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A RELATION BETWEEN TWO DIFFERENT FORMULATIONS

OF THE BERRY’S CONJECTURE

ALBA GARCÍA-RUIZ

Abstract. The Random Wave Conjecture of M. V. Berry is the heuristic
that eigenfunctions of a classically chaotic system should behave like Gaussian
random fields, in the large eigenvalue limit. In this work we collect some defini-
tions and properties of Gaussian random fields, and show that the formulation
of the Berry’s conjecture proposed using local weak limits is equivalent to the
one that is based on the Benjamini-Schramm convergence. Finally, we see that
both these formulations of the Berry’s property imply another property known
as inverse localization that relates high energy eigenfunctions and solutions to
the Euclidean Helmholtz equation.

1. Introduction

In his influential papers [8, 9] Berry gave a heuristic description of the behavior
of high-energy wave-functions of quantum chaotic systems. He suggested that high-
frequency eigenfunctions of the Laplacian in geometries where the geodesic flow is
sufficiently chaotic should, in some sense, at the wavelength scale, behave like an
isotropic Gaussian field ΨBerry with covariance function

(1.1) E [ΨBerry(x)ΨBerry(y)] =

∫

Sd−1

e2πi(x−y)θdωd−1(θ) = cd
JΛ(|x− y|)
|x− y|Λ ,

where dωd−1 is the uniform measure in the (d − 1)-sphere, JΛ is the Λ-th Bessel
function of the first kind with Λ = d−2

2 and cd > 0 is a constant such that we have

E
[
|Ψ(x)|2

]
= 1.

This ambiguous comparison between a deterministic system and a stochastic
field is known as the Random Wave Model (RWM). The RWM was first introduced
in the study of chaotic quantum billiards on flat domains and a weaker version of it
was proved in the context of random regular graphs [5]. The RWM has led to many
conjectures concerning Lp norms, semi-classical measures or volume and topology
of nodal domains of chaotic eigenfunctions. Several of these conjectures have been
addressed numerically ([16], [3], [4], [6]) or experimentally ([18], [7], [20]).

However, there is no agreement on how Berry’s conjecture should be formulated
rigorously because the idea of a sequence of deterministic objects having a random
limit can be interpreted in different ways. The reader can for instance refer to [27],
[28], [24] and [19] for different mathematical perspectives on Berry’s conjecture.
Some of these conjectures focus only on the values of the eigenfunctions, viewing
(M,dVolM ) as a probability space and each eigenfunction as a random variable.

Key words and phrases. Random Wave Conjecture, Berry Field, Inverse Localization, Random
Field, Benjamini-Schramm convergence, Gaussian Field, Eigenfunction, Ergodicity.
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These formulations do not provide any insight into the properties of the nodal set,
number of nodal domains and other related questions. Some other formulations,
as the one in [10], have led to groundbreaking results concerning the nodal sets of
monochromatic waves satisfying the RWM (see, for instance, [26]).

In [21], [22] and [1] one can find two different formulations of the Random Wave
Conjecture that takes into account both the shape of the eigenfunction and its
distribution of values. Although both formulations are based on different notions
(the one proposed in [21] is related to what the author calls local weak limits,
defined using a covering by charts of the manifold, and the one from [1] makes
heavy use of the Benjamini-Schramm convergence), the idea behind is similar: for a
random x ∈M , the eigenfunction ψn

(
Expx(·/

√
λn)

)
should behave like a random

monochromatic wave as long as the geodesic flow on (M, g) is chaotic. In this
work we show that both formulations of the Berry conjecture are equivalent in the
context of a compact manifold M . As a consequence of the equivalence in compact
manifolds, we are able to ensure that the local weak limit formulation does not
depend on the choice of charts. Note that, doing the necessary identifications, in
the graph theory literature it can be seen that Benjamini-Schramm limit and local
weak limit are the same notions.

In the final section, we will introduce a related notion, the one of the inverse
localization property, and show that, with any of these formulations, the Berry
property implies the inverse localization. Roughly speaking, we say that a compact
manifold M satisfies the inverse localization property if we can approximate an ar-
bitrary solution of the Helmholtz equation on Rd using high energy eigenfunctions
of the manifold. For the time being, all the known examples of manifolds satis-
fying this property do have a high multiplicity, that seems to be key to construct
the approximating eigenfunction. However, the version of the inverse localization
that we get from the Berry property is in some sense stronger: there exists a se-
quence of eigenfunctions associated to different eigenvalues such that any solution
to Helmholtz equation can be approximated by one of these. Notice that the se-
quence does not depend on the solution to Helmholtz equation chosen and that for
any eigenvalue we are considering just one eigenfunction associated to it, so the
degeneracy of eigenvalues plays no role here.

Organization of the paper. In Section 2 the properties asked toM are specified
and some needed definitions are given. In Section 3, local weak limit and BS
convergence are defined and the two different formulations of the Berry property
are stated. The main theorem of the paper is as follows.

Theorem 1.1. If M is a compact, connected Riemannian manifold covered by a
finite family {Um}mmax

m=1 of open subsets with some extra conditions (specified at the
beginning of Section 2), then Berry’s property in the local weak limit form (given
in definition 3.2) is equivalent to Berry’s property in BS form (as defined in 3.9).

Sections 4 and 5 are devoted to prove both implications of this theorem. Finally,
in Section 6, the inverse localization property is introduced and it is proved that the
Berry property implies the former. To conclude, some comments are made around
this idea.



3

2. Starting definitions and notation. Gaussian fields

In all what follows, we consider a compact connected Riemannian manifold of
dimension d without boundary, (M, g). dx is the volume measure onM and we will
denote by ∆ the Laplace-Beltrami operator on the manifold. An easy application
of the classical spectral theorem for compact manifolds ensures that there exists
(ψn)n an orthonormal basis of L2(M) that consists of functions on M such that

∆ψn + λnψn = 0 and ‖ψn‖22 = Vol(M). Assume that the eigenvalues are ordered
in non-decreasing order. We may furthermore suppose that we have a finite family
{Um}mmax

m=1 of open subsets with the following properties:

• M ⊂ ⋃mmax

m=1 Um,
• for any m1 6= m2 we have Um1

∩ Um2
= ∅ and

• for any m, there exists a family of vector fields on Um, say (V m1 , . . . , V md ),
forming an orthonormal frame of the tangent bundle TUm.

