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Abstract —We develop a framework for the stochastic thermodynamics of a probe coupled to a
fluctuating medium with spatio-temporal correlations, described by a scalar field. For a Brownian
particle dragged by a harmonic trap through a fluctuating Gaussian field, we show that near
criticality (where the field displays long-range spatial correlations) the spatially-resolved average
heat flux develops a dipolar structure, where heat is absorbed in front and dissipated behind the
dragged particle. Moreover, a perturbative calculation reveals that the dissipated power displays
three distinct dynamical regimes depending on the drag velocity.

ond

Stochastic thermodynamics provides powerful tools to
() investigate the entropic and energetic properties of fluc-
——tuating systems coupled to media, even far from equilib-
rium [1H6]. A crucial result in this context is the quantita-
tive relation between the time-reversal asymmetry of the
L) system’s fluctuations and the heat dissipated to the envi-
) ronment, associated with entropy production [7TH10]. Most
of the previous works relied on the assumption that the
gl environment is at all times in equilibrium or in a nonequi-
- librium steady state, and displays no dynamical spatio-
temporal correlations. In various contexts, however, the
dynamics crucially hinges on spatio-temporal correlations
O\Jof the environment — this is the case, e.g., for inclusions
=" in lipid membranes [11H14], microemulsions [15H18], or de-
.Z_fects in ferromagnetic systems [19H24]. These correlations
>< become long-ranged and particularly relevant when the en-
E vironment is close to a critical point, as in the case, e.g., of
colloidal particles in binary liquid mixtures |25431]. More-
over, the simplified assumption of a structureless environ-
ment implies that all the information about local energy
and entropy flows occurring within the environment is not
taken into account [32]. To overcome this paradigm, there
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is growing interest in extending concepts from stochastic
thermodynamics towards systems with spatially-extended
correlations [33}/34], such as pattern-forming many-body
systems [35138] or critical media [39H42]. Furthermore, a
line of recent works discusses the irreversibility of active
many-particle systems described by hydrodynamic field
theories [38|42H45]. These theoretical advances are driven
by state-of-the-art experiments involving optical trapping,
ultrafast video-microscopy, or active particles [46-50].

In this work we investigate the stochastic thermody-
namics of a system consisting of a mesoscopic, externally-
driven probe coupled to a fluctuating medium. The lat-
ter is here represented by a scalar field obeying non-
conserved or conserved dynamics [51], and the whole sys-
tem (probe+field) is immersed in a homogeneous heat
bath at a fixed temperature T that induces thermal fluc-
tuations. We provide suitable definitions for the heat,
work and entropy exchanges between the probe, the field
and the thermal bath, which are consistent with the first
and second laws of stochastic thermodynamics. This
approach is simpler than addressing a fully microscopic
model, while it goes beyond a description based on a gen-
eralized Langevin equation (GLE) [5257], which may cap-
ture temporal, but not spatial correlations of the envi-
ronment. Notably, our framework is particularly power-
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Fig. 1: (a) Sketch of a probe particle dragged by a trap
with velocity v through a correlated field (red surface). (b)
Cartoon of the particle at position Y, the modes of the field ¢
(red waves), and the particle—field interaction (blue box), which
can store elastic energy H™*. Particle and field exchange heats
dQy and dQ4, respectively, with a bath at temperature 7. An
external agent exerts work dW on the particle. Particle and
field may exchange energies c’IWyi“t and dWi, respectively, via
their interaction. For clarity we do not indicate work exchanges
between field modes. Heat fluxes are considered positive when
they are supplied to the system.

ful when dealing with a fluctuating medium that is close
to a critical point, where one can replace a complex mi-
croscopic dynamics with the simplest model belonging to
the same universality class . As a fruit of our ap-
proach, one can thereby investigate the interplay between
the probe, the spatio-temporal correlated field, and the
heat bath under the light of stochastic thermodynamics.
We illustrate the theory for the minimal yet insightful ex-
ample of a probe particle dragged by a harmonic trap
through a fluctuating Gaussian field. This mimics the
setup commonly used to study friction and viscosity in
(active) microrheology experiments [59-61], and is proto-
typical in stochastic thermodynamics.

The model. We study a system formed by a
mesoscopic probe at position Y(t) € R? in d spatial di-
mensions and a scalar field, whose value at x € R? and
time ¢ is denoted by ¢(x,t) € R. We assume ¢ to repre-
sent the relevant slow degrees of freedom of the medium,
after integrating out all other possible faster modes. For
example, ¢ may represent the local magnetization in a
spin system , the height of a fluctuating membrane
over a reference plane , the relative concentration
of two chemical species in a near-critical binary liquid mix-
ture , etc., although in some of these cases the actual
dynamics is more complex than the one considered here.

The energy of the system is described by the Hamiltonian

(1)

where H, denotes the energy of the field, U is an exter-
nal potential acting only on the probe, and H™ encodes
the interaction between the probe and the field. The probe
and the scalar field are assumed to obey the following cou-
pled overdamped Langevin equations:

H]p, Y, 1] = Hylo] + H™ [0, Y] +U(Y, 1),

’YyY = _VYH + Fext + v,
: oH
V¢ = —(=V?)°

(2)

— + n(a)a (3)

oo

where Fou (Y, ) in Eq. accounts for non-conservative
external forces acting on the probe, while in Eq.

a = 0 or 1 for locally non-conserved or con-
served field dynamics . Moreover, 7,4 are

friction coefficients, while v and 7® are indepen-
dent Gaussian white noises satisfying the fluctuation-
dissipation relations (v;(t)v;(t')) = 27v,T6;;6(t —t') and
(1 (x, )@ (x', 1)) = 29 T(=V*)%0%(x — x)8(t — 1),
where (...) denotes the average over the realizations of
the noises (note that we set Boltzmann’s constant kg = 1
throughout the paper). Accordingly, in the absence of ex-
ternal driving, i.e., Foxty = 0 and time-independent U/, the
system reaches a state of thermal equilibrium. Figure a)
is a sketch of the model with a harmonic external poten-
tial U.

First law of stochastic thermodynamics. — To
analyze the thermodynamic properties of this system, we
generalize ideas from stochastic thermodynamics .
For the fluxes of energy and entropy between particle, field
and thermal bath sketched in Fig.[1{b), this yields the ex-
pressions below (derived in Ref. ) First, the only sys-
tematic energy input into the system (probe+field) is the
work exerted by an external agent on the probe. During
a time interval [t,t + d¢], this work is given by

aw = M ¥, o ay,

T (4)

where d denotes non-exact differentials, and o indicates
the usage of Stratonovich calculus throughout . Requir-
ing energy conservation for the probe leads to the first law
dU = aw + CIVV;‘t + dQ,, according to which any change
dU in its potential energy can either be due to dW, or
caused by the elastic coupling to the field,

AW = —VyH™ o dY, (5)
or else dissipated into the bath in the form of heat —d@,.
From Egs. to it directly follows that the latter is
given by

dQy = (—Y +v)odY, (6)

which is identical to the Sekimoto expression [2| for a sin-
gle particle in a heat bath (i.e., H™ =0). Likewise, re-
quiring local energy conservation for the field leads to the
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first law for the field [64]

(7)

(An analogous, spatially-resolved first law is given in
Ref. [64].) Accordingly, all the work done on ¢ is either
stored in the field configuration dH, (its “bending”), or
dissipated in the form of heat dQ4. Here,

AW (x) = —[6H™ /36(x)] 0 do(x) (®)

is the work locally exerted on the field by the elastic cou-
pling. In general, dW}™ # — [d?x dW™(x), because
Ht itself can store energy. From Egs. and (7)) we find
that the stochastic heat dQ, takes the form

4Qu(x) = { (=9%)7° [ () = 166(x)] } o do(x)

