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NON-PARAMETRIC LEARNING OF STOCHASTIC DIFFERENTIAL
EQUATIONS WITH NON-ASYMPTOTIC FAST RATES OF

CONVERGENCE∗

RICCARDO BONALLI† AND ALESSANDRO RUDI‡

Abstract. We propose a novel non-parametric learning paradigm for the identification of drift
and diffusion coefficients of multi-dimensional non-linear stochastic differential equations, which relies
upon discrete-time observations of the state. The key idea essentially consists of fitting a RKHS-based
approximation of the corresponding Fokker-Planck equation to such observations, yielding theoretical
estimates of non-asymptotic learning rates which, unlike previous works, become increasingly tighter
when the regularity of the unknown drift and diffusion coefficients becomes higher. Our method
being kernel-based, offline pre-processing may be profitably leveraged to enable efficient numerical
implementation, offering excellent balance between precision and computational complexity.

Key words. Non-parametric system identification with guarantees, non-linear stochastic differ-
ential equations, discrete-time observation, Reproducing Kernel Hilbert Space.

1. Introduction. Consider non-linear stochastic differential equations of type

(1.1) dX(t) = b(t,X(t)) dt+
√
a(t,X(t)) dWt, t ∈ [0, T ].

Here, X(t) ∈ Rn denotes the (stochastic) state of dimension n ∈ N of the system
at time t ∈ [0, T ], with T > 0 a fixed time horizon, (Wt)t∈[0,T ] is a n–dimensional
Wiener process, whereas b : [0, T ] × Rn → Rn and a : [0, T ] × Rn → Sym++(n) are
regular enough drift and diffusion coefficients, with Sym++(n) ⊆ Rn×n the subset
of symmetric positive-definite matrices. Equations such as (1.1) may be profitably
leveraged to accurately model complex phenomena in a wide range of applications,
such as aerospace, finance, and robotics to name a few [38, 50, 7, 6, 47].

In practice, both coefficients a and b might be completely unknown, e.g., a might
model external perturbations due to many different physical phenomena which affect
the motion of the system, as it occurs in aerospace and robotics. Therefore, appro-
priate stochastic system identification procedures for both a and b must be devised.

1.1. Related Work. The problem of stochastic system identification has been
investigated for several decades. The earliest methods mainly address either discrete-
time models [23, 33] or continuous-time models that are however linear in the state
variable [18], which thus do not fit the identification setting introduced by (1.1).

More recently, identification of non-linear stochastic differential equations such
as (1.1) have seen an important surge of interest. More specifically, besides some
likelihood-based [27] or Kalman filtering-based estimation methods [44, 5, 41], which
assume continuous-time observation of the stochastic state, the vast majority of the
existing methods leverage more realistic discrete-time observations ofX . Efficient par-
adigms range from 1. non-parametric estimation [12, 19, 11, 21] and Bayesian estima-
tion [46, 36], to 2. maximum likelihood and quasi-likelihood methods [15, 51, 30, 45],
generalized methods of moments [17, 16, 37], and online gradient descent-based meth-
ods [20, 32], among others. On the one hand, although Group 1. of these works
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2 R. BONALLI AND A. RUDI

provides learning rates which become increasingly tighter when the number of ob-
servations of the state grows, estimates of the error between the unknown drift and
diffusion coefficients and the learned ones are obtained by assuming diffusion coeffi-
cients are either known or have specific parametric structures. On the other hand,
although Group 2. of the aforementioned works rely on generally milder assumptions
to be implemented, they require working with given families of finite-dimensional para-
metric drift and diffusion coefficients, which might hinder the identification process
in the case the family of parametric coefficients is not rich enough.

Importantly, none of the above works has investigated how to leverage the regu-
larity, i.e., high order continuous differentiability of drift and diffusion coefficients to
improve learning rates. Although such analysis has been recently undertaken in, e.g.,
[1, 35, 2, 28], these studies often work with SDE that are either scalar or perturbed
by constant diffusion coefficients, and they offer learning rates that are often only
asymptotic. Therefore, designing methods for the identification of multi-dimensional
non-linear SDE with non-constant diffusion coefficients under discrete-time observa-
tions of the state remains a challenging open question (note that multivariate settings
are known to generally require very different techniques, see, e.g., [35, 2]). In particu-
lar, a key part of the challenge lies in developing non-asymptotic rates of convergence
that become tighter not only when the number of observations of the state grows, but
also when the regularity of drift and diffusion coefficients is higher.

Finally, from a numerical standpoint, learning-based methods, such as scalable
gradient methods [24] and infinitely deep Bayesian neural networks [49], have shown
remarkable performance on complex stochastic differential equations. Unfortunately,
it seems extremely challenging to endow these latter paradigms with theoretical guar-
antees of convergence, motivating investigation of numerically efficient identification
methods for (1.1) which enjoy guarantees of accuracy under mild assumptions.

1.2. Outline and Contributions. We propose a non-parametric, Reproducing
Kernel Hilbert Space (RKHS)-based learning paradigm for the identification of drift
and diffusion coefficients of the multi-dimensional non-linear SDE (1.1), which relies
upon discrete-time observation of the state. In particular, motivated by classical
likelihood-based methods [37] we propose a two-step, discrete-time observation-based
scheme which entails fitting the Fokker-Planck equation related to (1.1).

Under assumptions of smoothness for the unknown drift and diffusion coefficients,
we provide theoretical estimates of non-asymptotic learning rates which become in-
creasingly tighter when the number of observations of the state grows. In particular,
given the nature of our data set, which essentially depends on observations of the state
process, we consider the error between solutions to (1.1) generated with the learned
drift and diffusion coefficients and the unknown trajectories of (1.1) is a “good metric”
to test the accuracy of our identification method. Importantly, under this accuracy
metric we can additionally prove our learning rates become tighter when the regularity
(in a Sobolev sense) of the unknown drift and diffusion coefficients is higher. Finally,
from a numerical standpoint, our method being kernel-based, offline pre-processing
may be successfully leveraged to enable efficient implementations, offering excellent
balance between precision and computational complexity (details are in Section 6).

Our method is composed of two steps which are informally summarized below.

A. Learning the laws of the stochastic differential equation through inde-
pendent discrete-time observation of the state.

We assume there exist regular enough, i.e. essentially C2m+1, m ∈ N, drift
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b : [0, T ] × Rn → Rn and diffusion a : [0, T ] × Rn → Sym++(n), and a stochastic
process X : [0, T ]× Ω → Rn in some filtered probability space (Ω,G,F ,P), such that
X solves (1.1) with drift b and diffusion a. In addition, we may assume we can sample
X at M ∈ N times 0 = t1 < · · · < tM = T , and more specifically that at every time
tℓ, ℓ = 1, . . . ,M , we have access to N ∈ N samples Xℓ,1 , X(tℓ, ω1), . . . , Xℓ,N ,

X(tℓ, ωN) of the solution X which have been independently drawn from PX(tℓ,·).
In such setting, as first step we propose to approximate the unknown densities

p : [0, T ]× Rn → R of the laws of X through the (random) RKHS-based model:

p̂(t, x) ,

M∑

ℓ=1

cℓ(t)ĝℓ(x), where ĝℓ(x) ,
1

N

N∑

j=1

ρR(x−Xℓ,j),

for appropriate coefficients cℓ : [0, T ] → R and radial mappings ρR, R > 0. Let µX

denote the probability measure which is generated by the process X . For every tuple
of precision parameters 0 < ε, δ < 1, if the unknown drift b and diffusion a are regular
enough, by leveraging RKHS approximation theory we can show appropriate values
for M , N , and R (which depend on ε and m uniquely) may be selected so that the
following learning rate holds with probability µX at least 1− δ:

(1.2)

∫ T

0

∥∥∥∥
∂p̂

∂t
(t, ·)− ∂p

∂t
(t, ·)

∥∥∥∥
2

L2

+ ‖p̂(t, ·)− p(t, ·)‖2H2 dt = O



(
log

(
1

δε

) 1
2

ε

)2

,

where ‖ · ‖L2 and ‖ · ‖H2 denote the norms of the Hilbert spaces L2(Rn,R) and
H2(Rn,R), respectively. Moreover, the higher the degree of smoothness of b and a is,
the lower the values of M , N , and R needed to achieve this precision become.

The main benefit which comes with the model p̂ consists of computing accurate
finite-dimensional approximations of the laws of solutions to (1.1) without a priori
resorting to conservative families of parametric densities. In particular, the model p̂
being kernel-based, one may considerably reduce the computational effort by resorting
to prior offline computations, which essentially boil down to simply inverting aM×M
matrix. As a byproduct, (1.2) provides a quantitative estimate of the approximation
error which is key to derive theoretical guarantees for the accuracy of our identification
method in the next step.

B. Learning finite-dimensional models for the drift and diffusion coeffi-
cients by fitting approximated solutions to the Fokker-Planck equation.

If the unknown drift b and diffusion a are regular enough, the unknown densities
p satisfy the following Fokker-Planck equation:

(1.3)
∂p

∂t
(t, y) = (La,b

t )∗p(t, y), (t, y) ∈ [0, T ]× R
n,

where (La,b
t )∗ is the dual operator of the Kolmogorov generator

La,b
t ϕ(y) ,

1

2

n∑

i,j=1

aij(t, y)
∂2ϕ

∂yi∂yj
(y) +

n∑

i=1

bi(t, y)
∂ϕ

∂yi
(y), ϕ ∈ C2(Rn,R).

Given the results at the previous step, it is then natural to learn models of the drift
b̂Q : [0, T ]× Rn → Rn and the diffusion âQ : [0, T ]× Rn → Sym++(n) which “best”
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match the Fokker-Planck equation when evaluated at p̂, that is as solutions to the
following finite-dimensional convex optimization problem:

(1.4) min
(âQ ,̂bQ)∈HQ

∫ T

0

∥∥∥∥
∂p̂

∂t
(t, ·)− (LâQ ,̂bQ

t )∗p̂(t, ·)
∥∥∥∥
2

L2

dt+ λ‖(âQ, b̂Q)‖2H,

where HQ is an appropriate finite-dimensional subspace of a RKHS H with norm
‖ · ‖H, in which the unknown drift and diffusion coefficients lie, whereas λ > 0 is a
regularization weight to be appropriately selected. As detailed in Section 6, problem
(1.4) admits a finite dimensional characterization that can be solved exactly, i.e., no
approximation or integral discretization is needed, with reduced computational cost.

Thanks to estimate (1.2), one shows that, for appropriate choices of the subspace

HQ and the regularization weight λ, the solution (âQ, b̂Q) ∈ HQ to problem (1.4)
satisfies the following, with probability µX at least 1− δ:

∫ T

0

∥∥∥∥
∂p̂

∂t
(t, ·)− (LâQ ,̂bQ

t )∗p̂(t, ·)
∥∥∥∥
2

L2

dt+ λ‖(âQ, b̂Q)‖2H =

= O



(
log

(
1

δε

) 1
2

ε

)2

.(1.5)

By combining estimate (1.5) with energy-type estimates for parabolic partial differen-
tial equations, we may infer theoretical estimates of learning rates for the identification
of drift and diffusion coefficients of non-linear stochastic differential equations, which
we informally summarize as follows.

As we mentioned previously, since our data consists of observation of the state
process, the error between the unknown densities and the densities stemming from
the learned coefficients is a “good metric” with which the convergence of an identifica-
tion algorithm for stochastic differential equations which leverage observations of the

state process may be tested. To better formalize this metric, let X âQ ,̂bQ and pâQ ,̂bQ

respectively denote the solutions to (1.1) and (1.3) with coefficients (âQ, b̂Q) ∈ HH .
We thus define the following metric to test the accuracy:

E(âQ, b̂Q) , ‖pâQ ,̂bQ
− p‖2L2 =

∫ T

0

‖pâQ ,̂bQ
(t, ·)− p(t, ·)‖2L2 dt.

By adopting this metric, our main result on the accuracy of our learning method may
be summarized in the following meta-theorem:

Meta-Theorem 1.1. Assume the unknown drift b and diffusion a coefficients
are regular enough. The following estimate holds true with probability µX at least
1− δ:

E(âQ, b̂Q) = O



(
log

(
1

δε

) 1
2

ε

)2



In particular, for every regular enough function f : [0, T ]× Rn → R:

(1.6) E

[∫ T

0

f(t,X(t)) dt

]
= E

[∫ T

0

f(t,X âQ ,̂bQ(t)) dt

]
+O

(
log

(
1

δε

) 1
2

ε

)
.
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Although the estimates provided in this meta-theorem are informal and need
some clarification (see Section 5 for more rigorous statements), they show the afore-
mentioned two-step identification method enjoys practical theoretical guarantees of
accuracy, i.e., estimate (1.6): an observation/regulation metric f computed at the
unknown state solution to (1.1) with unknown drift b and diffusion a may be rather

observed through the process solution to (1.1) with model drift b̂Q and diffusion âQ
up to an error O

(
log
(

1
δε

)
ε
)
. Such result has important implications in observation

and regulation of stochastic differential equations [21], and it may represent a good
starting result to develop paradigms for the identification of controlled stochastic dif-
ferential equations, which are crucial for the control of complex autonomous systems.

1.3. Paper Organization. The paper is organized as follows. After gathering
basic notation and preliminary results in Section 2, in Section 3 we summarize both
classical and less classical results about stochastic differential equations and corre-
sponding relationships with the Fokker-Planck equation. To ease the reading of this
section, we moved a more detailed description of the aforementioned results to Sec-
tion 8 and their technical proofs to Appendix A. Similarly, in Section 4 we expose the
results in RKHS theory which we leverage in this work. Our main contributions are
contained in Section 5, which in particular details the methodologies we exposed at
the previous steps 1) and 2) and corresponding learning rates. Precision and compu-
tational complexity of our approach are discussed in Section 6. Finally, in Section 7
we provide concluding remarks and some perspectives.

2. Notation and Preliminary Results. We fix the dimension n ∈ N of the
state space and a time horizon T > 0 for the identification process. We denote by
Sym+(n) and Sym++(n) the subsets of Rn×n of symmetric semi-positive-definite and
symmetric positive-definite matrices, respectively.

We assume stochastic differential equations are defined on a given filtered prob-
ability space (Ω,G , FT ,F , (Ft)t∈[0,T ],P), which is complete, and the noise is
generated by a F–adapted Wiener process W : [0, T ] × Ω → Rn (e.g., we may con-
sider the canonical process in the space Ω = C([0, T ],Rn), equipped with the Wiener
measure). Moreover, we introduce the complete metric space (S, d), where

S , C([0, T ],Rn), d(w1, w2) , sup
t∈[0,T ]

‖w1(t)− w2(t)‖,

and equip it with the Borel sigma-algebra B(S) induced by the metric d.
For any ℓ ∈ N, r, s > 0, and any A ⊆ R

ℓ, we denote by Hr,s([0, T ] × R
n, A)

the Sobolev (Hilbert) space of functions whose image is in A, and whose weak time
derivatives are defined up to order r and whose weak space derivatives are defined
up to order s; in particular, we denote Hr([0, T ] × Rn, A) , Hr,r([0, T ] × Rn, A).
Finally, we introduce the following Hilbert space and corresponding positive convex
cone, in which we will assume the unknown drift and diffusion coefficients lie (this
latter requirement will be made more explicit shortly):

Hm , Hd(m)([0, T ]× R
n,Rn×n)×Hd(m)([0, T ]× R

n,Rn),

H+
m ,

{
(a, b) : [0, T ]× R

n → Sym+(n)× R
n : (a, b) ∈ Hm

}
,

for every m ∈ N, where d(m) , 2(m + 1) +
⌊
n
2

⌋
∈ N is the unique integer greater

than 2m+1 such that
⌊
d(m)− n

2

⌋
= 2m+1. The choice of taking the same exponent

d(m) for both the drift and the diffusion coefficients has been made without loss of
generality for the sake of conciseness. The following regularity result will be crucial:
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Theorem 2.1. There exists a constant C > 0, which depends on m uniquely,
such that every (a, b) ∈ H+

m satisfies the following properties:
1. Differentiability:

a ∈ C2m+1([0, T ]× R
n,Rn×n), b ∈ C2m+1([0, T ]× R

n,Rn).

2. Boundness of functions and their derivatives:

2m+1∑

i=0

(
‖Di

(t,y)a‖L∞ + ‖Di
(t,y)b‖L∞

)
≤ C‖(a, b)‖Hm ,

where Di
(t,y) denotes the differential of order i with respect to (t, y). In par-

ticular, the following refined bound holds:

2∑

i=0

(
‖Di

(t,y)a‖L∞ + ‖Di
(t,y)b‖L∞

)
≤ C‖(a, b)‖Hd(m)−2m+1 .

The proof of this result makes use of classical embedding arguments and it is
reported in Appendix A for the sake of completeness.

3. Stochastic Differential and Fokker-Planck Equations. In this section,
we summarize both classical and less classical results about stochastic differential
equations, and corresponding relationships with the Fokker-Planck equation. In par-
ticular, we propose a minimally detailed discussion for the sake of conciseness, report-
ing a more structured exposition in Section 8 for the sake of completeness.

