in this work for infinitely many layers.

region.
Hamiltonian.– Our goal is to construct a simple model

that captures non-trivial interaction effects of electrons
confined in momentum space, with a minimal set of pa-
rameters. We consider a 2D electron gas with an arti-
ficially constructed kinetic dispersion, and turn on the
conventional Coulomb repulsion. We imagine the kinetic
dispersion to be such that the electrons are only allowed
to occupy momenta in a disk of radius k0 in momentum
space, whose area is small compared to the Brillouin zone.
Idealizing the dispersion, we set the kinetic energy to zero
within the disk and to infinity outside it:

EK(k) =

{
0, |k| ≤ k0,

∞, |k| > k0.
(1)

This dispersion leads to the strict confinement of the elec-
trons to a disk in momentum space, forming a momentum
space analog of a 2D circular infinite quantum well in real
space.
The confinement in Eq. (1) can be thought of as mim-

icking the low energy band dispersion of Nl layers of
rhombohedral graphite subject to a displacement field
D. For this system, there is a band gap proportional to
D, the dispersion is very flat up to a momentum scale k0,
and rises as E(k) ∼ (k/k0)

Nl for k > k0. We emphasize
that we are interested in an isolated band, and therefore
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FIG. 2. The kinetic dispersion confines electrons to the disk
D0 of radius k0 in momentum space. The region Dq is the
intersection of two disks mutually shifted by q. The strict
momentum confinement forbids electrons with momenta in
D0 −Dq from scattering with a momentum transfer q.

consider D ̸= 0 in this picture. In the limit of Nl → ∞,
the scale k0 is set by the ratio of the interlayer tunneling
t⊥ and the monolayer Dirac velocity vD (see S1 in the
Supplemental Material - SM). In this limit, the disper-
sion resembles the idealized momentum confined model
of Eq. (1).

Next, we examine the effects of electron-electron in-
teractions in such a momentum-confined setup. We
consider our Hamiltonian to be the normal-ordered 2D
screened Coulomb interaction strictly confined in mo-
mentum space:

Hint =
1

2A

∑
q

Vq : ρq
†ρq :, (2)

ρq =
∑

σ=↑,↓

∑
k∈Dq

c†σ,k+qcσ,k. (3)

where cσ,k annihilates an electron with spin σ ∈ {↑
, ↓} and momentum k, A is the system area, Vq =
2πe2 tanh (|q|d)/|q| is the Fourier transform of the
Coulomb potential, and d is the distance to the screen-
ing gate. The sum over momenta in the confined parti-
cle density operator, ρq, is limited to the domain Dq =
{k | (|k| ≤ k0) ∩ (|k + q| ≤ k0)} such that the fermion
operators are within the disk of radius k0 (see Fig. 2).
While this Hamiltonian has only two (spin) flavors, some
of the conclusions we draw below are applicable also in
the presence of multiple valleys. We remark that any
physical realization of the kinetic dispersion would be ac-
companied by form factors in Eq. (3) that originate from
the Bloch wavefunctions. For simplicity, in this work we
set the form factors to one.

The Hamiltonian in Eq. (2) is the one we will explore
for the rest of the paper. It has a continuous rotational
symmetry around k = 0, and a global SU(2) symme-
try for spin rotations. The most interesting property
emerges in the limit of unscreened Coulomb interaction,
k0d → ∞ . In this limit, the Hamiltonian has only one
length scale, given by l ∼ k−1

0 . Consequently, we find
a single energy scale E ∼ e2k0, and an electron density
scale n0 = k20/(4π), which corresponds to completely fill-
ing the disk with a single spin flavor. Defining the filling
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FIG. 3. The dispersion E0(|k|) for different screening lengths
of the Coulomb interaction. In the case of unscreened
Coulomb interaction (k0d → ∞) the dispersion is singular
at k = k0. This singularity is smoothed out for screened
Coulomb interaction.

factor by ν = n/n0, we will focus our discussion in this
paper on ν = 1 and on ν = 1± ε for 0 < ε ≪ 1.
The role of normal-ordering.– The notion of the single-

particle kinetic dispersion in the presence of many-body
interactions is not without subtleties. In our model, the
flat nature of the dispersion is tied to our choice to con-
sider the normal-ordered form of the interaction operator.
Physically, the normal-ordering prevents an electron from
interacting with itself. By undoing the normal-ordering
of the confined Coulomb interaction, we find that Eq. (2)
can be separated into a positive semi-definite density-
density operator and a single-particle operator:

Hint =
1

2A

∑
q

Vqρq
†ρq︸ ︷︷ ︸

=Hρ−ρ

−
∑

σ=↑,↓

∑
|k|≤k0

E0(k)c
†
σ,kcσ,k, (4)

where we introduced the dispersion:

E0(k) =
1

2A

∑
|k′|≤k0

Vk−k′ . (5)

This dispersion is, up to a sign, the exchange contribu-
tion to the self-energy of a particle at momentum k in the
presence of a completely filled disk of radius k0. In con-
trast with the standard unconfined interaction, we find
that the momentum cutoff introduces a non-trivial dis-
persion term associated with the normal-ordering. The
dispersion in Eq. (5) plays an important role in several
properties of our model and thus warrants an explicit dis-
cussion. In the limit of unscreened interaction, k0d → ∞,
this dispersion is given by:

E0(k) = e2k0
1

π
Ẽ

(
π

2
,
|k|
k0

)
(6)

where Ẽ
(
π
2 , x
)
is the complete elliptic integral of the sec-

ond kind whose argument x is the elliptic modulus. The



3

derivative of Eq. (6) diverges logarithmically at |k| = k0.
This divergence is cut off for finite k0d. Expanding
Eq. (5) in (k0d)

−1, we find that the series does not uni-
formly converge on the disk, but nevertheless, the cor-
rection is small everywhere for k0d ≫ 1. The effect of
screening length on the dispersion is plotted in Fig. 3.
The details are described in the SM S2.

Exact ground state.– The ground state of Eq. (2) is
not analytically solvable. We can, however, solve for the
exact ground state upon introducing a particular disper-
sion to the otherwise flat disk, which would eliminate the
contribution of Eq. (5). With this dispersion, we are left
with the density-density Hamiltonian Hρ−ρ as defined in
Eq. (4). The Hamiltonian Hρ−ρ is positive semi-definite,
which provides a direct route to finding its exact ground
state. For ν = 1, consider completely filling the spin σ =↓
flavor, i.e. a maximally spin-polarized state. We denote
this state by |ΨSP⟩. By applying Eq. (3) one easily finds
that:

∀q : ρq |ΨSP⟩ = 0 =⇒ Hρ−ρ |ΨSP⟩ = 0, (7)

which proves that |ΨSP⟩ is a ground state of Hρ−ρ.
We emphasize that this ground state is degenerate with
SU(2) spin rotation symmetry. For a model with mul-
tiple valleys, the above statement holds for any integer
filling ν and any completely spin and valley polarized
state, provided that a large momentum separation be-
tween different valleys allows for a neglect of inter-valley
scattering in Coulomb processes.

The spin polarized state |ΨSP⟩ is also an eigenstate
of Hint. We hypothesize that |ΨSP⟩ is a ground state
of Hint. We provide numerical evidence for this claim
below. Assuming this hypothesis is correct, we proceed
to calculate the excitations with respect to this state.

Single-particle excitations.– The single electron and
hole excitations energies relative to the fully spin σ =↓
polarized state, Ee(k) and Eh(k) respectively, are defined
by:

[Hint, c
†
↑,k] |ΨSP⟩ = Ee(k)c

†
↑,k |ΨSP⟩ ,

[Hint, c↓,k] |ΨSP⟩ = Eh(k)c↓,k |ΨSP⟩ ,
(8)

and by direct calculation are found to be:

Ee(k) =
1

A

∑
|k′|≤k0

V0,

Eh(k) =
1

A

∑
|k′|≤k0

(Vk−k′ − V0) .

