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Abstract

This paper proposes a guaranteed computation method to evaluate the Hadamard shape derivative for re-
peated eigenvalues. The proposed method enables the investigation of the behavior of eigenvalue variations
around repeated eigenvalues, and provides rigorous estimation for the range of the Hadamard shape derivative
in the case of clustered eigenvalues.
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1 Introduction

While numerous studies have been conducted over a century on the Hadamard shape derivative for eigenvalues, the
task of rigorously evaluating its concrete values still remains difficult. For well-separated Laplacian eigenvalues, the
authors have proposed a method that guarantees computation for the evaluation of the first-order shape derivative
[1]. In this context, the recently developed eigenvector error estimation from [2, 3] plays a significant role.

This paper will discuss the Hadamard shape derivative for repeated and clustered eigenvalues. Generally, the
numerical computation of eigenfunctions for clustered eigenvalues poses an ill-posed problem. Instead of rigorously
computing eigenfunctions, we utilize the guaranteed computation of eigenspaces and propose a stable method to
evaluate the Hadamard shape derivative for repeated eigenvalues. The proposed method enables the investigation
of the behaviour of eigenvalue variations around a repeated eigenvalue and provides a rigorous estimation of the
Hadamard shape derivative’s range in the case of clustered eigenvalues.

First, let us quote a fundamental result about the shape derivative from Henrot [4] in Theorem 1.1, which is
originally stated in Rousselet [5]. For an open set Ω of R2, we consider a family of function Φ(t) satisfying

Φ : t ∈ [0, T ) → W 1,∞(R2,R2) differentiable at 0 with Φ(0) = I,Φ′(0) = V,

where W 1,∞(R2,R2) is the set of bounded Lipschitz maps from R2 to itself, I is the identity and V a vector field.
Let Ωt = Φ(t)(Ω) for t ∈ [0, T ).

Theorem 1.1. [4, Theorem 2.5.1, 2.5.8] Let Ω be a bounded open set with C2 boundary. Assume that λk(Ω)
is a multiple eigenvalue with multiplicity m ∈ N. Let us denote by u1, · · · , um an L2-orthonormal system of
eigenfunctions corresponding to λk. If m = 1, then t 7→ λk(Ωt) is differentiable at t = 0, and we have

d

dt
λk(Ωt)

∣∣∣
t=0

= −
∫
∂Ω

(
∂u

∂n

)
(V · n) ds.

If m > 1, then t 7→ λk(Ωt) has a directional derivative at t = 0 which is one of the eigenvalues of the m×m matrix
M defined by

Mij = −
∫
∂Ω

(
∂ui

∂n

)(
∂uj

∂n

)
(V · n) ds. i, j = 1, · · · ,m.

∗Graduate School of Science and Technology, Niigata University, Niigata, Japan (endo@m.sc.niigata-u.ac.jp).
†Faculty of Science, Niigata University, Niigata, Japan (xfliu@math.sc.niigata-u.ac.jp).

1

ar
X

iv
:2

30
5.

14
06

3v
1 

 [
m

at
h.

SP
] 

 2
3 

M
ay

 2
02

3



The above shape derivative results are depicted through the integration of the eigenfunction across the domain
boundary. Such a formulation requires higher regularities (e.g., H2) of the involved eigenfunctions and poses difficul-
ties in practical evaluation. Additionally, these results persist as a theoretical analysis under the presupposition of
eigenvalue simplicity or multiplicity. However, in addressing practical problems involving clustered eigenvalues, the
simplicity of eigenvalues is usually unknown. Consequently, the results of Theorem 1.1 cannot be directly utilized.
In contrast, this paper introduces a new formulation that only necessitates the first derivative of the eigenfunction
and can be applied to clustered eigenvalues.

The remainder of this paper is organized as follows: In Section 2, we review theorems on eigenvalue and
eigenvector error estimations for the computation of the directional derivatives. In Section 3, we revisit results on
eigenvalue perturbations and analyze the difference quotient of eigenvalues. In Chapter 4, details of the computation
scheme for the first variations are provided. Finally, in Section 5, we state our conclusions.

2 Preliminary

We shape our discussion within the framework of Sobolev spaces. For a triangular domain T ⊂ R2, the function
space L2(T ) is constructed by all the real square integrable functions over T , and H1(T ) is the first order Sobolev
function space that the function has the first derivative to be in L2(T ). We further introduce subspace H1

0 (T )
associated with the homogeneous Dirichlet boundary conditions.

Denote by ∥v∥T the L2–norm of v ∈ L2(T ). Integration (·, ·)T is the inner product in L2(T ) or (L2(T ))2. Note
that due to the boundary condition of the space H1

0 (T ), (∇·,∇·)T is an inner product for H1
0 (T ). Using such

notation, the variational form of the Laplacian eigenvalue problem −∆u = λu reads as

Find u ∈ H1
0 (T )\{0} and λ > 0 s.t. (∇u,∇v) = λ(u, v) ∀v ∈ H1

0 (T ). (1)

Here, ∇ is the gradient operator. As the inverse of the Laplacian is a compact self-adjoint operator, the spectral
theorem shows that problem (1) has a spectrum of infinitely many eigenvalues, 0 < λ1(T ) < λ2(T ) ≤ λ3(T ) ≤ · · · .

The finite element method (FEM) will be utilized to evaluate the eigenvalue over triangles. Let us introduce the
FEM approximation to the eigenvalue problem (1). Let T ⊂ R2 be a triangular domain. Denote by T h a regular
triangulation of T ; that is, any two edges ei and ej of elements of T h satisfy ei ∩ ej = ei = ej or µ(ei ∩ ej) = 0,
where µ(·) is the 1-dimensional Hausdorff measure. Let h be the maximal edge length of T h.

Let us introduce the following finite element spaces V CG

h and V CR

h over T h:

• The Lagrange FEM space V CG

h :

V CG

h := {vh : vh is a continuous piecewise linear polynomial on T h.}

• The Crouzeix–Raviart FEM space V CR

h :

V CR

h := {vh : vh is a piecewise linear polynomial on T h;

vh is continuous on the midpoint of each inter-element edge e; }.

Let V CG

h,0 and V CR

h,0 be the subspaces of the above finite element spaces defined by

V CG

h,0 := H1
0 (T ) ∩ V CG

h ,

V CR

h,0 := {vh ∈ V CR

h :

∫
e

vh = 0 for each boundary edge e of T h} .