3.1. The Fokker-Planck equation. From now on, we fix m ∈ N (to be speci-
fied later) and a constant α > 0. Since we will need to work with diffusion coefficients
which are never trivial, for every (a, b) ∈ H+

m we will rather replace a with the mapping

a+ αI : [0, T ]× R
n → Sym++(n) with a+ αI =

√
a+ αI

√
a+ αI.

At this step, we fix a non-negative density p0 ∈ L2(Rn,R) which will serve as appropri-
ate initial condition, and we denote by µ0 ∈ P(Rn) the associate probability measure.
Motivated by [43, 14], we recall the following notions of stochastic differential equation
and its solutions (though they differ from the ones in [43, 14]):

Theorem-Definition 3.1. There exists a measurable mapping X : Rn ×Ω → S
such that each process Xx(t, ω) , X(x, ω)(t) is F–progressively measurable for every
x ∈ Rn, and such that the following Stochastic Differential Equation (SDE)

SDEx




dXx(t) = b(t,Xx(t)) dt+

√
(a+ αI)(t,Xx(t)) dWt,

P
(
Xx(0) = x

)
= 1,

holds in (Ω,G,F ,P) for µ0-almost every x ∈ Rn. We then say that X solves or is
solution to SDE (with coefficients (a, b) ∈ H+

m). The solution X to SDE is unique in
the following sense: if a measurable mapping Y : Rn × Ω → S solves SDE, then it
holds that X(x, ·) = Y (x, ·) a.s., for µ0-almost every x ∈ Rn.

For the well-posedness of Theorem-Definition 3.1, see Section 8. Solutions to SDE
share a close relationship with the solutions to the Fokker-Planck equation, which we
introduce next. For every (a, b) ∈ H+

m, we denote the Kolmogorov generator by

La,b
t ϕ(y) ,

1

2

n∑

i,j=1

(a+ αI)ij(t, y)
∂2ϕ

∂yi∂yj
(y) +

n∑

i=1

bi(t, y)
∂ϕ

∂yi
(y), ϕ ∈ C2(Rn,R).
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Let X : Rn × Ω → S be solution of SDE with coefficients (a, b) ∈ H+
m. Thanks to

specific regularity properties of X (we refer to Section 8 for these latter), we may
define the curve µ : [0, T ] → P(Rn) of probability measures

(3.1) µt(A) ,

∫

Rn

∫

Ω

1{Xx(t)∈A} dP µ0(dx), A ∈ B(Rn),

and note that µ is narrowly continuous, i.e., for every ϕ ∈ Cb(R
n,R), the mapping

t ∈ [0, T ] 7→
∫

Rn

ϕ(y)µt(dy) =

∫

Rn

∫

Ω

ϕ(Xx(t)) dP µ0(dx) ∈ R

is continuous. By combining this latter property with the results in [14], we intro-
duce the following notions of Fokker-Planck equation, its solutions, and additional
relationship between these solutions and the solutions to SDE (see also Section 8):

Theorem-Definition 3.2. The curve µ : [0, T ] → P(Rn) defined through (3.1)
is the unique narrowly continuous curve satisfying the Fokker-Planck Equation

FPE





d

dt

∫

Rn

ϕ(y)µt(dy) =

∫

Rn

La,b
t ϕ(y)µt(dy), ϕ ∈ C∞

c (Rn,R),

µt=0 = µ0.

We then say that µ solves or is solution to FPE (with coefficients (a, b) ∈ H+
m). If X

denotes the solution to SDE, the following representation formula holds:

(3.2)

∫

Rn

ϕ(y)µt(dy) =

∫

Rn

∫

Ω

ϕ(Xx(t)) dP µ0(dx), for t ∈ [0, T ], ϕ ∈ Cc(R
n,R).

3.2. Absolutely continuous solutions to the Fokker-Planck equation.
Thanks to the regularity of the coefficients (a, b) ∈ H+

m which is offered through
Theorem 2.1, the solution µ to FPE is absolutely continuous, i.e., it takes the form

µt(A) =

∫

A

p(t, y) dy, A ∈ B(Rn),

for an appropriate p : [0, T ]× Rn → R. To elucidate this property, we first introduce
broader definitions of FPE and corresponding solutions, which encompass Theorem-
Definition 3.2 as a sub-case (see Theorem 3.4 below) and will be useful in our analysis:

Definition 3.3. Let f ∈ L2([0, T ] × Rn,R) and p̄ ∈ L2(Rn,R). A (regular
enough) function p : [0, T ] × R

n → R is said to solve or be solution to the non-
homogeneous Fokker-Planck Equation (with coefficients (a, b) ∈ H+

m), if

FPEf





d

dt

∫

Rn

ϕ(y)p(t, y) dy =

=

∫

Rn

(
La,b
t ϕ(y)p(t, y) + f(t, y)ϕ(y)

)
dy, ϕ ∈ C∞

c (Rn,R),

p(0, ·) = p̄(·).

The next theorem gathers important properties of the solution to FPEf , addi-
tionally showing the solution to FPE is absolutely continuous. We refer the reader to
Section 8 for exhaustive presentation and proof of these results.
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Theorem 3.4. For every (a, b) ∈ H+
m, f ∈ L2([0, T ]×Rn,R), and p̄ ∈ L2(Rn,R),

there exists a unique mapping p ∈ C(0, T ;L2(Rn,R))∩H0,1([0, T ]×Rn,R) which solves
FPEf with coefficients (a, b) ∈ H+

m. In addition, the following estimate holds:

‖p(t, ·)‖2L2 +

∫ t

0

‖p(t, ·)‖2H1 dt ≤

≤ C
(
‖(a, b)‖Hm

)(
‖p̄‖2L2 +

∫ t

0

‖f(s, ·)‖2L2 ds

)
, t ∈ [0, T ],(3.3)

where C
(
‖(a, b)‖Hm

)
> 0 is a constant which continuously depends on ‖(a, b)‖H+

m
.

Assume f = 0 and p̄ = p0. Then, it holds that

p(t, ·) ≥ 0,

∫

Rn

p(t, y) dy = 1, t ∈ [0, T ],

and therefore, if for every t ∈ [0, T ] we define

µt(A) ,

∫

A

p(t, y) dy, A ∈ B(Rn),

then the curve µ : [0, T ] → P(Rn) is narrowly continuous and solves FPE. Finally, if
in addition p0 ∈ H2m+1(Rn,R), then the function p satisfies

p ∈ Hm+1,2(m+1)([0, T ]× R
n,R)

and the following Strong Fokker-Planck Equations (with coefficients (a, b) ∈ H+
m):

SFPE





∂p

∂t
(t, y) = (La,b

t )∗p(t, y), a.e. (t, y) ∈ [0, T ]× R
n,

p(0, ·) = p0(·),

where (La,b
t )∗ denotes the dual operator of the Kolmogorov generator La,b

t .

Combining Theorem 3.4 with the representation formula (3.2) allows us to intro-
duce criteria to establish satisfactory guarantees for our learning approach in the con-
text of observation and regulation of stochastic differential equations (a more exhaus-
tive presentation is provided in Section 8). More specifically, let f ∈ L2([0, T ]×Rn,R)
be an observation/regulation integral metric and (a, b) ∈ H+

m. By denoting Xa,b and
pa,b respectively the solution to SDE and to SFPE with coefficients (a, b) ∈ H+

m, we are
interested in studying the accuracy with which the following observation/regulation
metric is approximated by our learning approach:

(3.4) Eµ0×P

[∫ T

0

f(t,Xa,b
x (t)) dt

]
=

∫ T

0

∫

Rn

f(t, y)pa,b(t, y) dydt.

To give precise estimates of the approximation error for (3.4), the following corollary
of Theorem 3.4 will be crucial (see Section 8 for a proof):

Corollary 3.5. For every (a1, b1), (a2, b2) ∈ H+
m, it holds that

∣∣∣∣∣Eµ0×P

[ ∫ T

0

f(t,Xa1,b1
x (t)) dt

]
− Eµ0×P

[ ∫ T

0

f(t,Xa2,b2
x (t)) dt

]∣∣∣∣∣
≤ ‖f‖L2‖pa1,b1 − pa2,b2‖L2 .(3.5)
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4. Useful Results from RKHS Theory. In this section, we list classical re-
sults about Sobolev Spaces of functions with scattered zeros and Reproducing Kernel
Hilbert Spaces (RKHS), which will be extensively leveraged in the following sections
and for which we mainly refer to [3, 48, 42].

Let r, s ∈ N such that r > s/2. Every function u ∈ Hr(Rs,R) satisfies

(4.1) C‖u‖L∞ ≤ ‖u‖Hr = ‖Jr(·)(Fu)(·)‖L2 ,

where Jr(z) , (1 + ‖z‖2)r/2/(2π)s/2, z ∈ Rs denotes the Bessel potential and Fu the
Fourier transform of u, whereas the constant C > 0 depends on s uniquely.

Let ℓ ∈ N, D ⊆ Rs be an open and bounded domain, and u ∈ Hr(D,R) be a

function such that u|X̂ = 0, where X̂ℓ , {x1, . . . , xℓ} ⊆ Rs is a finite set of ℓ given
points. For the fill distance, which is defined by

hX̂ℓ,D
, sup

x∈D
min

i=1,...,ℓ
‖x− xi‖,

the following inequality holds true, e.g., [48, Theorem 11.32],

(4.2) ‖u‖Hν ≤ Chr−ν

X̂ℓ,D
‖u‖Hr , 0 ≤ ν ≤ r,

where the constant C > 0 depends on ν, r, and D uniquely. Inequality 4.2 may be
interpreted as follows: if u is zero on a well distributed set of points overD, i.e., hX̂ℓ,D

is small, and is very regular, i.e., r is large, then any norm ‖ · ‖Hν , 0 ≤ ν ≤ r, e.g.,
the L2 norm for ν = 0, is small over the whole domain D.

Given a set D, a RKHS HD is a separable Hilbert space of functions u : D → R

such that the following reproducing property holds true:

Definition 4.1 (Reproducing property [3]). For every point x ∈ D there exists
a reproducing function kx ∈ HD such that

f(x) = 〈f, kx〉HD
, f ∈ HD.

We denote KD : D ×D → R, the reproducing kernel associated to HD, i.e.,

KD(x1, x2) , 〈kx1 , kx2〉HD
, x1, x2 ∈ D.

The following crucial result holds true, see, e.g., [42]:

Theorem 4.2. Given a reproducing kernel for a RKHS HD, by the reproducing
property, the reproducing function kx ∈ HD for any x ∈ D corresponds to

kx = KD(x, ·) ∈ HD.

We recall that the Sobolev space Hr(D,R) is a RKHS for r > s/2, and D ⊆ R
s be

either Rs or an open domain with Lipschitz boundary and s ∈ N. In this case, the
associated reproducing kernel has a known closed form, see, e.g., [48].

5. Learning Stochastic Differential Equations. In this section, we finally
introduce and study the problem of learning drift and diffusion coefficients of a sto-
chastic differential equation. For this, from now on we assume the following hypoth-
esis, which naturally stems from our setting, to hold true (see also Definition 3.1):

(A) Let m ∈ N with m ≥ 1, α > 0, and p0 ∈ H2m+1(Rn,R). There exist (a∗, b∗) ∈
H+

m and a (unique) solution X to SDE with coefficients (a∗, b∗) ∈ H+
m.
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Thanks to the results we gathered in Section 3, one readily checks that Assump-
tion (A) yields the following characterization of the mapping X :

Corollary 5.1. With the notation Lt , La∗,b∗
t , there exists a unique function

p ∈ Hm+1,2(m+1)([0, T ]× Rn,R) which is non-negative and such that

∫

A

p(t, x) dx = µt(A) ,

∫

Rn

∫

Ω

1{Xx(t)∈A} dP µ0(dx), for all A ∈ B(Rn),

and which satisfies:

∂p

∂t
(t, y) = L∗

t p(t, y), a.e. (t, y) ∈ [0, T ]× R
n.

To achieve our goal, we proceed along three successive steps:
1. First, we approximate the unknown curve of densities p from given samples

{Xxj(tℓ, ωj)}ℓ=1,...,M,j=1,...,N of the unknown solution X to SDE, through a
finite-dimensional RKHS-based model p̂. Thanks to this, all the quantities
appearing in the learning problems we define in the next steps can be actually
(tractably) computed. As is customary in many applications, we assume our
data are collected by independently sampling X at pre-defined times.

2. Second, we approximate the unknown coefficients (a∗, b∗) ∈ H+
m through ad-

ditional coefficients (â, b̂) ∈ H+
m which “best” match SFPE when evaluated

at p̂, through an appropriately well-posed infinite-dimensional learning prob-
lem. We then combine appropriate estimates with (3.3) to show the solution

to SFPE with coefficients (â, b̂) well-approximates the unknown p.
3. Third, we make the learning problem at the second step “tractable” by ap-

proximating the coefficients (â, b̂) through a finite-dimensional RKHS-based

model (âQ, b̂Q). We then combine the estimates we obtained at the second

step with (3.3) to show the solution to SFPE with coefficients (âQ, b̂Q) well-
approximates the unknown p. Finally, this latter property is combined with
(3.5) to show theoretical error bounds in the context of observation and reg-
ulation of stochastic differential equations.

5.1. Approximating solutions to SDE via RKHS-based models. We start
by defining our data set. We assume sampling happens at M ∈ N fixed times 0 =
t1 < · · · < tM = T , which are equally spaced for simplicity, i.e., tℓ , T (ℓ−1)/(M−1).
Then, we assume at each time tℓ, ℓ = 1, . . . ,M , we have access to N ∈ N samples
Xℓ,1 , Xx1(tℓ, ω1), . . . , Xℓ,N , XxN (tℓ, ωN ) of the solution X to SDE, which have
been independently drawn from the same probability µtℓ , with density p(tℓ, ·) (see
Corollary 5.1). Now, for every t ∈ [0, T ] the family of probability measures given by

µt,k , µt ⊗ · · · ⊗ µt︸ ︷︷ ︸
k−times

: B(Rn × · · · × R
n

︸ ︷︷ ︸
k−times

) → [0, 1], k ∈ N

may be extended to a unique probability measure µN
t : BN → [0, 1] thanks to Kol-

mogorov (extension) theorem, and by definition, for every ℓ = 1, . . . ,M and N ∈ N

the samples {Xℓ,j}j=1,...,N may be seen as independent random variables in the prob-
ability space ((Rn)N,BN, µN

tℓ), with equal density p(tℓ, ·). Finally, by one further
application of Kolmogorov theorem, we extend the family of probability measures
{µN

s1 ⊗· · ·⊗µN
sk
}0≤s1≤···≤sk≤T to a unique probability measure µX : (BN)[0,T ] → [0, 1],

so that, with an abuse of notation, µX |t1,...,tM = µN
t1 ⊗ · · · ⊗ µN

tM for every M ∈ N,
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and for every M,N ∈ N the samples {Xℓ,j}ℓ=1,...,M,j=1,...,N may be seen as (not nec-
essarily i.i.d.) random variables in the probability space

(
((Rn)N)[0,T ], (BN)[0,T ], µX

)
.

Below, the assessment “with probability at least” will be meant with respect to µX .
At this step, fix M,N ∈ N and define the following model (random) density

p̂(t, x) ,

M∑

ℓ=1

cℓ(t)ĝℓ(x), where ĝℓ(x) ,
1

N

N∑

j=1

ρR(x−Xℓ,j)

with ρR(x) , Rn/2‖x‖−n/2Bn/2(2πR‖x‖), R > 0 and Bn/2 is the Bessel J function

of order n/2, while cℓ(t) , e⊤ℓ G
−1v(t) with {e1, . . . , eM} the canonical basis of RM

and we define v(t) , (Km+1(t, t1), . . . ,Km+1(t, tM )). The notation G is used for the
Gram matrix with elements Gj,k , Km+1(tj , tk), where Km+1 denotes the Sobolev
kernel of smoothness degree m + 1 (see, e.g., [48, Page 133] for an explicit formula).
Finally, for every u ∈ H1,2([0, T ]× Rn,R) we denote

L(u) ,

∫ T

0

(∥∥∥∥
∂p

∂t
(t, ·)− ∂u

∂t
(t, ·)

∥∥∥∥
2

L2

+ ‖p(t, ·)− u(t, ·)‖2H2

)
dt.

Our result on the approximation of p via p̂ is as follows:

Theorem 5.2. There exists a constant C > 0, which depends on n, m, and T
uniquely, such that the following learning rate for the random model p̂ holds with
probability at least 1− δ, for every M,N ∈ N such that M ≥ 2T :

L(p̂) ≤ C
(
‖p‖2Hm+1,2 + ‖p‖2H1,2(m+1)

)
×

×
(
M−2m +R−4m +Rnlog

(
4M

δ

)
N−1

)
.

In particular, up to overloading C, for every ε > 0 small enough we have that

L(p̂) ≤ C
(
‖p‖2Hm+1,2 + ‖p‖2H1,2(m+1)

)
(
log

(
1

δε

) 1
2

ε

)2

≤ C
(
‖p‖2Hm+1,2 + ‖p‖2H1,2(m+1)

)
(
log

(
MN

δ

) 1
2

(MN)−
2m

n+2(2m+1)

)2

,

if M = ε−1/m/4, N = ε−(2+n/(2m)) (as closest integers), and R = ε−1/(2m).