0Hg SH

- 7505 * o] 290
generalizing Sekimoto’s expression [1]. Importantly, dQ,
is a density (or field) of local heat dissipation. For a = 0,
Eq. @D formally resembles the heat exchange of a single
particle. The case a = 1 of conserved dynamics involves
the inverse Laplace operator (V?)~!, which is nonlocal
in space, and has thus to be interpreted in terms of its
Green’s function [65]. In confined geometries, the latter
depends on the boundary conditions [66,67], but here we
will only consider the system in the bulk.

dH, = / dx [AWIM (x) + dQy(x)] -

9)

Second law of stochastic thermodynamics.
Next, we define the irreversibility [14341/44] associated with
an individual, joint (probe-+tfield) trajectory {Y, ¢} as

L PUY.o}i]

PRI{YR, R}
Here P denotes the path probability of the tra-
jectory, starting with the joint probability density
py.o[Y(t), ¢(x,t)], while PR denotes the path probabil-
ity of the corresponding time-reversed processﬂ By con-
struction, the second law (Siot) > 0 holds [68]. A central
result of this manuscript is that the irreversibility Sios
defined in Eq. equals the stochastic (total) entropy
production [64]

Q Qo(x
Sot = — 2L —/dd ‘bT ) +AS (1)
with the heat dissipation @, and @4 defined in

Egs. @ and @, respectively — indicating the thermo-
dynamic consistency of our framewor Here ASZ% =

Stot = 1 (10)

IWe assume that ¢ and Y are both even under time reversal.
In the time-reversed process, the time-dependent external driving
protocols U(x,t) + Fext(t) are reversed in time. The backward tra-
jectories are initialized with py ¢[Y (t¢), d(x, t¢)] |64].

2The definition of irreversibility given in Eq. generalizes
those of, e.g., Ref. [44] [see Eq. (7) therein] and Ref. [34] [see Eq. (16)
therein] in the presence of a probe. Similarly, Eq. is compatible
with the expression given in Eq. (26) of Ref. |32 for a generic sys-
tem strongly coupled to a heat bath, at the level of (total) spatially
integrated quantities.
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Fig. 2:  Average local heat dissipation rate (Q,(z)) by the

field into the bath, in a frame comoving at velocity v with
the harmonic trap (see Fig. . These results of numerical
simulations [64] refer to a Gaussian field in d = 2 with non-
conserved dynamics and, from (a) to (c), increasing values of
&/R, where ¢ is the correlation length and R the probe size.
The dash-dotted circles indicate the size of the probe. Panel (d)
shows (Q(z)) along the drag direction z, for 2. = 0 and the
values of £ considered in (a—). We used A\ = 5, v = 5, lattice
size L = 128, time step At = 1072, a Gaussian potential V'
with variance R = 4, and we set all other parameters to unity.

In{py ¢[Y(t:), ¢(t:)]/py,6[Y (t), ¢(t)]} is the change in
the fluctuating Shannon entropy. The first and second
terms on the r.h.s. of Eq. are the fluxes of entropy
to the thermal bath from the probe and from the field,
respectively.

If the system reaches a steady state, then (dH™),
(dHg), and (dU) vanish. This simplifies the first laws
for probe and field, and implies ([ d?xdW}*(x)) =
— (dW,™). Together with the second law and Eq. ,
this implies

() = = (@)~ [ ae(@u0)

with Q := aQ/dt, W= dW/dt and Sior ~ Stot/(te — ti).
Thus, in such steady states, (Stot> is proportional to the
average power (W) injected into the system — which is
partly dissipated into heat directly by the probe, (Qy),
and partly through the field, (Q4).

Example: Particle dragged through a Gaussian
field. — Within this framework, we consider the typical
setup [59] in which a probe particle is confined in a har-
monic trap of stiffness k moving at constant Veloc1ty

=T (Si1) >0, (12)

The corresponding potential is U(Y,t) = Ii( —vt)* /2
and the dissipation rate follows from Eq. (4]) as
W= —rv- (Y —vt). (13)
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In the long-time limit, the system reaches a steady state
in the comoving reference frame with velocity v. As a
minimal model for a near-critical medium — and as the
simplest approximation of various complex systems dis-
playing long-range spatial correlations — we consider a
Gaussian field with Hamiltonian [51]

Hy = %/ddx [(Vo)* +r¢?] . (14)

The correlation length ¢ = r=1/2 > 0 controls the spatial
range of the field correlations at equilibrium, and diverges
upon approaching the critical point » = 0. We model the
particle—field interaction, as in Refs. [19H24], by

Hine =) [ d'xoVx-Y). (1)
where V(x) > 0 is a rotationally invariant function, with
unit spatial integral and rapidly vanishing as |x| increases
beyond the “radius” R of the particle, while A\ sets the
coupling strength. For A > 0 and at equilibrium, configu-
rations in which the field is enhanced around the particle
are energetically favored. We express the particle position
in the comoving frame as Z = Y — vt + vv,/k, so that
Z = 0 is the mean steady-state position for A = 0. Simi-
larly, we introduce the field p(z,t) = ¢(z + vt — vy, /K, t)
in the comoving frame.

Heat dissipation field. — The first thermodynamic
quantity we analyze is the spatially-resolved heat dissipa-
tion Q, in the comoving reference frame [64]. In Fig. We
show numerical results for <Q¢> of a field in d = 2 with
a = 0. For small values of £ [see panel (a)], we observe
that <Q¢> is essentially negligible (within numerical un-
certainties) and displays no discernible spatial structure.
In contrast, if £ reaches the order of the particle size R
[panel (b)], regions of average heat dissipation ((Q,) < 0)
or absorption (<Q¢> > 0) start developing. Close to criti-
cality, with £ > R [panel (c)], a dissipation dipole forms,
with a region of heat absorption in front of the particle,
whose spatial extent is approximately given by &. Hence,
surprisingly, in front of the particle the heat bath supplies
net energy as if it was coupled to a cooler object. Note that
the second law implies <Qy> + [dix <Q¢(x)> < 0, but it
does not preclude local heat absorption, i.e., <Q¢(X)> >0
for some x. To further elucidate the origin of this effect,
below we analytically investigate the statistics of parti-
cle and field for various values of v = |v| and &, and the
dissipated power.

Particle statistics and bending of the field. —
We now assume A to be small, and use it as a perturba-
tive parameter [66L[69-72]. Expressing Eqs. and in
terms of Z and ¢, we first obtain

. d4 )
Yyl = —nZ—ﬁ—A/ (QW])gdip Vo ope®? v, (16)
Yo (O —ip - vV + ap)pp = )\anVpeﬂ‘p'Z + né,a), (17)

where o, = p**(p® + 1) /74, and p is the Fourier trans-
forrrﬂ of ¢p(x,t). From Eq. we can calculate the
mean stationary profile (ypp)., which is comoving with
the particle, and which we call “shadow” [64]. The lat-
ter is shown in Fig. [Bfa) for a field in d = 1 with
a = 0: the field is strongly bent around the parti-
cle, while (p(z)),, o exp(—|z|/f+) for z — =+oo, with
e = E[\/1+ (§vve/2)2F (§vvs/2)] [64]. Far from critical-
ity (£ — 0, see inset), the shadow vanishes, rationalizing
the corresponding vanishing of (Q,(z)) in Fig. a).

Via a perturbative approach, we can investigate the par-
ticle fluctuations analytically. The moment generating
function g(q) = (exp(—iq-Z)) of the particle position
at the lowest nontrivial order in A reads [64]

dp (P-v),., 2
/ v

2m)d p2 41

T X [ du
2K k Jo o2(u)

X Gplu)e 770 [1 = W] L o), (18)

Ing(q) =

where o%(u) = T (1—e /) /k, and Gplu) =
exp[—apu + i (p - v) u]. Interestingly, Eq. predicts a
non-Gaussian statistics of the particle position. In addi-
tion, the variance (Z;Z,,), o &, changes anisotropically
compared to the case v = 0, so that the position distri-
bution is elongated in the direction parallel to v [64}73].
Furthermore, iV qg|q=0 gives the average displacement

N d p(pev) e [T p?o?
_Z AR —p 0" (u)
k) 2m)d p2+r Vol /0 duGp(u)e .
(19)

which turns out to be directed along —v; hence, the field
induces a shift of the probability density of the particle
position, which lags behind the average stationary value
in the absence of the field [see the inset of Fig.[3[(b)]. Such
a lag is the footprint of an underlying additional source of
dissipation, which we analyze next.