To estimate upper and lower bounds of the exact eigenvalues λk(T ), the following two eigenvalue problems are
considered:

(a) Find uh ∈ V CG

h,0 (T )\{0} and λh > 0 such that

(∇uh,∇vh)T = λh(uh, vh)T ∀vh ∈ V CG

h,0 (T ).

(b) Find uh ∈ V CR

h,0 (T )\{0} and λh > 0 such that

(∇uh,∇vh)T = λh(uh, vh)T ∀vh ∈ V CR

h,0 (T ).
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Let N1 = dim(V CG

h,0 (T )), N2 = dim(V CR

h,0 (T )). The eigenvalues of (a) are denoted by

(0 <) λCG

1,h(T ) ≤ λCG

2,h(T ) ≤ · · · ≤ λCG

N1,h(T ) ,

and the eigenvalues of (b) are denoted by

(0 <) λCR

1,h(T ) ≤ λCR

2,h(T ) ≤ · · · ≤ λCR

N2,h(T ) .

The energy projector PCG

h : H1
0 (T ) → V CG

h,0 is defined by

(∇(u− Phu),∇vh) = 0 for all vh ∈ V CG

h,0 .

Also, the projector PCR

h : H1
0 (T ) + V CR

h,0 → V CR

h,0 is defined by

(∇(u− Phu),∇vh) = 0 for all vh ∈ V CR

h,0 .

Let CCG

h and CCR

h be the projection error constants defined by

CCG

h := sup
u∈H1

0 (T )

∥u− PCG

h u∥T
∥∇u−∇(PCG

h u)∥T
, CCR

h := sup
u∈H1

0 (T )+V CR
h,0

∥u− PCR

h u∥T
∥∇u−∇(PCR

h u)∥T
.

Remark 2.1. Let h be the mesh size of T h. The computable projection error estimation for PCG

h and PCR

h has been
investigated extensively. For example, Liu and Kikuchi [6] obtained the estimation CCG

h ≤ 0.493h for a uniform
mesh with right triangle elements. The estimate for CCR

h given in Liu [7] is CCR

h ≤ 0.1893h.

By using FEM approximation, we can evaluate eigenvalues with rigorous upper and lower bounds:

Lemma 2.2. Let N1 = dimV CG

h,0 (T ) and N2 = dimV CR

h,0 (T ). We have

λk :=
λCR

k,h(T )

1 + (CCR

h )2λCR

k,h(T )
≤ λk(T ) ≤ λCG

k,h(T ) =: λk for k = 1, 2, ...,min{N1, N2} .

Proof. The lower eigenvalue bound is provided in Liu [7], while the upper eigenvalue bound is from the min-max
principle since V CG

h,0 (T ) ⊂ H1
0 (T ). □

The eigenfunction of the eigenvalue problem can also be well approximated by FEM solutions. Let us introduce
distances to measure the error of approximated eigenfunctions. Given two subspaces E and Ê of H1

0 (T ), the directed
distances δa, δb, δ̄a and δ̄b are defined by

δa(E, Ê) := max
v∈E

∥∇v∥T=1

min
v̂∈Ê

∥∇v −∇v̂∥T , δb(E, Ê) := max
v∈E

∥v∥T=1

min
v̂∈Ê

∥v − v̂∥T ,

δ̄a(E, Ê) := max
v∈E

∥v∥T=1

min
v̂∈Ê

∥v̂∥T=1

∥∇v −∇v̂∥T , δ̄b(E, Ê) := max
v∈E

∥v∥T=1

min
v̂∈Ê

∥v̂∥T=1

∥v − v̂∥T

The directed distances δa and δb are not symmetric in general, but if the two subspaces are of the same finite
dimension, then δa and δb are symmetric.

For L2-orthonormal systems B := (v1, · · · , vn) and B′ := (v′1, · · · , v′n), let us introduce the distances δ∗a and δ∗b
to measure the error between B and B′.

δ∗a(B,B′) := max
1≤i≤n

∥∇vi −∇v′i∥T , δ∗b (B,B′) := max
1≤i≤n

∥vi − v′i∥T .

In order to formulate the bound on eigenfunctions, a notation for clusters of eigenvalues is introduced. Let nk

and Nk stand for indices of the first and the last eigenvalue in the k–th cluster; see Figure 1. Note that eigenvalues
in a cluster need not be equal to each other. We consider the k–th cluster to be of interest, and set n = nk and
N = Nk to simplify the notation.
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Figure 1: Clusters of eigenvalues

Let Ek be the space of exact eigenfunctions associated to kth cluster of eigenvalues:

Ek = span{un, un+1, · · · , uN}.

Similarly, approximations uh,i ∈ H1
0 (T ) of exact eigenfunctions ui, for i = n, n+ 1, · · · , N , form the corresponding

approximate space:
Êk = span{ûn, ûn+1, · · · , ûN}.

Let λ̂i := ∥∇ûi∥2/∥ûi∥2 for i = n, n + 1, · · · , N . Let us introduce measures of non-orthogonality between finite-
dimensional subspaces E and E′ of H1

0 (T )

ε̂a(E,E′) = max
v∈E

∥∇v∥=1

max
v′∈E′

∥∇v′∥=1

(∇v,∇v′), ε̂b(E,E′) = max
v∈E
∥v∥=1

max
v′∈E′

∥v′∥=1

(v, v′).

Lemma 2.3. [Theorem 1 of Liu-Vejchodskỳ [2]] Take ρ such that λn < ρ ≤ λN+1. Then, we have

δ2a(Ek, Êk) ≤
ρ(λ̂N − λn) + λnλ̂

(k)
N θ

(k)
a

λ̂
(k)
N (ρ− λn)

,

δ2b (Ek, Êk) ≤
λ̂
(k)
N − λn + θ

(k)
b

ρ− λn
,

where

θ(k)a =

k−1∑
l=1

ρ− λnl

λnl

[
ε̂a(Êl, Êk) + δa(El, Êl)

]2
,

θ
(k)
b =

k−1∑
l=1

(ρ− λnl
)
[
ε̂b(Êl, Êk) + δb(El, Êl)

]2
.

The following summarizes the results of Lemma 1 and Theorem 1 of Liu-Vejchodskỳ [3]:

Lemma 2.4 (Estimation for eigenspace approximation). Suppose that Êk ⊂ V CG

h (T ). Let ξ be a quantity that
satisfies

τhξ < 1− |J |−1/2,

where

τ := max
j∈J

max
i∈I\J

λj

|λ̂i − λj |
, τh := max

j∈J
max
i∈I\J

λ̂i

|λ̂i − λj |
,

I := {1, · · · ,dim(V CG

h )}, J := {n, n+ 1, · · · , N}, |J | := N − n+ 1.