Proof. For the sake of clarity, we divide the proof in several steps.

1) Preliminaries. With obvious notation, fix r, s ≥ 1 and define the operator

PM : Hr([0, T ],R) → Hr([0, T ],R), via (PMu)(t) =

M∑

ℓ=1

cℓ(t)u(tℓ).

For u ∈ Hr,s([0, T ]×Rn,R), we denote by ux the function ux(·) = u(·, x), x ∈ Rn, and
by ũ the function ũ(t, x) = (PMux)(t). Now, note that the function vx := ux −PMux
satisfies vx(tℓ) = 0 for any ℓ = 1, . . . ,M . From the results we recalled in Section 4, we
can bound the norm of functions with scattered zeros as follows: for every 0 ≤ σ ≤ r
there exists a constant Cr,σ > 0 such that

(5.1) ‖ux − PMux‖Hσ ≤ Cr,σM
σ−r‖ux‖Hr ,
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for almost every x ∈ Rn. Below, we will often implicitly overload the constant Cr,σ.
Moreover, we recall that, for α, β ≥ 0,

Dα
t D

β
x ũ(t, x) = Dα

t D
β
x(PMux)(t) = Dα

t PM (Dβ
xu)(t, x),

so that by leveraging (5.1) with σ = α, for 0 ≤ α ≤ r and 0 ≤ ν ≤ s, yields

∫ T

0

‖Dα
t u(t, ·)−Dα

t ũ(t, ·)‖2Hν dt =(5.2)

=
∑

|β|≤ν

∫ T

0

∫

Rn

(Dα
t D

β
xu(t, x)−Dα

t D
β
x ũ(t, x))

2 dxdt

=
∑

|β|≤ν

∫

Rn

∫ T

0

(Dα
t D

β
xu(t, x)−Dα

t PMD
β
xu(t, x))

2 dxdt

≤
∑

|β|≤ν

∫

Rn

‖Dβ
xu(·, x)− PMD

β
xu(·, x)‖2Hα dx

≤
∑

|β|≤ν

∫

Rn

C2
r,αM

2(α−r)‖Dβ
xu(·, x)‖2Hr dx = C2

r,αM
2(α−r)‖u‖2Hr,ν .

At this step, by decomposing p − p̂ = (p − p̃) + (p̃ − p̂) and applying the triangular
inequality to L(p̂), we obtain that

L(p̂)1/2 ≤ L(p̃)1/2 +A1/2,

A ,

∫ T

0

(∥∥∥∥
∂p̃

∂t
(t, ·)− ∂p̂

∂t
(t, ·)

∥∥∥∥
2

L2

+ ‖p̃(t, ·)− p̂(t, ·)‖2H2

)
dt.

Thanks to (5.2) and p ∈ Hm+1,2(m+1)([0, T ]× Rn,R), we may bound L(p̃) by

L(p̃)1/2 ≤ Cm+1,1M
−m‖p‖Hm+1,0 + Cm+1,0M

−(m+1)‖p‖Hm+1,2 .

The rest of the proof is devoted to appropriately bounding A.

2) Further decomposing the term A. For this, from the definition of both p̃ and
p̂, for every 0 ≤ α ≤ m+ 1 and 0 ≤ ν ≤ 2(m+ 1) we have that

(∫ T

0

‖Dα
t p̃(t, ·)−Dα

t p̂(t, ·)‖2Hν dt

)1/2

=

=



∫ T

0

∥∥∥∥∥

M∑

ℓ=1

Dα
t cℓ(t)(p(tℓ, ·)− ĝℓ(·))

∥∥∥∥∥

2

Hν

dt




1/2

≤
M∑

ℓ=1

‖cℓ‖Hα‖p(tℓ, ·)− ĝℓ(·)‖Hν .

In, particular, by applying this bound to the two terms in A, we infer that

A1/2 ≤
M∑

ℓ=1

(
‖cℓ‖H1‖p(tℓ, ·)− ĝℓ(·)‖L2 + ‖cℓ‖L2‖p(tℓ, ·)− ĝℓ(·)‖H2

)
.
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3) Bounding each term ‖p(tℓ, ·) − ĝℓ(·)‖H
ν . Fix ℓ = 1, . . . ,M and 0 ≤ ν ≤

2(m+1). As recalled in Section 4, the norm of any u ∈ Hν(Rn,R), with ν ∈ N writes

‖u‖Hν = ‖Jν(·)(Fu)(·)‖L2 ,

where Fu denotes the Fourier transform of u, and Jν(z) , (1 + ‖z‖2)ν/2/(2π)n/2,
z ∈ Rn. In particular, since the Fourier transform of ρR is 1BRn

R (0), it holds that

(5.3) F ĝℓ(z) =
N∑

j=1

1BRn

R (0)(z)e
2πiz⊤Xℓ,j = 1BRn

R (0)(z)F ĝℓ(z), z ∈ R
n,

so that, thanks to the fact that (1 − 1BRn
R (0))1BRn

R (0) = 0 and 1
2
BRn

R (0)
= 1BRn

R (0), by

denoting the function pℓ(·) , p(tℓ, ·) we may compute

‖p(tℓ, ·)− ĝℓ(·)‖Hν = ‖Jν(Fpℓ −F ĝℓ)‖L2

=
∥∥∥Jν(1 − 1BRn

R (0))Fpℓ + Jν1BRn
R (0)(Fpℓ −F ĝℓ)

∥∥∥
L2

≤
∥∥∥Jν(1 − 1BRn

R (0))J
−1
2(m+1)

∥∥∥
L∞

‖J2(m+1)Fpℓ‖L2

+
∥∥∥Jν1BRn

R (0)

∥∥∥
L∞

∥∥∥1BRn

R (0)(Fpℓ −F ĝℓ)
∥∥∥
L2

≤ Rν−2(m+1)‖pℓ‖H2(m+1) + 2νRν
∥∥∥1BRn

R (0)(Fpℓ −F ĝℓ)
∥∥∥
L2
,

where we used the fact that J2(m+1), Jν , and 1BRn

R (0) are radial functions, and thus

∥∥∥Jν(1 − 1BRn

R (0))J
−1
2(m+1)

∥∥∥
L∞

= sup
r>R

(1 +R2)−(2(m+1)+ν)/2 ≤ Rν−2(m+1),

∥∥∥Jν1BRn
R (0)

∥∥∥
L∞

= sup
0<r≤R

(1 +R2)ν/2 ≤ 2νRν , as soon as R ≥ 1.

4) Bounding each term
∥∥∥1

B
R
n

R
(0)

(Fpℓ −F ĝℓ)
∥∥∥
L

2
. For this, for every integers

ℓ = 1, . . . ,M and j = 1, . . . , N we define a random mapping ζℓ,j : (R
n)N → L2(Rn,C)

through the following expression, which holds for every xN ∈ (Rn)N,

ζℓ,j(x
N)(z) , 1BRn

R (0)(z) e
2πiz⊤Xℓ,j(x

N), z ∈ R
n.

Note that, for every fixed ℓ = 1, . . . ,M , since they depend deterministically from
Xℓ,1, . . . , Xℓ,M , the randommappings ζℓ,1, . . . , ζℓ,N are independent random mappings
in the probability space ((Rn)N,BN, µN

tℓ
), and they are additionally equally distributed

with respect to pℓ(·) , p(tℓ, ·). In particular, for every j = 1, . . . , N we may compute

EµN

tℓ

[ζℓ,j ](z) =

∫

Rn

1BRn

R (0)(z) e
2πiz⊤xp(tℓ, x) dx = 1BRn

R (0)(z)(Fpℓ)(z), z ∈ R
n.

We may also compute

ess sup
xN∈(Rn)N

∥∥∥∥∥
ζℓ,j(x

N)− EµN

tℓ

[ζℓ,j ]

N

∥∥∥∥∥

2

L2

≤ 4

N2

∫

Rn

1BRn

R (0)(z) dz =
4

N2
VnR

n,
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where Vn is the volume of the n-dimensional unit ball. At this step, thanks to Pinelis
inequality, for every η > 0 and ℓ = 1, . . . ,M , we may compute

µX



∥∥∥1BRn

R (0)(Fpℓ −F ĝℓ)
∥∥∥
L2
>

3(VnR)
n/2 log

(
4
η

)

√
N


 ≤

≤ µX



∥∥∥1BRn

R (0)(Fpℓ −F ĝℓ)
∥∥∥
L2
>

2
√
2(VnR)

n/2

√
log
(

2
η

)

√
N




= µN
tℓ




∥∥∥∥∥∥

N∑

j=1

ζℓ,j − EµN

tℓ

[ζℓ,j ]

N

∥∥∥∥∥∥
L2

>

2
√
2(VnR)

n/2

√
log
(

2
η

)

√
N


 ≤ η.

Therefore, for every δ > 0, by taking the union bound with η = δ/M , with probability
at least 1− δ it finally holds that

max
ℓ=1,...,M

∥∥∥1BRn

R (0)(Fpℓ −F ĝℓ)
∥∥∥
L2

≤ 3(VnR)
n/2log

(
4M
δ

) 1
2

√
N

.

5) Bounding each term ‖cℓ‖H
ν . By construction, each cℓ ∈ Hm+1([0, T ],R) is

the function with minimum norm that satisfies cℓ1(tℓ2) = δℓ1,ℓ2 , for ℓ1, ℓ2 = 1, . . . ,M .

In particular, since the function zℓ(t) , sinc(M(t − tℓ)/T ) is analytic, and thus zℓ ∈
Hm+1([0, T ],R), and satisfies zℓ1(tℓ2) = δℓ1,ℓ2 , for ℓ1, ℓ2 = 1, . . . ,M , it must hold that
‖cℓ‖Hm+1 ≤ ‖zℓ‖Hm+1 , for every ℓ = 1, . . . ,M . Therefore, since

max
ℓ1=1,...,M

|cℓ2(tℓ1)| = 1, ℓ2 = 1, . . . ,M,

by applying the bound for Sobolev functions with scattered zeros recalled in 4 with
h = T/M , we obtain that, for every 0 ≤ ν ≤ m+1 there exists a constant Cm+1,ν > 0
such that

‖cℓ‖Hν ≤ Cm+1,ν

(
(T/M)−ν + (T/M)m+1−ν‖zℓ‖Hm+1

)
, ℓ = 1, . . . ,M.

To conclude, we note that the Fourier transform of the extension of each zℓ to
Hm+1(R,R) is the function (T/M)1{M/T}. Combining this latter result with the
Fourier characterization of the norm ‖ · ‖Hm+1 yields, for every ℓ = 1, . . . ,M ,

‖zℓ‖2Hm+1 ≤ T

M

∫ M
2T

− M
2T

(1 + τ2)m+1 dτ ≤
(
M

T

)2(m+1)

,

where the last step follows from the assumption M ≥ 2T 1. Therefore, for every
ℓ = 1, . . . ,M we finally obtain that (we implicitly overload the constant Cm+1,ν)

‖cℓ‖Hν ≤ Cm+1,ν

(
M

T

)ν

, ν = 0, . . . ,m+ 1,

1Indeed, under this assumption, 1 ≤ 3/4M2/T 2, and thus max
0≤τ≤M/(2T )

(1 + τ2) ≤ M2/T 2.
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6) Gathering the previous bounds together and end of the proof. Recalling
from the results in Section 4 that there exists a constant C > 0 such that

‖u‖L∞ ≤ C‖u‖H1 , for every u ∈ Hm+1([0, T ],R),

we may compute, for every ℓ = 1, . . . ,M ,

‖p(tℓ, ·)‖H2(m+1)(Rn,R) ≤ ‖p‖L∞([0,T ],R)⊗H2(m+1)(Rn,R) ≤ C‖p‖H1,2(m+1) .

Combining this latter inequality with all the previous bounds finally yields

L(p̂)1/2 ≤ L(p̃)1/2 +A1/2

≤ Cm+1,1M
−m‖p‖Hm+1,0 + Cm+1,0M

−(m+1)‖p‖Hm+1,2 +A1/2

≤ C
(
‖p‖Hm+1,2 + ‖p‖H1,2(m+1)

)
×

×
(
M−m +R−2m +Rn/2log

(
4M

δ

) 1
2

N−1/2

)
,

for some appropriate constant C > 0, which holds with probability at least 1− δ, and
the sought conclusion may be easily inferred.

The main benefit offered by replacing the unknown density p with the model
density p̂ consists of the fact that integrals of this latter mapping and of its derivatives
can be actually (easily) computed, enabling to correctly instantiate our first learning
problem for (a∗, b∗) ∈ H+

m, which is our next step.

5.2. The infinite-dimensional learning problem and its fidelity. In this
section, our goal consists of instantiating and analyzing the learning problem to iden-
tify the coefficients (a∗, b∗) ∈ H+

m. This problem computes coefficients which “best”
matches SFPE when evaluated at the model density p̂. Below, we seek those co-
efficients in the whole set H+

m, deferring to a later section the problem of learning
(a∗, b∗) ∈ H+

m through finite-dimensional models. In particular, the main result con-
tained herein consists of appropriate learning error estimates which pave the way to
obtaining learning error estimates for the problem of learning (a∗, b∗) ∈ H+

m through
finite-dimensional models. However, for pedagogical purposes, we present complete
learning rates for the infinite-dimensional learning problem as well.

From now on, we fix 0 < ε, δ < 1, and select M,N ∈ N and R > 0 as claimed in
Theorem 5.2, so that, with probability at least 1− δ, it holds that:

L(p̂) ≤ C(a∗, b∗)

(
log

(
1

δε

) 1
2

ε

)2

(5.4)

≤ C(a∗, b∗)

(
log

(
MN

δ

) 1
2

(MN)−
2m

n+2(2m+1)

)2

,

where the constant C(a∗, b∗) > 0 depends on a∗ and b∗ uniquely. To compute
accurate learning rates, we leverage classical RKHS approximation theory, which is
essentially well-posed for mappings which are defined on bounded domains. For this,
we will make use of the following additional assumption:

(B) There exists R∗ > 0 such that the coefficients (a∗, b∗) ∈ H+
m satisfy:

supp
(
a∗(t, ·), b∗(t, ·)

)
⊆ BRn

R∗
(0), for every t ∈ [0, T ].
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Remark 5.3. Assumption (B) plays a key role in computing learning rates which,
on the one hand, leverage classical RKHS approximation theory, and which, on the
other hand, depend explicitly on the parameters defining the learning problem. In
particular, the latter property can not be generally obtained by just (smoothly) re-
stricting to balls quantities which are defined on unbounded domains. That said, our
result can be shown to hold under less restricting assumptions, such as assuming the
coefficients (a∗, b∗) ∈ H+

m decay to zero at infinity under specific rates [48], although
we opted for Assumption (B) to avoid excessively tedious computations, in turn fos-
tering a smooth exposition. In addition, it is worth mentioning Assumption (B) is
often naturally verified in many applications ranging from biology to robotics, where
the state space is a bounded domain.

Thanks to Assumption (B), we may restrict ourselves to the closed subspace:

H+
m,R∗

,

{
(a, b) ∈ H+

m : supp
(
a(t, ·), b(t, ·)

)
⊆ BRn

R∗
(0), for every t ∈ [0, T ]

}
⊆ H+

m,

We are now ready to define our infinite-dimensional problem for learning the coeffi-
cients (a∗, b∗) ∈ H+

m,R∗
, which writes as follows:

Definition 5.4. For every positive real λ > 0, the (random) infinite-dimensional
Learning Problem to learn stochastic differential equations is defined as:

LP min
(a,b)∈H+

m,R∗

Lλ(a, b) ,

∫ T

0

∥∥∥∥
∂p̂

∂t
(t, ·)− (La,b

t )∗p̂(t, ·)
∥∥∥∥
2

L2

dt+ λ‖(a, b)‖2Hm
.

The well-posedness of problem LP is proven in the following proposition:

Proposition 5.5. For every λ > 0, problem LP is well-posed and has a unique
solution, which is denoted by (â, b̂) ∈ H+

m,R∗
.

Proof. Since the mapping

(5.5) (a, b) ∈ Hm 7→
∫ T

0

∥∥∥∥
∂p̂

∂t
(t, ·)− (La,b

t )∗p̂(t, ·)
∥∥∥∥
2

L2

dt+ λ‖(a, b)‖2Hm

is strictly convex when restricted to the closed convex subset H+
m,R∗

⊆ Hm, we just

need to prove the existence of a solution to LP. For this, if (ak, bk)k∈N ∈ H+
m,R∗

is
any minimizing sequence for LP, there must exist some constant C > 0 such that
‖(ak, bk)‖H+

m
≤ C for every k ∈ N, and therefore, since H+

m,R∗
is in particular a closed

and convex subset of the Hilbert space Hm, up to extracting a subsequence there
exists (â, b̂) ∈ H+

m,R∗
such that (ak, bk)k∈N converges to (â, b̂) for the weak topology

of Hm. Now, thanks to Theorem 2.1, it is clear the mapping (5.5) is in addition
continuous for the strong topology of Hm. Thus, we infer that the mapping (5.5) is
in particular weakly lower semi-continuous, and therefore we finally obtain that

∫ T

0

∥∥∥∥
∂p̂

∂t
(t, ·)− (Lâ,̂b

t )∗p̂(t, ·)
∥∥∥∥
2

L2

dt+ λ‖(â, b̂)‖2Hm
≤

≤ lim inf
k→∞

∫ T

0

∥∥∥∥
∂p̂

∂t
(t, ·)− (Lak,bk

t )∗p̂(t, ·)
∥∥∥∥
2

L2

dt+ λ‖(ak, bk)‖2Hm

= min
(a,b)∈H+

m,R∗

∫ T

0

∥∥∥∥
∂p̂

∂t
(t, ·)− (La,b

t )∗p̂(t, ·)
∥∥∥∥
2

L2

dt+ λ‖(a, b)‖2Hm
,

and the sought conclusion follows.
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We now investigate the fidelity of the learning problem LP. More specifically,
through the estimates of Section 3, under appropriate norms we compute bounds for
the approximation error between solutions to SFPE, associated with the drift and
diffusion coefficients solutions to LP, and the unknown mapping p. In turn, these
bounds will endow our learning procedure with well-posedness and high fidelity.