(9)

The identity E0(k) = (Ee(k) + Eh(k)) /2 holds also if
one adds a spin-independent single-particle dispersion to
the Hamiltonian Hint. The electron excitation energy
is the charging energy of the system’s geometric capac-
itance, and thus has a flat dispersion. The hole excita-
tion energy has the same contribution (with an opposite
sign), along with the exchange interaction of the missing
electron. The dispersion of the hole excitation energy is

therefore shown in Fig. 3 up to a factor of two. We find
that the hole dispersion is such that the lowest energy is
obtained by removing a hole from the edge of the disk,
thereby reducing the Fermi sea radius by an infinitesimal
amount. This is identical to the Fermi liquid behavior.
Collective excitations.– The collective particle-hole ex-

citations of momentum Q and spin ℏ with respect to
|ΨSP⟩ are eigenstates of Hint spanned by wavefunctions
of the form:

|Ψk,Q
ph ⟩ = c†↑,k+Qc↓,k |ΨSP⟩ . (10)

We remark the state described by |ΨSP⟩ does not ad-
mit particle-hole excitations that are spinless, in contrast
with the Stoner metallic state, and in some similarity to
a ferromagnetic band insulator. The solution is given by
diagonalizing the following matrix:

[H(Q)]k,k′ = ⟨Ψk′,Q
ph |Hint |Ψk,Q

ph ⟩ , k,k′ ∈ DQ, (11)

This restriction of both indices to the domain DQ =
{k | (|k| ≤ k0) ∩ (|k + Q| ≤ k0)} is due to our infi-
nite kinetic energy dispersion for states with momentum
outside the disk. This sharp cutoff leads to a striking re-
sult - the lowest-lying particle-hole excitation is massless.
For small |Q|/k0 we find:

Eph(Q) ≈ 4E0(k0)

πk0
|Q|. (12)

This is surprising, as for a magnon we normally expect to
find a finite spin stiffness ρs such that Eph(Q) ≈ ρs|Q|2.
The above result holds in the presence of any rotationally
symmetric single-particle dispersion, see SM S3.
To resolve this apparent discrepancy, we replace our

strictly confining kinetic dispersion with the following:

HK = UK

∑
σ=↑,↓

∑
k

(
|k|
k0

)ND

c†σ,kcσ,k, (13)

where UK is chosen such that 0 < UK ≪ e2k0. Under this
softened momentum confinement the momentum sum-
mations are unconstrained since particles are allowed to
be excited beyond the disk. We emphasize that in the
limit of ND → ∞ our strictly confining kinetic disper-
sion is restored. For ND ≫ 1 we find, using second order
perturbation theory, that the spin stiffness is finite, and
the magnon dispersion is quadratic:

Eph(Q) ≈ 1

2

UK

k20
ND|Q|2. (14)

However, in the limit ND → ∞, the spin stiffness
ρs ∼ ND diverges. This leads to a breakdown of per-
turbation theory as |Q|/k0 can no longer be used as a
small parameter. The details are described in SM S3.
Phase diagram near ν = 1.– We have seen above that

when removing electrons (or adding holes) to the spin-
polarized ground state |ΨSP⟩, it is energetically favorable
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to start with the outermost states, thereby reducing the
radius of the occupied disk. Consider removing a small
fraction of the electrons from the system, i.e. setting the
system at filling fraction ν = 1 − ε for 0 < ε ≪ 1. We
now argue that the system has a spin-polarized Fermi
liquid ground state for small enough ε > 0. In the limit
of ε → 0, the spin polarization is undiminished, and the
system can be thought of as having a single species of
particles (in this case, holes), with a single particle dis-
persion Eh(k) = 2E0(k) and subject to the 2D screened
Coulomb interaction. Partially filling this system leads to
a circular Fermi surface. The finite interaction strength
(due to screening) and the constraint to 2D imply a Fermi
liquid ground state. Presumably, continuing to decrease
the filling will eventually destroy the spin polarization,
and we expect a phase transition to a spin-depolarized
state.

When the dispersion is exactly flat (ND → ∞) there is
difficulty making a similar argument for filling ν = 1+ ε,
as the single-electron excitation spectrum is completely
flat. However, as previously discussed, the average of
single-electron and single-hole excitation spectra is con-
strained to be E0(k). Therefore, upon introduction of
some weak dispersion to the disk, for example - by set-
ting ND to a finite value, we expect both electron and
hole sides to display a Fermi liquid phase by the exact
same reasoning. Generally, we note that the system has
no particle-hole symmetry with respect to ν = 1.
Numerical Analysis.– In order to support our hypothe-

sis of a spin-polarized ground state, we have performed an
exact diagonalization study of Eq. (2) for finite systems
with either periodic or twisted boundary conditions at
filling factor ν = 1 for N ∈ {6, 7, 12, 13, 18, 19} particles.
The diagonalization is done using the matrix-free implic-
itly restarted Lanczos method. We find the ground state
at ν = 1 to be the fully spin-polarized state for all sys-
tem sizes considered. Further technical details are given
in the SM S4.

To further solidify our claim, we have examined the ro-
bustness of the spin-polarized ground state to additional
dispersion. We repeat the exact diagonalization at ν = 1
for the confined Coulomb Hamiltonian Hint in Eq. (2)
with an additional quadratic dispersion (ℏ = 1):

Hint+mass = Hint +
∑

σ=↑,↓

∑
|k|≤k0

|k|2

2meff
c†σ,kcσ,k. (15)

In Fig. 4 we plot the total spin S of the ground state
of Eq. (15) at ν = 1 vs m−1

eff , as the latter is swept

from negative to positive values in increments of m−1
0 =

Vk0
N/(2Ak20). The flat kinetic dispersion in Eq. (1) cor-

responds to m−1
eff = 0. For the range of finite systems we

considered, we find that the ground state is fully spin-
polarized, i.e. S = N/2, for −3m−1

0 ≲ m−1
eff ≲ 2m−1

0 ,
with the precise phase boundaries slightly varying with
system size. Outside the spin polarized region we find
the spin polarization drops sharply to a lower value which
depends on system size. One can show that, for all sys-
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N=6
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-1 [m0

-1]

S
[ℏ
]

PolarizedUnpolarized Unpolarized

FIG. 4. The ground state spin polarization of the Hamilto-
nian in Eq. (15) at ν = 1 as a function of inverse effective
mass m−1

eff , computed for various system sizes ranging from
N = 6 to N = 19 particles. The horizontal axis increments
are m−1

0 = Vk0N/(2Ak2
0). The unpolarized phase has a sub-

extensive polarization explained by Hund’s rule.

tem sizes considered, this residual spin polarization has
precisely the value expected by Hund’s rule applied to
a partial filling of the highest shell of degenerate kinetic
energy states (see SM S4). We associate this result with
a spin unpolarized phase, and expect that in the thermo-
dynamic limit we will obtain S/N → 0 in this regime
of parameters. The asymmetry of the spin-polarized
regime boundary with respect to the sign of m−1

eff is due
to the lower exchange energy of the unpolarized disk-
shaped Fermi sea compared to that of an annular-shaped
Fermi sea, the two different shapes that correspond to
positive and negative m−1

eff , respectively. In multilayer
graphene systems with typical values of k0 = 0.2nm−1

and dielectric coefficient ϵd = 6, the mass scale is given
by m0 ∼ ϵdk0/e

2 ∼ 0.06me where me is the free electron
mass.

Conclusions.– We considered a model of interacting
electrons confined in momentum space, and showed that
when nearly half of the available states are filled, its
ground state is spin polarized. We then numerically
demonstrated that this spin polarization is stable to small
variations of the model, and is not a fine-tuned conse-
quence of the kinetic dispersion. We find this ground
state to have a non-trivial excitation spectrum, including
a diverging spin stiffness which leads to massless particle-
hole excitations at low momenta. We argued in favor of
a ferromagnetic Fermi liquid phase at ν = 1± ε, thereby
demonstrating Stoner ferromagnetism in this model. The
prevalence of spin and valley Stoner ferromagnets in mul-
tilayer rhombohedral graphene in a displacement field,
where for a range of densities electrons are confined to
a flat region of momentum space, may be understood
within the framework of our model.
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S1. RELATION TO RHOMBOHEDRAL GRAPHITE

In this section we show how the confining kinetic dispersion in Eq. (1) can be thought of as a limit of infinitely many
layers of rhombohedral graphite in the presence of a perpendicular electric field. Consider a graphene multilayer whose
sublattices at layer n are denoted by An and Bn. We say that the graphene is stacked rhombohedrally, or chirally[37],
if the sublattice Bn+1 is directly above the sublattice An for every n. For two layers this stacking configuration is
known as Bernal stacking, while for three layers it is sometimes referred to as ABC stacking[38]. In the derivation
below we follow Ref. [37], and assume the only interlayer tunneling is between An and Bn+1. For Nl layers, the
effective low energy theory is hosted on sublattices A1 and BNl

, and is given (near one valley) by:

Heff(k) = −t⊥

 0
(

vD

t⊥
(kx − iky)

)Nl(
vD
t⊥

(kx + iky)
)Nl

0

 . (S1)

Here, vD is the monolayer Dirac velocity, and t⊥ is the interlayer tunneling amplitude. This Hamiltonian displays a
natural momentum scale given by k0 = t⊥/vD which will simplify the notation below.