Let
β :=

τ

1− τhξ
.

Then, for an arbitrary cluster of eigenvalues, the following estimate holds:

δb(Ek, Êk) ≤ (1 + β)λN (CCG

h )2.

For the distances of subspaces, we have the following properties:
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Lemma 2.5. [estimations (19) and (49) of Liu-Vejchodskỳ [2]] For the distances δa and δ̄a, it holds that

δ2a(Ek, Êk) ≤ 2− 2λn

(
1− δ2b (Ek, Êk)

λN λ̂N

)1/2

,

δ
2

a(Ek, Êk) ≤ λN + λ̂N − 2λn

√
1− δ2b (Ek, Êk).

Lemma 2.6. For the distance δ̄b, it holds that

δ
2

b(Ek, Êk) ≤ 2− 2

√
1− δ2b (Ek, Êk).

Proof. By the definition of δ
2

b(Ek, Êk), we have

δ
2

b(Ek, Êk) = max
u∈E

∥u∥T=1

min
û∈Ê

∥û∥T=1

(
∥u∥2T + ∥û∥2T − 2(u, û)T

)
≤ 2− 2 max

u∈E
∥u∥T=1

min
û∈Ê

(u, û)T

= 2− 2

√
1− δ2b (Ek, Êk).

□

We will utilize the following lemma to validate the orthogonality of eigenfunctions:

Lemma 2.7. [Lemma 2 of [8]] Let A be a n× n matrix. If ∥A− I∥ < 1 for some fixed matrix norm, then we have
det(A) > 0, where I denotes the n× n identity matrix.

3 Main theories

For each p = (r, θ) with r > 0, θ ∈ (0, π], vertices of a triangular domain T p are represented as follows: O = (0, 0),
A = (1, 0), B = (r cos θ, r sin θ). In case B = (r cos θ, r sin θ), let λp

k := λk(T
p) (k = 1, 2, ...). For t > 0 and a

normalized vector e ∈ R2, let pt := p+ te be a perturbation of p.
Let∇t

eλ
p
k := (λpt

k − λp
k)/t be the difference quotient of the k-the eigenvalue at p. If λp

k has the directional
derivative in the direction of the normalized vector e ∈ R2 at p ∈ C, denote the directional derivative by ∇eλ

p
k. For

the simplicity of notations, for er = (−1, 0) and eθ = (0,−1), write

∇rλ
p
k := ∇erλ

p
k, ∇θλ

p
k := ∇eθλ

p
k ∇t

rλ
p
k := ∇t

erλ
p
k, ∇t

θλ
p
k := ∇t

eθλ
p
k,

respectively.
In case of the regular triangle T p0 (p0 = (1, π/3)), note that λp0

2 , λp0

3 are multiple, i.e., λp0

2 = λp0

3 ; for the part
of such a fact, see [9].

3.1 Perturbation of functions with respect to variation of triangles

Let T be the triangle with vertices O(0, 0), A(1, 0) and B(a, b). Let us introduce the perturbation of T by linear

transform Φ : T → T̃ : (
x̃
ỹ

)
= Q

(
x
y

)
, Q =

(
1 α
0 β

)
(β > 0).

For u over T , define ũ over T̃ by ũ = u ◦ Φ. The transpose of Q is denoted by Q⊺. Let ∇̃ũ := ( ∂
∂x̃ ũ,

∂
∂ỹ ũ)

⊺ be

the gradient of ũ. It holds that ∇̃ũ(x̃, ỹ) = Q−⊺∇u(x, y). Let λmin(·) and λmax(·) denote the minimum and the
maximum eigenvalues of a given square symmetric matrix, respectively.

Below, let us confirm the properties for the perturbation of u; see [10] for a detailed proof.

Lemma 3.1. Given function u over T , define ũ = u ◦Q−1 over T̃ .
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(a) For L2-norm, we have
∥ũ∥2

T̃
= β∥u∥2T .

(b) For H1-norm, we have
λmin(QQ⊺)∥∇ũ∥2

T̃
≤ β∥∇u∥2T ≤ λmax(QQ⊺)∥∇ũ∥2

T̃
. (2)

Let γ = α2 + β2 + 1. The eigenvalues of QQ⊺ are given by

λmin(QQ⊺) =
γ −

√
γ2 − 4β2

2
, λmax(QQ⊺) =

γ +
√
γ2 − 4β2

2
.

(c) For quantities involving the first derivative, we have (ũx̃, ũx̃)T̃
(ũx̃, ũỹ)T̃
(ũỹ, ũỹ)T̃

 =

 β 0 0
−α 1 0

α2β−1 −2αβ−1 β−1

 (ux, ux)T
(ux, uy)T
(uy, uy)T

 . (3)

Proof. The equality of (a) is evident. Since ∇u = Q⊺∇ũ, we have

λmin(QQ⊺) · (ũ2
x̃ + ũ2

ỹ) ≤ u2
x + u2

y ≤ λmax(QQ⊺) · (ũ2
x̃ + ũ2

ỹ) .

Noting that dx̃dỹ = βdxdy holds for the integrates over T and T̃ , we obtain (2). The relation of (3) can be shown
with an analogous argument. □

Next, let us consider a concrete transformation Φp,p̃ that maps T p to T p̃: for p = (r, θ), p̃ = (r̃, θ̃) ∈ C, the
transformation matrix is given by

Sp,p̃ :=

(
1 (r̃ cos θ̃ − r cos θ)/(r sin θ)

0 (r̃ sin θ̃)/(r sin θ)

)
.

In case p̃ = p+ te with ∥e∥ = 1, we shall write St := Sp,p̃.

Lemma 3.2 (Eigenvalue perturbation; Extension of Theorem 4.2 of [7]). For p = (r, θ), p̃ = (r̃, θ̃) ∈ C, let

B̃(r̃ cos θ̃, r̃ sin θ̃) be a perturbation of B(r cos θ, r sin θ). Then, for the i-th (i = 1, 2, · · · ) eigenvalue, we have

λmin

(
Sp,p̃S

⊺
p,p̃

)
· λp̃

i ≤ λp
i ≤ λmax

(
Sp,p̃S

⊺
p,p̃

)
· λp̃

i .

Proof. This result is an extension of the estimation of Theorem 4.2 in [7], where only the first eigenvalue is considered.
The detailed proof for the general i-th eigenvalue is provided in the appendix. □

For t > 0, and a normal vector e ∈ R2, let P e
t be the 2× 2 matrix defined by

P e
t :=

(
S−1
t S−⊺

t − I
)
/t.