For each x ∈ M , we will denote by expx : TxM → M the exponential map at x
induced by the metric g on M . Moreover, given x and y in M , we will denote by
dist(x, y) the Riemannian distance between x and y.

Unless otherwise stated, the spaces C∞(M) and C∞(Rd) will be equipped with
the topology of uniform convergence of derivatives on compact sets. We will also
define in C∞(Rd) a distance d given by the Fréchet structure of C∞(Rd). This
means that we first define the class of semi-norms

(2.1) ‖f‖k,n = sup
{∣∣∣f (k)(x)

∣∣∣ : x ∈ B(0, n)
}

and then the distance given by

(2.2) d(f, g) =

∞∑

n=0

∞∑

k=0

2−k−n‖f − g‖k,n
1 + ‖f − g‖k,n

.

With this distance, we recover the smooth topology in C∞(Rd) and we can use it
to define balls B(f, ǫ). Notice that C∞(Rd) with this distance is a locally compact
metric space. Moreover, when we speak of probability measures on these spaces,
we will assume that they are equipped with the Borel σ-algebra.

Our next goal is to introduce the field ΨBerry. It is a stationary Gaussian field
on Rd whose spectral measure is the uniform measure on the unit sphere Sd. We
first recall some definitions:

Definition 2.1 (Smooth random field). A smooth random field (on Rd) is a
map X from a probability space (Ω,B, P ) to C∞(Rd) that is measurable, where
C∞(Rd) is considered with the topology of convergence of all derivatives over all
compact sets. Notice that for any n ∈ N and any t1, . . . , tn ∈ Rd, the vector
(X(t1), X(t2), . . . , X(tn)) is a random vector.

Definition 2.2 (Gaussian random field). A Gaussian random field is a (smooth)
random field where all the finite dimensional distributions Ft1,...,tk(x1, . . . , xk) =
P (X(t1) 6 x1, . . . , X(tk) 6 xk) are multivariate normal distributions for any choice
of k and {t1, . . . , tk}. Since multivariate normal distributions are completely spec-
ified by expectations and covariances, to determine a Gaussian random field Xt it
suffices to specify m(t) := E{Xt} and C(t, s) := Cov{Xt, Xs} in an appropriate
way. If m ≡ 0 we say that the Gaussian field is centered.
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Definition 2.3 (Stationary and isotropic random field). We say that a Gaussian
random field is stationary if C(t, s) depends only on t−s and m(t) = m is constant.
An isotropic Gaussian random field is a stationary Gaussian random field whose
covariance function depends on the distance alone, i.e. C(t, s) = C(τ) where τ =
dist(t, s).

Definition 2.4 (Law and equivalence of random fields). For a random field X ,
we define its law as the probability measure µX : B(C∞(Rd)) → R given by
µX = PX−1 : B(R) → R, such that for any Borel set A ∈ B(C∞(Rd)), µX(A) =
P (X−1(A)). Here P is the probability we have in the probability space (Ω,B, P )
where X is defined.

We say that two random fields X1 and X2 are equivalent if they have the same
law, i.e. µX1 = µX2 . In the sequel we will always identify fields which are equivalent
and we will speak indifferently of the field and its law.

As explained for instance in Section A.11 of [23] there is a bijection between
smooth centered Gaussian fields on R

d and positive definite functions defined on
Rd×Rd. Also, recall that, by Bochner’s theorem [11, Section 2.1.11], for any finite
Borel complex measure µ on Rd, its Fourier transform µ̂ can be used to define
a continuous positive definite function K(x, y) = µ̂(x − y). If, in addition, µ is
compactly supported, its Fourier transform is of class C∞, and gives rise to a
unique smooth Gaussian field X on Rd (up to law equivalence). In this case, we
call µ the spectral measure of X .

Definition 2.5 (ΨBerry, the randommonochromatic wave). We call random isotropic
monochromatic wave, and denote by ΨBerry, the unique stationary Gaussian field
on Rd whose spectral measure is the uniform measure on the unit sphere Sd. This
field ΨBerry : Rd → R is uniquely defined as the centered stationary Gaussian
random field, with covariance function

(2.3) E [ΨBerry(x)ΨBerry(y)] =

∫

Sd−1

e2πi(x−y)θdωd−1(θ),

where dωd−1 is the uniform measure on Sd−1.

Let us consider the space FP :=
{
f ∈ C∞(Rd), s.t.−∆f = f

}
. Then it is easy

to check that ΨBerry is almost surely an element of FP . This way, if A ⊂ FP is a
Borel set, P (ΨBerry ∈ A) is well-defined and

(2.4)
µBerry : B(FP ) → R

+
0

A 7→ P (ΨBerry ∈ A),

is a Borel measure on FP ⊂ C∞(Rd). In other words, the probability measure
µBerry defined on C∞(Rd) is supported on FP . In what follows we will work with
this measure µBerry and with ΨBerry indistinguishably.

3. Statement of the conjectures

We first consider the formulation of the conjecture proposed in [22]:

Recall that we have a finite family {Um}mmax

m=1 of open subsets on which there
exists a family of vector fields (V m1 , . . . , V md ) forming an orthonormal frame of the
tangent bundle. For a given x ∈ Um, we define the function Expx : R

d → R
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as Expx(y) := expx

(∑d
j=1 yjV

m
j (x)

)
. Let p be a random point in Um chosen

uniformly with respect to the volume measure dx. For each n, let φnp ∈ C∞ (
Rd

)

be the random field defined by φnp (y) := ψn
(
Expp(y/

√
λn)

)
. It is a random element

of C∞(Rd). Notice that the definition of φnp depends on the chart Um chosen.

Definition 3.1 (Convergence in law). Let µBerry be the probability measure on
C∞(Rd) associated to ΨBerry. We say that φnp (y) converges in law as a random
field towards ΨBerry in the frame U if, for any continuous, bounded functional
F : C∞(Rd) → R, we have

(3.1)
1

Vol(U)

∫

U

F
(
φnp

)
dp −−−−→

n→∞
EµBerry

[F ] =

∫

C∞(Rd)

FdµBerry.

Then the conjecture as formulated in [22] can be stated as follows.

Definition 3.2 (Formulation of Berry’s conjecture in the local weak limit form).
We have the Berry property in the local weak limit form if for any Um, as λn → ∞
when n → ∞, the family φnp (y) converges in law as a random field towards the
Gaussian field ΨBerry.