We start with the following technical lemma:

Lemma 5.6. For every λ > 0, with probability at least 1− δ, it holds that:

Lλ(â, b̂) ≤ C(a∗, b∗)


λ+

(
log

(
1

δε

) 1
2

ε

)2



≤ C(a∗, b∗)


λ+

(
log

(
MN

δ

) 1
2

(MN)−
2m

n+2(2m+1)

)2

 ,

where the constant C(a∗, b∗) > 0 depends on a∗ and b∗ uniquely.

Proof. Thanks to Theorem 2.1 and Corollary 5.1, a routine use of Hölder and
Young inequalities allows us to compute

Lλ(â, b̂)−λ‖(a∗, b∗)‖2Hm
≤

≤
∫ T

0

∥∥∥∥
∂p̂

∂t
(t, ·)− L∗

t p̂(t, ·)
∥∥∥∥
2

L2

dt

≤ 2

∫ T

0

∥∥∥∥
∂p̂

∂t
(t, ·)− ∂p

∂t
(t, ·)

∥∥∥∥
2

L2

dt+ 2

∫ T

0

‖L∗
t (p̂− p)(t, ·)‖2L2 dt

≤ 2

∫ T

0

∥∥∥∥
∂p̂

∂t
(t, ·)− ∂p

∂t
(t, ·)

∥∥∥∥
2

L2

dt+ 2C(a∗, b∗)

∫ T

0

‖p̂(t, ·)− p(t, ·)‖2H2 dt

≤ C(a∗, b∗)L(p̂) ≤ C(a∗, b∗)

(
log

(
1

δε

) 1
2

ε

)2

,

where the (overloaded) constant C(a∗, b∗) > 0, which depends on a∗ and b∗ uniquely,
comes from the constant in (5.4), and the conclusion follows.

We are now ready to compute error bounds between solutions to SFPE, associated
with the drift and diffusion coefficients solutions to LP, and the unknown mappings
p. It is important to note that, given the nature of our data set, which essentially
depends on observations of the law of the state process, the error between the unknown
densities and the densities stemming from the learned coefficients is a “good metric”
with which the convergence of an identification algorithm for stochastic differential
equations which leverage observations of the state process may be tested.

We better formalize this metric as follows. For every (a, b) ∈ H+
m, let pa,b ∈

Hm+1,2(m+1)([0, T ] × Rn,R) denote the unique solution to SFPE with coefficients

(â, b̂) ∈ H+
m. Note that the existence and uniqueness of the regular mapping pa,b ∈

Hm+1,2(m+1)([0, T ]× Rn,R) as non-negative solution to SFPE, of unitary mass and
with coefficients (a, b) ∈ H+

m is immediate consequence of Theorem 3.4. We define the
following metric to test the accuracy of our method:

E(a, b) , ‖pa,b − p‖2L2 =

∫ T

0

‖pa,b(t, ·)− p(t, ·)‖2L2 dt, (a, b) ∈ H+
m.
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Among other benefits, we will see this metric is also particularly well-suited to estimate
the error which is done when computing the observation/regulation metric (3.4).

Our main result on the accuracy of our learning method writes as follows:

Theorem 5.7. Let the coefficients (â, b̂) ∈ H+
m,R∗

be the unique solution to LP

with λ =
(
log
(

1
δε

) 1
2 ε
)2

. With probability at least 1− δ, it holds that:

E(â, b̂) ≤ C(a∗, b∗)

(
log

(
1

δε

) 1
2

ε

)2

≤ C(a∗, b∗)

(
log

(
MN

δ

) 1
2

(MN)−
2m

n+2(2m+1)

)2

,

where the constant C(a∗, b∗) > 0 depends on a∗ and b∗ uniquely.

Proof. We define

ρ , pâ,̂b − p̂ ∈ C(0, T ;L2(Rn,R)) ∩H0,1([0, T ]× R
n,R),

and

f(t, ·) , −
(
∂p̂

∂t
(t, ·)− (Lâ,̂b

t )∗p̂(t, ·)
)

∈ L2([0, T ]× R
n,R).

It is readily seen that




d

dt

∫

Rn

ϕ(y)ρ(t, y) dy =

=

∫

Rn

(
Lâ,̂b
t ϕ(y)ρ(t, y) + f(t, y)ϕ(y)

)
dy, ϕ ∈ C∞

c (Rn,R),

ρ(0, ·) = 0,

and therefore, thanks to Theorem 3.4, we may apply the estimate (3.3) to ρ, which

in combination with Lemma 5.6 with the choice λ =
(
log
(

1
δε

) 1
2 ε
)2

yields

sup
t∈[0,T ]

‖pâ,̂b(t, ·)− p̂(t, ·)‖2L2 ≤ C
(
‖(â, b̂)‖Hm

)
C(a∗, b∗)

(
log

(
1

δε

) 1
2

ε

)2

,

where the constant C(a∗, b∗) > 0 depends on a∗ and b∗ uniquely, whereas the constant

C
(
‖(â, b̂)‖Hm

)
> 0 continuously depends on ‖(â, b̂)‖Hm uniquely. Up to overloading

these constants, combined with (5.4) this latter inequality readily yields

(5.6)

∫ T

0

‖pâ,̂b(t, ·)− p(t, ·)‖2L2 dt ≤ C
(
‖(â, b̂)‖Hm

)
C(a∗, b∗)

(
log

(
1

δε

) 1
2

ε

)2

.

At this step, from Lemma 5.6 in particular we obtain that

(5.7) ‖(â, b̂)‖2Hm
≤ C(a∗, b∗)

λ


λ+

(
log

(
1

δε

) 1
2

ε

)2

 = 2C(a∗, b∗),

as soon as λ =
(
log
(

1
δε

) 1
2 ε
)2

. Therefore, up to overloading the constant C(a∗, b∗),

the conclusion follows from combining (5.6) with (5.7).



LEARNING OF STOCHASTIC DIFFERENTIAL EQUATIONS WITH FAST RATES 19

5.3. The finite-dimensional learning problem and its fidelity. The learn-
ing problem we introduced in Section 5.2 (see Definition 5.4) remains difficult to nu-
merically solve. Here, we discuss appropriate finite-dimensional approximations of LP
and error bounds ensuring the fidelity of this latter approximation, ultimately making
our learning approach for stochastic differential equations accurate and tractable.

We start by recalling and adapting the approximation tools we introduced in

Section 4 to our framework. Let D = [0, T ]×BRn

R∗
(0), and consider the RKHS HD =

Hd(m)(D,R) with associated kernel KD. Without loss of generality, we may assume
KD and all its derivatives equal zero on [0, T ]×∂BRn

R∗
(0). For any set of Q ∈ N points

X̃D ,

{
(t1, x1), . . . , (tQ, xQ)

}
,

we consider the following coordinate-wise finite dimensional models to approximate
the candidate drift and diffusion coefficient solutions (â, b̂):

ã(t, y) ,

Q∑

ℓ,ℓ′=1

Aℓ,ℓ′ KD((t, y), (tℓ, xℓ))KD((t, y), (tℓ′ , xℓ′)),

(t, y) ∈ D, i, j ∈ {1, . . . , n},

b̃(t, x) ,

Q∑

ℓ=1

BℓKD((t, y), (tℓ, xℓ)), (t, y) ∈ D, i ∈ {1, . . . , n},

with Aℓ,ℓ′ ∈ Rn×n, Bℓ ∈ Rn. Note in particular that, by defining ΦQ : D → Rn×Qn to
be the map ΦQ(t, y) =

(
KD((t, x), (t1, x1))In×n| . . . |KD((t, y), (tQ, xQ))In×n

)
, then

ã(t, y) = ΦQ(t, y)AΦQ(t, y)
⊤, b̃(t, y) = ΦQ(t, y)B,(5.8)

with B , (B1, . . . , BQ)
⊤ ∈ RQn, and A ∈ RQn×Qn is the Q × Q block matrix with

block entries Aℓ,ℓ′ . Therefore, we define the finite dimensional convex subset ofH+
m,R∗

in which the tuple (â, b̂) is approximated to be (zero is imposed as value outside D)

H+,Q
m,R∗

, span
{
(ã, b̃) : A ∈ R

Qn×Qn, A � 0 and B ∈ R
Qn
}
⊆ H+

m,R∗
.

Before moving to the core of this section, by leveraging the facts we recalled in
Section 4, we provide a crucial approximation results for coefficients (a, b) ∈ H+

m,R∗
.

Specifically, by combining the bounds for Sobolev functions with scattered zeros we
listed in Section 4 with Theorem 2.1, we obtain the following:

Theorem 5.8. Denote the fill distance between X̃D and D with

hQ , sup
(t,y)∈D

min
ℓ=1,...,Q

‖(tℓ, xℓ)− (t, y)‖.

There exists a constant C > 0 such that, for every (a, b) ∈ H+
m,R∗

with a(t, y) ≻ βI,

(t, y) ∈ D, for some constant β > 0, there exists a tuple (PQ(a),PQ(b)) ∈ H+,Q
m,R∗

:

‖(a, b)− (PQ(a),PQ(b))‖W 2,∞ ≤ C(‖
√
a‖2Hd(m) + ‖b‖Hd(m))h2m−1

Q ,

‖(PQ(a),PQ(b))‖Hm ≤ C(‖
√
a‖2Hd(m) + ‖b‖Hd(m)).
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Proof. First, by combining the bounds for Sobolev functions with scattered zeros
(4.2) in Section 4 with Theorem 2.1, we may readily claim the existence of a constant
C > 0 (implicitly overloaded below) and PQ(b) , b̃ in the form (5.8) such that

‖b− b̃‖W 2,∞ ≤ C1‖b‖Hd(m)h2m−1
Q .

We now turn to the construction of PQ(a) , ã. This is slightly more elaborated
and is taken from [40, 31, 39, 29], in particular, adapting the construction of [31]. Note
that the matrix square root

√· has uniformly bounded derivatives of any order on the
set {A ∈ Rn×n|A ≻ βI}. By assumption, it thus follows that

√
a ∈ Hd(m)(D,Rn×n),

and in particular that the element-wise functions (
√
a)i,j , ei

√
a ej ∈ Hd(m)(D,R).

Now, we can build our approximation ã as follows

ã(t, x) , v(t, y)⊤v(t, y) � 0, (t, y) ∈ D,

where v : D → Rn×n is obtained by element-wise applying the bound for Sobolev
functions with scattered zeros (4.2) in Section 4. In particular, we obtain that

‖(
√
a)i,j − vi,j‖W 2,∞ ≤ C‖

√
ai,j‖Hd(m)h2m−1

Q , i, j ∈ {1, . . . , n}.

Therefore, since
√
a
⊤√

a− v⊤v =
√
a
⊤
(
√
a− v)+ (

√
a− v)⊤

√
a− (

√
a− v)⊤(

√
a− v),

and W 2,∞ is in particular a Banach algebra, we may infer that

‖a− ã‖W 2,∞ ≤ 2‖
√
a− v‖W 2,∞‖

√
a‖W 2,∞ + ‖

√
a− v‖2W 2,∞ .

At this step, the inequalities

‖
√
a− v‖2W 2,∞ ≤

n∑

i,j=1

‖(
√
a)ij − vij‖2W 2,∞

and ‖ · ‖W 2,∞ ≤ C‖ · ‖Hd(m) may be combined to readily derive that

‖a− ã‖W 2,∞ ≤ Cn2‖
√
a‖2Hd(m)h

2m−1
Q ,

that is the first inequality claimed in the theorem. In particular, note that

v(t, y) =

Q∑

ℓ=1

Rℓ KD((t, y), (tℓ, xℓ)), (t, y) ∈ D,

for some R1, . . . , RQ ∈ Rn×n. By denoting R = (R1, . . . , RQ) ∈ Rn×Qn, we have that

ã(t, y) = ΦQ(t, y)AΦQ(t, y)
⊤, (t, y) ∈ D,

with A , RR⊤ ∈ RQn×Qn semi-positive-definite. We thus infer that (ã, b̃) ∈ H+,Q
m,R∗

.
To conclude, according to the results we gathered in Section 4, it holds that

b̃ = ΠQ(b) and v = ΠQ(
√
a), where ΠQ denotes the corresponding projection operator

of each involved RKHS, and thus ã = ΠQ(
√
a)⊤ΠQ(

√
a). This implies that

‖ΠQ(b)‖Hd(m) ≤ ‖b‖Hd(m) and ‖ΠQ(
√
a)‖Hd(m) ≤ ‖

√
a‖Hd(m) .

The proof is concluded considering that Hd(m) is in particular a Banach algebra.
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In the rest of the manuscript, we adopt the notation we introduced in Theorem
5.8. We are now ready to define our finite-dimensional problem for learning the
coefficients (a∗, b∗) ∈ H+

m,R∗
, which writes as follows:

Definition 5.9. For every positive real λ > 0, the (random) finite-dimensional
Learning Problem to learn stochastic differential equations is defined as:

LPQ min
(a,b)∈H+,Q

m,R∗

Lλ(a, b) ,

∫ T

0

∥∥∥∥
∂p̂

∂t
(t, ·)− (La,b

t )∗p̂(t, ·)
∥∥∥∥
2

L2

dt+ λ‖(a, b)‖2Hm
.

Since H+,Q
m,R∗

is a finite-dimensional convex set, the well-posedness of LPQ may be
proven similarly to the well-posedness of the original problem LP, i.e., by replicating
the proof of Proposition 5.5. We thus report this result below without proof:

Proposition 5.10. For every λ > 0, problem LPQ is well-posed and has a unique

solution, which is denoted by (âQ, b̂Q) ∈ H+,Q
m,R∗

.

Remark 5.11. Thanks to Assumption (A), up to re-scaling α and overloading a∗,
one may always assume that a∗(t, y) ≻ αI, (t, y) ∈ D. This property would enable
applying Theorem 5.8 directly to (a∗, b∗). Unfortunately, the setting a∗(t, y) ≻ αI,
(t, y) ∈ D, does not fit Assumption (B), and in turn the problem formulation of

LPQ. Nevertheless, one may appropriately tailor the definition of H+,Q
m,R∗

to allow for
a∗(t, y) ≻ αI, (t, y) ∈ D. Indeed, in such setting Assumption (B) would rather require

that supp
(
a(t, ·) − αI, b(t, ·)

)
⊆ BRn

R∗
(0), for every t ∈ [0, T ]. Therefore, we should

consider a larger domain D in which learning is pursued, e.g., D , [0, T ] × BRn

R∗+1,

selecting KD to equal 1 on [0, T ]× ∂BRn

R∗+1(0) and such that all its derivatives equal

zero on [0, T ]× ∂BR
n

R∗+1(0) (this selection is always possible under mild assumptions).

Thanks to this choice, H+,Q
m,R∗

may be replaced by the following subset

span
{
(χã+ (1− χ)αI, b̃) : A ∈ R

Qn×Qn, A � αI, and B ∈ R
Qn
}
⊆ H+

m,R∗+1,

where the definition of H+
m,R∗+1 corresponds to H+

m,R∗
’s with updated requirement

supp
(
a(t, ·) − αI, b(t, ·)

)
⊆ BRn

R∗+1(0). Here, χ ∈ C∞([0, T ]× Rn, [0, 1]) is some fixed

cut-off function satisfying χ|
BRn

R∗
(0)

= 1 and supp χ ⊆ BRn

R∗+1(0). One readily check

this updated definition does not affect the validity of Theorem 5.8, and in turn of
the rates of convergence we will develop shortly. From a numerical point of view,
the computational cost of solving LPQ with this updated definition of H+,Q

m,R∗
remains

unchanged (see Section 6). Therefore, without loss of generality, from now on we
assume we may apply Theorem 5.8 to (a∗, b∗) ∈ H+

m,R∗
without further ado.

The next result is a natural extension of Lemma 5.6 to the setting of problem
LPQ, and it represents the main result of this section.