Next, consider applying a constant out-of-plane displacement field D. The two sites A1 and BNl
are vertically

separated by (Nl − 1)a⊥, where a⊥ is the interlayer distance. The effective Hamiltonian in the presence of this
displacement field can be written as:

Heff(k) =

 eDa⊥(Nl−1)
2 −t⊥

(
kx−iky

k0

)Nl

−t⊥

(
kx+iky

k0

)Nl

− eDa⊥(Nl−1)
2

 , (S2)

which yields two bands, separated in energy by a gap that is roughly proportional to the displacement field and the
number of layers:

ϵ±(k) = ±

√(
eDa⊥(Nl − 1)

2

)2

+ t2⊥

(
|k|
k0

)2Nl

. (S3)

Considering many layers of graphene, i.e. Nl ≫ 1, we find the following approximate energy dispersion:

ϵ±(k) ≈


± e|D|a⊥Nl

2 +O
((

|k|
k0

)2Nl
)
, |k| < k0

± |t⊥|
(

|k|
k0

)Nl

+O
(
N2

l

(
|k|
k0

)−Nl
)
, |k| > k0

. (S4)
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In the limit of Nl → ∞ this kinetic dispersion has a simple form,

ϵ+(k)− ϵ+(0) =

{
0, |k| < k0
∞, |k| > k0

, (S5)

which is the confining kinetic dispersion in Eq. (1).
We note that, in practice, it is difficult to open a gap in rhombohedral graphite for too large Nl, since the perpen-

dicular applied field is screened by the bulk electrons.

S2. THE ROLE OF NORMAL-ORDERING

In this section we derive the dispersion in Eq. (5) and calculate its explicit form. The momentum-confined Hamil-
tonian, as given by Eq. (2), is rewritten here as:

Hint =
1

2A

∑
σ,σ′=↑,↓

∑
q

∑
k∈Dq

∑
k′∈D−q

Vqc
†
σ′,k′−qc

†
σ,k+qcσ,kcσ′,k′ , Vq = 2πe2

tanh (|q|d)
|q|

, (S6)

and we reiterate our definition of Dq = {k | (|k| ≤ k0) ∩ (|k+ q| ≤ k0)}, shown in Fiq. 2. By undoing the normal
ordering, we find that:

Hint =
1

2A

∑
σ,σ′=↑,↓

∑
q

∑
k∈Dq

∑
k′∈D−q

Vqc
†
σ′,k′−qcσ′,k′c†σ,k+qcσ,k − 1

2A

∑
σ,σ′=↑,↓

∑
q

∑
k∈Dq

∑
k′∈D−q

Vqc
†
σ′,kcσ,kδq,k′−kδσ′,σ.

(S7)

The first term is simply a density-density Hamiltonian for the projected particle density operator ρq defined in Eq. (3),
and it is denoted in the main text by Hρ−ρ. The second term is the single particle dispersion we wish to calculate
here. The dispersion contains a summation over momenta which is restricted such that (|k| ≤ k0) ∩ (|k+ q| ≤ k0)
and (|k′| ≤ k0)∩ (|k′ − q| ≤ k0). The delta function δq,k′−k allows us to make the following change in the summation
order:

− 1

2A

∑
σ=↑,↓

∑
q

∑
k∈Dq

∑
k′∈D−q

Vqc
†
σ,kcσ,kδq,k′−k = − 1

2A

∑
σ=↑,↓

∑
k∈D0

∑
k′∈D0

∑
q

Vqc
†
σ,kcσ,kδq,k′−k. (S8)

Performing the summation over q, we find the dispersion:

− 1

2A

∑
σ=↑,↓

∑
k∈D0

∑
k′∈D0

∑
q

Vqc
†
σ,kcσ,kδq,k′−k = −

∑
σ=↑,↓

∑
k∈D0

E0(k)c
†
σ,kcσ,k, E0(k) =

1

2A

∑
|k′|≤k0

Vk−k′ , (S9)

which is the result presented in Eq. (5).
We now proceed to explicitly calculate the dispersion E0(k) in the thermodynamic limit. Rewriting the sum as an

integral, we find:

E0(k) =
1

2A

∑
|k′|≤k0

Vk−k′ =
1

2

∫
|k′|≤k0

d2k′

(2π)2
Vk−k′

=
1

2

∫
|p−k|≤k0

d2p

(2π)2
Vp

= πe2
∫
|p−k|≤k0

d2p

(2π)2
tanh (|p|d)

|p|

= πe2
∫ π

−π

dθ

2π

∫ √
k2
0−|k|2 sin2 θ+|k| cos θ

0

pdp

2π

tanh(pd)

p
,

(S10)

and by performing the radial integration we obtain the result:

E0(k) =
e2k0
2k0d

∫ π

−π

dθ

2π
ln cosh

[(√
k20 − k2 sin2 θ + k cos θ

)
d

]
, (S11)
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where we denoted |k| = k, as the dispersion has rotational symmetry.
The result in Eq. (S11) is plotted in Fig. 3 in the main text. This integral has a familiar form in the limit of

unscreened interactions k0d → ∞. We now present it along with an expansion in powers of (k0d)
−1. Before continuing,

it is useful to switch to dimensionless variables. Denote f(x) = E0(xk0)/(e
2k0) and g(x, θ) =

√
1− x2 sin2 θ+ x cos θ

such that:

f(x) =
1

2k0d

∫ π

−π

dθ

2π
ln cosh [g(x, θ)k0d] . (S12)

Evaluation of the logarithm reveals the leading order terms in (k0d)
−1:

f(x) =
1

2k0d

∫ π

−π

dθ

2π

(
− ln 2 + g(x, θ)k0d+ ln

(
1 + e−2g(x,θ)k0d

))
=

1

2

∫ π

−π

dθ

2π

√
1− x2 sin2 θ +

1

2k0d

(
− ln 2 +

∫ π

−π

dθ

2π
ln
(
1 + e−2g(x,θ)k0d

))
=

1

π
Ẽ
(π
2
, x
)
+

1

2k0d

(
− ln 2 +

∫ π

−π

dθ

2π
ln
(
1 + e−2g(x,θ)k0d

))
,

(S13)

where Ẽ
(
π
2 , x
)
is the complete elliptic integral of the second kind.

The first term in Eq. (S13) is a closed form solution for f(x) to zeroth order in (k0d)
−1. For the next order in

(k0d)
−1, we need to evaluate the integral in the third term and determine its behavior in the limit of k0d → ∞. To

do so, we separate our discussion into two regimes: x < 1 and x = 1. For x < 1 we have g(x, θ) > 0 for all θ, while
for x = 1, however, g(x, θ) > 0 only for π

2 < |θ| < π, otherwise it vanishes. This implies the following limits:

lim
k0d→∞

∫ π

−π

dθ

2π
ln
(
1 + e−2g(x,θ)k0d

)
=

{
0, x < 1,
ln 2
2 , x = 1.

(S14)

We conclude that the power series for f(x) does not converge uniformly:

f(x) ≈

{
1
π Ẽ
(
π
2 , x
)
− ln 2

2k0d
+O

(
(k0d)

−2
)
, x < 1,

1
π Ẽ
(
π
2 , x
)
− ln 2

4k0d
+O

(
(k0d)

−2
)
, x = 1.

(S15)

Re-introducing the physical units of e2 and k0, we find the dispersion to leading order in (k0d)
−1 to be:

E0(k) =


e2k0

(
1
π Ẽ
(

π
2 ,

|k|
k0

)
− 1

2
ln 2
k0d

)
, |k| < k0,

e2k0

(
1
π Ẽ
(
π
2 , 1
)
− 1

4
ln 2
k0d

)
, |k| = k0,

(S16)

and in the limit of k0d → ∞ we obtain the simple form presented in Eq. (6). The seeming discontinuity in Eq. (S16)

comes from the divergence of the derivative of Ẽ
(

π
2 ,

|k|
k0

)
at |k| = k0.