(2) =

Power fluctuations. — From the moment generating
function in Eq. , we can access the distribution of the
dissipated power. Indeed, rewriting Eq. in terms of
Z gives W = fyyvz — kv - Z, and thus

In <exp(—mW)> = —ipy,v? + In g(—prv), (20)
encoding all moments of the dissipated power. To study
the impact of the field, we focus on the average power

(W) = 90 —nv - (Z) = (W)o+ (W), (21)
where we identify the dissipation rate in the absence of
the field (W), = v,v? > 0, while (W), = —kv-(Z) >0
encodes the additional dissipation due to the field. Ac-
cording to Eq. (12)), these are further equal to the entropy

production at A = 0 and A > 0, i.e., (W}O = T<Stot>0

3We adopt here and in the following the Fourier convention
flx) = f[ddp/(Zﬂ)d] exp(ip - X) fp, and we normalize the delta dis-

tribution in Fourier space as f[ddp/(27r)d]5d(p) =1.
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Fig. 3: (a) Steady-state expectation value (p(z))st of the field in the comoving frame, for various drag velocities v > 0, in d =1
and with non-conserved dynamics. The shadow (p(z))st flattens upon increasing v (at fixed correlation length £ = 10, main
plot) or upon decreasing £ (at fixed v = 5, inset). (¢(z))st decays exponentially upon increasing |z| with different decay lengths
{4 in front of or behind the particle — see the main text and Ref. \\ We used V, = exp(—q2R2/2) and R* +T/k = 1, while
the other parameters were set to unity. (b) Additional dissipation rate [see Eq. ] as a function of v, for various values of
& (with T = 0.1, while the other parameters were set to one). Symbols correspond to simulations. Inset: scaled correction

—(Z) /A\? to the average particle position [see Eq. ]

and (W), = T<S’tot>k, respectively. In Fig. b) we
show the perturbative prediction for (W), as a function
of v, and the corresponding numerical data from simu-
lations , which are in good agreement. We find that
(W), generally displays three distinct regimes upon in-
creasing v: first, |(Z)| grows linearly [see Fig. [3(b), inset],
so that (W), o v?, as it would be the case for usual
Stokes friction. After a crossover, in the second regime
|(Z)| o< 1/v, and therefore (W), plateaus at intermedi-
ate v, which indicates a constant energetic cost associated
with the particle-field interaction. Finally, in the third
regime, |(Z)| saturates and thus (W), oc v. We remark
that the second and third non-Stokesian regimesﬁ cannot
be captured by a linear GLE .

We present a thorough analysis of these regimes in
Ref. , for the case a = 0, and summarize it here. First,
by inserting into Eq. the formal solution of Eq.
for pp(t), an effective equation for Z(t) can be obtained,
which is non-Markovian and nonlinear. However, in the
limit of small v, the field is sufficiently fast to equilibrate
around the particle at any instant in time . Con-
versely, for large v the evolution of the field is so slow that
the particle encounters an effectively static field configu-
ration. Accordingly, the first two regimes can be quantita-
tively captured by adiabatically replacing the field ¢p(t)
in Eq. with its mean (comoving) profile (pp), i.e.,
with the shadow shown in Fig. a), resulting in an ap-
proximately Markovian evolution of Z(t). In contrast, at
intermediate values of v, the timescales of the particle dy-

4The first and the third among these regimes are consistent with
the scaling of drag forces reported in Refs. , where particles
moving with constant velocity (i.e., without positional fluctuations)
were studied.

namics are comparable with the relaxation time 7¢ ~ 3¢ 2
of the field, and the adiabatic approximation is no longer
accurate: the particle dynamics within the crossover be-
tween the first two regimes is dominated by the memory
effects caused by the mutual influence of the particle and
the field . Finally, in the third regime, the shadow be-
comes negligible compared to the (critical) fluctuations of
the field, and the particle effectively encounters a rough
landscape resulting from them. Notably, as the field ap-
proaches criticality (£ — o0), the amplitude of its fluc-
tuations diverges [63], and thus the last (non-Stokesian)
regime extends to low v.

Conclusions. — We developed a thermodynamically
consistent framework to study the energetic and entropic
flows for a probe in a fluctuating medium with spatio-
temporal correlations, modeled here by a scalar field im-
mersed in a heat bath. We showed that the mutual in-
fluence of the probe and the correlated environment leads
to unusual thermodynamic properties, even for the simple
example of a particle dragged by a harmonic trap through
a Gaussian field. We showed that, close to criticality or,
more generally, when the correlation length £ of the field
exceeds the particle size, a dipolar structure develops in
the local heat dissipation field — with systematic heat
absorption in front of the particle, and whose extent is
determined by £. We thus expect such heat dipoles to be
possibly revealed also in long-range interacting systems of
diverse nature . Furthermore, the additional power re-
quired to drag the particle in the presence of the field fea-
tures three regimes with distinct scaling in the drag speed
v, among which are two non-Stokesian regimes — a feature
that cannot be captured by a linear GLE. Far from criti-
cality (£ — 0), the medium is only weakly correlated, and
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indeed both the heat dipole and the additional dissipation
vanish. The framework developed here can be readily ap-
plied to study more complex scenarios, e.g., non-quadratic
Hamiltonians, or extended to systems of multiple particles
in a common correlated (active) environment. Moreover,
the recent and intense experimental investigations of col-
loidal particles in correlated fluids — such as viscoelastic
media [60L[75L(76], binary liquid mixtures [25-31], and liv-
ing cells [77,/78] — could provide access to the phenomena
described here.

* % X%

SL acknowledges funding through the Walter Benjamin
program by the Deutsche Forschungsgemeinschaft (Ger-
man Research Foundation, project number 498288081),
and through the postdoctoral fellowship by the Marie
Sklodowska-Curie Actions (MSCA), undertaken by the
UKRI (grant reference EP/X031926/1). AG, DV, and
BW acknowledge support from MIUR PRIN project
“Coarse-grained description for non-equilibrium systems
and transport phenomena (CO-NEST)” n. 201798CZL.
BW further acknowledges funding from the Imperial Col-
lege Borland Research Fellowship. ER and AG ac-
knowledge financial support from PNRR MUR project
PE0000023-NQSTTI.

REFERENCES

[1] SEIFERT U., Rep. Prog. Phys., 75 (2012) 126001.

[2] SEKIMOTO K., Stochastic Energetics (Springer Berlin Hei-
delberg) 2010.

[3] DEN BrOECK C. V. and EsposiTo M., Physica A, 418
(2015) 6.

[4] PELITI L. and PIGOLOTTI S., Stochastic Thermodynam-
ics: An Introduction (Princeton University Press) 2021.

[5] Bo S. and CELANI A., Phys. Rep., 670 (2017) 1.

[6] RoLpAN E., Nerr I, CHETRITE R., GuUPTA S.,
PicoroTrT! S., JULICHER F. and SEkiMOTO K., Adwv.
Phys. (in press), (2024) .

[7] MaEs C. and NETOONY K., J. Stat. Phys., 110 (2003)
269.

[8] GASPARD P., J. Stat. Phys., 117 (2004) 599.

[9] PARRONDO J. M. R., DEN BROECK C. V. and Kawal R.,
New J. Phys., 11 (2009) 073008.

[10] ROLDAN E. and PARRONDO J. M. R., Phys. Rev. Lett.,
105 (2010) 150607.

[11] REISTER E. and SEIFERT U., Europhys. Lett., 71 (2005)
859.