Remark 3.3. The construction of local weak limits depends on the choice of the
partition {Um}mmax

m=1 and frames {V mj }dj=1, m = 1, 2, . . . ,mmax, and so definition
3.2 does depend a priori on them. However, if it holds for one choice of sets Um and
frames Vm, then it also holds for any other choice. This can be seen, for example,
as a consequence of the equivalence between this formulation and the one using
Benjamini-Schramm convergence that we prove here.

On the other hand, we consider the formulation of the conjecture introduced in
[1]. For the d-dimensional Riemannian manifold M = (M, g), let Mn = (M, gn)
denote the rescaling of M by the factor

√
λn, i.e. we change only the metric by

multiplying every distance by
√
λn. A property of this Mn is that if φ : M → R

is an eigenfunction of the Laplacian on M associated to an eigenvalue λ, then the
very same function is also an eigenfunction on Mn with eigenvalue λ′ = λ/λn.

Just like it is done in [1], we start by considering the space Md of pointed,
connected, complete Riemannian manifolds of dimension d up to pointed isometries,
with its smooth topology. The reader should see [2, §A.1] for a precise definition of
this topology, however the philosophy is as follows: two pointed manifolds (M,p)
and (N, q) are close if there exist two compact subsets ofM and N containing large
neighborhoods of the base points p and q respectively that are diffeomorphic via a
map φ, that is close in the C∞ metric to an isometry.

Another way of seeing this is the following: a sequence of pointed Riemannian
manifolds, let us say (Mn, pn), converges in the C∞ metric towards (M,p) if for
every radius R > 0, there exists a sequence of maps fn : BM (p,R) → Mn with
fn(p) = pn such that the Riemannian metric f∗gn on the metric ball BM (p,R)
inside M , pulled back from the Riemannian metric gn on Mn, converges to the
restriction of the Riemannian metric g on M in C∞-topology. It can be proved
that the smooth topology on Md is induced by a Polish topology, i.e. the space
Md is separable and completely metrizable; see [2, §A.2] for a proof of this result.
The space Md is not compact but Cheeger’s compactness theorem can be used
to show that the subspace consisting of pointed manifolds (M,p) with uniformly
bounded geometry is a compact subspace; see [2, §A.1] for the proof.
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The next step is to construct a measure associated to (Mn, p). Pushing forward
the normalized Riemannian volume measure under the following map one obtains
a probability measure µM on Md.

(3.2) M → Md, p 7→ (M,p)

We now recall a common notion of convergence for these measures and use it to
state the definition of BS convergence.

Definition 3.4 (Convergence in the weak* topology). A sequence of probability
measures (µn) on Md converge to µ in the weak∗ topology if

∫
Fdµn →

∫
Fdµ for

every bounded, continuous function F : Md → R.

Beware that some authors refer to the topology of the previous definition as
weak topology.

Definition 3.5 (BS-convergence of manifolds). A sequence (Mn) of compact con-
nected complete Riemannian d-manifolds is convergent in the sense of Benjamini-
Schramm, or just BS-converges, if the sequence µMn

converges in the weak* topol-
ogy of the set of all probability measures on Md.

Following [1], let us now explain a particularity of the measures thus obtained,
though we will not use it in the sequel.

Let T 1Md be the space of isometry classes of unit tangent bundles
(
T 1
pM,p, v

)
,

where v ∈ T 1
pM . The geodesic flows on each T 1

pM combine to give a continuous

flow on T 1Md,

(3.3) σt : T
1Md → T 1Md

What is more, in each fiber T 1
pM of the following map it one can define a (Liouville)

measure ωM,p induced by the Riemannian metric on M .

(3.4) T 1Md → Md; (M,p, v) 7→ (M,p)

Any measure µ on Md can then be lifted to a measure µ̃ on T 1Md defined
by the equation dµ̃ = ωM,pdµ. The Liouville measure on the unit tangent bundle
of a Riemannian manifold is invariant under the geodesic flow and, similarly, the
measure µ̃M is invariant under the flow gt.

Using the same notation as in [2], we say that a measure µ on Md is unimodular
if µ̃ is invariant under (3.3). We also refer to [2] for other characterizations of
unimodularity. Then we have just seen the following remark, that we will not use
in the proofs.

Remark 3.6. The weak∗ limit of µMn
is a unimodular probability measure on Md.

In general, around a randomly chosen point, Mn has no reason to be similar to a
given manifold for large n. Instead, the limiting object is a unimodular probability
measure on Md that precisely encodes how the manifold, for large n, looks like
near randomly chosen base points. This perspective is studied in great details in
[2]. By work of Cheeger and Gromov (see, for example [25, Chapter 10]), the subset
of Md consisting of pointed manifolds (M,p) with bounded geometry is compact.
Here, bounded geometry means that the sectional curvatures of M , and all of their
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derivatives, are uniformly bounded, and the injectivity radius at the base point p
is bounded away from zero. Compact manifolds are examples of manifolds with
bounded geometry. By the Riesz representation theorem and Alaoglu’s theorem,
this implies that the set of unimodular probability measures supported on manifolds
with bounded geometry is weak∗ compact, since unimodularity is a weak∗ closed
condition.

One can similarly define the BS-convergence of a sequence {Mn}∞n=1 of manifolds
with associated functions φn :Mn → R. We follow again [1]. Consider the space

(3.5) Ed =

{
(M,p, φ)

M connected, complete d-manifold,
p ∈M,φ :M → R smooth

}/
pointed

isometries

equipped with its smooth topology where [M,p, φ] is close to [N, q, ψ] if there are
compact subsets of M and N containing large radius neighborhoods of p and q
respectively, that are diffeomorphic via a map D that is C∞-close to an isometry
and that also satisfies that φ and ψ ◦D are C∞ close. As seen in [1, Proposition
8], the topological space Ed has a compatible structure of a Polish space (i.e. a
complete, separable metric space).

We can now equip the topological space Ed with the σ−algebra B, generated
by its open sets, and define a probability measure on Ed as a σ−additive function
B → [0, 1] that maps the whole Ed to 1. Similarly to what we did before, we can
recall the following notion of convergence:

Definition 3.7 (Convergence in the weak* topology). A sequence of probability
measures µn on Ed is said to converge in the weak∗ topology towards a probability
measure µ if for each bounded, continuous real function F on Ed we have

(3.6) lim
n→∞

µn(F ) = µ(F ).