S3. COLLECTIVE PARTICLE-HOLE EXCITATIONS

In this section we examine collective particle-hole excitations with momentum Q above the spin-polarized state,
which by definition are magnons. We consider both the strictly confining kinetic dispersion and a softened version of
the momentum confinement. For both cases we are interested in the dispersion relation of the lowest-lying magnon
excitation. We show how the former results in a linear dispersion (and calculate its velocity), while for the latter we
find the usual quadratic magnon dispersion and calculate its spin stiffness.

A. The strictly confining kinetic dispersion

1. Constructing the collective excitation matrix

The collective particle-hole excitations are eigenstates of Hint which are spanned by single particle-hole excited

states denoted by |Ψk,Q
ph ⟩ and defined in Eq. (10). In what follows we derive the matrix in Eq. (11) whose eigenstates
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are the collective excitations. We therefore consider the following matrix element:

[H(Q)]k,k′ = ⟨Ψk′,Q
ph |Hint |Ψk,Q

ph ⟩

= ⟨ΨSP| c†↓,k′c↑,k′+QHintc
†
↑,k+Qc↓,k |ΨSP⟩ ,

(S17)

for k,k′ ∈ DQ, and DQ = {k | (|k| ≤ k0) ∩ (|k + Q| ≤ k0)}. The wavefunction |ΨSP⟩ =
∏

k∈D0
c†↓,k |0⟩ is the

one described in the main text, and is obtained by completely filling the disk D0 with spin down electrons. The
Hamiltonian Hint is defined in Eq. (2), and is written more explicitly in Eq. (S6). From the explicit form of Hint we
see that the matrix element [H(Q)]k,k′ in Eq. (S17) is a sum over contractions of the form:

⟨ΨSP| c†↓,k′c↑,k′+Q

(
c†σ,p+qc

†
σ′,p′−qcσ′,p′cσ,p

)
c†↑,k+Qc↓,k |ΨSP⟩

= 1k∈D0
[δσ,↓δσ′,↓δk,k′1p∈D0

1p′∈D0
(δq,0 − δq,p′−p)

+ δk,k′δq,0 (δσ,↓ (δσ′,↑δp′,k+Q − δσ′,↓δp′,k) 1p∈D0
+ δσ′,↓ (δσ,↑δp,k+Q − δσ,↓δk,p) 1p′∈D0

)

+ δk,k′ (δσ,↓δσ′,↓δq,p′−kδk,p + δσ,↓δσ′,↓δq,k−pδk,p′) 1p∈D0
1p′∈D0

−δσ,↑δσ′,↓δp,k+Qδq,k′−kδk′,p′1p′∈D0 − δσ,↓δσ′,↑δp′,k+Qδq,k−k′δk′,p1p∈D0 ] .

(S18)

The matrix element is calculated by carefully performing the summation over Eq. (S18) as constrained by Eq. (S6)
for k,k′ ∈ DQ:

⟨Ψk′,Q
ph |Hint |Ψk,Q

ph ⟩ = δk,k′

ESP +
1

A

∑
p∈D0

Vk−p

− 1

A
Vk−k′ , (S19)

where we identified the spin polarized energy ESP = ⟨ΨSP|Hint|ΨSP⟩ = 1
2A

∑
p,p′∈D0

(V0 − Vp−p′).

The collective excitation matrix is confined to k,k′ ∈ DQ and is given by:

[H(Q)]k,k′ = δk,k′

ESP +
1

A

∑
p∈D0

Vk−p

− 1

A
Vk−k′ , k,k′ ∈ DQ. (S20)

2. Excitation spectrum bounds

Diagonalizing the matrix in Eq. (S20) can be done numerically for any Q, and the results are given in Fig. S1.
Analytically, we can derive bounds on parts of the excitation spectrum which will be useful for the analytical structure
of the lowest-lying eigenvalue in the vicinity of Q = 0. We demonstrate the existence of a gapless particle-hole
excitation mode, which is expected, and prove that there is precisely one such mode.

We are interested in the excitation energies of Eq. (S20) with respect to the ground state energy. We therefore shift
our reference energy by defining:

H̃(Q) = H(Q)− ESP , (S21)

and denote its corresponding eigensystem (n = 1, . . . , |DQ|) by:

H̃(Q) |Ψ(n)
ph (Q)⟩ = Eph,n(Q) |Ψ(n)

ph (Q)⟩ , Eph,1(Q) ≤ Eph,2(Q) ≤ · · · ≤ Eph,|DQ|(Q). (S22)

In what follows we will find upper and lower bounds on the excitation energies Eph,n(Q), and show that the only
excitation mode that has zero energy is at n = 1 and Q = 0.
The matrix H̃(Q) in Eq. (S21) is a Hermitian diagonally dominant matrix with positive diagonal entries, as can be

easily verified from Eq. (S20). Using the Gershgorin circle theorem[39, 40], it is easy to show that the eigenvalues of

H̃(Q), Eph,n(Q), are bounded by:

min
k∈DQ

{ 1
A

∑
k′∈D0

Vk−k′ − 1

A

∑
k′∈DQ

k′ ̸=k

Vk−k′} ≤ Eph,n(Q) ≤ max
k∈DQ

{ 1
A

∑
k′∈D0

Vk−k′ +
1

A

∑
k′∈DQ

k′ ̸=k

Vk−k′}. (S23)
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For Q ̸= 0, this implies that Eph,n(Q) > 0 are strictly positive. For Q = 0, however, we find the following bounds (in
the thermodynamic limit):

0 ≤ Eph,n(Q = 0) ≤ 2max
k

{ 1
A

∑
k′∈D0

Vk−k′} = 4E0(k)|k=0 ≤ 2e2k0, (S24)

where E0(k) is defined in Eq. (5).
The upper bound in Eq. (S24) will suffice for our purposes. The lower bound, however, will be improved momentarily.

Before we do so, we make a detour to simplify notation. We denote the basis vectors |Ψk,Q
ph ⟩ by |k⟩ where the

momentum Q is implied by context, such that:

H̃(Q) =
∑

k,k′∈DQ

[H̃(Q)]k,k′ |k⟩ ⟨k′| . (S25)

For Q = 0, there are N = |D0| such basis vectors. Returning to the effort to tighten the lower bound, consider a

normalized eigenvector |Ψ(n)
ph (0)⟩ of H̃(Q = 0). Its eigenvalue Eph,n(0) is given by:

Eph,n(0) = ⟨Ψ(n)
ph (0)|H̃(Q = 0)|Ψ(n)

ph (0)⟩

=
∑

k,k′∈D0

[H̃(Q = 0)]k,k′ ⟨Ψ(n)
ph (0)|k⟩ ⟨k′|Ψ(n)

ph (0)⟩

=
∑
k∈D0

[H̃(Q = 0)]k,k ⟨Ψ(n)
ph (0)|k⟩ ⟨k|Ψ(n)

ph (0)⟩+
∑

k,k′∈D0

k̸=k′

[H̃(Q = 0)]k,k′ ⟨Ψ(n)
ph (0)|k⟩ ⟨k′|Ψ(n)

ph (0)⟩

=
∑

k,k′∈D0

k̸=k′

[H̃(Q = 0)]k,k′

(
⟨Ψ(n)

ph (0)|k⟩ ⟨k′|Ψ(n)
ph (0)⟩ − ⟨Ψ(n)

ph (0)|k⟩ ⟨k|Ψ(n)
ph (0)⟩

)

=
1

2

∑
k,k′∈D0

k ̸=k′

(
−[H̃(Q = 0)]k,k′

) ∣∣∣⟨k′|Ψ(n)
ph (0)⟩ − ⟨k|Ψ(n)

ph (0)⟩
∣∣∣2

≥ 1

2
min

k,k′∈D0

k ̸=k′

{−[H̃(Q = 0)]k,k′}
∑

k,k′∈D0

∣∣∣⟨k′|Ψ(n)
ph (0)⟩ − ⟨k|Ψ(n)

ph (0)⟩
∣∣∣2 ,

(S26)

where we used the fact that the diagonal is given by the sum of the rest of the row, the symmetry of the matrix, and
that its off-diagonal elements are negative. The minimal off-diagonal element is given by:

min
k,k′∈D0

k ̸=k′

{−[H̃(Q = 0)]k,k′} =
V2k0

A
, (S27)

which implies:

Eph,n(0) ≥
V2k0

2A

∑
k,k′∈D0

∣∣∣⟨k′|Ψ(n)
ph (0)⟩ − ⟨k|Ψ(n)

ph (0)⟩
∣∣∣2 . (S28)

The lower bound in Eq. (S28) can be computed exactly and therefore compared to the lower bound found in