Let er = (−1, 0) and eθ = (0,−1). In case e = er, we have

P e
t :=

1

(r − t)2

(
t cot2 θ r cot θ
r cot θ 2r − t.

)
In case e = eθ, we have

P e
t =

1

t sin2(θ − t)

(
(cos θ − cos(θ − t))

2
(cos θ − cos(θ − t)) sin θ

(cos θ − cos(θ − t)) sin θ sin2 θ − sin2(θ − t)

)
.

Note that, with a constant α ∈ [θ − t, θ] such that cos θ = cos(θ − t) + t sinα, the matrix P e
t can be written as

P e
t = sinα ·

(
cos θ−cos(θ−t)

sin2(θ−t)
sin θ

sin2(θ−t)
sin θ

sin2(θ−t)
cos θ+cos(θ−t)

sin2(θ−t)

)
.
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Let P e := limt→0+ P e
t . For a 2 × 2 symmetric matrix P , introduce the symmetric bilinear form FP : H1

0 (T
p) ×

H1
0 (T

p) → R defined by
FP (u, v) := (P∇u,∇v)Tp . (4)

In case P = P e, we shall write FP e as Fe. In particular, for er and eθ, we have

Fer (u, v) =
1

r tan θ
{(ux, vy)T + (vx, uy)Tp}+ 2

r
(uy, vy)Tp ,

Feθ (u, v) =
2

tan θ
(uy, vy)Tp − (ux, vy)Tp − (vx, uy)Tp .

3.2 Analysis for the differential quotients of eigenvalues

By estimating the error between the eigenfunctions in the perturbed domain and the eigenfunctions in the original
domain using the error estimations in Lemma 2.3, we derive the Hadamard shape derivative formula for simple
eigenvalues and the directional derivative formula for repeated eigenvalues.

For the simplicity of the notations, we shall denote by λi the i-th eigenvalue λp
i at p ∈ C. Let un, · · · , uN

be L2–orthonormal eigenfunctions corresponding to the multiple eigenvalues λn = · · · = λN (=: λ) at p. Let
B := (un, un+1, · · · , uN ) and E := span(B).

Let e be a normalized vector in R2. For a perturbation pt := p + te ∈ C (t > 0), we shall denote by λt
i the

i-th eigenvalue λt
i. Let u

t
n, · · · , ut

N be L2–orthonormal eigenfunctions corresponding to eigenvalues λt
n ≤ · · · ≤ λt

N ,
respectively. Introduce ũi = ut

i ◦ Φp,pt(∈ H1
0 (T

p)) (i = n, · · · , N).

From the definitions of δa and δb, we can take a system ũ∗
n, · · · , ũ∗

N ∈ Ẽt such that

∥∇ui −∇ũ∗
i ∥Tp ≤ δa(E, Ẽt), ∥ui − ũ∗

i ∥Tp ≤ δb(E, Ẽt), ∥ũ∗
i ∥Tp = 1 (i = n, · · · , N).

Let λ̃∗
i := ∥∇ũ∗

i ∥2Tp (i = n, · · · , N).
Let M∗

t and N∗
t be (N −m+ 1)× (N −m+ 1) matrices defined by

M∗
t :=

(
FP e

t
(ũ∗

i , uj)
)
, N∗

t :=
(
(ũ∗

i , uj)Tp

)
, i, j = n, · · · , N.

Assume that the system B̃∗
t := (ũ∗

n, ũ
∗
n+1, · · · , ũ∗

N ) is linearly independent. Such an assumption is reasonable when

δ(E, Ẽt) is small enough and can be verified by utilizing Lemma 3.6. Then, each ũi (i = n, · · · , N) is uniquely
represented as

ũi = sniũ
∗
n + · · ·+ sNiũ

∗
N , where sni, · · · , sNi ∈ R. (5)

Lemma 3.3. Let σi = (sni, · · · , sNi)
⊺ (i = n, · · · , N) be the coefficient vector. Then, the pair ((λt

i − λ)/t, σi)
becomes the (i − n + 1)-th eigenpair of the following generalized matrix eigenvalue problem: Find µ ∈ R and
σ ∈ RN−n+1\{0} such that

M∗
t σ = µN∗

t σ. (6)

Proof. Let us calculate difference quotient (λt
j − λ)/t (j = n, · · · , N). For each j = n, · · · , N , the following

variational equation holds:
(∇ut

j ,∇ṽ)Tpt = λt
j(u

t
j , ṽ)T t ∀ṽ ∈ H1

0 (T
t),

Note that ∇̃ut
j = (S−⊺

t )∇ũj , we have(
(S−⊺

t )∇ũj , (S
−⊺
t )∇v

)
Tp = λt

j(ũj , v)Tp ∀v ∈ H1
0 (T

p) .

Substituting v = ui (i = n, · · · , N), it follows that(
S−1
t S−⊺

t ∇ũj ,∇ui

)
Tp = λt

j(ũj , ui)Tp . (7)

Also, for the eigenpair (λp, ui), it holds that

(∇ui,∇v)Tp = λ(ui, v)Tp ∀v ∈ H1
0 (T

p).

Take v = ũj in the above variational equation, then we have

(∇ui,∇ũj)Tp = λ(ui, ũj)Tp . (8)

7



Recall that the symmetric bilinear form FP e
t
is defined by (4). From (7) and (8), we have(

1

t
(S−1

t S−⊺
p,pt

− I)∇ũj ,∇ui

)
Tp

=
λt
j − λ

t
(ũj , ui)Tp ,

i.e.,

FP e
t
(ũj , ui) =

λt
j − λ

t
(ũj , ui)Tp .

Substituting (5), we have

N∑
k=n

skjFP e
t
(ũ∗

k, ui) =
λt
j − λ

t

N∑
k=n

skj(ũ
∗
k, ui)T for i, j = n, · · · , N. (9)

Introduce the matrices M∗
t , N

∗
t and the orthogonal vectors σj (j = n, · · · , N) by

M∗
t :=

(
FP e

t
(ũ∗

k, ui)
)
, N∗

t := ((ũ∗
k, ui)Tp) , σj := (skj) , i, k = n, · · · , N.