For any M and φ : M → R, smooth map, we can consider the push forward of
the normalized Riemannian volume measure under the map

(3.7) M → Ed, p 7→ [M,p, φ]

and obtain a probability measure µM,φ on Ed. As we did with Md, we shall
denote by T 1Ed the space of isometry classes of tangent bundles with a function(
T 1M,p, v, φ

)
where v ∈ T 1

pM . Here again it comes equipped with a continuous

(geodesic) flow and any measure µ on Ed can be lifted to a measure µ̃ on T 1Ed
using the volume form on the fiber. However, the measure µ̃Mn,φn

is not invariant
under the geodesic flow unless φn is constant on Mn.

Definition 3.8 (BS-convergence of manifolds with functions). A sequence (Mn, φn)
where each Mn is a compact connected complete Riemannian d−manifold and
φn : Mn → R is smooth, is convergent in the sense of Benjamini-Schramm, or just
BS-converges, if there exists a probability measure µ on Ed such that the sequence
µMn,φn

converges to µ in the weak∗ topology.

Definition 3.9 (Formulation of Berry’s conjecture in BS form, [1]). Let M be
a compact d-dimensional manifold and Mn = (M, gn) be given by the rescaling
of M by

√
λn; and let (ψn)n be an orthonormal basis of L2(M) that consists of

eigenfunctions associated to eigenvalues λn. Then, we have the Berry property
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in BS form if (Mn, ψn) BS converges to the isotropic monochromatic Gaussian
random field with eigenvalue 1, ΨBerry. This means that µMn,ψn

converges to the
probability measure µBerry on the space of smooth functions on Rd.

Let us try to write this otherwise. We recall from the introduction that the
probability measure µBerry associated to the random field ΨBerry is supported
on functions u such that −∆u = u. In other words, ΨBerry is almost surely an
eigenfunction of eigenvalue 1 of the Laplacian and, in particular, ΨBerry is almost
surely a smooth function on Rd.

Moreover, notice that, as a Riemannian metric is infinitesimally Euclidean, it
follows from the definition that, as n → ∞, the sequence (Mn) BS-converges to
Rd. Precisely, because of the weak∗ compactness, µMn

converges to a unimodular
measure on Md. By the rescaling,Mn is closer to Rd whenever n→ ∞, so the limit
towards which µMn

converges should be the Dirac measure at [Rd, 0] ∈ Md. Note
that Rd being homogeneous, the limit measure does not depend on a particular
choice of base point. We loosely say that (Mn) BS-converges towards R

d. Also
remember that if φ : M → R is an eigenfunction of the Laplacian on M with
eigenvalue λ, then the very same function is an eigenfunction onMn with eigenvalue
λ′ = λ/λn.

We consider now the sequence inside Ed given by

(3.8) SM,p =

{
[Mn, p, ψn]

Mn = (M, gn), rescaling of M by
√
λn;

p ∈M ;ψn eigenfunction associated to λn

}∞

n=1

Let us pay attention to bounded, continuous functionals of two specific kinds:

• F : Ed → R depending only on [M,p]. Then F can be seen as a functional
on Md and µMn,ψn

(F ) ≡ µMn
(F ). As we know that µMn

converges to the
Dirac measure at [Rd, 0] ∈ Md, then limn→∞ µMn

(F ) = F
(
[Rd, 0]

)
.

• G : Ed → R depending only on φ(expp) in a small neighborhood of 0

in Rd. In the case of the sequence we are considering this is precisely
G([Mn, p, ψn]) = G(ψn(Expp(·/

√
λn))), where we can use the orthonormal

basis around p because λn → ∞ and G can be seen as a functional on
C∞(Rd). Notice that we are making an abuse of notation by using the
same letter G for both a functional on Ed and C∞(Rd). Then, using the
exponential map Exp, µMn,ψn

induces a measure on C∞(Rd), call it νMn,ψn

whose limit (which we will assume that exists) is supported in functions
satisfying the Helmholtz equation ∆ψ + ψ = 0, denoted by FP . This can
be seen in the following lemma.

Lemma 3.10. The limit limn→∞ νMn,ψn
is a probability measure supported in FP .

Proof. Let us proceed by contradiction and assume the opposite. Suppose that
there exists a function f ∈ C∞(Rd) which is not in FP but it is in the support
of the limit measure limn→∞ νMn,ψn

, meaning that for any ǫ > 0 it is true that
limn→∞ νMn,ψn

(B(f, ǫ)) > 0. Here the ball B is constructed using the distance d
given by the Fréchet structure of C∞(Rd) defined in (2.2), and has positive mass
asymptotically.

Recall that C∞(Rd) with this distance is a locally compact metric space and
that FP is closed in the topology of smooth convergence of derivatives on compact
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sets. Then we can find a small ǫ0 > 0 such that dist
(
B(f, ǫ0), FP

)
> cǫ0 > 0 and

also

(3.9) lim inf
n→∞

Vol
({
p ∈M : φnp ∈ B(f, ǫ0)

})
> c′ǫ0 > 0.

On the one hand, it can be easily found a lower positive bound for d(φnp ,−∆φnp ).
Just notice that the map g 7→ d(g,−∆g) is continuous and strictly positive on the

ball B(f, ǫ0) (because it is not in FP ). Therefore, it is bounded from below by
some positive constant ǫ1. In particular, as far as we consider the points p ∈ M
such that φnp ∈ B(f, ǫ0), we have d(φnp ,−∆φnp ) > ǫ1 > 0. Notice that this bound
does not depend on n, for any n large enough.

On the other hand, it can be easily seen that for those points p with φnp in

B(f, ǫ0), the set of φnp is bounded in C∞(Rd) and so all the derivatives of φnp are
uniformly bounded in n. Also notice that

(3.10) d(∆φnp ,−φnp ) = d(∆φnp ,∆Mn
φnp ) = d((∆−∆Mn

)φnp , 0) = on→∞(1)·d(φnp , 0).
In the second last equality, we have used that the distance is a series of semi-
norms, so that d(u, v) = d(u − v, 0). Finally, in the last part we have used that∥∥(∆−∆Mn

)φnp
∥∥
k,m

= Ck,m/
√
λn. We get this expression thanks to the bound of

all the derivatives of φnp and the explicit form of ∆Mn
depending on the metric

gn =
√
λn · g.