Eq. (S24). For n = 1 the two lower bounds coincide, as they are satisfied by the uniform vector |Ψ(1)
ph (Q = 0)⟩ =

1√
N

∑
k∈D0

|k⟩, i.e. H̃(Q = 0) |Ψ(1)
ph (0)⟩ = Eph,1(0) |Ψ(1)

ph (Q = 0)⟩ = 0. For n > 1, the bound in Eq. (S28) is stricter

than the bound in Eq. (S24). To show that, we make use of the orthogonality of eigenvectors of H̃(Q = 0):

n > 1 : ⟨Ψ(1)
ph (0)|Ψ

(n)
ph (0)⟩ = 0 =⇒

∑
k∈D0

⟨k|Ψ(n)
ph (0)⟩ = 0, (S29)

and use the above result to calculate the sum in Eq. (S28) exactly for n > 1:

∑
k,k′∈D0

∣∣∣⟨k′|Ψ(n)
ph (0)⟩ − ⟨k|Ψ(n)

ph (0)⟩
∣∣∣2 = 2

 ∑
k,k′∈D0

∣∣∣⟨k|Ψ(n)
ph (0)⟩

∣∣∣2 − ∑
k′∈D0

⟨Ψ(n)
ph (0)|k′⟩

∑
k∈D0

⟨k|Ψ(n)
ph (0)⟩

 = 2N,

(S30)
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FIG. S1. Particle-hole excitation spectrum for k0d → ∞. In figure (a) we plot the entire spectrum for the strict momentum
confinement. The lowest branch begins with a linear slope. The dashed line is linear whose slope is the one theoretically
predicted (computed for finite system size N). Note that the number of finite excitations decreases with increasing Q as the
domain of our Hamiltonian becomes smaller. In figure (b) we compare the lowest branch of the strict momentum confinement
(and its linear slope) with that of the softened confinement of different powers ND and the same energy scale UK = 0.1Vk0N/A.
The crossover to linear slope increases with ND, and in the limit ND → ∞ it reaches the origin.

where we used the normalization of |Ψ(n)
ph (0)⟩, |D0| = N , and Eq. (S29). Inserting this result back into Eq. (S28), we

find the lower bound on the gap to the next excitation energy, Eph,n(0) ≥ V2k0
(N/A). Taking the thermodynamic

limit, at filling ν = 1 we have N/A = k20/(4π), which implies Eph,n(0) ≥ e2k0/4. Combining this result with the upper
bound in Eq. (S24), we find: {

Eph,1(Q = 0) = 0, n = 1,
1
4e

2k0 ≤ Eph,n(Q = 0) ≤ 2e2k0, n > 1.
(S31)

We conclude there is precisely one excitation energy that starts at zero energy, and the rest are gapped excitations.

3. Dispersion of the lowest excitation energy

We are interested in calculating the evolution of the lowest excitation energy with Q. We will show here that it is
linear in |Q|, and calculate its velocity as shown in Eq. (12). We will do so by bounding the energy from both sides
by two bounds with the same linear behavior at small |Q|.
Our starting point is the collective excitation matrix as defined in Eq. (S21):

H̃(Q) =
∑

k∈DQ

2E0(k) |k⟩ ⟨k| −
∑

k,k′∈DQ

1

A
Vk−k′ |k⟩ ⟨k′| . (S32)

We decompose it as H̃(Q) = H̃0(Q) + H̃1(Q) such that:

H̃0(Q) =
∑

k∈DQ

 1

A

∑
p∈DQ

Vk−p

 |k⟩ ⟨k| −
∑

k,k′∈DQ

1

A
Vk−k′ |k⟩ ⟨k′| , (S33)

H̃1(Q) =
∑

k∈DQ

 1

A

∑
p∈D0−DQ

Vk−p

 |k⟩ ⟨k| . (S34)

The purpose of this decomposition will be clear momentarily. The diagonal elements of H̃1(Q) can be bounded as
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follows:

1

A

∑
p∈D0−DQ

Vk−p =

∫
p∈D0−DQ

d2p

(2π)2
Vk−p

≤
∫ |Q|

2

− |Q|
2

dqx
2π

∫ k0

−k0

dqy
2π

Vq

≤ 2

π
e2
∫ |Q|

2

0

dqx

∫ k0

0

dqy√
q2x + q2y

=
2

π
e2
∫ |Q|

2

0

dqx sinh
−1

(
k0
qx

)
=

1

π
e2

|Q|
k0

log

(
k0
|Q|

)
+O

(
|Q|
k0

)
.

(S35)

In the bound above, the first inequality is a result of slicing the region D0 −DQ into slabs of length |Q| along qx (i.e.

Q̂) and width dqy, and shifting them along qx to maximize the integrand. The second inequality is simply bounding
the (possibly) screened Coulomb potential by the unscreened potential with k0d → ∞.

Next, consider a uniform vector |ϕ0(Q)⟩ = 1√
|DQ|

∑
k∈DQ

|k⟩. One can easily verify that H̃0(Q) |ϕ0(Q)⟩ = 0. The

expectation value for the energy in this state is given by:

⟨ϕ0(Q)| H̃(Q) |ϕ0(Q)⟩ = ⟨ϕ0(Q)| H̃1(Q) |ϕ0(Q)⟩

=
2

|DQ|
∑

k∈DQ

 1

2A

∑
k′∈D0−DQ

Vk−k′


=

2

|DQ|
∑

k′∈D0−DQ

E0(k
′)− 1

2A

∑
k∈D0−DQ

Vk−k′

 ,

(S36)

Keeping only the linear order in |Q|/k0, and making use of the bound in Eq. (S35), we find:

⟨ϕ0(Q)| H̃(Q) |ϕ0(Q)⟩ ≈ 2
|D0 −DQ|

|D0|
E0(k0) +O

(
|Q|2

k20
log

(
|Q|
k0

))
≈ 2

2k0|Q|
πk20

E0(k0) +O
(
|Q|2

k20
log

(
|Q|
k0

))
.

(S37)

By definition, the lowest eigenvalue is bounded from above by the expectation value of H̃(Q) with respect to any
normalized wavefunction. Therefore, we find that:

Eph,1(Q) ≤ 4E0(k0)

πk0
|Q|+O

(
|Q|2

k20
log

(
|Q|
k0

))
(S38)

We now show that the lower bound is equal to the upper bound in Eq. (S38). Consider |Ψ(1)
ph (Q)⟩, the exact ground

state of H̃(Q). By projecting |Ψ(1)
ph (Q)⟩ onto |ϕ0(Q)⟩, we can generally decompose it as:

|Ψ(1)
ph (Q)⟩ = aQ |ϕ0(Q)⟩+ bQ |χ(Q)⟩ , (S39)

where the unknown wavefunction |χ(Q)⟩ is orthogonal to |ϕ0(Q)⟩, i.e. ⟨ϕ0(Q)|χ(Q)⟩ = 0, and |aQ|2 + |bQ|2 = 1.
Now, let us examine the ground state energy:

Eph,1(Q) = ⟨Ψ(1)
ph (Q)| H̃(Q) |Ψ(1)

ph (Q)⟩

=
[
a∗Q ⟨ϕ0(Q)|+ b∗Q ⟨χ(Q)|

] (
H̃0(Q) + H̃1(Q)

)
[aQ |ϕ0(Q)⟩+ bQ |χ(Q)⟩]

= |aQ|2 ⟨ϕ0(Q)| H̃1(Q) |ϕ0(Q)⟩+ |bQ|2 ⟨χ(Q)|
(
H̃0(Q) + H̃1(Q)

)
|χ(Q)⟩+ 2Re{b∗QaQ ⟨χ(Q)| H̃1(Q) |ϕ0(Q)⟩}.