[12] REISTER-GOTTFRIED E., LEITENBERGER S. M. and
SEIFERT U., Phys. Rev. E, 81 (2010) 031903.

[13] CAMLEY B. A. and BrRowN F. L. H., Phys. Rev. E, 85
(2012) 061921.

[14] CAMLEY B. A. and BrownN F. L. H., J. Chem. Phys.,
141 (2014) 075103.

[15] GOMPPER G. and HENNES M., Europhys. Lett., 25 (1994)
193.

[16] HENNES M. and GOMPPER G., Phys. Rev. E, 54 (1996)
3811.

p-6

[17] GONNELLA G., ORLANDINI E. and YEOMANS J. M., Phys.
Rev. Lett., 78 (1997) 1695.

[18] GONNELLA G., ORLANDINI E. and YEOMANS J. M., Phys.
Rev. E, 58 (1998) 480.

[19] DEMERY V. and DEAN D. S., Phys. Rev. Lett., 104 (2010)
080601.

[20] DEMERY V. and DEAN D. S., Fur. Phys. J. E, 32 (2010)
377.

[21] DEMERY V. and DEAN D. S., Phys. Rev. E, 84 (2011)
010103.

[22] DEMERY V. and DEAN D. S., Phys. Rev. E, 84 (2011)
011148.

[23] DEAN D. S. and DEMERY V., J. Phys.: Condens. Matter,
23 (2011) 234114.

[24] DEMERY V., Phys. Rev. E, 87 (2013) 052105.

[25] HERTLEIN C., HELDEN L., GAMBASSI A., DIETRICH S.
and BECHINGER C., Nature, 451 (2008) 172.

[26] GAMBASSI A., MACIOLEK A., HERTLEIN C., NELLEN U.,
HELDEN L., BECHINGER C. and DIETRICH S., Phys. Rev.
E, 80 (2009) 061143.

[27] VoLpE G., BurTiNONI 1., VoGT D., KUMMERER H.-J.
and BECHINGER C., Soft Matter, 7 (2011) 8810.

[28] PALADUGU S., CALLEGARI A., TUNA Y., BARTH L., DI-
ETRICH S., GAMBASSI A. and VOLPE G., Nat. Commun.,
7 (2016) 11403.

[29] MarTiNEZ I. A., DEvAlILLY C., PETROSYAN A. and
CILIBERTO S., Entropy, 19(2) (2017) 77.

[30] MaGAzzU A., CALLEGARI A., STAFORELLI J. P., GAM-
BASSI A., DIETRICH S. and VOLPE G., Soft Matter, 15
(2019) 2152.

[31] MARTINEZ I. A., PETROSYAN A. and CILIBERTO S., Sci-
Post Phys., 15 (2023) 247.

[32] SEIFERT U., Phys. Rev. Lett., 116 (2016) 020601.

[33] LEONARD T., LANDER B., SEIFERT U. and SPECK T., J.
Chem. Phys., 139 (2013) 204109.

[34] NIGGEMANN O. and SEIFERT U., J. Stat. Phys., 178
(2020) 1142.

[35] FAaLAsco G., Rao R. and EsposiTo M., Phys. Rev. Lett.,
121 (2018) 108301.

[36] SucHANEK T., Kroy K. and Loos S. A. M., Phys. Rev.
E, 108 (2023) 064610.

[37] PRUESSNER G. and
arXiv:2211.11906, (2022) .

[38] SucHANEK T., Kroy K. and Loos S. A. M., Phys. Rev.
Lett., 131 (2023) 258302.

[39] Campist M. and Fazio R., Nat. Commun., 7 (2016) .

[40] HoLuBEC V. and RyAaBOV A., Phys. Rev. E, 96 (2017)
030102.

[41] HErPICH T., CosseTTO T., FALASCO G. and ESPOSITO
M., New J. Phys., 22 (2020) 063005.

[42] CABALLERO F. and CATES M. E., Phys. Rev. Lett., 124
(2020) 240604.

[43] L1 Y. I. and CaTeEs M. E., J. Stat. Mech., 2021 (2021)
013211.

[44] NarpINI C., Fopor E., TyauNG E., VAN WIJLAND F.,
TAILLEUR J. and CATES M. E., Phys. Rev. X, 7 (2017)
021007.

[45] MarkovicH T., Fopor E., TyHuNG E. and CATES
M. E., Phys. Rev. X, 11 (2021) 021057.

[46] D1 TerLIZzI 1., GIRONELLA M., HERRAEZ-AGUILAR D.,
BeETz T., MOoNROY F., BAiest M. and RiTORT F., Sci-
ence, 383 (2024) 971-976.

GARCIA-MILLAN R.,



Stochastic thermodynamics of a probe in a fluctuating correlated field

[47]

[48]

BECHINGER C., DI LEONARDO R., LOWEN H., REICH-
HARDT C., VOLPE G. and VOLPE G., Rev. Mod. Phys.,
88 (2016) 045006.

Ro S., Guo B., SHIH A., PHAN T. V., AusTIiN R. H.,
LEVINE D., CHAIKIN P. M. and MARTINIANI S., Phys.
Rev. Lett., 129 (2022) 220601.

BarTLE C., BROEDERSZ C. P., FakHRI N., GEYER
V. F., HowArD J., ScaMIDT C. F. and MACKINTOSH
F. C., Science, 352 (2016) 604.

MESTRES P., MARTINEZ I. A., ORTIZ-AMBRIZ A., RicA
R. A. and ROLDAN E., Phys. Rev. E, 90 (2014) 032116.
HOHENBERG P. C. and HALPERIN B. 1., Rev. Mod. Phys.,
49 (1977) 435.

SpECK T. and SEIFERT U., J. Stat. Mech., 2007 (2007)
L.09002.

Mar T. and DHAR A., Phys. Rev. E, 75 (2007) 061101.
Pratt A., PucList A. and SARRACINO A., Phys. Rev. E,
107 (2023) 044132.

TERL1ZZI I. D. and BAIEst M., J. Phys. A: Math. Theor.,
53 (2020) 474002.

PucList A. and VILLAMAINA D., FEurophys. Lett., 88
(2009) 30004.

OHKUMA T. and OuTA T., J. Stat. Mech., 2007 (2007)
P10010.

STANLEY H. E., Rev. Mod. Phys., 71 (1999) S358.
CILIBERTO S., Phys. Rev. X, 7 (2017) 021051.
GOMEZ-SOLANO J. R. and BECHINGER C., FEurophys.
Lett., 108 (2014) 54008.

LinTUuvuoRI J. S.;, STRATFORD K., CATES M. E. and
MARENDUZZO D., Phys. Rev. Lett., 105 (2010) 178302.
GAMBASSI A., J. Phys.: Conf. Ser., 161 (2009) 012037.
TAUBER U. C., Critical Dynamics: A Field Theory Ap-
proach to Equilibrium and Non-Equilibrium Scaling Be-
havior (Cambridge University Press) 2014.

See the Supplemental Material.

BENDER C. M. and ORSZAG S. A., Advanced Mathemat-
ical Methods for Scientists and Engineers (McGraw-Hill)
1978.

GROss M., J. Stat. Mech., 2021 (2021) 063209.

67] VENTURELLI D. and Gross M., J. Stat. Mech., 2022

(2022) 123210.

SEIFERT U., Phys. Rev. Lett., 95 (2005) 040602.
VENTURELLI D., FERRARO F. and GAMBASSI A., Phys.
Rev. E, 105 (2022) 054125.

Basu U., DEMERY V. and GAMBASSI A., SciPost Phys.,
13 (2022) 078.

VENTURELLI D. and GAMBASSI A., Phys. Rev. E, 106
(2022) 044112.

VENTURELLI D. and GAMBASSI A., New J. Phys., 25
(2023) 093025.

DEMERY V. and Fopor E., J. Stat. Mech., 2019 (2019)
033202.