Then the relation (9) is transformed into

M∗
t σj =

(
λt
j − λ

t

)
(N∗

t σj) . (10)

Since we have (λt
n−λ)/t ≤, · · · ,≤ (λt

N −λ)/t, the difference quotient ((λt
i −λ)/t, σi) becomes the (i−n+1)–th

eigenvpair of the matrix pair (M∗
t , N

∗
t ). □

From (6) of Lemma 3.3, one can evaluate the quantity (λt
i − λ)/t for all t ∈ (0, t0] by solving the generalized

matrix eigenvalue problem (6) with the matrices represented by intervals. Since limt→0+(λ
t
i − λ)/t provides shape

derivative, we can obtain an explicit estimate of this derivative.

Corollary 3.4. For each t ∈ (0, t0], suppose that the concerned cluster of eigenvalues is separated from the
other clusters, i.e., λt

n−1 < λt
n, λ

t
N < λt

N+1. Also, suppose that the concerned eigenvalues are multiple at p, i.e.,

λn = λn+1 = · · · = λN (=: λ). Then, the eigenvalues C ∋ p̃ 7→ λp̃
i (i = n, · · · , N) are directionally differentiable with

respect to the normalized vector e ∈ R2 at p.
Moreover, the directional derivative ∇eλi (k = n, · · · , N) coincides with the (i − n + 1)–th eigenvalue of the

symmetric matrix M defined by

M = (FP e (ui, uj)) , where i, j = n, · · · , N. (11)

Proof. By the continuity of eigenvalues with respect to domain deformations and the estimations in Lemma 2.5 and
Lemma 2.6, the values of δa(E, Ẽt) and δb(E, Ẽt) converge to 0 as t → 0+. Thus, letting t → 0+, the matrices M∗

t

and N∗
t in (10) converge to the matrix M in (11) and the (N − n + 1) × (N − n + 1) identity matrix. Therefore,

the value of (λt
i − λ)/t converges to the (i− n+ 1) eigenvalue of M . □

Corollary 3.5. If the i-th (i = n, · · · , N) eigenvalue λi is simple, then λi is partially differentiable w.r.t. r and θ
at p. Moreover, we have

∂λi

∂r
= Fr(u, u),

dλi

dθ
= Fθ(u, u).

Proof. Let e = er (resp. e = eθ). In case the concerned eigenvalue λk is simple, the matrix M defined in (11)
becomes 1 × 1-matrix. Hence, it follows that ∇erλk = −∇e−rλk (resp. ∇eθλk = −∇e−θλk). Therefore, λk is
partially differentiable with respect to r (resp. θ). □

By the following Lemma, we can validate the linear independency of the system B̃∗
t := (ũ∗

n, ũ
∗
n+1, · · · , ũ∗

N ):

Lemma 3.6. Let N, Ñ∗ be the (N −m+ 1)× (N −m+ 1) matrices defined by

N :=
(
(ui, uj)T

)
, Ñ∗ :=

((
ũ∗
i , ũ

∗
j

)
T

)
, i, j = n, · · · , N.

If 2(N − n+ 1) · δb(E, Ẽt) < 1, then the system B̃∗
t = (ũ∗

n, ũ
∗
n+1, · · · , ũ∗

N ) is linearly independent.

8



Proof. Let us compare each element of N and Ñ∗. For each i, j = n, · · · , N , we have∣∣(ui, uj)−
(
ũ∗
i , ũ

∗
j

)∣∣ = ∣∣∣(ui, uj)T −
(
ũ∗
i , u

∗
j

)
T

∣∣∣
≤
∣∣(ui, uj)− (ui, ũ

∗
j )
∣∣+ ∣∣(ui, ũ

∗
j )− (ũ∗

i , ũ
∗
j )
∣∣

≤ ∥ui∥T
∥∥uj − ũ∗

j

∥∥
T
+
∥∥ũ∗

j

∥∥
T
∥ui − ũ∗

i ∥T
≤ 2δb(E, Ẽt).

Therefore, it follows that ∥∥∥Ñ∗ − I
∥∥∥
F
=
∥∥∥Ñ∗ −N

∥∥∥
F
≤ 2(N − n+ 1) · δb(E, Ẽt).

Suppose that 2(N−n+1) ·δb(E, Ẽt) < 1. Then, we have
∥∥∥Ñ∗ − I

∥∥∥
F
< 1. By Lemma 2.7, it holds that det(Ñ∗) > 0,

that is, the system B̃∗
t is linearly independent. □

3.3 Estimation for difference quotients of eigenvalues

In this subsection, we estimate the error between the matrices M∗
t , N

∗
t in the eigenvalue problem (6) and their

approximate matrices calculated by numerical schemes.
Let us continue to use the notations introduced in the previous subsection. Let ûn, · · · , ûN (∈ H1

0 (T
p)) be

L2-orthonormal approximations to un, · · · , uN obtained by numerical schemes, i.e., finite element method. Let
λ̂i := ∥∇ûi∥2 for i = n, · · · , N . Set B̂ := (ûn, ûn+1, · · · , ûN ) and Ê := span(B̂).

Define matrices Mt, M̂t,M
∗
t and N∗

t by

Mt :=
(
FP e

t
(ui, uj)

)
, M̂t =

(
FP e

t
(ûi, ûj)

)
, M∗

t :=
(
FP e

t
(ũ∗

i , uj)
)
, N∗

t :=
(
(ũ∗

i , uj)Tp

)
, i, j = n, · · · , N. (12)

Note that M̂t will be constructed explicitly in the following numerical computation, with other matrices just for
the purpose of theoretical discussion.

By Lemma 4.1, we can take an L2-orthonormal system B̂∗ = (û∗
n, · · · , û∗

N ) such that

δ∗a(B, B̂∗) ≤ Err∗a(B, B̂∗).

Define matrices M̂∗
t and N̂∗

t by

M̂∗
t :=

(
FP e

t
(û∗

i , û
∗
j )
)
, N̂∗

t :=
(
(û∗

i , û
∗
j )Tp

)
, i, j = n, · · · , N.

Note that the matrices M̂∗
t and N̂∗

t are similar to M̂t and the identity matrix I, respectively.

Lemma 3.7. For the matrices M∗
t , N

∗
t , we have∥∥∥M∗

t − M̂∗
t

∥∥∥
F
≤ Err(M∗

t , M̂
∗
t ), ∥N∗

t − I∥F ≤ Err(N∗
t , I), (13)

where

Err(M∗
t , M̂

∗
t ) := (N − n+ 1)

√
λ̂N∥P e

t ∥2 ·
{
δa(E, Ẽt) + 2Err∗a(B, B̂∗)

}
,

Err(N∗
t , I) = (N − n+ 1) · δb(E, Ẽt).