To conclude we recall that, in particular, the eigenfunctions φnp are uniformly
bounded in n for the points p we are considering. As a consequence, d(∆φnp ,−φnp ) =
on→∞(1). This contradict the positive bound already found, and so we can assure
that such an f does not exists, concluding that µBerry is supported in FP . �

The set of linear combinations of products of these two kinds of functions is
a subset of C(Ed) that separates points, i.e., given distinct points α, β ∈ Ed,
there exists a linear combination of products of functions of this type such that∑
i Fi(α)Gi(α) 6=

∑
i Fi(β)Gi(β). By mean of the Stone–Weierstrass theorem, we

get to know that this set is dense is the space of bounded, continuous functionals
on Ed. Therefore, to study the limit of a measure in the set Ed, it is enough to
study it over products of F and G. The sum can be taken outside of the limit using
linearity of the integral.

Then we can conclude that any weak limit of µMn,ψn
is supported in

(3.11)
{
[Rd, p, ψ] ∈ Ed : p ∈ R

d,∆ψ = −ψ
}
=

{
[Rd, 0, ψ] ∈ Ed : ∆ψ = −ψ

}
.

This set is equivalent to FP/ ∼ where f, g ∈ FP satisfy f ∼ g if, and only if, there
exists an origin preserving isometry S such that f = g ◦ S. We therefore loosely
identify such a weak limit with a random field on Rd.

All considered, we can now reformulate the conjecture proposed in [1] as follows:
µMn,φn

converges to µBerry in the weak∗ topology or, what is the same, for each
bounded, continuous real functional F of C∞(Rd) which is invariant under origin
preserving isometries, we have

(3.12) lim
n→∞

νMn,φn
(F ) = µBerry(F ) = EµBerry

[F ] =

∫

C∞(Rd)

FdµBerry.
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Here F is only defined in C∞(Rd) but as both µBerry and limn→∞ νMn,φn
are

supported in
{
[Rd, p, ψ] ∈ Ed : p ∈ Rd,∆ψ = ψ

}
, we only care about these points.

As we are only considering classes up to pointed isometries, we notice that, for any
isometry S of Rd that preserves the origin S(0) = 0, then it should be true that
F (ψ) = F (ψ ◦ S), this is, we only consider functionals that are invariant up to
origin preserving isometries.

In the next two Sections we prove both implications of this theorem. First, in
Section 4 we show that the conjecture of definition 3.2 implies the conjecture given
by 3.9. Then, in Section 5, we prove the reciprocal, that the conjecture of definition
3.9 implies the conjecture given by 3.2.

4. Local weak limit formulation implies BS formulation

We start by noticing the following: let U ⊂M be a Borel set of positive Lebesgue
measure, and suppose that we have the Berry’s conjecture with the local formulation
on U . Then for any Borel set U ′ ⊂ U of positive Lebesgue measure, we also have
the conjecture on U ′. A proof of this fact can be found in [21] for the case of a
domain of M = Rd and can be easily modified for our case. This means that if
we consider M covered by a family of open sets where the Berry property holds,
then for any open subset with an orthonormal frame we would also have the Berry
property in that subset.

We continue by considering the map

(4.1) Hn :M → Ed, p 7→ [(M, gn), p, ψn],

and applying a change of variables together with the definition of µMn,φn
to write,

for any bounded continuous function F in Ed,

(4.2) µMn,ψn
(F ) =

∫

M

F (Hn(p))dµUnif (p) =
1

Vol(M)

∫

M

F (Hn(p))dp.

Let us now split this integral using the partition introduced at the beginning of
Section 2:

(4.3) µMn,ψn
(F ) =

1

Vol(M)

mmax∑

m=1

∫

Um

F (Hn(p))dp.

As said in the previous section, it is enough to study products of functions of the
two mentioned types:

(4.4) µMn,ψn
(F ·G) = 1

Vol(M)

mmax∑

m=1

∫

Um

F ([Mn, p])G(φ
n
p )dp.

Then,
(4.5)

1

Vol(M)

mmax∑

m=1

∫

Um

F ([Mn, p])G(φ
n
p )dp =

mmax∑

m=1

Vol(Um)

Vol(M)

(
1

Vol(Um)

∫

Um

F ([Mn, p])G(φ
n
p )dp

)
.

Let us consider first the case when F ≡ c, some constant. Using, by hypothesis,
that the Berry property is satisfied with the local weak limit formulation, we can
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assert that

(4.6) lim
n→∞

νMn,ψn
(c ·G) =

mmax∑

m=1

Vol(Um)

Vol(M)
lim
n→∞

(
1

Vol(Um)

∫

Um

c ·G(φnp )dp
)

=

(4.7)

mmax∑

m=1

Vol(Um)

Vol(M)
EµBerry

[c ·G] = EµBerry
[c ·G] = µBerry(c ·G).

The next step is to notice that, since F depends only on the manifold and G is a
bounded functional, we have for any m,

(4.8)

∣∣∣∣
∫

Um

F ([Mn, p])G(φ
n
p )dp−

∫

Um

F ([Rd, 0])G(φnp )dp

∣∣∣∣ 6

(4.9) C · sup
p∈M

∣∣F ([Mn, p])− F ([Rd, 0])
∣∣ = C · ǫn −−−−→

n→∞
0

Therefore,
(4.10)
lim
n→∞

|µMn,φn
(F ·G)− µBerry(c ·G)| 6 lim

n→∞
C·ǫn |µMn,φn

(c ·G)− µBerry(c ·G)| = 0,

and so
(4.11)

lim
n→∞

µMn,ψn
(F ·G) = lim

n→∞
µMn,ψn

(c ·G) = lim
n→∞

νMn,ψn
(c ·G) = µBerry(c ·G),

for any G bounded, continuous functional on C∞(Rd). c · G is also any bounded,
continuous functional on C∞(Rd). Notice that here we have again made an abuse
of notation by using the same letter G for a certain class of functionals on Ed and
for functionals on C∞(Rd). This concludes the proof of this implication.