GupTA S. and RUFFO S., Int. J. Mod. Phys. A, 32 (2017)
1741018.

GINOT F. and BECHINGER C., arXiw:2311.16324, (2023)

Loos S. A. M., MONTER S., GINOT F. and BECHINGER
C., arXiv:2311.00470, (2023) .

Fopor E., AHMED W. W., ALMONACID M., BUSSON-
NIER M., Gov N. S., VERLHAC M.-H., BETz T., Visco
P. and vAN WWLLAND F., Furophys. Lett., 116 (2016)
30008.

p-7

[78] TUurRLIER H., FEDOSOV D. A., Aupory B., AuTH T.,

Gov N. S., SYKEs C., JOANNY J.-F., GOMPPER G. and
BeTz T., Nat. Phys., 12 (2016) 513.



Supplemental Material
for “Stochastic thermodynamics of a probe in a fluctuating correlated field”

Davide Venturelli,">2>* Sarah A. M. Loos,>* * Benjamin Walter,>!** Edgar Roldan,* and Andrea Gambassi'

1SISSA — International School for Advanced Studies and INFN, via Bonomea 265, 34136 Trieste, Italy
2 Laboratoire de Physique Théorique de la Matiére Condensée,
CNRS/Sorbonne Université, 75005 Paris, France
3DAMTP, Centre for Mathematical Sciences, University of Cambridge,
Wilberforce Rd, CB3 O0WA Cambridge, United Kingdom
410TP — International Centre for Theoretical Physics, Strada Costiera 11, 84151 Trieste, Italy
5 Department of Mathematics, Imperial College London,
180 Queen’s Gate, SW7 2AZ London, United Kingdom
(Dated: April 30, 2024)

In this Supplemental Material we provide additional analytical derivations and numerical results
which support the discussion in the main text, and justify some of the results stated therein.

CONTENTS

I. Stochastic energetics for the particle and field 1
A. First law of thermodynamics 3

B. Long-time limit 4

II. Stochastic entropy production 4
III. Comparison with the dissipated power predicted by a generalized Langevin equation 5
IV. Brownian particle and Gaussian field: independent processes 6
A. Brownian particle in a harmonic potential 7

B. Dynamics of the free field 7

V. Derivation of the moment generating function of the particle position 8
VI. Average particle position and dissipation rate with non-conserved dynamics 11
A. Typical time and length scales 11

B. Behavior as a function of the drag speed v 12

C. The case of critical non-conserved dynamics 15
VII. Numerical simulation of the stochastic dynamics 15
A. Numerical integration scheme 16

B. Choice of parameters 17

C. Numerical measurement of the distribution of the particle position 18

D. Numerical measurement of the heat dissipation field 19
References 20

I. STOCHASTIC ENERGETICS FOR THE PARTICLE AND FIELD

In order to address the thermodynamic properties of the system described in our manuscript — composed of a probe
and a field in interaction — we need to introduce suitable definitions of the energy flows and entropy changes associated
with their stochastic dynamics. To this end, we utilize ideas from the framework of stochastic thermodynamics [1],
and generalize them to the present case. In addition to the equations of motion, given in Egs. (2) and (3) in the main
text, the only assumption we make is energy conservation for both the probe and field dynamics. We use Stratonovich
calculus throughout.

First, we assume that the only systematic energy input into the system is due to the work done on the probe by the
action of an external agent. This can either result from changing in time the potential ¢(Y,t) — thereby increasing



the potential energy of the probe — or from the application of an external force Fey. In agreement with classical
mechanics, the work dW within the time frame [t, ¢ + d¢] is simply given by

_AUY 1)

aw 51

dt + Feyy 0 dY. (1)

The total work W along a certain stochastic trajectory {Y(t), ¢(x,t)}i in the configuration space of the field and
probe, from time ¢; to t¢, is obtained by integrating over the infinitesimal increments, i.e., W[{Y, ¢}§f] = f{Y oyt daw.
b}t

Next, we consider the total energy U + Hy + H™" of the system and how it may change, in order to identify all
possible types of energy (ex-)changes within the system. First, the probe can store potential energy U(Y,t). The
latter can change due to a probe displacement, i.e., a change of Y, or due to the motion of the trap itself, giving rise
to the differential

MUY, )

AUY. 1) = OxU(Y, 1) 0 dY + =

dt. (2)

Note that the last term on the r.h.s. of this equation can be expressed, via Eq. (1), in terms of the work dW as
dW — Fey o dY. This fact will be used further below in Sec. I A. Second, the field can store energy H4 in its
configuration, characterized by its local energy density hg(x), such that

Hy = / dx hy(x). (3)

Since we assume that H is not explicitly time-dependent, the total change dHy4 of the internal energy is accordingly
given by

dH, = / d¥x dhy(x), (4)
with
dhy(x) = % o do(x). (5)

Here dhy(x) denotes the local change of internal energy of the field. Notably, depending on the choice of H,
dhe(x) may contain contributions from the neighboring points ¢(x’ # x). For example, for a Gaussian Hamiltonian
Hy = [dix [%(ng)Q + %T¢2] , as given in Eq. (14) in the main text, the Laplacian term induces energy exchanges
between neighboring locations, as one realizes by discretizing space on a lattice.

Third, the interaction #™ between field and probe can store elastic energy. Again, defining the density of interaction
energy hi™ such that

HM = / ddx h'™ (x), (6)
the differential of the latter reads
AH™ (x,t) = —dW,™ — / d’x AW ™ (x), (7)
hence
aw,™ == —-VyH™ odY, (8)
AWt (x) 1= — 5?(;“ o dg. )

Here, we have defined the scalar dW;** and dW}"(x) (the latter being a field) as the infinitesimal changes of the

interaction energy due to the fluctuations of Y or ¢(x), respectively. We interpret these energy flows as the work
done by Y and ¢, respectively.



A. First law of thermodynamics

As a final step, we connect the various energy flows, thereby obtaining the balance equations and the appropriate
expressions for the heat. We start with di/(Y,t) given in Eq. (2): using Eq. (1), one finds

dU(Y,t) = [VyU(Y,t) — Feyi] 0 dY + dW. (10)

Substituting the equation of motion of the probe dynamics [given in Eq. (2) of the main text] into the last equation,
we find

dU(Y,t) = (v — Y + VyH™) o dY + aW
=(v- 'yyY) odY + CIVV;“t + dw. (11)

In the last step we have identified dW;nt, given by Eq. (8). Since we assume energy conservation for the probe

dynamics, all the work (’H/Vyi“t + dW done on the system that is not used to increase the potential energy of the probe
(by an amount df) must be dissipated into the heat bath in the form of the heat —d@),,. Thus, it follows from Eq. (11)
that the first law for the probe dynamics reads

AU = dQ, + AW, + aw, (12)

with the heat flow d@, defined by

dQ, = (v —7,Y) 0 dY, (13)

as given in Eq. (6) of the main text.
We now turn to the energetics of the field. We start with dhy(x) given in Eq. (5) and we insert the equation of
motion of the field [given in Eq. (3) of the main text], finding
(SH¢ int

dhy(x) = 560 odo(x) = {(V—Q)a {n(a)(x) _ ’Y¢.§Z.5(X)} n 57(;[¢

Identifying the last contribution on the r.h.s. of this equation with de‘t [see Eq. (9)], we find

} o dg(x). (14)

g () = {(=V72)° [1 (x) = 20| } 0 do(x) + AW (x). (15)

Again, energy conservation requires that all the work quisnt that is locally done on the field is either stored in the
field configuration in the form of a dhy(x), or dissipated by the field in the form of heat —dQ4(x,t). Accordingly, the
(local) first law for the field, valid at any point in space, reads

dhe(x) = dQy(x) + AW (x). (16)

We note that the Lh.s. describes the total change of internal energy of the field at a given point x, which generally also
contains nonlocal contributions, as mentioned after Eq. (5). These terms can be interpreted as the energy exchanges
within the field, i.e., between ¢ at different points in space. The integral form of Eq. (16) is given in Eq. (7) in the
main text. This first law allows us to identify from Eq. (15) the heat dissipation field of ¢ as

4Qs(x) = {(=V72)° [0 (x) ~ 746(x)] } 0 do(x), (17)

which is reported in Eq. (9) in the main text.
The accumulated heat and work along a joint trajectory {Y, (;5}? from t; to t¢ are obtained by integrating over the
infinitesimal increments defined above, i.e.,

lyop)= [ de (18)

(Y0},

with e € {Qy, W, dQy(x)}.
Explicit expressions of (Q4(x)) for a scalar Gaussian field coupled to a dragged particle [see Eqs. (14) and (15) in
the main text] will be reported in a future work.