Proof. Let us compare each element of N∗
t and the identity matrix I. For each i, j = n, · · · , N , since we have

|(ui, uj)− (ũ∗
i , uj)| ≤ ∥ui − ũ∗

i ∥Tp ∥uj∥Tp ≤ δb(E, Ẽt),

it holds that
∥N∗

t − I∥F ≤ Err(N∗
t , I).
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Let us compare each element of M∗
t and M̂∗

t . For each i, j = n, · · · , N , we have∣∣FP e
t
(ũ∗

i , uj)− FP e
t

(
û∗
i , û

∗
j

)∣∣ = ∣∣∣(P e
t ∇ũ∗

i ,∇uj)Tp −
(
P e
t ∇û∗

i ,∇û∗
j

)
Tp

∣∣∣
≤
∣∣(P e

t ∇ũ∗
i ,∇uj)Tp − (P e

t ∇ui,∇uj)Tp

∣∣
+
∣∣∣(P e

t ∇ui,∇uj)Tp −
(
P e
t ∇ui,∇û∗

j

)
Tp

∣∣∣
+
∣∣∣(P e

t ∇ui,∇û∗
j

)
Tp − (P e

t ∇ûi,∇ûj)Tp

∣∣∣
≤ ∥P e

t ∥2 ∥∇ũ∗
i −∇ui∥Tp ∥∇uj∥Tp

+ ∥P e
t ∥2 ∥∇ui∥Tp

∥∥∇uj −∇û∗
j

∥∥
Tp

+ ∥P e
t ∥2 ∥∇ui −∇û∗

i ∥Tp

∥∥∇û∗
j

∥∥
Tp

≤
√

λ̂N∥P e
t ∥2 ·

{
δa(E, Ẽt) + 2δ∗a(B, B̂∗)

}
.

(14)

By the estimations (14), we have

∥Mt −M∗
t ∥F ≤ Err(M∗

t , M̂
∗
t ).

□

Remark 3.8. Let (û, σ̂) be an eigenpair of the following generalized matrix eigenvalue problem: Find σ̂ ∈ R and
û ∈ RN−n+1\{0} such that

M̂∗
t σ̂ = µ̂N̂∗

t σ̂. (15)

Note that the matrices M̂∗
t , N̂

∗
t are similar to M̂t, I, respectively, where I denotes the (N − n + 1) × (N − n + 1)

identity matrix. Thus, it is easy to see that the eigenvalues of the eigenvalue problem (15) coincide with the
eigenvalues of the following generalized matrix eigenvalue problem: Find σ̂ ∈ R and û ∈ RN−n+1\{0} such that

M̂tσ̂ = µ̂N̂tσ̂. (16)

Denote by µk (k = 1, · · · , N − n+ 1) the k-the eigenvalue of the eigenvalue problem (6). In order to calculate the
value of µ̂k (k = 1, · · · , N − n+ 1), it suffices to solove the eigenvalue problem (16).

Denote by µ̂k (k = 1, · · · , N − n+ 1) the k-the eigenvalue of the eigenvalue problem (15). Then, the following
estimation tells us an error bound between µk and µ̂k:

|µk − µ̂k| ≤
∥∥∥M∗

t − M̂∗
t (N̂

∗
t )

−1
∥∥∥
2
≤ Err(M∗

t , M̂
∗
t ) +

∥∥∥M̂t

∥∥∥
2

∥∥∥I − (N̂∗
t )

−1
∥∥∥
2
:= η(M∗

t , M̂
∗
t , N̂

∗
t ) (17)

Note that each term of the error bound in (17) can be explicitly estimated utilizing Lemma 3.7.

3.4 Estimation for the range of directional derivative of eigenvalues

In this subsection, we estimate the range of directional derivatives of eigenvalues when the value of the eigenvalue
of interest is very close to, or coincides with, other eigenvalues.

Let un, · · · , uN be and L2-orthonormal eigenfunctions corresponding to the simple or multiple eigenvalues λn ≤
· · · ≤ λN at p ∈ C. Let B be an L2-orthonormal system defined by B := (un, · · · , uN ), and let E := span(B). For a
normalized vector e ∈ R2, define a (N − n+ 1)× (N − n+ 1) matrix M by

M = (FP e(ui, uj)) where i, j = n, · · · , N. (18)

In case e = er, eθ and all the eigenvalues are simple, i.e., λn < · · · < λN , from Corollary 3.5, it follows that the
(i − n + 1)-th (i = n, · · · , N) diagonal element of the matrix M coincides with the partial derivative of λi with
respect to r, θ, respectively.

Let ûn, · · · , ûN (∈ H1
0 (T

p)) be L2-orthonormal approximations to un, · · · , uN (∈ H1
0 (T

p)) obtained by numerical

schemes. Let λ̂i := ∥∇ûi∥2Tp for i = n, · · · , N . Set B̂ := (ûn, · · · , ûN ) and Ê := span(B̂). Define a (N − n + 1) ×
(N − n+ 1) matrix M̂ by

M̂ = (FP e(ûi, ûj)) where i, j = n, · · · , N. (19)
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By Lemma 4.1, we can take an L2-orthonormal system B̂∗ := (û∗
n, · · · , û∗

N ) such that

δ∗a(B, B̂∗) ≤ Err∗a(B, B̂∗), δ∗b (B, B̂∗) ≤ Err∗b(B, B̂∗). (20)

Since B̂ and B̂∗ both form L2-orthonormal system of Ê, there exists a (N −n+1)× (N −n+1) orthogonal matrix
R such that

(û∗
n, · · · , û∗

N )⊺ = R(ûn, · · · , ûN )⊺.

By appropriately taking the sign of approximate eigenfunctions ûn, · · · , ûN , we can take ûn, · · · , ûN so that the
matrix R becomes a rotation matrix, i.e., det(R) = 1.

By comparing each element of the matrices M and M̂∗ utilizing (20), we obtain the following error estimation.∥∥∥M − M̂∗
∥∥∥
F
≤ 2(N − n+ 1)

√
λ̂N∥P e∥2 · δ∗a(B, B̂∗).

Let us summarize the above results in the following Lemma:

Lemma 3.9. For the matrices M, M̂∗ and M̂ defined in (18) and (19), there exists a (N − n + 1) × (N − n + 1)
rotation matrix R such that

M̂∗ = R⊺M̂R and
∥∥∥M − M̂∗

∥∥∥
F
≤ Err(M, M̂∗), (21)

where

Err(M, M̂∗) := 2(N − n+ 1)

√
λ̂N∥P e∥2 · δ∗a(B, B̂∗).