5. BS formulation implies Local weak limit formulation

For the other implication we assume that limn→∞ νMn,ψn
(F ) = µBerry(F ), for

any bounded, continuous real functional F of C∞(Rd) which is invariant under
origin preserving isometries. This means that
(5.1)

lim
n→∞

〈νMn,φn
, F 〉 =

mmax∑

m=1

Vol(Um)

Vol(M)
lim
n→∞

(
1

Vol(Um)

∫

Um

F (φnp )dp

)
= 〈µBerry, F 〉 ,

when tested against bounded, continuous real functionals F of C∞(Rd) which are
invariant under origin preserving isometries.

First, we will see that, up to a subsequence, for any m, there exists a limit µm
such that for any functional G (which is not necessarily invariant w.r.t. isometries)
we have:

(5.2) ∃ lim
n→∞

(
1

Vol(Um)

∫

Um

G(φnp )dp

)
= µm(G).

To prove this let us define the probability measure on the space of C∞(Rd), µnm
given by

(5.3) 〈µnm, G〉 =
1

Vol(Um)

∫

Um

G(φnp )dp,
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for any G bounded, continuous functional; and recall Prokhorov’s theorem for this
particular case: the collection {µnm}∞n=1 is tight if, and only if, its closure is se-
quentially compact in the space of probability measures on C∞(Rd), i.e., up to a
subsequence, there exists the limit limn→∞ µnm = µm.

The only thing that is left to obtain (5.2) is to check that {µnm}∞n=1is tight but
this is essentially [21, Lemma 1], where this measures are shown to be tight in the
bigger space of Ck functions. The aim now is to prove that this limit is equal to
µBerry for any 1 6 m 6 mmax.

As can be seen in [21], this limit µm is translation invariant. We recall the proof
of this fact here, but first we need to introduce few definitions.

Let y ∈ Rd. For any f ∈ C∞(Rd), we define τyf ∈ C∞(Rd) by (τyf)(·) = f(y+·).
If F is now a functional on C∞(Rd), we define τyF by (τyF )(f) = F (τyf) for all
f ∈ C∞(Rd). Finally, if µ is a measure on C∞(Rd), we define τyµ by 〈τyµ, F 〉 =
〈µ, τyF 〉 for all bounded, continuous functionals F .
Lemma 5.1. Let µm be a limit as considered in this section. Then for any y ∈ Rd,
we have τyµm = µm.

Proof. Notice that ∃ limn→∞ µnm = µm. We now compute, for any y ∈ Rd and F
bounded, continuous functional,
(5.4)

〈µnm, τyF 〉 =
1

Vol(Um)

∫

Um

F (τyφ
n
p )dp =

1

Vol(Um)

∫

Um

F

(
ψn

(
Expp

( ·+ y√
λn

)))
dp =

(5.5)
1

Vol(Um)

∫

Um

F

(
ψn

(
ExpExpp(y/

√
λn)

( ·√
λn

)))
+O

(
1/

√
λn

)
dp =

(5.6)
1

Vol(Um)

∫

Um

F
(
φnp

)
dp+O

(
1/

√
λn

)
+O

(
Vol

(
Om∆(Om − y/

√
λn)

))
=

(5.7) 〈µnm, F 〉+ on→∞.

Here Om is the Euclidean domain that goes to Um by Expp, Om∆(Om − y/
√
λn)

is the symmetric difference between Om and Om − y/
√
λn and its volume goes to

zero with n, since Vol
(
Om ∩ (Om − y/

√
λn)

)
−−−−→
n→∞

0. In the second line we have

used that fact that F is a bounded, continuous functional and we are using geodesic
coordinates in a small neighborhood of the origin.

Taking the limit n → ∞, we obtain µm(τyF ) = µm(F ) for any F , so that
τyµm = µm. �

It is easy to check that (FP,B(FP ), µBerry) is a probability space on which
Rd acts by the translations τ as measure-preserving transformations. By the
Fomin-Grenander-Maruyama theorem [23, Section B], µBerry is ergodic for the
action of the translations, which means that for every set A ∈ B(FP ) satisfying
µBerry ((τyA)∆A) = 0, either µBerry(A) = 0, or µBerry(A) = 1.

It can also be proved, see for instance [12], that ergodic measures are the extreme
points of the set of the action invariant measures. This means that µBerry can not
be expressed as a strict convex combination of two different translation invariant
probability measures. It can be generalized by induction to any finite-length convex
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combination ans it is also true for general integration as can be see by the following
lemma.

Lemma 5.2. If µ is a Borel measure that is ergodic with respect to translations
and we have a decomposition µ =

∫
Y
vydm(y), where Y is a measurable set, vy are

all translations invariant probability measures and the integral is defined using the
measure dm of Y . Then vy = µ for m-a.e. y.

Proof. Let T (C∞) be the set of all continuous, bounded functionals in C∞(Rd). If
both sets

(5.8)
⋃

F∈T (C∞)

{y ∈ Y, 〈F, µ〉 < 〈F, vy〉}

and

(5.9)
⋃

F∈T (C∞)

{y ∈ Y, 〈F, µ〉 > 〈F, vy〉}

have measure zero then we have finished. Assume otherwise. Without loss of
generality, we have a continuous functional F such that

(5.10) A = {y ∈ Y, 〈F, µ〉 < 〈F, vy〉}
satisfies 0 < m(A). Notice that if m(A) = 1 then we can not have µ =

∫
Y
vydm(y),

so 0 < m(A) < 1. Now, we have that for all G ∈ T (C∞),
(5.11)

〈G,µ〉 = m(A) ·
〈
G,

1

m(A)

∫

A

vydm(y)

〉
+m(Ac) ·

〈
G,

1

m(Ac)

∫

Ac

vydm(y)

〉
.

This gives a representation of µ as a convex sum of two translation invariant prob-
ability measures. By ergodicity of µ, each of the measures is in fact µ. But this is
a contradiction since integrating the first measure against F is strictly bigger than
〈F, µ〉. This conclude the proof. �

Consider now the set Ω =
{
ω : Rd → Rd, ω is an isometry preserving the origin

}

and its Haar measure dm. For any bounded continuous functional G, we consider
the following

(5.12) G̃ =
1

|Ω|

∫

Ω

G(ω(·))dm(ω),

which is defined using the Haar measure for the integral.

Obviously, this functional is still bounded and continuous and now it is invariant
by isometries that preserve the origin.