(S40)
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Taking the limit |Q|/k0 → 0, and using (S35), we know that all matrix elements of H̃1(Q) vanish. The only term
that does not necessarily vanish is:

lim
|Q|/k0→0

Eph,1(Q) = lim
|Q|/k0→0

|bQ|2 ⟨χ(Q)| H̃0(Q) |χ(Q)⟩ . (S41)

Using the same method as in Eqs. (S26) – (S30), we can write the lower bound for the expectation value in Eq. (S41)
as:

⟨χ(Q)| H̃0(Q) |χ(Q)⟩ ≥ |DQ| min
k,k′∈DQ

k ̸=k′

{−[H̃(Q = 0)]k,k′}. (S42)

Inserting this bound back into Eq. (S41), we find:

lim
|Q|/k0→0

Eph,1(Q) ≥ 1

4
e2k0 lim

|Q|/k0→0
|bQ|2. (S43)

Combined with the upper bound on the lowest excitation energy found in Eq. (S38), we find that:

lim
|Q|/k0→0

Eph,1(Q)

|Q|/k0
≤ 4

π
E0(k0) =⇒ lim

|Q|/k0→0

|bQ|2

|Q|/k0
≤ 16

π

E0(k0)

e2k0
=⇒ |bQ| ∼

√
|Q|
k0

. (S44)

We can now derive the lower bound. Continuing from Eq. (S40) and using the positive-definiteness of H̃(Q):

Eph,1(Q) ≥ |aQ|2 ⟨ϕ0(Q)| H̃1(Q) |ϕ0(Q)⟩+ 2Re{b∗QaQ ⟨χ(Q)| H̃1(Q) |ϕ0(Q)⟩}

≥ ⟨ϕ0(Q)| H̃1(Q) |ϕ0(Q)⟩
(
1 +O

(
|Q|
k0

))
+O

(
|Q|3/2

k
3/2
0

log

(
|Q|
k0

))

=
4E0(k0)

πk0
|Q|+O

(
|Q|3/2

k
3/2
0

log

(
|Q|
k0

))
,

(S45)

where in the last equality we inserted the expectation value as calculated in Eq. (S37). Combining this lower bound
with the upper bound in Eq. (S38), we find that:

4E0(k0)

πk0
|Q|+O

(
|Q|3/2

k
3/2
0

log

(
|Q|
k0

))
≤ Eph,1(Q) ≤ 4E0(k0)

πk0
|Q|+O

(
|Q|2

k20
log

(
|Q|
k0

))
, (S46)

which implies that:

Eph,1(Q) ≈ 4E0(k0)

πk0
|Q|. (S47)

For k0d → ∞, the velocity of these excitations is given by v =
(
2
π

)2
e2 =

(
2
π

)2
αc, where α ≈ 1

137 is the fine-structure
constant and c is the speed of light. This linear slope is added to Fig. S1 by evaluating E0(k0) for a finite system,
and is found to be in agreement with the numerically computed excitation spectrum.

The isotropic result above is derived for the idealized dispersion in Eq. (1). One may naturally wonder what would
happen upon the introduction of single-particle dispersion to the disk. Would we still have a linearly dispersive
magnon? If so, what would be the velocity? Would it remain isotropic?

Let us assume our Hamiltonian is now of the form:

Hint → Hint +
∑

σ=↑,↓

∑
|k|≤k0

Edisp(k)c
†
σ,kcσ,k, (S48)

where Edisp(k) is a dispersion that is differentiable on the disk with a bounded gradient. Note that E0(k) in Eq. (5)
for the case on an unscreened Coulomb interaction (k0d → ∞) does not possess this property, as its derivative diverges

as |k| → k0. We will address this dispersion separately. The Hamiltonian H̃(Q) defined in Eq. (S21) acquires a new
correction,

H̃2(Q) =
∑

k∈DQ

(Edisp(k+Q)− Edisp(k)) |k⟩ ⟨k|

≈
∑

k∈DQ

vk ·Q |k⟩ ⟨k|+O
(
|Q|2

k20

)
,

(S49)
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such that H̃(Q) = H̃0(Q) + H̃1(Q) + H̃2(Q), and we defined vk =
∂Edisp(k)

∂k . Following the previous arguments, the
upper bound on the energy is given by:

Eph,1(Q) ≤ ⟨ϕ0(Q)| H̃(Q) |ϕ0(Q)⟩
= ⟨ϕ0(Q)| (H̃1(Q) + H̃2(Q)) |ϕ0(Q)⟩

≈ 4E0(k0)

πk0
|Q|+ 1

|D0|
∑
k∈D0

vk ·Q+O
(
|Q|2

k20
log

(
|Q|
k0

))
.

(S50)

The lower bound is derived similarly,

Eph,1(Q) ≥ 4E0(k0)

πk0
|Q|+ 1

|D0|
∑
k∈D0

vk ·Q+O

(
|Q|3/2

k
3/2
0

log

(
|Q|
k0

))
, (S51)

such that the particle-hole dispersion is given by:

Eph,1(Q) ≈ 4E0(k0)

πk0
|Q|+ 1

|D0|
∑
k∈D0

vk ·Q. (S52)

We find that the smooth single-particle dispersion adds its average velocity on the disk to the isotropic velocity given
by the strict confinement of the Coulomb interaction. Therefore, our result in Eq. (12) holds for any smooth dispersion
whose average velocity on the disk is zero.

Finally, consider adding the single-particle dispersion E0(k) in Eq. (5), such that:

H̃2(Q) =
∑

k∈DQ

(E0(k+Q)− E0(k)) |k⟩ ⟨k| . (S53)

The difficulty with blindly repeating the previous arguments occurs for the unscreened Coulomb interaction, where

logarithmically singular terms of the form |Q|
k0

log
(

|Q|
k0

)
appear in the small |Q|/k0 expansion of this Hamiltonian.

Using the rotational symmetry of E0(k) it is easy to show that, in this case, ⟨ϕ0(Q)| H̃2(Q) |ϕ0(Q)⟩ = 0. Conse-
quently, the upper bound on Eph,1(Q) is unchanged by this dispersion. The lower bound is also unchanged, as the

logarithmically singular terms in H̃2(Q) play a similar role to such terms that are already present in H̃1(Q). We
therefore conclude that that Eq. (12) holds even when one adds the single-particle dispersion E0(k) to Eq. (1), i.e.
for Hρ−ρ as defined in Eq. (4).

B. The softened momentum confinement

So far we have only considered the strict momentum confinement of Eq. (1). Now, we would like to consider
a softened momentum confinement, HK, as defined in Eq. (13), and calculate the dispersion of the particle-hole
excitations above the same spin-polarized state |ΨSP⟩. In Fig. S1(b) we plot the lowest lying excitation for various
powers of ND (the strength of the soft confinement), and compare the result to the limit of ND → ∞ obtained above.
We emphasize that the state |ΨSP⟩ is not the ground state of the Hamiltonian HK, but for large enough ND we expect
it to be a good approximation.

The softened momentum confinement means we allow particle excitations beyond the disk. Consequently, the
Coulomb interaction is no longer restricted to the disk, thus we denote it by Vint to distinguish it from Hint:

Vint =
1

2A

∑
σ,σ′=↑,↓

∑
k,k′,q

Vqc
†
σ′,k′−qc

†
σ,k+qcσ,kcσ′,k′ . (S54)

The first step is to compute the matrix elements of Vint+HK between different wavefunctions |Ψk,Q
ph ⟩. For the softened

confinement, the momentum k is the entire disk for any Q, and we find the following matrix for k,k′ ∈ D0:

[H(Q)]k,k′ = ⟨Ψk′,Q
ph | (Vint +HK) |Ψk,Q

ph ⟩

= δk,k′

ESP +
1

A

∑
|p|≤k0

Vk−p + UK

((
|k+Q|

k0

)ND

−
(
|k|
k0

)ND
)− 1

A
Vk−k′

(S55)
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We retain the notation of the Hamiltonian, the eigensystem and the basis (Eqs. (S21),(S22) and Eq. (S25), respec-
tively), as the two problems can, for the most part, be considered aspects of the same one with a different choice of
a parameter (finite vs infinite ND). The only relevant difference is the number of finite eigenvalues, which is now
unconstrained by Q (i.e., n = 1, . . . , N where N = |D0|):

H̃(Q) |Ψ(n)
ph (Q)⟩ = Eph,n(Q) |Ψ(n)

ph (Q)⟩ , Eph,1(Q) ≤ Eph,2(Q) ≤ · · · ≤ Eph,N (Q). (S56)

We are interested in evaluating Eph,1(Q) to leading order in |Q|/k0. To second order in perturbation theory, we
find:

Eph,1(Q) ≈ Eph,1(0) + ⟨Ψ(1)
ph (0)| H̃(Q) |Ψ(1)

ph (0)⟩+
N∑

n=2

∣∣∣⟨Ψ(n)
ph (0)| H̃(Q) |Ψ(1)

ph (0)⟩
∣∣∣2

Eph,1(0)− Eph,n(0)
, (S57)

where H̃(Q) should be expanded up to second order in |Q|/k0. The exact ground state of at Q = 0 is known exactly:

|Ψ(1)
ph (0)⟩ =

1√
N

∑
|k|≤k0

|k⟩ , (S58)

and we have Eph,1(0) = H̃(0) |Ψ(1)
ph (0)⟩ = 0. Therefore, the zeroth order in |Q|/k0 vanishes, as expected. For the first

and second order in |Q|/k0, we expand the Hamiltonian as:

[H̃(Q)]k,k′ ≈ [H̃(0)]k,k′ + δk,k′UK
ND

2

(
|k|
k0

)ND−4
2|k|2k ·Q+ |k|2|Q|2 + (ND − 1) (k ·Q)

2

k40
+O

(
|Q|3

k30

)
. (S59)

Applying this expansion to the exact ground state at Q = 0, we find:

H̃(Q) |Ψ(1)
ph (0)⟩ ≈

1√
N

UK
ND

2

∑
|k|≤k0

(
|k|
k0

)ND−4
2|k|2k ·Q+ |k|2|Q|2 + (ND − 1) (k ·Q)

2

k40
|k⟩ . (S60)

Equipped with the result above, we can evaluate the perturbative corrections to the ground state energy.
The first order correction term, which has also |Q|2/k20 terms, is given by:

⟨Ψ(1)
ph (0)| H̃(Q) |Ψ(1)

ph (0)⟩ ≈
1

N
UK

ND

2

∑
|k|≤k0

(
|k|
k0

)ND−4
2|k|2k ·Q+ |k|2|Q|2 + (ND − 1) (k ·Q)

2

k40

≈ 4π

k20
UK

ND

2

∫ k0

0

kdk

2π

∫ 2π

0

dθ

2π

(
k

k0

)ND−4
k2Q2 + (ND − 1)k2Q2 cos2 θ

k40

=
1

2
UK (ND + 1)

Q2

k20
,

(S61)

where we used N
A =

k2
0

4π as the density of electrons in the system.
The second order correction is strictly negative. We will now bound its magnitude. For Q = 0, the finite and

infinite ND cases coincide, as we consider the same ground state. Therefore, the energy spectrum is bounded between
the same two values as in Eq. (S31):

1

2e2k0
≤ 1

|Eph,1(0)− Eph,n(0)|
≤ 4

e2k0
(S62)

Therefore, up to a constant 1
2 ≤ C ≤ 4, we find the second order correction to be:

N∑
n=2

∣∣∣⟨Ψ(n)
ph (0)| H̃(Q) |Ψ(1)

ph (0)⟩
∣∣∣2

|Eph,1(0)− Eph,n(0)|
=

C

e2k0

N∑
n=2

∣∣∣⟨Ψ(n)
ph (0)| H̃(Q) |Ψ(1)

ph (0)⟩
∣∣∣2

=
C

e2k0

(∣∣∣∣∣∣H̃(Q) |Ψ(1)
ph (0)⟩

∣∣∣∣∣∣2 − ∣∣∣⟨Ψ(1)
ph (0)| H̃(Q) |Ψ(1)

ph (0)⟩
∣∣∣2)

(S63)
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Including terms up to second order in |Q|/k0, only the first term has a Q2 component:

N∑
n=2

∣∣∣⟨Ψ(n)
ph (0)| H̃(Q) |Ψ(1)

ph (0)⟩
∣∣∣2

|Eph,1(0)− Eph,n(0)|
≈ C

N

U2
K

e2k0
N2

D

∑
|k|≤k0

(
|k|
k0

)2ND−4
(k ·Q)2

k40

≈ C

2

U2
K

e2k0
ND

Q2

k20

(S64)

where 1
2 ≤ C ≤ 4.

Taking ND ≫ 1, we find that for small enough Q/k0:

Eph,1(Q) ≈ 1

2
UK

(
1− C

UK

e2k0

)
ND

Q2

k20
(S65)

Therefore, if UK is small compared to the next particle-hole excitation energy, i.e. UK ≪ e2k0, the second term in the
parenthesis becomes unimportant, and we obtain the positive and divergent spin stiffness in Eq. (14). The divergence
can be seen numerically in Fig. S1 where Eph,1(Q) is computed numerically for several values of ND. We remind the
reader that while the particle-hole excitation here is calculated with respect to a state that is not the ground state of
the system, we expect that the statement above will be qualitatively correct for large enough ND.
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S4. NUMERICAL ANALYSIS

A. Discretization of momentum space

We begin by describing our finite-size model. Consider a finite 2D system of area A with periodic boundary
conditions. In an effort to utilize as many symmetries as possible, we choose the simulation box to be invariant under
π
3 rotations. In real space, this box is a rhombus with an angle of π

3 and a side of length L =
√

2√
3
A. Correspondingly,

the momentum space is discretized as a triangular lattice with periodicity ∆k = 4π√
3L

. We are interested in considering

only momenta up to a cutoff k0. By adjusting the area A, we set k0 = R · ∆k for some value of the dimensionless
parameter R which determines the number of grid points up to the cutoff. The system area is therefore set to be

A = 2√
3

(2π)2

k2
0

R2. The smallest values of R for which k0 sits on the reciprocal lattice are R = 1, R =
√
3 and R = 2.

For 1 ≤ R ≤ 6 where R is an integer, the number of grid points is N = 3R2 + 3R+ 1, such that at R = 1 and R = 2
we obtain N = 7 and N = 19 grid points, respectively. The intermediate value of R =

√
3 gives N = 13. In the

thermodynamic limit (taking A → ∞, which implies R → ∞), we find N ≈ 2π√
3
R2. For R > 2 the number of grid

points is too large for exact diagonalization, as the Hilbert space dimension is exponentially large. The particle-hole
excitation calculation has a Hilbert space dimension that is linear in N , and there we use R = 6. At filling factor
ν = 1 we place one electron at each grid point, and the electron density n = N

A is given by:

N

A
=


√
3
2

3R2+3R+1
R2

k2
0

(2π)2 , R ∈ {1, 2, 3, 4, 5, 6}
√
3
2

13
3

k2
0

(2π)2 , R =
√
3

π
k2
0

(2π)2 , R → ∞.

(S66)

We use the density factor obtained for small R when presenting numerical results in Fig. S3, and the one for infinite
R when discussing analytical results.
In the discretization above, the periodic boundary conditions implied the number of grid points is always odd. In

order to simulate an even number of grid points, we introduce twisted boundary conditions on the real space rhombus,
identifying pairs of opposite edges with a phase factor of ei2π/3. This choice of phase factor preserves C3 rotation
symmetry in momentum space, with the rotation axis being the center of an equilateral triangle of reciprocal lattice

points. The smallest values for R in this case are R =
√

1
3 , R =

√
4
3 , R =

√
7
3 , and R =

√
13
3 , which correspond to

N = 3, N = 6, N = 12 and N = 18, respectively. Further increasing R results in a Hilbert space dimension too large
for exact diagonalization. The electron density at filling factor ν = 1 is calculated in a similar manner to Eq. (S66),
and we obtain:

N

A
=



√
3
2

3·3
1

k2
0

(2π)2 , R =
√

1
3 (N = 3)

√
3
2

3·6
4

k2
0

(2π)2 , R =
√

4
3 (N = 6)

√
3
2

3·12
7

k2
0

(2π)2 , R =
√

7
3 (N = 12)

√
3
2

3·18
13

k2
0

(2π)2 , R =
√

13
3 (N = 18).

(S67)

In this work we present and discuss simulations starting with N = 6 and up to N = 19 grid points.

B. Exact diagonalization

The numerical calculations were performed on the WEXAC cluster at the Weizmann Institute of Science. The
exact diagonalization is implemented using the matrix-free implicitly restarted Lanczos method, converging 7 lowest
eigenvalues to an accuracy of 10−5. The algorithm is implemented using the ARPACK [41] library as maintained by
opencollab ARPACK-NG [42].

1. Procedure to obtain the ground state’s energy and spin polarization

Next, we describe the procedure used to exactly diagonalize the Hamiltonians in Eq. (2) and Eq. (15) for the finite
system of N grid points defined above. We are interested in finding the ground state energy at a filling factor of ν = 1,
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determining its total spin, and repeating the calculation for different effective masses. The first step is to separate the
Hilbert space into small sectors that are invariant subspaces of the Hamiltonian. This reduction in size will render
the exact diagonalization tractable. The second step will be to extract the information about the spin polarization.