Lemma 5.12. For Q ∈ N with hQ ≤ 1, with probability at least 1−δ, it holds that:

Lλ(âQ, b̂Q) ≤ C(a∗, b∗)


λ+

(
log

(
1

δε

) 1
2

ε

)2

+ h
2(2m−1)
Q


 ,

where the constant C(a∗, b∗) > 0 depends on a∗ and b∗ uniquely.
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Proof. Thanks to Lemma 5.6 (actually, its proof), we may compute

Lλ(âQ, b̂Q)− λ‖
(
PQ(a∗),PQ(b∗)

)
‖2Hm

≤

≤
∫ T

0

∥∥∥∥
∂p̂

∂t
(t, ·)− (LPQ(a∗),PQ(b∗)

t )∗p̂(t, ·)
∥∥∥∥
2

L2

dt

≤ 2

∫ T

0

∥∥∥∥
∂p̂

∂t
(t, ·)− L∗

t p̂(t, ·)
∥∥∥∥
2

L2

dt

+ 2

∫ T

0

∥∥∥
(
(LPQ(a∗),PQ(b∗)

t )∗ − L∗
t

)
p̂(t, ·)

∥∥∥
2

L2
dt

≤ C(a∗, b∗)

((
log

(
1

δε

) 1
2

ε

)2

+ ‖(a∗, b∗)−
(
PQ(a∗),PQ(b∗)

)
‖2W 2,∞

∫ T

0

‖p̂(t, ·)‖2H2 dt

)
,

where the constant C(a∗, b∗) > 0, which we will overload below, depends on a∗ and
b∗ uniquely. Theorem 5.2 and the choice 0 < ε, δ < 1 readily yield

∫ T

0

‖p̂(t, ·)‖2H2 dt ≤ C(a∗, b∗).

By combining this inequality with Theorem 5.8 (and Remark 5.11), we infer that

‖(a∗, b∗)−
(
PQ(a∗),PQ(b∗)

)
‖2W 2,∞

∫ T

0

‖p̂(t, ·)‖2H2 dt ≤ C(a∗, b∗)h
2(2m−1)
Q ,

yielding that

Lλ(âQ, b̂Q)− λ‖
(
PQ(a∗),PQ(b∗)

)
‖2Hm

≤(5.9)

≤ C(a∗, b∗)

(
λ+

(
log

(
1

δε

) 1
2

ε

)2

+ h
2(2m−1)
Q

)
.

Finally, observe that Theorem 5.8 additionally provides that

‖
(
PQ(a∗),PQ(b∗)

)
‖2Hm

≤ C(a∗, b∗),

which combined with (5.9) leads to the conclusion.

Thanks to Lemma 5.12, Theorem 5.7 may be straightforwardly extended to the
context of the finite-dimensional learning problem LPQ (just by replicating its proof).
We thus report this result without proof in the proposition below.

Theorem 5.13. Let the coefficients (âQ, b̂Q) ∈ H+,Q
m,R∗

be the unique solution to

LPQ with λ =
(
log
(

1
δε

) 1
2 ε
)2

and Q ∈ N so that hQ =
(
log
(

1
δε

) 1
2 ε
) 1

2m−1 ≤ 1. With

probability at least 1− δ, it holds that:

E(âQ, b̂Q) ≤ C(a∗, b∗)

(
log

(
1

δε

) 1
2

ε

)2

≤ C(a∗, b∗)

(
log

(
MN

δ

) 1
2

(MN)−
2m

n+2(2m+1)

)2

,
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where the constant C(a∗, b∗) > 0 depends on a∗ and b∗ uniquely.

We conclude this section with a result which summarizes our essential contri-
butions, showing how our learning approach may be leveraged for efficient observa-
tion/regulation of stochastic differential equations. First, we recall the setting intro-
duced at the end of Section 3. Specifically, for every coefficients (a, b) ∈ H+

m, we
denote by Xa,b and pa,b respectively the (unique) solutions to SDE and SFPE with
coefficients (a, b) ∈ H+

m. By combining Theorem 5.13 with Corollary 3.5 (in partic-
ular, compare with (3.4); more details about this remark are provided in Section 8),
we readily obtain the following summarizing result:

Theorem 5.14. Let m ∈ N, α > 0, R∗ > 0, p0 ∈ H2m+1(Rn,R), and (a∗, b∗) ∈
H+

m,R∗
satisfy Assumptions (A) and (B), and denote by X and p respectively the

(unique) solutions to SDE and SFPE with coefficients (a∗, b∗) ∈ H+
m,R∗

. There exists
a constant C(a∗, b∗) > 0 which only depends on a∗ and b∗, such that by choosing the
following learning parameters for the fixed precision parameters 0 < ε, δ < 1:

• M = ε−1/m/4, N = ε−(2+n/(2m)) (as closest integers), and R = ε−1/(2m),

• λ =
(
log
(

1
δε

) 1
2 ε
)2

, and Q ∈ N so that hQ = min

(
1,
(
log
(

1
δε

) 1
2 ε
) 1

2m−1

)
,

with probability at least 1− δ, the following estimate holds:

‖p− pâQ ,̂bQ
‖L2 ≤ C(a∗, b∗) log

(
1

δε

) 1
2

ε(5.10)

≤ C(a∗, b∗) log

(
MN

δ

) 1
2

(MN)−
2m

n+2(2m+1) ,

where (âQ, b̂Q) ∈ H+,Q
m,R∗

is the unique solution to the finite-dimensional learning
problem LPQ, where the learning parameters have been selected as above. Therefore,
for every f ∈ L2([0, T ]×Rn,R) the following observation/regulation estimate holds:

∣∣∣∣∣Eµ0×P

[∫ T

0

f(t,Xx(t)) dt

]
− Eµ0×P

[ ∫ T

0

f(t,X âQ ,̂bQ
x (t)) dt

]∣∣∣∣∣ ≤

≤ C(a∗, b∗) log

(
1

δε

) 1
2

ε ≤ C(a∗, b∗) log

(
MN

δ

) 1
2

(MN)−
2m

n+2(2m+1) .

Remark 5.15 (On the optimality of the learning rates (5.10)). To the best of
our knowledge, the learning rates (5.10) have not yet appeared in the literature on
non-parametric learning of SDE. Specifically, although in recent works, see, e.g.,
[1, 35, 2, 28], learning rates that improve as the regularity of the drift and diffu-
sion coefficients increases are proposed, for the first time our method offers non-
asymptotic learning rates when considering estimation of multi-dimensional SDE with
non-constant diffusion coefficient, under discrete-time observations of X .

For the sake of completeness, one may want to compare (5.10) with existing
learning rates, e.g., the rates offered by [1, 35], though as we mentioned the estimation
methods provided in these works apply to less general settings. If we were to do such
comparison, we would infer that, up to a log factor, (5.10) would be “almost optimal”

in that their would be sub-optimal by a factor (NM)
1

n+2(2m+1) . However, this factor
exponentially converges to 1 when m tends to infinity.
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6. Computational Considerations. From a numerical viewpoint, we can solve
problem LPQ exactly in closed form. Indeed, such a problem amounts to a finite semi-
definite program in the variables A ∈ RQn×Qn, B ∈ RQn×1, subject to A � 0.

Problem reformulation. Recall that we are naturally, though implicitly ex-
tending the mapping ΦQ to zero outside D, smoothly. Thanks to the characterization

form (5.8), which is valid for every (a, b) ∈ H+,Q
m,R∗

, one easily shows that

La,b
t p̂(t, y) = tr(V (t, y)A)− U(t, y)B + r(t, y), (t, y) ∈ [0, T ]× R

n,

where
r(t, y) ,

α

2
∆p̂(t, y),

and U : [0, T ]× Rn → R1×Qn and V : [0, T ]× Rn → RQn×Qn are defined as

Uℓ(t, y) ,

n∑

i=1

∂

∂xi

[
p̂(t, y)e⊤i KD((t, y), (tℓ, xℓ))

]
∈ R

n, ℓ, ℓ′ = 1, . . . , Q,

Vℓ,ℓ′(t, x) ,
1

2

n∑

i,j=1

∂2

∂yj∂yi

[
p̂(t, y)KD((t, y), (tℓ, xℓ))×

×KD((t, y), (tℓ′ , xℓ′))eie
⊤
j

]
∈ R

n×n.

Therefore, by denoting q ,
∂p̂

∂t
, the cost in LPQ thus writes

Lλ(a, b) =

∫

[0,T ]×Rn

(q(t, y)− tr(V (t, y)A) + U(t, y)B − r(t, y))
2
dt dy

=

∫

[0,T ]×Rn

(1, B⊤, vec(A)⊤)W (t, y)(1, B⊤, vec(A)⊤) dt dy

= (1, B⊤, vec(A)⊤)H(1, B⊤, vec(A)⊤)⊤.

where, by denoting q̃ , q − r, we define W : [0, T ]× Rn → R1+Qn+Qn2×1+Qn+Qn2

as

W (t, y) ,




q̃2(t, y) −q̃(t, y)U(t, y) −q̃(t, y)vec(V (t, y))⊤

−q̃(t, y)U(t, y) U(t, y)U(t, y)⊤ U(t, y)⊤vec(V (t, y))⊤

−q̃(t, y)vec(V (t, y)) vec(V (t, y))U(t, y) vec(V (t, y))vec(V (t, y))⊤,




whereas H ∈ R1+Qn+Q2n2×1+Qn+Q2n2

is defined as

H ,

∫

[0,T ]×Rn

W (t, y) dt dy.

Summing up, LPQ equals the following semi-definite program

min




A ∈ RQn×Qn, B ∈ RQn

v , (1, B, vec(A)) ∈ R1+Qn+Q2n2

A � 0

v⊤Hv.

Such semi-definite programs enjoy a particularly simple form. They can be efficiently
solved via damped Newton methods, with computational cost O((Qn)3.5) [34].
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Computing the integral H. The computation of each entry of the matrix H
can be done in closed form, given that they correspond to the integral of products
of functions, that are linear combinations of elementary functions. As a matter of
example, below we explicitly compute the first element of H , i.e., H11, the same
argument holding for the other elements. We have that

∫

[0,T ]×Rn

W11(t, y) dt dy =

∫

[0,T ]×Rn

(q(t, y)2 − 2q(t, y)r(t, y) + r(t, y)2) dt dy.

Due to their similarity, we proceed with computations only for the integral of the first
term in the right-hand side of this equality. For this, we may compute
∫

[0,T ]×Rn

q(t, y)2 dt dy

=

M∑

ℓ,ℓ′=1

N∑

j,j′=1

1

N2

∫

[0,T ]×Rn

ċℓ(t)ċℓ′(t)ρR(y − xℓ,j)ρR(y − xℓ′,j′) dt dy

=

M∑

i,i′,ℓ,ℓ′=1

N∑

j,j′=1

αiℓαi′ℓ′

N2

∫ T

0

k̇m(t− ti)k̇m(t− ti′) dt ×

×
∫

Rn

ρR(y − xℓ,j)ρR(y − xℓ′,j′) dy.

Above we used the definition of p̂, and the fact that cℓ are minimum-norm kernel
interpolators [48], i.e., they are given by cℓ(t) =

∑N
i=1 αi,ℓkm(t − ti), where αi,ℓ =

(K−1)i,ℓ, whereas K ∈ RN×N is given by Ki,i′ = km(ti, ti′). By denoting

Rℓ,ℓ′ ,

∫ T

0

k̇m(t− ti)k̇m(t− ti′) dt, Sℓ,j,ℓ′,j′ ,

∫

Rn

ρR(y − xℓ,j)ρR(y − xℓ′,j′) dy,

the computations above thus amount to

∫

[0,T ]×Rn

q(t, y)2 dt dy =
M∑

ℓ,ℓ′=1

N∑

j,j′=1

(K−1RK−1)ℓ,ℓ′Sℓ,j,ℓ′,j′ .

Assuming that the computational cost of analytically computing such integrals of el-
ementary functions is O(1) per integral, the total computational cost to compute H11

is thus O(M3+M2N2). Under the same assumption and iterating the same argument
for all the elements of H , since U is the linear combination of Qn2 elementary func-
tions, whereas V is the linear combination of Q2n4 elementary functions, the total
computational cost to compute the whole matrix H is thus O(M3 +M2N2 +Q4n8).

Considerations on the computational complexity. Since to achieve a de-

sired value for the fill distance Q = O(h
−(n+1)
Q ) number of centers are required, taken,

e.g. on a grid of stepsize hQ [40], we thus need Q = O
(
ε−

n+1
m−(n−1)/4

)
to meet the

rates of Theorem 5.13. In particular, by dimensioning M and N according to Theo-
rem 5.13 to achieve the desired precision ε, it is required that Q4 ≤M2N2. Therefore,
the proposed algorithm enjoy the following performance:

1. Approximation error of (a∗, b∗): O(ε),

2. Total number of required samples: O(ε−2−n+1/2
2m ),

3. Total computational cost: O(ε−4− 2n+1
2m n8).
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In particular, under regular enough settings, i.e., m ≥ n+1/2, we infer that our iden-
tification method achieves approximation error O(ε) by requiring O(ε−2.5) samples
and a total computational cost of O(ε−5n8).

7. Conclusion and Perspectives. In this paper, we propose a Reproducing
Kernel Hilbert Space-based learning paradigm for the identification of drift and dif-
fusion coefficients of non-linear stochastic differential equations, which relies upon
discrete-time observation of the state. Under assumptions of smoothness for the un-
known drift and diffusion coefficients, we provide theoretical estimates of learning
rates which become increasingly tighter when both the number of observations of the
state and the regularity of the unknown drift and diffusion coefficients grow.

Some possible improvements and perspectives are in order. Since our learning
rates essentially apply to the laws of the state process, it would be interesting to un-
derstand whether and under what conditions our method may be extended to derive
stronger Lp norm-based learning rates. Finally, it would be interesting to investi-
gate extensions of our work for the identification of controlled stochastic differential
equations: although these models are crucial for the control of complex systems, e.g.,
in aerospace and robotics, methods which offer relevant guarantees of accuracy and
efficiency of the identification process still require extensive investigation.

8. Details on Stochastic Differential and Fokker-Planck Equations. In
this section, we provide a more structured exposition of the concepts we previously
introduced in Section 3. For this, we chronologically retrace in more details every
definition and result of Section 3 step by step.

8.1. The Fokker-Planck equation. We recall we fixed m ∈ N and a constant
α > 0, and since we worked with diffusion coefficients which are never trivial, for
every (a, b) ∈ H+

m, the coefficient a has been replaced with the mapping

a+ αI : [0, T ]× R
n → Sym++(n) with a+ αI =

√
a+ αI

√
a+ αI.

Also, we fixed a non-negative density p0 ∈ L2(Rn,R) which served as appropriate
initial condition, and we denoted by µ0 ∈ P(Rn) the associate probability measure.
We recall the following notions of stochastic differential equation and its solutions:

Definition 8.1. A measurable mapping X : Rn × Ω → S solves the Stochas-
tic Differential Equation with coefficients (a, b) ∈ H+

m if each process Xx(t, ω) ,

X(x, ω)(t) is F–progressively measurable for every x ∈ Rn, and

SDEx




dXx(t) = b(t,Xx(t)) dt+

√
(a+ αI)(t,Xx(t)) dWt,

P
(
Xx(0) = x

)
= 1,

holds in (Ω,G,F ,P) for µ0-almost every x ∈ Rn. A solution X to SDE is unique if,
for every measurable mapping Y : Rn × Ω → S which solves SDE with coefficients
(a, b) ∈ H+

m, it holds that X(x, ·) = Y (x, ·) a.s., for µ0-almost every x ∈ Rn.

The well-posedness of Definition 8.1 is contained in the following theorem, to-
gether with other useful properties on solutions to SDE:

Theorem 8.2. For every (a, b) ∈ H+
m, there exists a unique measurable mapping

X : Rn × Ω → S which solves SDE with coefficients (a, b) ∈ H+
m. In addition, the

following properties hold true for the mapping X:
1. The following mapping is measurable:

(x, ω, t) ∈ R
n × Ω× [0, T ] 7→ Xx(t, ω) ∈ R

n.
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2. For every ϕ ∈ Cb([0, T ]× Rn,R), the following mapping is continuous:

t ∈ [0, T ] 7→
∫

Rn

∫

Ω

ϕ(t,Xx(t)) dP µ0(dx) ∈ R.

Proof. Thanks to Theorem 2.1, for every x ∈ Rn there exists a unique (up to sto-
chastic indistinguishability) F–adapted process Xx : [0, T ]×Ω→ Rn with continuous
sample paths which solves SDEx, and which satisfies the following inequality

(8.1) E

[
d(Xx1 , Xx2)

2
]
≤ C

(
‖(a, b)‖H+

m

)
‖x1 − x2‖2,

where the constant C
(
‖(a, b)‖H+

m

)
> 0 depends on (a, b) ∈ H+

m uniquely (see, e.g.,

[22])2. Therefore, we define the mapping X : Rn × Ω → S by X(x, ω)(t) , Xx(t, ω).
From the continuity of the sample paths of each Xx, one may show that

X(x, ·)−1
(
BS

ε (w0)
)
=

⋂

t∈[0,T ]∩Q

Xx(t)
−1
(
BRn

ε (w0(t))
)
, x ∈ R

n,

from which, by leveraging a routine monotone class argument, we easily infer the
measurability of the process (X(x, ·))x∈Rn .

To prove the measurability of X : Rn × Ω → S, we rather build a measurable
mapping X̃ : Rn × Ω → S such that the process (X̃(x, ·))x∈Rn is a modification of
(X(x, ·))x∈Rn . In particular, such property would imply for every x ∈ Rn the existence
of a subset Nx ∈ FT with P(Nx) = 1, and such that

(8.2) X̃x(t, ω) = Xx(t, ω), t ∈ [0, T ], ω ∈ Nx.