B. Long-time limit

For t — oo, the system approaches a state in which the probability densities of the probe’s degree of freedom Y
and the field value ¢ in the comoving frame of reference [e.g., x — x — vt w.r.t. the lab frame for a uniformly dragged
particle] are time-independent. In this nonequilibrium steady state, the thermodynamic laws simplify due to the
presence of additional constraints. In particular, the potential energy of the probe and of the field, as well as the
interaction Hamiltonian, are on average conserved, such that (di/) = 0, (dhg) = 0, and <dhint> = 0. Thus, the first
laws for the probe and field given in the main text and reported here in Eqgs. (12) and (16), respectively, simplify to

(W) = —(dQ,) — (aW,™), (19)
and
(AQy(x)) = — (AW (x)). (20)
Further, from Eq. (7), we find
—(awt) = / d%x (dW)(x)) . (21)

Then, by using Eqs. (19) and (20), this equation implies that the total dissipation of the entire process is given by
the work applied to the probe, i.e.,

() = — / dix (dQy(x)) — (dQ,), (22)

indicating the physical consistency of our approach.

II. STOCHASTIC ENTROPY PRODUCTION

In accordance with the framework of stochastic thermodynamics for a finite number of degrees of freedom coupled
to a heat bath, and with the framework of irreversibility for fields [2, 3], we define the total entropy production along
a trajectory {Y(t), ¢(x,t)}i_, of the system from time # to t; as

PHY. o}i]

Sel (Y. 03] = Sy N

where P denotes the path probability of the forward path of the joint trajectory of field and probe, starting from the
probability density field py ¢[Y (%), #(x,)]. PR denotes the probability of the corresponding backward path in the
time-reversed process, initialized with py 4[Y (¢¢), ¢(x,t)]. In the time-reversed process, the time is running in the
reverse order from ¢ to ¢;, hence the time-dependent external driving protocols U(x, t) + Fey (t) are reversed in time.
(In the example of a particle dragged by a harmonic trap discussed in the Main Text, this corresponds to reversing
the dragging velocity from v to —v.) Due to the Gaussian statistics of the noise, the path weights are proportional
to the exponential of the Onsager—-Machlup action A [2, 4], i.e.,

P o< py o[Y (1), d(x, )] e~ AOY], (24)

Since the noise terms of the probe and field are assumed to be independent from each other, the total action of the
joint process is the sum of the actions of probe and field, reading [2]

b . . 1 b . .
/ dt (7Y + VyH™ + VyU — Fexe)* + —— [ dt / A% (Y6 + V - Ja) (=V?) " (46 + V - Ja) .
t;

4y, T 46T J,,
(25)

All the stochastic integrals in this section [such as the one appearing in Eq. (25)] are intended in the Stratonovich
sense, but we will omit the o sign to ease the notation. Accordingly, in Eq. (25) we are actually adopting the Freidlin-
Wentzell discretization convention; note that the final result for the entropy production [see, c.f., Eq. (30)] is however
insensitive to the choice of such convention — see, for instance, Section III in Ref. [5], or Section 5.2.2.2 in Ref. [6].



In Eq. (25) we defined

oH
%7
with a = 0 for non-conserved dynamics and a = 1 for conserved dynamics. Note that for a = 1 the operator (—V?2)®
is nonlocal, hence, in the last term on the r.h.s. of Eq. (25), we use [d%x A(x)(—V?)7®B(x) as a shorthand for
[d¥x [d¥x" A(x)(—V?)"%(x,x")B(x'). The term —V - Jq in Eq. (26) is the deterministic dynamical operator of the
field dynamics in Eq. (3) of the main text, i.e., =V - Jq = ’y¢<i> — n{®. The action of the time-reversed process is
accordingly given by

V.-Jq=(-V?H" (26)

te

1 . .
AR = iy, T / dt (—’}/yY + VY’Hmt + VU — cht)Q
Yy ti

1 _ |
+ m . dt/ddx (_’Y¢¢ +V. Jd) (_v?)fa (_'Y¢¢ L. Jd) . (27)

Inserting the path probabilities into Eq. (23) yields

v elY(.00)] |
S =l ¥ ) ae] (28)

_ A Gsh
=AS,

where the first term on the r.h.s. can be identified as the change, along the considered time interval, of the fluctuating
Shannon entropy associated with the probability density field py 4 of the joint process, i.e., considering both the
probe and the field. Furthermore, the second term on the r.h.s. of Eq. (28) can be simplified to

1 b . . 1 b .
AR 4= — / dtv, Y (VyH™ + Vvl — Foyi) | + — /dd / dt V) v.J
i %Y (Vy Y ) Yo X ) Ypb (—V7) d |
=(v-—m1Y) =(n(®) —v40)
1

!
T T

/{Y,¢}§f (v =7 Y)dY /ddx /{Y«b}if Ao (x)(~V2)* (1) - ’Y¢¢5)] : (29)

In the last step, we have inserted the equations of motion (2) and (3) of the main text, and we converted the integrals
over time into integrals along the trajectory {Y, <Z>}§f
As a final step, we identify in Eq. (29) the heat flows as given in Egs. (13) and (17), and therefore obtain

dd
S =~ JAX Qo) g, (30)

consistently with the total thermodynamic entropy production, given in Eq. (11) in the main text.

From Eq. (10) of the main text [or equivalently, Eq. (23)] it automatically follows that, on ensemble average,
the total entropy production is constrained by the second law (Siot) > 0 [7, 8]. The fluctuations of Siot obey, by
construction, the integrated and detailed fluctuation theorems, <e’5t°b> = 1 and p[Siot]/P[—Stot] = et [7, 8]. Along
long trajectories with ¢¢ > ¢;, this further implies that the total dissipation @ = [ dx Q4(x) + @, asymptotically also
fulfills these relations, as ASZ% — contrary to @y and @, — does not grow with time.

III. COMPARISON WITH THE DISSIPATED POWER PREDICTED BY A GENERALIZED
LANGEVIN EQUATION

An established approach [9-14] to study the thermodynamics of driven particles in complex environments is based
on using generalized Langevin equations (GLEs) [15, 16]. Within this description, the effect of the (slowly relaxing)
medium on the particle is described via a friction kernel and a colored noise. However, GLEs generally capture only
temporal correlations of the medium, but not dynamically-varying spatial correlations. In this section, we consider
the conditions under which a GLE may capture the different scaling regimes in the mean dissipation rate, which we
describe in the main text (see, e.g., Fig. 3 of the main text).