The entire Hilbert space H associated with the Hamiltonians of interest consists of two orbitals at each grid point,
one for each spin projection, such that dimH = 22N . Focusing on a fixed number of particles equal to the number
of grid points N , i.e. for filling factor ν = 1, the relevant Hilbert space is reduced to dimH =

(
2N
N

)
. We can further

decrease our Hilbert space dimension by considering sectors of total momentum, ktot =
∑

σ

∑
|k|≤k0

kc†σ,kcσ,k , and of

total spin projection, Sz = 1
2

∑
|k|≤k0

(c†↑,kc↑,k−c†↓,kc↓,k). The largest sector is the (ktot, Sz) =
(
0, 1

2

)
sector for N = 19

which has dimH ≈ 9 · 107. While still very large, this sector is small enough to allow for its exact diagonalization.
There are more symmetries we wish to exploit - the point group symmetries of the hexagonal lattice (rotation and

mirror), and the SU(2) symmetry associated with rotations of the total spin. These symmetries have important yet
very different consequences on our numerical calculations. The point group symmetries imply that there is complete
redundancy in information from different sectors of ktot that are related by symmetry, thereby the number of distinct
ktot sectors we need to consider is significantly reduced. In a similar manner, the spin rotation symmetry allows us
to consider only spin sectors with Sz ≥ 0, as the negative values of Sz contain the same information as their positive
counterparts.

The SU(2) symmetry implies that the total spin S and the total spin projection Sz are good quantum numbers.
With that said, constructing the sectors of fixed S, Sz can be quite difficult. However, constructing a sector of given
Sz is computationally easy. Given that our goal is to find the spin polarization of a state, this might seem insufficient,
but as we now show, the spin rotational degree of freedom allows us to explore the total spin of the eigenstates. To see
that, consider a state with total spin S. Due to SU(2) symmetry, this state will be 2S+1 degenerate and will appear
in sectors with Sz = −S, . . . , S. Since total spin is a conserved number, any eigenstate with an odd (even) number of
particles necessarily is degenerate with a representative in the Sz = 1

2 (Sz = 0) sector. Therefore, the Sz = 1
2 (Sz = 0)

sector contains the entire eigenvalue spectrum for an odd (even) number of particles. Sweeping different Sz sectors
allows us to identify the total spin S of every state as the maximal Sz sector in which it appears.

We summarize the argument above with the following recipe to find the ground state and its spin polarization for
N particles:

1. List all sectors of Sz = (N mod 2)
2 and ktot that are unrelated by the point group symmetries.

2. Diagonalize each sector to find its lowest eigenvalue.

3. Identify the momentum sector hosting the lowest eigenvalue across all the sectors. This momentum is the ground
state momentum (up to point group symmetries), and the eigenvalue is the ground state energy.

4. Repeat the exact diagonalization for Sz = Sz + 1 only in the ktot sector that hosts the ground state.

5. The spin polarization S of the ground state is the maximal value of Sz that displays the ground state energy

found at Sz = (N mod 2)
2 .

2. Simulation results

The results of the first and second steps of the procedure described above are shown in Fig. S2, where the lowest
energy eigenvalue of the Hamiltonian in Eq. (15) as obtained by exact diagonalization is plotted as a function of the

momentum sector ktot (and fixed Sz = (N mod 2)
2 ). Since the Hamiltonian in Eq. (15) has an effective mass as a

parameter, we repeat this simulation for a range of inverse effective massesm−1
eff , increased in steps of sizem−1

0 =
Vk0

N

2Ak2
0
.

For the special value of m−1
eff = 0 where the Hamiltonian in Eq. (15) is reduced to Eq. (2) we find the relation between

energy and momentum is approximately linear. This linearity is due to the single velocity scale (E/k0 ∼ e2) in this
Hamiltonian.

Proceeding with steps (3)-(5), we identify the momentum sector hosting the lowest energy (for each m−1
eff ) and repeat

the diagonalizing in this sector for different values of Sz to identify its total spin. The results for the ground state
momentum, energy and total spin are shown in Fig S3. We find that the ground state for −3m−1

0 ≲ m−1
eff ≲ 2m−1

0 , is
fully spin polarized (which implies it has ktot = 0) for all system sizes, with the precise polarized phase boundaries
slightly varying with system size (see Fig. 4 in the main text). Beyond the spin polarized regime, i.e. form−1

eff ≲ −3m−1
0

or 2m−1
0 ≲ m−1

eff , we find the ground state has a total spin and total momentum which varies with system size.

At first sight, in the range of m−1
eff ≲ −3m−1

0 or 2m−1
0 ≲ m−1

eff , the ground state seems (for some system sizes) to be
partially spin-polarized and for some cases to also have a non-zero momentum. However, we now argue that this is a
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finite-size artifact. To make the discussion concrete, we will consider the case of N = 19, but the following arguments
hold with trivial modifications to every N . In the limit of m−1

eff → ±∞, we expect a completely depolarized state,
i.e. Sz = 1

2 . This is because the Coulomb interaction is completely negligible compared to the kinetic dispersion.
In this limit, Hund’s rule dictates that the favorable configuration among states with the same kinetic energy is the
one that maximizes the total spin. Consider placing N = 19 electrons on our momentum grid one at a time while
minimizing kinetic energy. For m−1

eff → ∞ (m−1
eff → −∞) we find that the last 5 electrons (7 electrons) have to be

placed on 6 spin-degenerate sites with momenta k =
√
3
2 k0 (see Fig. S4). This leads to a

(
12
5

)
degenerate ground state

for either sign of m−1
eff . In this subspace of ground states, the states with maximal total spin have S = 5

2 , and a 12-fold

degeneracy due to C6 rotations and Sz = ± 5
2 . All the maximal spin configurations occur with |ktot| =

√
3
2 k0. By

fixing ktot and Sz > 0, it follows from Hund’s rule that the ground state has this total spin and momentum. A similar
argument for the N = 7 system leads to S = 5

2 with |ktot| = k0, in perfect agreement with our numerical results.
In Fig. S4 we also describe this schematically for N = 18. We expect that increasing the system size will retain this
residual spin polarization which gradually becomes insignificant: S/N → 0. In the thermodynamic limit, this artifact
would not occur. This is hinted in Fig. 4 by considering the total spin per particle for different system sizes. We note
that for N = 19 particles, if we were to focus our attention on the ktot = 0 sector where the thermodynamic limit’s
ground state is expected, we find (numerically) its lowest energy state has S = 3

2 , as expected from the exact same

Hund’s rule argument above. We conclude that the phase outside −3m−1
0 ≲ m−1

eff ≲ 2m−1
0 is consistent with a spin

unpolarized phase up to finite-size effects.
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FIG. S2. The lowest energy per particle of Eq. (15) at filling factor of ν = 1, as obtained by exact diagonalization, as a
function of total momentum sector |ktot|, and for a range of inverse effective masses m−1

eff . Figures (a)-(f) correspond to
N = 6, 7, 12, 13, 18, 19

grid points, respectively.
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FIG. S3. The ground state energy per particle of Eq. (15) at filling factor of ν = 1, as obtained by exact diagonalization,
as a function of inverse effective mass. Figures (a)-(f) correspond to N = 6, 7, 12, 13, 18, 19 grid points, respectively. The
dashed yellow line corresponds to the energy of the spin-polarized state, which exactly matches the ground state for data points
between the vertical dashed lines. The overlayed text specifies the total spin and momentum of the obtained ground state.



23

k0

Δk= 1
2
k0

ktot=
3

2
k0

a)

N=19, meff-1→+∞

k0

Δk= 1
2
k0

ktot=
3

2
k0

b)

N=19, meff-1→-∞

k0

Δk= 3

13
k0

k= 7

13
k0

c)

N=18, meff-1→+∞

k0

Δk= 3

13
k0

k= 7

13
k0

d)

N=18, meff-1→-∞

FIG. S4. The ground state spin configuration of the Hamiltonian in Eq. (15) at filling factor ν = 1 for N = 18 and N = 19
in the limit of m−1

eff → ±∞, as dictated by Hund’s rule. The small solid circles denote the momentum grid, while the dashed
concentric circles are shells that connect sites with degenerate kinetic energy. For N = 19, the partially filled shell of momentum

k =
√
3
2
k0 is occupied in the configuration that maximizes the total spin. This configuration is found to have a total spin of

S = 5
2

and a total momentum (indicated by the black arrow) of |ktot| =
√
3

2
k0. For N = 18, the partially filled shell of

momentum k =
√

7
13
k0 is occupied in the configuration that maximizes the total spin. In this case, the total spin is S = 6/2

and the total momentum is |ktot| = 0.
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