From (8.2), together with the completeness of F , we would infer each process X̃x is
F–adapted and has continuous sample paths (the latter property being trivially true
by definition). Moreover, thanks to Theorem 2.1, a routine application of Burkholder-
Davis-Gundy inequality, and the fact that each process Xx satisfies SDEx, one may
straightforwardly compute, for every x ∈ Rn,

E

[
sup

t∈[0,T ]

∥∥∥∥X̃x(t)− x−
∫ t

0

b(s, X̃x(s)) dr −
∫ t

0

√
(a+ αI)(s, X̃x(s)) dWs

∥∥∥∥
2
]
≤

≤ CE

[
sup

t∈[0,T ]

‖X̃x(t)−Xx(t)‖2
]
+ CE



(∫ T

0

‖b(t, X̃x(t))− b(t,Xx(t))‖ dt

)2



+ CE

[∫ T

0

∥∥∥∥
√
(a+ αI)(t, X̃x(t))−

√
(a+ αI)(t,Xx(t))

∥∥∥∥
2

dt

]

≤ CE
[
d(X̃x, Xx)

2
]
,

for some (overloaded) constant C > 0, and therefore by combining (8.1) with (8.2)
yields that each process X̃x satisfies SDEx, x ∈ Rn. In turn, we showed the existence of

2Here, we use the fact that the mapping y 7→
√

a(t, y) + αI is Lipschitz, for every t ∈ [0, T ]. This

is a straightforward consequence of Theorem 2.1 and the fact that the mapping A ∈ Sym++(n) 7→
√
A

is Lipschitz on {A ∈ Sym++(n) : ‖A‖ ≤ ‖a‖L∞ + α, y⊤Ay ≥ α‖y‖2, y ∈ Rn}. Indeed, the latter

set is compact and the mapping A ∈ Sym++(n) 7→
√
A is continuously differentiable.
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a measurable mappingX : Rn×Ω → S which solves SDE with coefficients (a, b) ∈ H+
m.

By leveraging the same argument (and a routine application of Gronwäll’s inequality),
one also shows the uniqueness of this mapping as in Definition 8.1.

At this step, we build the aforementioned mapping X̃ : Rn × Ω → S via Kol-
mogorov’s lemma. More precisely, combining (8.1) with Kolmogorov’s lemma yields
the existence of a modification (X̃(x, ·))x∈Rn of (X(x, ·))x∈Rn such that, for every
ω ∈ Ω, the mapping x ∈ Rn 7→ X̃x(·, ω) ∈ S is continuous. Therefore, the mapping
X̃ : Rn × Ω → S is Caratheodory, and thus measurable (see, e.g., [4, Lemma 8.2.6]).

At this step, note that the mapping

π : [0, T ]× S → R
n : (t, w) 7→ w(t)

satisfies

‖π(t1, w1)− π(t2, w2)‖ ≤ ‖w1(t1)− w1(t2)‖ + d(w1, w2),

for every t1, t2 ∈ [0, T ], w1, w2 ∈ S. Hence, π is continuous and property 1. follows
from Xx(t, ω) = π

(
t,X(x, ω)

)
, for (x, ω, t) ∈ Rn × Ω × [0, T ]. Moreover, if ϕ ∈

Cb([0, T ]× Rn,R) and (tk)k∈N ⊆ [0, T ] satisfies tk → t, from what we just proved:

ϕ
(
tn, π

(
tn, X(x, ω)

))
→ ϕ

(
t, π
(
t,X(x, ω)

))
, a.e. in R

n × Ω,

and a routine application of the dominated convergence theorem yields property 2.

At this step, for every (a, b) ∈ H+
m, we denote the Kolmogorov generator by

La,b
t ϕ(y) ,

1

2

n∑

i,j=1

(a+ αI)ij(t, y)
∂2ϕ

∂yi∂yj
(y) +

n∑

i=1

bi(t, y)
∂ϕ

∂yi
(y), ϕ ∈ C2(Rn,R).

Fix (a, b) ∈ H+
m, and assume we are given a measurable mapping X : Rn × Ω → S

which solves SDE with coefficients (a, b) ∈ H+
m. For ϕ ∈ C∞

c (Rn,R), a straightforward
application of Itô’s formula to SDEx yields

(8.3)

∫

Ω

ϕ(Xx(t)) dP = ϕ(x) +

∫

Ω

∫ t

0

La,b
s ϕ(Xx(s)) ds dP, t ∈ [0, T ],

which holds for µ0-almost every x ∈ Rn. Thanks to Theorem 8.2, we may define the
curve µ : [0, T ] → P(Rn) of probability measures

µt(A) ,

∫

Rn

∫

Ω

1{Xx(t)∈A} dP µ0(dx), A ∈ B(Rn),

and note that µ is narrowly continuous, i.e., for every ϕ ∈ Cb(R
n,R), the mapping

t ∈ [0, T ] 7→
∫

Rn

ϕ(y)µt(dy) =

∫

Rn

∫

Ω

ϕ(Xx(t)) dP µ0(dx) ∈ R

is continuous. By combining this latter property with (8.3) and Theorem 8.2, one
readily checks that the curve of probabilities µ satisfies:

Definition 8.3. A narrowly continuous curve µ : [0, T ] → P(Rn) is said to solve
the Fokker-Planck Equation with coefficients (a, b) ∈ H+

m if

FPE





d

dt

∫

Rn

ϕ(y)µt(dy) =

∫

Rn

La,b
t ϕ(y)µt(dy), ϕ ∈ C∞

c (Rn,R),

µt=0 = µ0.
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Importantly, thanks to the regularity of the coefficients (a, b) ∈ H+
m, FPE can

have one narrowly continuous solution µ at most, as we state in the following:

Proposition 8.4 (Propositions 4.1 and 4.2 in [14]). Given any tuple of coeffi-
cients (a, b) ∈ H+

m, at most one narrowly continuous curve µ : [0, T ] → P(Rn) can
solve FPE with coefficients (a, b) ∈ H+

m.

Our previous computations show that solutions to FPE may be obtained from
solutions to SDE, and we now establish this process may be inverted. Specifically,
motivated by the results in [43, 14], we prove that any narrowly continuous curve
µ : [0, T ] → P(Rn) solution to FPE with coefficients (a, b) ∈ H+

m is associated with a
unique (in the sense of Definition 8.1) measurable mapping X : Rn × Ω → S which
solves SDE with coefficients (a, b) ∈ H+

m. We gather such result in the following
theorem, which is a natural extension of [14, Theorem 2.6] to our setting:

Theorem 8.5. Let a narrowly continuous curve µ : [0, T ] → P(Rn) be solution
to FPE with coefficients (a, b) ∈ H+

m (which is unique thanks to Proposition 8.4).
There exists a unique measurable mapping X : Rn × Ω → S which solves SDE with
coefficients (a, b) ∈ H+

m, and which satisfies the representation formula:

∫

Rn

ϕ(y)µt(dy) =

∫

Rn

∫

Ω

ϕ(Xx(t)) dP µ0(dx), for t ∈ [0, T ], ϕ ∈ Cc(R
n,R).

Proof. Thanks to Theorem 8.2, we already know there exists a unique measurable
mapping X : Rn × Ω → S which solves SDE with coefficients (a, b) ∈ H+

m.
To conclude we just need to show the representation formula holds true. For this,

we define the curve µ̄ : [0, T ] → P(Rn) of probability measures

µ̄t(A) ,

∫

Rn

∫

Ω

1{Xx(t)∈A} dP µ0(dx), A ∈ B(Rn),

which is well-defined and narrowly continuous thanks to Theorem 8.2. In addition,
by combining this latter property with (8.3) and Theorem 8.2, we see that the curve
µ̄ : [0, T ] → P(Rn) solves FPE, and thus Proposition 8.4 yields

∫

Rn

ϕ(y)µt(dy) =

∫

Rn

ϕ(y)µ̄t(dy) =

∫

Rn

∫

Ω

ϕ(Xx(t)) dP µ0(dx),

for every t ∈ [0, T ] and ϕ ∈ Cc(R
n,R), and the conclusion follows.

8.2. Absolutely continuous solutions to the Fokker-Planck equation.
From what we showed, solutions to SDE may be found by solving FPE. In this section,
we show the existence of narrowly continuous curves µ : [0, T ] → P(Rn) of type

µt(A) =

∫

A

p(t, y) dy, A ∈ B(Rn),

for appropriate densities p : [0, T ]×Rn → R, which are solutions to FPE. Note that, if
such solutions to FPE exist, then they are unique thanks to Proposition 8.4. Although
such existence result is classic (see, e.g., [14, 8]), we retrace its proof in Appendix A
to characterize the constants appearing in some appropriate estimates and regularity
properties which have been paramount to derive the results in Section 5.

For this, let us first recall the broader definition of solution to FPE, which in
particular encompasses Definition 8.3 as a sub-case (see also Theorem 8.7 below):
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Definition 8.6. Let f ∈ L2([0, T ] × Rn,R) and p̄ ∈ L2(Rn,R). A (regular
enough) function p : [0, T ] × Rn → R is said to solve the non-homogeneous Fokker-
Planck Equation with coefficients (a, b) ∈ H+

m, if

FPEf





d

dt

∫

Rn

ϕ(y)p(t, y) dy =

=

∫

Rn

(
La,b
t ϕ(y)p(t, y) + f(t, y)ϕ(y)

)
dy, ϕ ∈ C∞

c (Rn,R),

p(0, ·) = p̄(·).

We gather results on the existence, uniqueness, and energy-type estimates for
solutions to FPEf , and therefore for solutions to FPE, in the following:

Theorem 8.7. For every f ∈ L2([0, T ]× Rn,R) and every p̄ ∈ L2(Rn,R), there
exists a unique mapping p ∈ C(0, T ;L2(Rn,R)) ∩ L2(0, T ;H1(Rn,R)) which solves

FPEf with coefficients (a, b) ∈ H+
m, and with

∂p

∂t
∈ L2(0, T ;H−1(Rn,R)). In addition,

the following first parabolic estimate holds:

‖p(t, ·)‖2L2 +

∫ t

0

‖p(t, ·)‖2H1 dt ≤

≤ C
(
‖(a, b)‖Hm

)(
‖p̄‖2L2 +

∫ t

0

‖f(s, ·)‖2L2 ds

)
, t ∈ [0, T ],(8.4)

where C
(
‖(a, b)‖Hm

)
> 0 is a constant which continuously depends on ‖(a, b)‖Hm .

Finally, if f = 0 and p̄ is a non-negative density in L2(Rn,R), then

p(t, ·) ≥ 0,

∫

Rn

p(t, y) dy = 1, t ∈ [0, T ],

and therefore, if for every t ∈ [0, T ] we define

µt(A) ,

∫

A

p(t, y) dy, A ∈ B(Rn),

then the curve µ : [0, T ] → P(Rn) is narrowly continuous and solves FPE.

Remark 8.8. The regularity of the mapping f may be weakened (see, e.g., [25, 8]),
although the requirement f ∈ L2([0, T ]× Rn,R) already fits our purpose.

The proof of Theorem 8.7 is reported in Appendix A and is based on the classical
Lions scheme (see, e.g., [25, 10, 13]). Among straightforward benefits, we recall The-
orem 8.7 enables introducing rigorous criteria to establish satisfactory guarantees for
our learning approach in many circumstances. Let us better introduce this concept
below. As a matter of example, when dealing with stochastic differential equations in
applications such as observation and regulation, one must often manipulate metrics

(8.5) Eµ0×P

[∫ T

0

f(t,Xx(t)) dt

]
=

∫ T

0

(∫

R2n

f(t, y) PXx(t)(dy) µ0(dx)

)
dt,

where the measurable mapping X : Rn × Ω → S solves SDE for some coefficients
(a, b) ∈ H+

m, and the mapping f : [0, T ]× Rn → R is regular enough. In the case the
coefficients (a, b) ∈ H+

m of SDE are to be learned, one does not have perfect knowledge
of (8.5), and therefore the error between (8.5) and its counterpart in which (Xx)x∈Rn

is replaced with the solution to SDE stemming from rather learned coefficients must
be estimated. This gap is filled with the following:
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Corollary 8.9. For any coefficients (a, b) ∈ H+
m, let Xa,b : Rn ×Ω → S denote

the unique measurable mapping which solves SDE with coefficients (a, b) ∈ H+
m (see

Theorem 8.5). There exists an operator

O : H+
m → L∞(0, T ;L2(Rn,R)∗) ∼= L∞(0, T ;L2(Rn,R))

(a, b) 7→ Oa,b
· (·)

which, for every t ∈ [0, T ] and every ϕ ∈ Cc(R
n,R), satisfies

Oa,b
t (ϕ) =

∫

R2n

ϕ(y) PXa,b
x (t)(dy) µ0(dx).

In addition, if pa,b ∈ C(0, T ;L2(Rn,R)) denotes the unique solution to FDE0 with
coefficients (a, b) ∈ H+

m and p̄ = p0 (which uniquely exists thanks to Theorem 8.7),
for every f ∈ L2([0, T ]× Rn,R) the mapping

t ∈ [0, T ] 7→ Oa,b
t

(
f(t, ·)

)
∈ R

is measurable and in L1([0, T ],R), and it satisfies, for every (a1, b1), (a2, b2) ∈ H+
m,

(8.6)

∫ T

0

∣∣Oa1,b1
t

(
f(t, ·)

)
−Oa2,b2

t

(
f(t, ·)

)∣∣ dt ≤ ‖f‖L2‖pa1,b1 − pa2,b2‖L2 .

Remark 8.10. Thanks to the previous Corollary, we may provide (8.5) with a
rigorous meaning by defining, for every f ∈ L2([0, T ]× Rn,R),

Eµ0×P

[∫ T

0

f(t,Xa,b
x (t)) dt

]
,

∫ T

0

Oa,b
t

(
f(t, ·)

)
dt.

As we showed in Section 5, the estimate (8.6) enables the control of any estimation
error occurring during the computation of the metric (8.5). Note that more refined es-
timates than (8.6) may be easily obtained by requiring more regularity on the function
f (e.g., see the proof of Corollary 8.9 below).

Proof. Fix any (a, b) ∈ H+
m. For t ∈ [0, T ] and ϕ ∈ L2(Rn,R), we define

Oa,b
t (ϕ) = lim

k→∞

∫

R2n

ϕk(y) PXa,b
x (t)(dy) µ0(dx),

where (ϕk)k∈N ⊆ Cc(R
n,R) is any sequence which converges to ϕ for the strong

topology of L2(Rn,R). This definition is well-posed thanks to Theorem 8.5: indeed,
the limit above uniquely exists, given that if (ϕ1

k)k∈N, (ϕ
2
k)k∈N ⊆ Cc(R

n,R) are two
sequences which converge to ϕ for the strong topology of L2(Rn,R), we may compute

∣∣∣∣
∫

R2n

ϕ1
k(y) PXa,b

x (t)(dy) µ0(dx)−
∫

R2n

ϕ2
k(y) PXa,b

x (t)(dy) µ0(dx)

∣∣∣∣ ≤

≤ ‖pa,b(t, ·)‖L2‖ϕ1
k − ϕ2

k‖L2 → 0, k → ∞.

Similarly, one may easily prove that Oa,b
t (·) ∈ L2(Rn,R)∗ ∼= L2(Rn,R) for every

t ∈ [0, T ]. In particular, note that thanks to (8.4), for t ∈ [0, T ] and ϕ ∈ L2(Rn,R),

(8.7) |Oa,b
t (ϕ)| ≤ C(a, b)‖p0‖L2‖ϕ‖L2,
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for some appropriate constant C(a, b) > 0.
Finally, let g ∈ L2([0, T ]×Rn,R) and let (gk)k∈N ⊆ Cc([0, T ]×Rn,R) converge to

g for the strong topology of L2([0, T ]×Rn,R). In particular, up to some subsequence,
we infer that each sequence

(
gk(t, ·)

)
k∈N

⊆ Cc([0, T ] × Rn,R) converges to g(t, ·) ∈
L2(Rn,R) for the strong topology of L2(Rn,R), for almost every t ∈ [0, T ]. Hence,

the definition of Oa,b
t (·) and Theorem 8.5 yield

(8.8) Oa,b
t

(
g(t, ·)

)
= lim

k→∞

∫

Rn

gk(t, y)pa,b(t, y) dy, for almost every t ∈ [0, T ].

On the one hand, combined with Theorem 8.7 and Pettis’ theorem, (8.8) yields the

Bochner-measurability of the mapping t ∈ [0, T ] 7→ Oa,b
t (·) ∈ L2(Rn,R)∗, and there-

fore from (8.7) we deduce that Oa,b
· (·) ∈ L∞(0, T ;L2(Rn,R)∗). On the other hand,

(8.8) yields the measurability of the mapping t ∈ [0, T ] 7→ Oa,b
t

(
f(t, ·)

)
∈ R, which

together with (8.7) makes the mapping t ∈ [0, T ] 7→ Oa,b
t

(
f(t, ·)

)
∈ R measurable

and in L1([0, T ],R). The conclusion of the proof follows from the fact that (8.6) is a
straightforward consequence of (8.8) and Fatou’s lemma.