In particular, consider an arbitrary linear (overdamped) GLE of the form

t
7Y = —/ ATt - YY) — k(Y —vt) + p, (31)
—0Q
with a certain friction kernel I' (which we do not need to specify further here) and a zero-mean Gaussian colored noise
1. We consider a nonequilibrium steady-state of the system with v # 0 and are particularly interested in the mean
position (relative to the center of the trap), from which we can access the mean power [see Eq. (13) in the main text].
By averaging the GLE (31) over the possible realizations of the noise, one finds

i = — /_ At/ Tt — ¢)a(t') — w(u — ot), (32)

with u(t) = (Y (¢)). In the steady state, the average velocity @(t) of the particle does not depend on time ¢. Accordingly,
we can further simplify the previous equation as

v = —Gmt — £(u — vt), (33)
where we have introduced the constant
t
Gm = / dt'T(t —t"). (34)
The solution of Eq. (33) is
u=vt+C, with C=—(y+ Gun)v/k. (35)

Together with Eq. (21) in the main text, this implies that, for any linear GLE, with arbitrary friction kernel, the
correction to the average dissipated power is

(W) = kv [(Y (1)) — vt +vy/K] = —kv (C + vy/K) = Gmv?. (36)

This expression, being quadratic in v, corresponds to the first regime among those shown in Fig. 3(b) in the main
text, and to the usual Stokes friction. We conclude that the other regimes discussed therein can only possibly emerge
in the presence of nonlinearities in the effective evolution equation of the probe.

Now, let us consider a generalization of Eq. (31) to the case of a nonlinear friction kernel [17, 18], of the generic
form:

Y = 7/ ATt —t) Y ()] — k(Y —ot) + p, (37)

—0o0

with some arbitrary nonlinear function f [19]. Repeating the same steps as above, we find that the steady-state
solution is again of the form given in Eq. (35), with

C =~ [yo + GulF(V)] /5. (38)

Clearly, if we allow f to be nonlinear in Y (i-e., “non-Stokesian friction”), this equation can also reproduce the different
regimes we found in the friction (equivalently, mean power) described in the main text. For example, the scaling in
the second regime in Fig. 3(b) in the main text formally corresponds to a situation where Eq. (37) has a contribution
to the friction of the form — ffoodt’ [(t — ¢)[Y ()] 2. This is a rather unusual friction term that seems difficult to
justify on heuristic or phenomenological grounds alone. In contrast, by systematically integrating out the field degrees
of freedom ¢(x,t) from the joint field-particle dynamics [given in Egs. (2) and (3) in the main text], we can obtain an
effective description for the motion of the particle in the form of a nonlinear GLE akin to Eq. (37) [see, c.f., Eq. (91)]
— as discussed in the next sections.

IV. BROWNIAN PARTICLE AND GAUSSIAN FIELD: INDEPENDENT PROCESSES

We summarize here the well-known solutions of the non-interacting processes for Z(t) and ¢p(t) [equivalently, Y (¢)
and ¢p(t)] which are obtained by setting the coupling constant A = 0 in Egs. (16) and (17) of the main text. This
case forms the basis for the perturbative calculation of the moment generating function of the probe particle position,
which we derive in Section V.



A. Brownian particle in a harmonic potential

The equation of motion for a Brownian particle in a harmonic potential

Y2 = —KZ + v, (39)

with
(vi(t)v; () = (2T /) di;6(t — 1), (40)
is that of the Ornstein-Uhlenbeck (OU) process, which we briefly revise here for clarity and to set the notation for the
following sections. Each component Z; (with j € {1,...,d}) of the particle position Z is a Gaussian and Markovian

process. Accordingly, the propagator of the process is

Z — m(t)|?
Py (Z.4|Z0, to) = A {J 203(,5,550))' ] (41)
where
m(t) = m(t; Zo, to) = (Z(t)|Z(to) = Zo) (42)
is the expectation value of the particle position Z(t) given that the process started at Zg at time ¢, and
a5 (t.to) = (27 (1) Z;(to) = (Zo);) — m3(t) (43)
is the corresponding variance. Because of isotropy, o3 (t,to) is independent of the component j € {1,...,d}. For the
process we are currently interested in, they read
m(t) = Zoe tto)/ 7 (44)
02(t,tg) = o2 (t —tg) = % 1— e 2rt=to)/m | (45)

Note that the time-translational invariance of the system implies P(Z, t|Zg, to) = P(Z,t—to|Zy,0). Using the Langevin
equation (39) or, alternatively, Eq. (41), one can readily calculate the connected two-time correlation function

Cltr,t2) = (Z(t1)Z(t2)), = ([Z;(t1) = m;(01)][Z;(t2) = m;(t2)])

= T e rlt2=t1l/vy _ efﬁ(t1+t2*2t0)/7y}
)

K

(46)

which, again, is independent of the value of j, while correlations (Z;(t1)Z;x;(t2)), vanish. At long times, the system
attains the thermal equilibrium described by the probability distribution

o 1 K2?
P (z) = CrT/n)iT exp(—ﬂ). (47)

B. Dynamics of the free field

We now consider the Langevin equation for the free field, i.e., the one obtained from Eq. (3) in the main text by
setting H™" = 0, and using the Gaussian H, given in Eq. (14) In Fourier space, this equation reads

7¢9'bp = —YpQpPp + Np, (48)

where, as in the main text, we conveniently introduced o, = p?*(p? + r) /Y¢, with @ = 0 or 1 corresponding to
non-conserved or conserved dynamics, respectively. The zero-average Gaussian noise 7, above is characterized by the
correlations

(1 ()1 () = 752 ()8 (0 + POt — 1), (49)



where Q4 (p) = 2Tp*® /v4. We adopted the Fourier convention f(x) = [[d%p /(27)%]e’P* f,,, with the delta distribution
normalized as [[d%p /(27)?6%(p) = 1. Equation (48) is the same as the one describing the position of a Ornstein-
Uhlenbeck particle, whence

(py (51)Bps (52)) = 6%(p1 + p2) OV (51, 52), (50)
T
P2+

CZ()O)(81782) — e—ap\sg—sl\ _ e—ap(sl+S2—2t())i| . (51)

In the previous expressions, we introduced the superscript (0) in order to distinguish these expressions from those
derived in, c.f., Section V, which pertain to a reference frame moving at velocity v. Note that, by construction,

C](yo)(sth) = CI()O)(SQ, s1). In the limit in which the time ¢ of initialization of the field is sent to ¢ty — —o0, one
recovers the equilibrium correlator

T
P

c(r) = eIl (52)

which is a function of the time difference 7 = so — s1 only. It is also customary to define the response function and
linear susceptibility of the free field [20]

2a
X (s1,82) = XV (52 — 81) = %G;OMSQ —s1), (53)
GZ()O) (s2 —s1) = e_"”(SQ_Sl)@(sQ —51), (54)

respectively, where O(¢) is the Heaviside theta function. The functions Xém(t) and G;,O)(t) are time-translational
invariant (also in a generic, possibly nonequilibrium, stationary state, since the equation of motion is). Moreover, in
equilibrium, they are linked to the correlator in Eq. (52) by the fluctuation-dissipation theorem [20]

0 (7) = ~6(r) 2O (7). (55)

V. DERIVATION OF THE MOMENT GENERATING FUNCTION OF THE PARTICLE POSITION

Here we provide the derivation of the cumulant generating function of the particle position reported in Eq. (18)
of the main text. We start from the coupled equations of motion for the variables Z = Y — vt + vv,/k and

o(z,t) = p(z + vEt — vy /K, t), Le.,

. dip .
Yh(t) = —KZ + )\/ (27r])7‘1 ipV_pope®? + u(t), (56)
V6(0 —ip -V + ap)pp = Ap* Ve P E 4. (57)

Note that, for A = 0, the second equation is formally the same as Eq. (48) with a, — «, — ip - v, which describes
the free Gaussian field. Its solution in the stationary state thus remains the same upon replacing the equilibrium

correlator C,(,O> (t) and the free susceptibility X,(,O) (t) in Egs. (52) and (53) by
T

_ —(ap—ip-v _ _ip'V 0
Cp(t) = 2 +re (ap=ip-V)[t| — oiP ‘”C’Z() (1), (58)
p2u
Xp(t) = ——Gp(1), (59)
Yo
Gp(t) = e~ (r=PVIQ(t) = eip"’tGl(]O)(t). (60)

Starting from the Langevin equations (56) and (57), and assuming the coupling constant A to be small, it is possible
to derive a (forward) evolution equation which describes the marginal probability distribution P;(z,t) of the particle

coordinate alone. The derivation is presented in Ref. [21], where a more general case is treated, in which a second