Remark 3.10. When the length of the concerned cluster is 1, and the concerned eigenvalue is well separated from
the other clusters, i.e., λn−1 < λn < λn+1 and n = N , the rotation matrix R in Lemma 3.9 becomes R = (1).
Therefore, in this case, it is possible to calculate the value of the derivative without the influence of computational
instability caused by the closeness of eigenvalues.

4 Computation scheme for the first variation of the eigenvalues λ2, λ3

over triangles

Recall that the second and third Dirichlet eigenvalues coincide over the equilateral triangle, i.e. λp0

2 = λp0

3 for
p0 = (1, π/3). Let T p be a perturbed triangle of the equilateral triangle T p0 . In this section, we will explicitly
estimate the range of the difference quotient ∇t

rλ
p
k,∇t

θλ
p
k (k = 2, 3), as well as the range of all possible values of the

directional derivatives ∇rλ
p
k,∇θλ

p
k (k = 2, 3).

4.1 Estimations for the errors δ∗a and δ∗b

We formulate the error estimations to bound the error between systems of eigenfunctions and approximate eigen-
functions.

For p ∈ C, Let B := (u2, u3) be a system of L2-orthonormal eigenfunctions corresponding to λp
2 ≤ λp

3, respectively.
Let E := span(B). Let Eh be a 2-dimensional subspace of H1

0 (T
p). Let

λh
i := min

E(i)⊂H1
0 (T

p)
max
v∈E(i)

∥∇v∥2Tp

∥v∥2Tp

for i = 2, 3,

where E(i) denotes an arbitrary (i− 1)-dimensional subspace of Eh. Let δb := δb(E,Eh).

Lemma 4.1. Suppose that δb < 1/2, which is reasonable since δb is regarded to be small. Then, there exists an
L2-orthonormal basis Bh := (v2, v3) of E

h such that

δ∗a(B,Bh) ≤ Err∗a(B,Bh), δ∗b (B,Bh) ≤ Err∗b(B,Bh),

where

Err∗b(B,Bh) :=
2δb(2− δb)

1− 2δb
, Err∗a(B,Bh) :=

{
λp
3 · Err

∗
b(B,Bh) + λh

3 − λp
2

} 1
2 .
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Proof. Let Ph : E → Eh be the orthogonal projector defined by

(u− Phu, v)Tp = 0 for all u ∈ E, v ∈ Eh.

Let us inductively define orthonormal system v2, v3 ∈ Eh by the following relations:

v2 := Phu2/s2, s2 := ∥Phu2∥Tp ,

v3 :=
1

s3
(Phu3 − (Phu3, v2)Tpv2), s3 := ∥Phu3 − (Phu3, v2)Tpv2∥Tp .

Note that
1− s2 ≤ ∥u2 − s2v2∥ ≤ δb, i.e., 1− δb ≤ s2 ≤ 1. (22)

By the Schwarz inequality, we have

|(Phu2, Phu3)Tp | = |(Phu2 − u2, Phu3)Tp + (u2, Phu3)Tp |
= |(u2, Phu3)Tp |
= |(u2, Phu3)Tp − (Phu2, Phu3 − u3)Tp − (u2, u3)Tp |
= |(u2 − Phu2, Phu3 − u3)Tp |
≤ ∥u2 − Phu2∥Tp∥Phu3 − u3∥Tp ≤ δ2b .

(23)

From the estimations (22) and (23), it follows that

|(Phu3, v2)| = |(Phu3, Phu2/s2)| ≤ δ2b/(1− δb). (24)

Thus, we have
1− s3 ≤ ∥u3 − s3v3∥ ≤ ∥u3 − Phu3∥+ ∥Phu3 − s3v3∥ ≤ δb + δ2b/(1− δb). (25)

By the estimations (22) and (25), we deduce

1− δb − δ2b/(1− δb) ≤ si ≤ 1 for i = 2, 3. (26)

Therefore, from the estimations (24) and (26)

∥ui − vi∥Tp ≤ ∥ui − s−1
i ui∥+ ∥s−1

i ui − s−1
i Phui∥+ ∥s−1

i Phui − vi∥
≤ s−1

i |1− si|+ s−1
i δb + s−1

i δ2b/(1− δb)

≤ 2δb(2− δb)

1− 2δb
(= Err∗a(B,Bh)).

(27)

for i = 2, 3. That is,
δ∗b (B,Bh) ≤ Err∗b(B,Bh).

By the following fundamental formula (see e.g. [11, page 55]), for i = 2, 3, we have

∥∇ui −∇vi∥2Tp = ∥∇ui∥2Tp∥ui − vi∥2Tp − (∥∇ui∥2Tp − ∥∇vi∥2Tp)∥vi∥2Tp

≤ λp
3∥ui − vi∥2Tp + λh

3 − λp
2.

(28)

From the estimations (27) and (28), it follows that

δ∗a(B,Bh) ≤ Err∗a(B,Bh).

□

In the numerical results reported in the rest of this section, the FEM spaces are set up over a uniform triangula-
tion of the triangle domain. Denote by N the subdivision number of the triangulation along the base edge. Below
is the detailed setting for the FEM spaces:

V CG

h : N = 512, DOF = 261121; V CR

h : N = 512, DOF = 785408 .
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4.2 Estimation for the difference quotient ∇t
rλ

p
i , ∇t

θλ
p
i (i = 2, 3)

Let e be either of the normalized vectors er or eθ. Utilizing Algorithm 1, we aim to estimate the value of the
difference quotient ∇t

rλ
p0

i , ∇t
θλ

p0

i , (i = 2, 3) for t ∈ (0, ε], ε = 10−7. The values of several quantities are also
provided in Table 1 and Table 2.

Algorithm 1 Estimation for the value of the difference quotients over (0, ε]

Data: Interval (0, ε]
Result: [F i, F i] as the estimation of range of ∇t

eλ
p0

i over (0, ε] (i = 2, 3)
Procedure:

1. Evaluate λpε

i (i = 1, 2, 3, 4) for triangular domain T pε (pε = p0 + εe) by Lemma 2.2.

2. Evaluate the range of λp
i (i = 2, 3, 4) over (0, ε] by Lemma 3.2.

3. Calculate û2, û3(∈ H1
0 (T

p)) as L2-orthonormal approximations to u2, u3 and construct an approximation

matrix M̂t = (FP e
t
(ûi, ûj)) to M∗

t = (FP e
t
(ũ∗

i , uj)) in (12).

4. Estimate upper bounds of the errors Err(M∗
t , M̂

∗
t ) and Err(N∗

t , I) over (0, ε] in the estimation (13).