8.3. Additional regularity of solutions to the Fokker-Planck equation.
In Section 5, we dealt with solutions p : [0, T ]×Rn → R of FPE0 which enjoy higher
regularity properties, and specifically for which p ∈ Hm+1,2(m+1)([0, T ] × Rn,R),
and for which FPE0 holds pointwise. Below, we are going to show such additional
attributes stem from the properties of coefficients (a, b) ∈ H+

m listed in Theorem 2.1.
First, for every (a, b) ∈ H+

m and almost every t ∈ [0, T ] we introduce the notation:

(La,b
t )∗u(t, y) ,

1

2

n∑

i,j=1

∂2
(
aαiju

)

∂yj∂yi
(t, y)−

n∑

i=1

∂
(
biu
)

∂yi
(t, y), u ∈ L2(0, T ;H2(Rn,R)),

which denotes the dual operator of La,b
t . This operator is well-defined with image in

L2([0, T ]× Rn,R). Indeed, thanks to Theorem 2.1, one readily shows that

biu ∈ L2(0, T ;H1(Rn,R)), with
∂
(
biu
)

∂yr
= bi

∂u

∂yr
+ u

∂bi
∂yr

∈ L2([0, T ]× R
n,R),

aiju ∈ L2(0, T ;H2(Rn,R)), with
∂
(
aiju

)

∂yr
= aij

∂u

∂yr
+ u

∂aij
∂yr

∈ L2([0, T ]× R
n,R),

and
∂2
(
aαiju

)

∂yr∂ys
= aαij

∂2u

∂yr∂ys
+
∂aαij
∂ys

∂u

∂yr

+
∂aαij
∂yr

∂u

∂ys
+ u

∂2aαij
∂yr∂ys

∈ L2([0, T ]× R
n,R),

for u ∈ L2(0, T ;H2(Rn,R)), i, j, r, s = 1, . . . , n, thus the well-posedness of (La,b
t )∗.

Thanks to Theorem 2.1, the following higher regularity result holds:

Theorem 8.11. Under the setting and notation of Theorem 8.7, if furthermore
p̄ ∈ H2m+1(Rn,R), then the unique solution p : [0, T ] × Rn → R to FPE0 with
coefficients (a, b) ∈ H+

m is additionally such that

p ∈ Hm+1(0, T ;H2(m+1)(Rn,R)).
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In particular, the mapping p additionally satisfies the following Strong Fokker-Planck
Equations with coefficients (a, b) ∈ H+

m:

SFPE





∂p

∂t
(t, y) = (La,b

t )∗p(t, y), a.e. (t, y) ∈ [0, T ]× R
n,

p(0, ·) = p̄(·).

Remark 8.12. This result is classically proved under either time-independent co-
efficients or bounded domains (e.g., [13, 26]). Although in classical reference which
consider time-dependent coefficients such as [26] it is explicitly mentioned therein
that their results may be extended to unbounded domains, we found such extension
non-straightforward. We therefore decided to revisit and extend the regularity results
for parabolic equations which are contained in [13, Section 6.3] to time-dependent
coefficients and unbounded domains, and to report the proof in Appendix A.

Appendix A. Proofs of Sections 2 and 8.

A.1. Proofs of Section 2.

Proof of Theorem 2.1. The first and second statements in Theorem 2.1 stem from
Morrey theorem as soon as we show the existence of a linear and bounded operator:

E : H1([0, T ]× R
n,R) → H1(Rn+1,R),

for which there exists a constant C > 0 such that:
• Eu|[0,T ]×Rn = u, for every u ∈ H1([0, T ]× Rn,R),
• ‖Eu‖L2 ≤ C‖u‖L2 and ‖Eu‖H1 ≤ C‖u‖H1 , for every u ∈ H1([0, T ]×Rn,R),

for instance, see [9]. For this, we may follow the proof of [9, Theorem 8.6]. More
specifically, let η ∈ C∞(R, [0, 1]) be such that

η(t) =





1, t <
T

4
,

0, t >
3

4
T,

and for every u : [0, T ]× Rn → R define the mappings

u−(t, y) ,

{
u(t, y), 0 < t ≤ T,

0, t ≤ 0
and u+(t, y) ,

{
u(t, y), 0 ≤ t < T,

0, t ≥ T.

If u ∈ H1([0, T ]× Rn,R), one sees that ηu+ ∈ H1([0,∞)× Rn,R) with

∂ηu+

∂t
= η

(
∂u

∂t

)+

+ u+
∂η

∂t
and

∂ηu+

∂yi
= η

(
∂u

∂yi

)+

, i = 1, . . . , n,

and that (1 − η)u− ∈ H1((−∞, T ]× Rn,R) with, for every i = 1, . . . , n,

∂(1− η)u−

∂t
= (1− η)

(
∂u

∂t

)−

+ u−
∂η

∂t
and

∂(1− η)u−

∂yi
= (1− η)

(
∂u

∂yi

)−

.

At this step, since u = ηu+(1−η)u, we first extend ηu+ by reflection at t = 0 through
a mapping v1 ∈ H1(Rn+1,R) which thus satisfies

‖v1‖L2 ≤ C‖u‖L2 and ‖v1‖H1 ≤ C‖u‖H1 ,
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and then we extend (1 − η)u− by reflection at t = T through another mapping
v2 ∈ H1(Rn+1,R) which thus satisfies

‖v2‖L2 ≤ C‖u‖L2 and ‖v2‖H1 ≤ C‖u‖H1 ,

where the constant C > 0 only depends on η. The conclusion easily follows if we
define the linear and bounded operator E as Eu , v1 + v2.

A.2. Proofs of Section 8. Below, we will make use of the notation aα , a+αI.

Proof of Theorem 8.7. The proof is standard and based on the classical Lions
scheme (see, e.g., [25, 10, 13]), therefore we mainly focus on deriving the constant
C
(
‖(a, b)‖Hm

)
= C

(
α, ‖(a, b)‖Hm

)
in (8.4) and the properties of p when f = 0 and p̄

is a non-negative density in L2(Rn,R). For this, consider the Gelfand triple

V , H1(Rn,R) = H1
0 (R

n,R) →֒ H , L2(Rn,R) →֒ V ∗ = H−1(Rn,R)

and define the t-measurable bilinear form

Aα,a,b : [0, T ]× V × V → R

(t;u, v) 7→
n∑

i,j=1

∫

Rn

1

2
aαij(t, y)

∂u

∂yj
(y)

∂v

∂yi
(y) dy

+

n∑

i=1

∫

Rn




n∑

j=1

1

2

∂aαij
∂yj

(t, y)− bi(t, y)


 ∂v

∂yi
(y)u(y) dy.

Thanks to Theorem 2.1, one may prove that the form Aα,a,b is continuous and semi-
coercive (see also the computations for the estimate (8.4) below). Therefore, thanks
to a straightforward modification of the proof of [10, Theorem 11.7], there exists a
unique solution p ∈ C(0, T ;H) ∩ L2(0, T ;V ) to the variational problem

(A.1)





d

dt
(p(t, ·), ϕ)H +Aα,a,b(t; p(t, ·), ϕ) = (f(t, ·), ϕ)H , ϕ ∈ V,

p(0, ·) = p̄(·),

which in addition satisfies
∂p

∂t
∈ L2(0, T ;V ∗). At this step, thanks to Theorem 2.1

aαij(t, ·)p(t, ·) ∈ H1(Rn,R), with
∂(aαijp)

∂yj
(t, ·) = p(t, ·)

∂aαij
∂yj

(t, ·) + aαij(t, ·)
∂p

∂yj
(t, ·),

for every i, j = 1, . . . , n and almost every t ∈ [0, T ]. Therefore, for every ϕ ∈
C∞

c (Rn;R), i, j = 1, . . . , n, and almost every t ∈ [0, T ], it holds that

∫

Rn

aαij(t, y)p(t, y)
∂2ϕ

∂yj∂yi
(y) dy =

= −
∫

Rn

(
aαij(t, y)

∂p

∂yj
(t, y) + p(t, y)

∂aαij
∂yj

(t, y)

)
∂ϕ

∂yi
(y) dy,

showing that p solves FPEf with coefficients (a, b) ∈ H+
m, α > 0.
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Next, since p ∈ L2(0, T ;V ) and
∂p

∂t
∈ L2(0, T ;V ∗), from (A.1) we may compute

d

dt

‖p(t, ·)‖2H
2

=

〈
∂p

∂t
(t, ·), p(t, ·)

〉

V ∗

= (f(t, ·), p(t, ·))H −Aα,a,b(t; p(t, ·), p(t, ·)),

and therefore Young’s inequality yields

d

dt

‖p(t, ·)‖2H
2

≤ ‖f(t, ·)‖H‖p(t, ·)‖H − α

2
‖∇p(t, ·)‖2H

+ C̄(a, b)

n∑

i=1

∫

Rn

∣∣∣∣
∂p(t, y)

∂yi
p(t, y)

∣∣∣∣ dy

≤ ‖f(t, ·)‖2H
2

+
‖p(t, ·)‖2H

2
− α

2
‖∇p(t, ·)‖2H

+ nMC̄(a, b)2
‖p(t, ·)‖2L2

2
+

‖∇p(t, ·)‖2H
2M

≤
(
1 + nMC̄(a, b)2

)‖p(t, ·)‖2H
2

+
‖f(t, ·)‖2H

2
− α

4
‖∇p(t, ·)‖2H ,

where M > 2/α is some large enough constant which stems from applying Young’s
inequality, whereas C̄(a, b) > 0 is a constant which stems from Theorem 2.1 and
continuously depends on the L∞ norms of b and of the derivatives of a uniquely, and
a routine application of Gronwäll’s inequality together with Theorem 2.1 yield (8.4).

Finally, assume f = 0 and that p̄ is a non-negative density in L2(Rn,R). Thanks
to the fact that u+, u− ∈ H1(Rn,R) for every u ∈ H1(Rn,R), with ∇(u+) =
∇u1{u>0} and ∇(u−) = ∇u1{u<0}, and that u− = (−u)+, leveraging the notation
we introduced previously and applying [10, Lemma 11.2] with u = −p yield

d

dt

‖p(t, ·)−‖2H
2

= −
〈
∂p

∂t
(t, ·), p(t, ·)−

〉

V ∗

= −
n∑

i,j=1

∫

Rn

1

2
aαij(t, y)

∂(p+ − p−)

∂yj
(t, y)

∂(−p−)
∂yi

(t, y) dy

+

n∑

i=1

∫

Rn




n∑

j=1

1

2

∂aαij
∂yj

(t, y)− bi(t, y)


 ∂(p+ − p−)

∂yi
(t, y)p(t, y)− dy

≤ −α
2
‖∇(p−)(t, ·)‖2H + C̄(a, b)

n∑

i=1

∫

Rn

∣∣∣∣
∂p−

∂yi
(t, y)p(t, y)−

∣∣∣∣ dy

≤ −α
2
‖∇(p−)(t, ·)‖2H + nMC̄(a, b)2

‖p(t, ·)−‖2H
2

+
‖∇(p−)(t, ·)‖2H

2M

≤ nMC̄(a, b)2
‖p(t, ·)−‖2H

2
,

and thanks to a routine application of Gronwäll’s inequality, the fact that p̄(x) ≥ 0
almost everywhere yields p(t, x) ≥ 0 for every t ∈ [0, T ] and almost every x ∈ Rn.

At this step, for every k ∈ N choose a cut-off function ϕk ∈ C∞
c (Rn, [0, 1]) such

that ϕk(x) = 1 for every x ∈ BRn

k (0), supp(ϕk) ⊆ BRn

2k (0), and whose first and
second derivatives are uniformly bounded. For every t ∈ [0, T ], from the definition
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of FPEf and the monotone and dominated convergence theorems (here, we leverage
both Theorem 2.1 and the fact that p(t, ·) ∈ L2(Rn,R), t ∈ [0, T ]) we may compute

∫

Rn

p(t, y)dy = lim
k→∞

∫

Rn

p(t, y)ϕk(y)dy

= lim
k→∞

(∫

Rn

p̄(y)ϕk(y) dy +
n∑

i,j=1

∫

Rn

1

2
aαij(t, y)

∂2ϕk

∂yi∂yj
(y)p(t, y) dy

+

n∑

i=1

∫

Rn

bi(t, y)
∂ϕk

∂yi
(y)p(t, y) dy

)

=

∫

Rn

p̄(y) dy = 1.

To conclude, it is clear that we just need to prove that the curve µ : [0, T ] → P(Rn)
defined in the statement of the theorem is narrowly continuous. For this, let t ∈ [0, T ]
and (tk)k∈N ⊆ [0, T ] such that tk → t for k → ∞. Note that p ∈ C(0, T ;H) implies
that ‖p(tn, ·)−p(t, ·)‖L2 → 0 for k → ∞. In particular, for any function ϕ ∈ Cc(R

n,R),
as soon as k → ∞ we infer that

∣∣∣∣
∫

Rn

ϕ(y)p(tn, y) dy −
∫

Rn

ϕ(y)p(t, y) dy

∣∣∣∣ ≤ ‖ϕ‖L2‖p(tn, ·)− p(t, ·)‖L2 → 0.

We conclude from the fact that the narrow and weak* topologies coincide in P(Rn).

Proof of Theorem 8.11. Given that the proof is substantially long, for the sake of
clarity we divide it in several step. Below, we adopt the notation we introduced and
used in the proof of Theorem 8.7.

1) A second parabolic estimate. In this section, we provide computations by
rather considering SFPEf with 0 6= f ∈ L2([0, T ]×Rn,R). Let (vi)i∈N be a countable
basis of H2(m+1)(Rn,R) (and in turn of Hℓ(Rn,R), for ℓ = 0, . . . , 2m+ 1), such that
(vi)i∈N is orthonormal in H1(Rn,R). Therefore, there is (x̄i)i∈N ⊆ R such that

(A.2) lim
j→∞

j∑

i=1

x̄ivi = p̄, in H1(Rn,R).

Moreover, by revisiting the proof of [10, Theorem 11.7], one easily see that for every
k ∈ N there exists xk ∈ AC([0, T ],Rk) such that the function

pk(t, ·) ,
k∑

i=1

xki (t)vi ∈ C(0, T ;L2(Rn,R)) ∩ L2(0, T ;H1(Rn,R))

is the unique solution to the variational problem

(A.3)





d

dt
(pk(t, ·), vi)L2 +Aα,a,b(t; pk(t, ·), vi) = (f(t, ·), vi)H , i = 1, . . . , k,

xki (0) = x̄i, i = 1, . . . , k,
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which in addition satisfies (see also [10, Page 197])

(A.4)





∂pk
∂t

(t, ·) =
k∑

i=1

d

dt
xki (t)vi ∈ L2(0, T ;H1(Rn,R)),

∂pk
∂yj

(t, ·) =
k∑

i=1

xki (t)
∂vi
∂yj

∈ AC(0, T ;L2(Rn,R)), j = 1, . . . , n,

pk → p strongly in L2(0, T ;H1(Rn,R)).

Moreover, from the proof of Theorem 8.7, it is clear that each pk satisfies (8.4).

At this step, by multiplying each equation in (A.3) by
d

dt
xki (t) and summing those

over i = 1, . . . , k, thanks to (A.4) for almost every t ∈ [0, T ] we may compute

∥∥∥∥
∂pk
∂t

(t, ·)
∥∥∥∥
2

L2

=

k∑

i=1

(
d

dt
xki (t)

)
d

ds

∣∣∣∣
s=t

(pk(s, ·), vi)L2

=

k∑

i=1

(
d

dt
xki (t)

)(
(f(t, ·), vi)L2 −Aα,a,b(t; pk(t, ·), vi)

)

≤ ‖f(t, ·)‖L2

∥∥∥∥
∂pk
∂t

(t, ·)
∥∥∥∥
L2

−
n∑

i,j=1

∫

Rn

1

2
aαij(t, y)

∂pk
∂yj

(t, y)
d

dt

(
∂pk
∂yi

)
(t, y) dy(A.5)

−
n∑

i=1

∫

Rn




n∑

j=1

1

2

∂aαij
∂yj

(t, y)− bi(t, y)


 ∂

∂yi

(
∂pk
∂t

)
(t, y) pk(t, y) dy.