Similarly to what we did before, if µ is a measure on C∞(Rd), we define µ̃ by

〈µ̃, G〉 =
〈
µ, G̃

〉
for all bounded, continuous functionals G. This way, we have that,

for all m and any bounded continuous functional G

(5.13) 〈µ̃m, G〉 =
〈
µm, G̃

〉
.

This means that evaluating µ̃m against any functional is the same as evaluating µm
against an isometry invariant functional. If we sum alongm and use the hypothesis,
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we get
(5.14)〈

∑

m

Vol(Um)

Vol(M)
µ̃m, G

〉
=

〈
∑

m

Vol(Um)

Vol(M)
µm, G̃

〉
= µBerry(G̃) = µBerry(G).

It is easy to check that µ̃m preserves the property of being translation invariant:

〈µ̃m, τyG〉 =
〈
µm, τ̃yG

〉
=

〈
µm, G̃

〉
= 〈µ̃m, G〉. Also notice that the measure

µBerry is invariant with respect to isometries so that
(5.15)

µBerry(G̃) = µBerry

(
1

|Ω|

∫

Ω

G(ω(·))dm(ω)

)
=

1

|Ω|

∫

Ω

µBerry(G)dm(ω) = µBerry(G).

Then, we have µBerry as a linear combination of translation invariant measures. By
using Fomin-Grenander-Maruyama theorem, we conclude that any µ̃m = µBerry.

The last step is to consider

(5.16)

〈µBerry, G〉 = 〈µ̃m, G〉 =
1

|Ω|

∫

Ω

〈µm, G(ω(·))〉 dm(ω) =

1

|Ω|

∫

Ω

〈µm ◦ ω,G〉 dm(ω) =

〈
1

|Ω|

∫

Ω

(µm ◦ ω)dm(ω), G

〉
,

where µm ◦ ω stands for 〈µm ◦ ω,G〉 = 〈µm, G(ω(·))〉 . In this calculation we have
µBerry as a linear combination of translation invariant measure µm ◦ ω. Using
lemma 5.2, this ensures that, for almost all ω ∈ Ω, µm ◦ω = µBerry. Notice that it
is enough to have one ω such that µm ◦ ω = µBerry because then we can compose
with ω−1 and get, µm = µBerry ◦ ω−1 = µBerry, because µBerry is invariant.

This is the same as saying that φnp converges in law as a random field towards
ΨBerry in Um. To conclude, just notice that this being true for any m is the
formulation of Berry’s conjecture that we aimed to obtain.

6. The inverse localization property

A related notion to the random wave model is the idea of inverse localization
introduced in [15] and related works of the same authors. The local behavior of an
eigenfunction on any compact Riemannian manifold associated to large eigenvalues
over length scales of order 1/

√
λ is given by a solution to the Helmholtz equation,

(6.1) ∆h+ h = 0.

A well known partial converse due to Hörmander [17] is that, given any ball B ⊂ R
d

and any fixed solution h to the Helmholtz equation on B, one can pick a sequence
of approximate Laplace eigenfunctions on the manifold whose behavior on a ball of
radius 1/

√
λ reproduces that of h modulo a small error, λ being the approximate

frequency of the approximate eigenfunction. A slightly imprecise but very intrigu-
ing question is whether one can replace approximate eigenfunctions by bone fide
eigenfunctions in this estimate. The inverse localization principle gives an answer
for this question in certain particular cases.

This idea was first introduced in [14], where the authors proved the inverse
localization property for Beltrami fields on the three-dimensional sphere and flat
torus. To our best knowledge, the only known examples of manifold satisfying
the inverse localization property are certain flat tori [13] and the round sphere S

d
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and all Riemannian quotients thereof [15]. In these works, the definition of inverse
localization is the following.

Definition 6.1. (Inverse localization) A compact manifoldM has the inverse local-
ization property if for some p ∈M , any ǫ > 0, any r ∈ N∪{0} and any h : Rd → R

solution to the Helmholtz equation (i.e. ∆h+ h = 0 in the whole Rd), there exists
a sequence of eigenvalues λk −−−−→

k→∞
∞ and a sequence of associated eigenfunctions

ψk, ∆Mψk + λkψk = 0, that for any k large enough satisfy

(6.2)

∥∥∥∥ψk
(
Expp

( ·√
λk

))
− h

∥∥∥∥
Cr(B)

< ǫ.

Here φkp := ψk

(
Expp

(
·√
λk

))
is the standard localization of ψk and B is the unit

Euclidean ball on the Euclidean space.

In this definition, the point around which we localize is fixed beforehand and
does not depend on h (in fact, in all the known examples we can approximate
any solution to the Helmholtz equation around any fixed point of the manifold).
Moreover, in these examples, there are no restrictions on the eigenfunctions that can
be used to approximate. However, the idea of inverse localization is imprecise and
the rigorous definition can vary in these and other aspects, for example, the norm
and domain of the approximation. The Berry property considered here implies a
slightly different version of this inverse localization idea defined as follows.

Definition 6.2. (Strong inverse localization) A compact manifoldM has the strong
inverse localization property if for any eigenvalue λ there exist an eigenfunction ψλ,
∆Mψλ + λψλ = 0, such that for any r ∈ N ∪ {0} and any h : Rd → R solution to
the Helmholtz equation (i.e. ∆h + h = 0 in the whole Rd), there exists a positive
measure subset of the manifold N ⊂M which satisfies that

(6.3) lim
λ→∞

∥∥∥∥ψλ
(
Expp

( ·√
λ

))
− h

∥∥∥∥
Cr(B)

= 0,

for any p ∈ N .

Remark 6.3. Notice that Definition 6.2 does not imply Definition 6.1 because the
set N depends on h, while in the latter the point p is fixed. However, it is stronger
in the following two aspects:

• While for definition 6.1 to be true it is enough to have the existence of
a sequence of eigenvalues along which we can approximate, in definition
6.2 the limit needs to be true for all the sequences of eigenvalues going to
infinity.

• In definition 6.2, the eigenfunction associated to each eigenvalue is always
the same. This means that it is possible to approximate any h using the
same sequence of eigenfunctions. The same is not true for definition 6.1,
where different eigenfunctions associated to the same eigenvalue can be
needed to approach different solutions to the Helmholtz equation.