5. Estimate an upper bound of the error η(M∗
t , M̂

∗
t , N̂

∗
t ) over (0, ε] in the estimation (17).

6. Evaluate the range of the eigenvalue µk over (0, ε] as the output [F i, F i] utilizing the estimation (17).

Table 1: The obtained range of ∇t
rλ

p0

2 , ∇t
rλ

p0

3 and
related quantities

[F 2, F 2] [59.425, 110.46]

[F 3, F 3] [135.18, 186.23]

µ̂2 ≈ 84.943

µ̂3 ≈ 160.71

η(M∗
t , M̂

∗
t , N̂

∗
t ) ≤ 25.517

Err(M∗
t , M̂

∗
t ) ≤ 25.466

Err(N∗
t , I) ≤ 1.5658 · 10−4

Table 2: The obtained range of ∇t
θλ

p0

3 ,∇t
θλ

p0

3 and
related quantities

[F 2, F 2] [12.525, 53.538]

[F 3, F 3] [88.287, 129.30]

µ̂2 ≈ 33.032

µ̂3 ≈ 108.79

η(M∗
t , M̂

∗
t , N̂

∗
t ) ≤ 20.506

Err(M∗
t , M̂

∗
t ) ≤ 20.472

Err(N∗
t , I) ≤ 1.5658 · 10−4

Let us consider the case e = er. Since we have ∇t
rλ

p0

2 < ∇t
rλ

p0

3 , it follows that λpt

2 < λpt

3 for t ∈ (0, ε]. In case
e = eθ, we similarly have λpt

2 < λpt

3 for t ∈ (0, ε]. The range of λ4 is estimated utilizing Theorem 2.2 and 3.2.
Indeed, we have λpt

3 ≤ 124.078 < 210.04 ≤ λpt

4 (t ∈ (0, ε]) for both cases e = er and e = eθ. Thus, the eigenvalues
λpt

2 , λpt

3 are simple for t ∈ (0, ε]. Note that, from Corollary 3.5, the values of directional derivatives ∇eλ
pt

i (i = 2, 3)
coincide the value of the diagonal elements of the matrix M = (FP e(ui, uj)) (i, j = 2, 3).

4.3 Estimation for the directional derivatives ∇rλ
pt
i ,∇θλ

pt
i (i = 2, 3)

Let e be either of the normalized vectors er or eθ. For the perturbation pε = p0+ εe (ε = 10−7), we aim to estimate
the range of all possible values of the directional derivative ∇eλ

pt

i (i = 2, 3). Recall that, we can evaluate diagonal
elements of the matrix M = (FP e(ui, uj)) (i, j = 2, 3) utilizing the estimation (21):∥∥∥M −R⊺M̂R

∥∥∥
F
≤ Err(M, M̂∗),

where M̂ is an approximation matrix to M , and R is an 2× 2 rotation matrix.
By taking FEM solutions û2, û3(∈ H1

0 (T
pε)) as L2-orthonormal approximations to u2, u3, we can construct an
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approximation matrix M̂ = (FP e(ûi, ûj)). Then, in case e = er, we obtain

M̂ =

(
89.1793 17.4075
17.4075 156.4683

)
, Err(M,M̂∗) ≤ 20.1898.

In case e = eθ, we have

M̂ =

(
53.5043 −33.6434
−33.6434 88.3205

)
, Err(M, M̂∗) ≤ 16.2295.

5 Summary

In this paper, we proposed a method for estimating the range of the first-order variations of eigenvalues, based
on eigenvector perturbations with respect to domain deformations and the corresponding error estimations. This
approach enables us to establish the simplicity of the second and third Dirichlet eigenvalues over nearly regu-
lar triangles. Moreover, we evaluated the range of all possible values for the directional derivatives of clustered
eigenvalues.

6 Appendix

Denote by T a triangular domain in R2, by S an invertible linear transform on R2. Let (x̃, ỹ) = S(x, y) for (x, y) ∈ T ,

and T̃ the triangle obtained by applying S to T . For v over T , define ṽ over T̃ by ṽ(x̃, ỹ) := v(x, y). For V = H1
0 (T ),

let Ṽ := S(V ) be the space obtained by applying S to the functions of V .

Denote R(T ; v) and R(T̃ ; ṽ) by

R(T ; v) :=
∥∇v∥2T
∥v∥2T

, R(T̃ ; ṽ) :=
∥∇̃ṽ∥2

T̃

∥ṽ∥2
T̃

.

Lemma 6.1. Denote by λmin(SS
⊺) and λmax(SS

⊺) be the minimum and maximum eigenvalues of SS⊺, respectively.
Then, we have

λmin(SS
⊺) · λk(T̃ ) ≤ λk(T ) ≤ λmax(SS

⊺) · λk(T̃ ).

Proof. Since we have ∇v = S⊺∇̃ṽ, it holds that

λmin(SS
⊺) · |∇̃ṽ|2 ≤ |∇v|2 ≤ λmax(SS

⊺) · |∇̃ṽ|2.

Therefore, we have

λmin(SS
⊺)∥∇ṽ∥2

T̃
· | detS−1| ≤ ∥∇v∥2T ≤ λmax(SS

⊺)∥∇ṽ∥2
T̃
· | detS−1|.

Note that ∥v∥2T = ∥ṽ∥2
T̃
· | detS−1|. Hence, for any v ∈ V (T ),

λmin(SS
⊺) ·R(T̃ ; ṽ) ≤ R(T ; v) ≤ λmax(SS

⊺) ·R(T̃ ; ṽ).

The mapping S : V (T ) ∋ v 7→ ṽ ∈ V (T̃ ) is injective; see, Theorem 3.41 of [12]. By applying Lemma ?? and the
above inequality, we have

λmin(SS
⊺) · min

Ṽ k⊂Ṽ (T̃ )
max
ṽ∈Ṽ k

R(T̃ ; ṽ) ≤ min
V k⊂V (T )

max
v∈V k

R(T ; v),

and
min

V k⊂V (T )
max
v∈V k

R(T ; v) ≤ λmax(SS
⊺) · min

Ṽ k⊂Ṽ (T̃ )
max
ṽ∈Ṽ k

R(T̃ ; ṽ).

where Ṽ k and V k are k-dimensional linear subspaces of Ṽ (T̃ ) and V (T ), respectively. Thus, by the min-max
principle, we have

λmin(SS
⊺) · λk(T̃ ) ≤ λk(T ) ≤ λmax(SS

⊺) · λk(T̃ ).

□
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