We are going to bound the last two terms in (A.5). Specifically, for the first to the
last term, thanks to Theorem 2.1 and (A.4) for every t ∈ [0, T ] we obtain that

−
∫ t

0

∫

Rn

n∑

i,j=1

1

2
aαij(s, y)

∂pk
∂yj

(s, y)
d

ds

(
∂pk
∂yi

)
(s, y) dy ds =

= −
∫ t

0

∫

Rn

n∑

i,j=1

1

2

(
d

ds

(
aαij

∂pk
∂yj

∂pk
∂yi

)
(s, y)− ȧαij(s, y)

∂pk
∂yj

(s, y)
∂pk
∂yi

(s, y)

− aαij(s, y)
d

ds

(
∂pk
∂yj

)
(s, y)

∂pk
∂yi

(s, y)

)
dy ds,

and since aαji = aαij for every i, j = 1, . . . , n, we may compute

−
∫ t

0

∫

Rn

n∑

i,j=1

aαij(s, y)
∂pk
∂yj

(s, y)
d

ds

(
∂pk
∂yi

)
(s, y) dy ds ≤

≤ −
n∑

i,j=1

1

2

∫

Rn

(
aαij(t, y)

∂pk
∂yj

(t, y)
∂pk
∂yi

(t, y)− aαij(0, y)
∂pk
∂yj

(0, y)
∂pk
∂yi

(0, y)

)
dy ds

+
‖ȧ‖L∞

2

∫ t

0

∫

Rn

n∑

i,j=1

∣∣∣∣
∂pk
∂yj

(s, y)

∣∣∣∣
∣∣∣∣
∂pk
∂yi

(s, y)

∣∣∣∣ dy ds.
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Therefore, the convergence (A.2) and (8.4) finally yield

−
∫ t

0

∫

Rn

n∑

i,j=1

aαij(s, y)
∂pk
∂yj

(s, y)
d

ds

(
∂pk
∂yi

(s, y)

)
dy ds ≤

≤ −α
2
‖∇pk(t, ·)‖2L2 + C

(
α, ‖(a, b)‖Hm

)(
‖p̄‖2H1 +

∫ t

0

‖f(s, ·)‖2L2 ds

)
,(A.6)

where C
(
α, ‖(a, b)‖Hm

)
> 0 is a constant which continuously depends on α and

‖(a, b)‖Hm uniquely. Below, we will implicitly overload the constant C
(
α, ‖(a, b)‖Hm

)
.

We now focus on the last term in (A.5). For this, first thanks to Theorem 2.1 one
obtains that, for every i = 1, . . . , n, ϕ ∈ C∞

c (Rn,R), and almost every t ∈ [0, T ],

−
∫

Rn

( n∑

j=1

1

2

∂aαij
∂yj

(t, y)− bi(t, y)

)
∂ϕ

∂yi
(y)pk(t, y) dy =

=

∫

Rn

∂

∂yi






n∑

j=1

1

2

∂aαij
∂yj

− bi


 pk


 (t, y) ϕ(y) dy.

Since from (A.4) we infer the existence of a sequence (ϕℓ)ℓ∈N ⊆ C∞
c (Rn,R) such that∥∥∥∥

∂pk
∂t

(t, ·)− ϕℓ

∥∥∥∥
H1

→ 0, for ℓ→ ∞, again Theorem 2.1 and (8.4) yield

−
∫ t

0

n∑

i=1

∫

Rn




n∑

j=1

1

2

∂aαij
∂yj

(s, y)− bi(s, y)


 ∂

∂yi

(
∂pk
∂s

)
(s, y) pk(s, y) dy ds =

=

∫ t

0

n∑

i=1

∫

Rn




n∑

j=1

1

2

∂2aαij
∂yi∂yj

(s, y)− ∂bi
∂yi

(s, y)


 ∂pk

∂s
(s, y)pk(s, y) dy ds

+

∫ t

0

n∑

i=1

∫

Rn




n∑

j=1

1

2

∂aαij
∂yj

(s, y)− bi(s, y)


 ∂pk
∂yi

(s, y)
∂pk
∂s

(s, y) dy ds

≤ C
(
α, ‖(a, b)‖Hm

) ∫ t

0

∫

Rn

(
|pk(s, y)|+

n∑

i=1

∣∣∣∣
∂pk
∂yi

(s, y)

∣∣∣∣

) ∣∣∣∣
∂pk
∂s

(s, y)

∣∣∣∣ dy ds

≤ 1

2

∫ t

0

∥∥∥∥
∂pk
∂s

(s, ·)
∥∥∥∥
2

L2

ds+ C
(
α, ‖(a, b)‖Hm

)(
‖p̄‖2H1 +

∫ t

0

‖f(s, ·)‖2L2 ds

)
,

for every t ∈ [0, T ]. By summing up this latter inequality with (A.6) and (A.5), via a
routine Granwäll’s inequality argument we infer that, for k ∈ N and t ∈ [0, T ],

∫ t

0

∥∥∥∥
∂pk
∂s

(s, ·)
∥∥∥∥
2

L2

ds ≤ C
(
α, ‖(a, b)‖H+

m

)(
‖p̄‖2H1 +

∫ t

0

‖f(s, ·)‖2L2 ds

)
.(A.7)

2) First-order-in-time and second-order-in-space regularity. In this section,
we provide computations by rather considering SFPEf with 0 6= f ∈ L2([0, T ]×Rn,R).

We first show the inclusion
∂p

∂t
∈ L2(0, T ;L2(Rn,R)) ∼= L2([0, T ]×R

n,R), this latter
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identification being true since L2(Rn,R) is a separable Hilbert space. For this, we show
the existence of ξ ∈ L2(0, T ;L2(Rn,R)) such that the following holds in L2(Rn,R):

(A.8)

∫ T

0

ξ(t, ·)ψ(t) dt = −
∫ T

0

p(t, ·)dψ
dt

(t) dt, for all ψ ∈ C∞
c ([0, T ],R).

For this, we first note that, thanks to (A.7) there exists ξ ∈ L2(0, T ;L2(Rn,R)) such

that

(
∂pk
∂t

)

k∈N

⊆ L2(0, T ;L2(Rn,R)) weakly converges to ξ, up to a subsequence.

Now, for any ψ ∈ C∞
c ([0, T ],R) and any ϕ ∈ L2(Rn,R), thanks to the last (conver-

gence) property in (A.4) we may compute

(∫ T

0

ξ(t, ·)ψ(t) dt, ϕ
)

L2

=

∫ T

0

(
ξ(t, ·), ψ(t)ϕ

)
L2 dt =

= lim
k→∞

∫ T

0

(
∂pk
∂t

(t, ·), ψ(t)ϕ
)

L2

dt = lim
k→∞

(∫ T

0

∂pk
∂t

(t, ·)ψ(t) dt, ϕ
)

L2

= − lim
k→∞

(∫ T

0

pk(t, ·)
dψ

dt
(t) dt, ϕ

)

L2

= − lim
k→∞

∫ T

0

(
pk(t, ·),

dψ

dt
(t)ϕ

)

L2

dt

= −
∫ T

0

(
p(t, ·), dψ

dt
(t)ϕ

)

L2

dt =

(
−
∫ T

0

p(t, ·)dψ
dt

(t) dt, ϕ

)

L2

,

and the equivalence (A.8) readily follows.
Next, we prove that p ∈ L2(0, T ;H2(Rn,R)). For this, we first note that, from

Theorem 2.1 and the variational problem (A.1), thanks to our previous computations
the following variational equality holds true for almost every t ∈ [0, T ]:

∫

Rn

n∑

i,j=1

1

2
aαij(t, y)

∂p

∂yj
(t, y)

∂ϕ

∂yi
(y) dy for ϕ ∈ H1(Rn,R)(A.9)

+

n∑

i=1

∫

Rn




n∑

j=1

1

2

∂aαij
∂yj

(t, y)− bi(t, y)


 ∂ϕ

∂yi
(y)p(t, y) dy =

∫

Rn

g(t, y)ϕ(y) dy,

where

(A.10) g , f − ∂p

∂t
∈ L2([0, T ]× R

n,R).

Therefore, Theorem 2.1 and the classical elliptic regularity theory (see, e.g., [13,
Section 6.3]) imply, for almost every t ∈ [0, T ], both that p(t, ·) ∈ H2(Rn,R) and that

(A.11) ‖p(t, ·)‖2H2 ≤ C
(
α, ‖(a, b)‖Hm

)(
‖p(t, ·)‖2L2 + ‖g(t, ·)‖2L2

)
.

At this step, from our choice for the countable basis (vi)i∈N ⊆ H2(m+1)(Rn,R), for
almost every t ∈ [0, T ] and every i ∈ N, in particular there exists zi(t) ∈ R such that

(A.12) p(t, ·) = lim
k→∞

k∑

i=1

zi(t)vi(·), in H2(Rn,R),
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for almost every t ∈ [0, T ]. But, up to extracting a subsequence, (A.4) yields

p(t, ·) = lim
k→∞

k∑

i=1

xki (t)vi(·), in H1(Rn,R),

for almost every t ∈ [0, T ], and from the orthonormality of (vi)i∈N in H1(Rn,R) we
obtain that zi(t) = xki (t), for every k ∈ N, i = 1, . . . , k and almost every t ∈ [0, T ].
Hence, (A.12) yields that the mapping p : [0, T ] → H2(Rn,R) is strongly Bochner
measurable. In addition, combining the elliptic estimate (A.11) together with the
estimates (8.4) and (A.7) finally provides that p ∈ L2(0, T ;H2(Rn,R)) with

∫ t

0

‖p(s, ·)‖2H2 ds ≤

≤ C
(
α, ‖(a, b)‖Hm

)(
‖p̄‖2H1 +

∫ t

0

‖f(s, ·)‖2L2 ds

)
, t ∈ [0, T ].(A.13)

Before moving on with additional regularity properties, we note that, thanks to
Theorem 2.1 and the fact that p ∈ L2(0, T ;H2(Rn,R)), integrating by parts the
variational problem (A.1) with f = 0 readily yields

∫ T

0

∫

Rn

(
∂p

∂t
(t, y)− (La,b

t )∗p(t, y)

)
ϕ(y) dy dt = 0, ϕ ∈ C∞

c (Rn,R),

and SFPE0 follows from the previous regularity properties and a density argument.

3) Second-order-in-time and fourth-order-in-space regularity. We now turn
to the original setting SFPE0, i.e., SFPEf with f = 0. The first step to further
improve the regularity of p consists of formally differentiating (A.1) with respect to
time and studying solutions q : [0, T ]× Rn → R to the new variational problem

(A.14)





d

dt
(q(t, ·), ϕ)L2 +Aα,a,b(t; q(t, ·), ϕ)+

+A0,ȧ,ḃ(t; p(t, ·), ϕ) = 0, ϕ ∈ H1(Rn,R),

q(0, ·) = (La,b
0 )∗p̄(·).

Problem (A.14) is well-posed. Indeed, since p ∈ L2(0, T ;H2(Rn,R)), thanks to The-
orem 2.1 one easily shows that

A0,ȧ,ḃ(t; p(t, ·), ϕ) = −
∫

Rn

(L0,ȧ,ḃ
t )∗p(t, y)ϕ(y) dy,

for every ϕ ∈ H1(Rn,R) and almost every t ∈ [0, T ]. Therefore, since (L0,ȧ,ḃ
t )∗p ∈

L2([0, T ] × Rn,R) and (La,b
0 )∗p̄ ∈ H1(Rn,R), problem (A.14) fits the setting of

Theorem 8.7, thus from our previous computations there exists a unique solution

q ∈ L2(0, T ;H2(Rn,R)) to (A.14), which additionally satisfies
∂q

∂t
∈ L2([0, T ]×R

n,R).

At this step, we define the function

w : [0, T ]× R
n → R

(t, y) 7→ p̄(y) +

(∫ t

0

q(s, ·) ds
)
(y) = p̄(y) +

∫ t

0

q(s, y) ds,
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where the Lebesgue integral in the last equality stems from the properties of the
Bochner integral for functions in L2([0, T ]×Rn,R). Clearly, w ∈ C0(0, T ;H2(Rn,R)),
and Fubini theorem yields, for every ϕ1 ∈ L2(Rn,R) and ψ ∈ C∞

c ([0, T ],R),

∫

Rn

(∫ T

0

(∫ t

0

q(s, y) ds

)
dψ

dt
(t) dt+

∫ T

0

q(t, y)ψ(t) dt

)
ϕ1(y) dy = 0,

and, for almost every t ∈ [0, T ] and every ϕ2 ∈ C∞
c (Rn,R),

∫

Rn

w(t, y)
∂ϕ2

∂yj
(y) dy = −

∫

Rn

(
∂p̄

∂yj
(y) +

∫ t

0

∂q

∂yj
(s, y) ds

)
ϕ2(y) dy, j = 1, . . . , n.

In particular, from such properties we readily deduce that, for every j = 1, . . . , n,

(A.15)
∂w

∂t
= q ∈ L2(0, T ;H2(Rn,R)), with

∂

∂yj

(
∂w

∂t

)
=

∂

∂t

(
∂w

∂yj

)
.

Thanks to Theorem 2.1 and the properties listed in (A.15), for every ϕ ∈ C∞
c (Rn,R)

and almost every t ∈ [0, T ], we may compute

d

dt
(w(t, ·), ϕ)L2 = (q(t, ·), ϕ)L2

=
(
(La,b

0 )∗p̄, ϕ
)
L2 −

∫ t

0

Aα,a,b(s; q(s, ·), ϕ) ds−
∫ t

0

A0,ȧ,ḃ(s; p(s, ·)± w(s, ·), ϕ) ds

=

∫

Rn

(La,b
0 )∗p̄(y)ϕ(y) dy−

−
n∑

i,j=1

∫

Rn

1

2

(∫ t

0

(
aαij(s, y)

∂

∂s

(
∂w

∂yj

)
(s, y) + ȧαij(s, y)

∂w

∂yj
(s, y)

)
ds

)
∂ϕ

∂yi
(y) dy

−
n∑

j=1

∫

Rn

(∫ t

0

((
n∑

j=1

∂ȧαij
∂yj

(s, y)− ḃi(s, y)

)
w(s, y)

+

(
n∑

j=1

∂aαij
∂yj

(s, y)− bi(s, y)

)
∂w

∂s
(s, y)

)
ds

)
∂ϕ

∂yi
(y) dy

−
∫ t

0

A0,ȧ,ḃ(s; (p− w)(s, ·), ϕ) ds.

Therefore, from [10, Theorem 11.5] and the fact that

∫

Rn

(La,b
0 )∗p̄(y)ϕ(y) dy = −Aα,a,b(0; p̄, ϕ),

we conclude that w solves the following integro-differential variational problem

(A.16)





d

dt
(w(t, ·), ϕ)L2 +Aα,a,b(t;w(t, ·), ϕ)+

+

∫ t

0

A0,ȧ,ḃ(s; (p− w)(s, ·), ϕ) ds = 0, ϕ ∈ H1(Rn,R),

w(0, ·) = p̄(·).
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Clearly, p = w is solution to (A.16). In particular, if so we would obtain that
∂p

∂t
∈

L2(0, T ;H2(Rn,R)) and
∂2p

∂t2
∈ L2([0, T ]×R

n,R), and thanks to the choice of the basis

(vi)i∈N ⊆ H2(m+1)(Rn,R) and to a higher order elliptic regularity argument applied
to (A.9)–(A.10) with f = 0, we would also obtain that p ∈ L2(0, T ;H4(Rn,R)), that
is the sought second-order-in-time and fourth-order-in-space regularity.

Hence, to conclude we need to prove that the integro-differential variational prob-
lem (A.16) may have one solution at most. For this, let z1, z2 ∈ L2(0, T ;H2(Rn,R)),

such that
∂z1
∂t

,
∂z2
∂t

∈ L2([0, T ]× R
n,R), satisfy (A.16). By defining the mapping

h : [0, T ] → L2(Rn,R)

t 7→
∫ t

0

(L0,ȧ,ḃ
s )∗(z1 − z2)(s, ·) ds,

it is readily checked that h ∈ L2([0, T ]× Rn,R), in particular satisfying

∫ t

0

‖h(s, ·)‖2L2 ds ≤

≤ C
(
α, ‖(a, b)‖Hm

) ∫ t

0

(∫ s

0

‖(z1 − z2)(r, ·)‖2H2 dr

)
ds, t ∈ [0, T ],(A.17)

and that





d

dt
((z1 − z2)(t, ·), ϕ)L2 +Aα,a,b(t; (z1 − z2)(t, ·), ϕ) =

= (h(t, ·), ϕ)L2 , ϕ ∈ H1(Rn,R),

(z1 − z2)(0, ·) = 0.

Therefore, we are in the setting of Theorem 8.7 and of our previous computations. In
particular, we may combine (A.13) with (A.17) to obtain that, for every t ∈ [0, T ],

∫ t

0

‖(z1 − z2)(s, ·)‖2H2 ds ≤ C
(
α, ‖(a, b)‖Hm

) ∫ t

0

‖h(s, ·)‖2L2 ds

≤ C
(
α, ‖(a, b)‖Hm

) ∫ t

0

(∫ s

0

‖(z1 − z2)(r, ·)‖2H2 dr

)
ds,

and a routine application of Gronwäll’s inequality allows us to conclude that z1 = z2.

4) Conclusion. Given Theorem 2.1, the regularity of the initial condition p̄ ∈
H2m+1(Rn,R), and the choice of the basis (vi)i∈N ⊆ H2(m+1)(Rn,R), one may eas-
ily iterate the previous computations by induction to define successive time deriva-
tives of p via iteratively considering formal differentiation-in-time of the variational
problem (A.14). In particular, it is clear how to extend properties (A.15) and de-
fine updated integro-differential variational problems (A.16) by induction, which,
thanks to iteratively higher order elliptic regularity arguments applied to (A.9)–(A.10)

and the elliptic estimate (A.13), provide that
∂ℓp

∂tℓ
∈ L2(0, T ;H2(m+1−ℓ)(Rn,R)), for

ℓ = 1, . . . ,m+ 1, and p ∈ L2(0, T ;H2(m+1)(Rn,R)). The conclusion follows.
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