We recall that, by the local weak limit formulation, if M has the Berry property
it is true that for any bounded, continuous functional G : C∞(Rd) → R it holds
that

(6.4) Ep(G(φ
k
p)) −−−−→

k→∞
E(G(ΨBerry)).
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We can then assert the following

Proposition 6.4. If (M, g) satisfies the Berry’s property, then it also exhibits
strong inverse localization.

Proof. Fix a small error ǫ > 0. Let χ ∈ C∞(Rd) be an even decreasing function
that is equal to 1 on (0, ǫ/2) and is supported on (0, ǫ). Fix a monochromatic wave
h, a natural number r ∈ N and take the functional F defined as

(6.5) F (f) := χ
(
‖f − h‖Cr(B)

)

for any f ∈ C∞(Rd). Explicitly, we have that

(6.6) F (f) = χ
(
‖f − h‖Cr(B)

)
=





1 if ‖f − h‖Cr(B) < ǫ/2

Smooth in the middle

0 if ‖f − h‖Cr(B) > ǫ.

In particular,

(6.7) F (φkp) = χ
(∥∥φkp − h

∥∥
Cr(B)

)
,

for any k. This non-linear functional is continuous and bounded. Since the Berry
property holds by assumption, we have

(6.8) Ep(F (φ
k
p)) −−−−→

k→∞
E(F (ΨBerry)).

Notice that
(6.9)

E(F (ΨBerry)) =

∫

Cr(B)

F (f)dµBerry(f) =

∫

Cr(B)

χ
(
‖f − h‖Cr(B)

)
dµBerry(f) =

(6.10)∫

{f∈Cr,‖f−h‖<ǫ/2}
χ (‖f − h‖) dµBerry(f)+

∫

{f∈Cr,ǫ/26‖f−h‖6ǫ}
χ (‖f − h‖) dµBerry(f)

(6.11)

= µBerry
(
{f ∈ Cr(B), ‖f − h‖Cr(B) 6 ǫ/2}

)
+

∫

{f∈Cr,ǫ/26‖f−h‖6ǫ}
χ (‖f − h‖) dµBerry(f).

The next step is to show that the set of functions that are ǫ/2-close to h in Cr(B)
metric has positive Berry measure. This is standard and can be deduced from [23,
Section A7]. A brief sketch of a proof is as follows.

First, recall that any solution to the Helmholtz equation can be expanded as a
Bessel-Fourier series as

(6.12) h(x) =

∞∑

l=0

dl∑

m=1

clm
Jl+ d

2
−1(|x|)

|x| d2−1
Ylm

(
x

|x|

)
.

Here Jν denotes the Bessel function of order ν and {Ylm(ξ)} is a real-valued or-
thonormal basis of d-dimensional spherical harmonics; the order l means that the
spherical harmonic is the restriction to the sphere Sd−1 of a homogeneous harmonic
polynomial of degree l, and dl is the multiplicity of this space.
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On the other hand, it is known that the field ΨBerry can be written as

(6.13) ΨBerry(x) =

∞∑

l=0

dl∑

m=1

alm
Jl+ d

2
−1(|x|)

|x| d2−1
Ylm

(
x

|x|

)
,

where alm are independent Gaussian variables. Since the topology we are con-
sidering in C∞(Rd) is precisely that of convergence of each coefficient in the ex-
pansion, we have the desired result because for any l ∈ N and any 1 6 m 6 dl,
P (alm = clm) > 0.

Using this, we can then infer that E(F (ΨBerry)) > 0. We conclude that Ep(F (φ
k
p))

converges to a positive number when k → ∞, and hence for big enough k (and so,
small enough 1/

√
λk) there must be a positive measure set of points onM for which

F (φkp) > 0. This clearly implies, by the definition of F , that for those points and

large values of k, we have that ‖φkp − h‖Cr(B) < ǫ. This can be made true for any
ǫ, so we have proved that

(6.14) lim
k→∞

‖φkp − h‖Cr(B) = 0.

This is, of course, also true for any subsequence of λk so indeed

(6.15) lim
λ→∞

∥∥∥∥ψλ
(
Expp

( ·√
λ

))
− h

∥∥∥∥
Cr(B)

= 0,

for a positive measure set of points p, which is precisely definition 6.2. �

Regarding this result, there are a few remarks to be made.

• The set of admissible points for any k ∈ N, say Nk ⊂ M , satisfies the
stronger condition of being “asymptotically dense”. Since the property

(6.16) Ep(F (φ
k
p)) −−−−→

k→∞
E(F (ΨBerry)).

is also true if we restrict ourselves by choosing p in an arbitrary open set,
say p ∈ U ⊂M , it is clear that the set limk→∞ U∩Nk has positive measure
for any arbitrary open set. This implies that for any ǫ > 0 and any point
q ∈ M , the set limk→∞B(q, ǫ) ∩ Nk 6= ∅, and therefore limk→∞Nk is
dense in M when taking the limit.

• Our main interest is in the following easy application:

Corollary 6.5. If (M, g) does not exhibit strong inverse localization, then
it does not admit Berry’s property. For example, as seen in [13], some tori
(irrational ones) do not satisfy the inverse localization property (neither
6.1 nor 6.2) and, therefore, do not satisfy Berry’s property.

• The inverse localization property can be applied to study nodal sets of
eigenfunctions. Precisely, it is true the following result [13]:

Theorem 6.6. If a manifold M does satisfy 6.1 or 6.2, given any natu-
ral N and a collection of compact embedded hypersurfaces Σj (1 6 j 6 N)
of Rd that are not linked, any positive integer r and any ε, there exists
some R > 0 such that for all large enough n there is an eigenfunction ψn
with eigenvalue λn such that the function

(6.17) ψn

(
Expp

( ·√
λn

))
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has at least N nodal components of the form

(6.18) Σ̃nj := λ−1/2
n Φn(cjΣj + pj)

and at least N nondegenerate local extrema in the ball of radius R. Here
cj > 0, pj ∈ Rd, and Φn is a diffeomorphism of Rd which is close to the
identity ‖Φn − id‖Cr(Rd) < ε.

Therefore, using this formulation of the Berry’s conjecture we can gain
some knowledge in the topology of nodal set of eigenfunctions of manifolds
satisfying the RWM.

• Definition 3.2 does also make sense if we considerM to be a manifold with
boundary and (ψn)n to be Dirichlet eigenfunctions, and can be found in
[21]. The inverse localization can also be defined in that context.
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