)

particle also interacts with the field via an interaction potential Vp(z ; the present case corresponds to V}U(Z) — 0. We

report here only the final result:

OiPy(z,t) = Lo(2z)Py(z,1) + N\ /t ds /dx L(z,x;t — 5)Ps(z, 1%, 5) + O(X?). (61)



Here

Lo=V,- (”z + Tvz> (62)
Ty Ty

is the Fokker-Planck operator for an Ornstein-Uhlenbeck particle [22], while the second term on the r.h.s. of Eq. (61)

involves a convolution of the two-time probability distribution Ps(z,t;x,s) with a memory kernel L£(r,w). This

typically emerges in non-Markovian processes, where one usually obtains a hierarchy of master equations relating the

n-point distribution Py, (Xn, tn;Xn—1,tn—1;---;X1,t1) with P,41 (see for instance Refs. [23-26]). This kernel reads

- d —1 Z—X —RKRU
Claxin) =95V [ sl VPe ™) ) = L Cylue ) (63)
Yy

where the notation V3 is shorthand for 0/0%j, and the summation over the repeated indices j and [ is implied. This
last expression had already been reported in Ref. [21] but, unfortunately, with a confusing notation.
We want to find an expression for the characteristic function

gk, t) = (e” 2B = / dze 2P (z,t). (64)

We start by taking the Fourier transform of the various terms in the master equation (61), which leads to

[0 — LI (X)) g(k,t) = f(k,t) + O(A?), (65)
where, from Eq. (62),
T
Lhk) = -k Vi — —k?, 66
o(k) ) k= (66)
and we have introduced
t
flk,t) = )\2/ ds /dx dz e ™2L(z,x;t — 5)Pa(z,1; X, 5). (67)

The solution of Eq. (65) is formally given, at the lowest nontrivial order in A, by

t ddk/
ok, 1) = g© (k) + / at’ / G (e )£ 1) + O(N), (68)
where we introduced
99 (p) = exp(—p*T/2k), (69)

i.e., the moment generating function of the uncoupled (A = 0) particle, and where we indicated by gq; the propagator
of the Ornstein-Uhlenbeck process in momentum space. The latter is easily found by solving the homogeneous part
of Eq. (65) via the method of characteristics [27], or even by simply Fourier transforming the real space propagator
given in Eq. (41): both ways lead to

gu1 (k, 1]k, 1) = &= (/D71 - fee 70/, (70)

where og(t — t') was introduced in Eq. (45).
Let us now focus on the stationary state, for which

g(kat) _>g(k)a gl|1(k7t‘klvtl) _>gl|1(k,t_tl|k/70)7 and PQ(Z,t;X,S) _>P2(Z7t_S;X,O). (71)
Equation (68) then becomes
g(k) = ¢ (k) +/ d/ / dg1|1 (k,u'[K',0)f(K') + O(A*)

— g(o)(k) +/ du/e—(kl’/z)oo(u )f (_keffw'/vy) +(')()\4), (72)
0
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where in the second line we used Eq. (70). Similarly, manipulating Egs. (63) and (67) renders

/ / BV 10 ol + wcpw)e-wm Byp+koui-p0)  (73)

in terms of the double Fourier transform P, of the two-point probability distribution P, with respect to both its
spatial arguments. Since we are neglecting terms of order higher than A2, then P, above can be replaced by its
expression for A =0, i.e.,

Pg(Z,t;X, S) = P1|1(Z’t|xv S)Pl(xv 5) + O()‘Q)v (74)

where Pj|; is the Ornstein-Uhlenbeck propagator given in Eq. (41), with Fourier transform g;|; provided in Eq. (70).
In the long-time limit, we can replace P;(x,s) by the stationary distribution P§'(x) eventually attained by the
uncoupled particle in its harmonic trap, see Eq. (47). We recall that the Fourier transform of P! (x) is the function
g9 (p) given in Eq. (69). This yields

- ddp . p2
Py(pa, t;p1,0) ~ /ﬁ g111(P2, tIP1 — P0,0)9” (Po) = ¢V (p1 + pae™"/ ) exp [;Ug(t) : (75)
Equation (73) can be further simplified by noting that, for any u-independent value A [and, in particular, for A =
p - (p + k)], we can rewrite [2§]
eAJZ(u) o

A 2
(0) e () —ruf/yy | - 2 7 | (0) —Aoc®(u)
[xp () + 2= (we o [ @] (76)

where we recall that X( )(u ) and C’I(,O) (u) differ from the corresponding xp(v) and Cp(u) only by a multiplicative factor
exp(ip - vu) for u > 0 [see Egs. (58) to (60)], and where we introduced

o?(u) = O’S(u/2), (77)

with o¢ given in Eq. (45). Equation (76) readily follows as a direct consequence of the fluctuation-dissipation theorem
for the free field, recalled in Eq. (55). From Eq. (73), after integrating by parts in u, we thus get

f(k) _ —Zf (O) / /(ddp ‘V| I; —l:):p V) Gp(u)efp-(erk)aZ(u)’ (78)

where Gp(u) is the field response propagator in the comoving frame, see Eq. (60). We finally substitute the expression
of f(k) given in Eq. (78) into Eq. (72) for g(k), and we simplify the integral over u’ by recognizing that

(p-1)e ™/ exp| (B K)o (we /] = — T 3 exp[(p K)o (e /], (79)

This gives the moment generating function

(k) :g<°><k>{1+“2 T [ S e [1—e—<p"‘>"2<")}}+0(k4>- (50)

£ o o*(u) p?

Upon taking the logarithm of Eq. (80) and expanding for small A\, we obtain the cumulant generating function reported
in Eq. (18) of the main text. In particular, computing fvag(q)\qzo gives the correlation function

T A2 d? ipipm (p- V) > 2 2
2. = b+ m 2 2 (e P02 1
(Zi1Zm), ndl /(277) Dty A /o du Gp(u)o®(u)e (81)

We note that the contribution oc A? actually vanishes for I # m, as it follows from the fact that, otherwise, the
integrand would be an odd function of some component of the vector p. It thus appears that no cross-correlations
arise between the various orthogonal components of the displacement, i.e., (Z;Z,,). X 04y, but the variance is
anisotropically modified along the directions parallel and perpendicular to the trap velocity v (see also Fig. 1). In the
critical case, as well as for small velocities or small thermal fluctuations, it is possible to prove analytically that the
correction in Eq. (81) is positive. Note that in the absence of the field (i.e., for A = 0) the variance does not change,
at finite v, compared to the case v = 0.
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VI. AVERAGE PARTICLE POSITION AND DISSIPATION RATE WITH NON-CONSERVED
DYNAMICS

In this Appendix, we analyze the behavior of the average particle position (Z) reported in Eq. (19) in the main
text, together with its consequences on the dissipation rate discussed therein, focusing on the case of non-conserved
dynamics.

A. Typical time and length scales

First, it is useful to introduce the following timescales:
T = ’)/y/’ia Ty = R/Uv TR = ’W)sz Te = 7¢§Z7 (82)

where z = 2 + 2a is the dynamical critical exponent of the field (2 = 2 for non-conserved dynamics) and & the
correlation length of its fluctuations. We recall that R is the length scale which characterizes the interaction potential
and thus sets the particle “radius” [see Eq. (15) in the main text], x is the stiffness of the harmonic trap, while the
parameters 7,  are the friction coefficients of the particle and the field, respectively [see Egs. (2) and (3) in the main
text].

The first timescale 7, is simply the relaxation time of the particle in its harmonic trap. The second is the time T,
taken by the moving trap to cover a distance corresponding to the particle radius; equivalently, 7, estimates the
shear rate near the driven particle [29]. The next two scales, instead, characterize the field ¢. In particular, 75 is the
time that a critical field ¢ takes to relax across a distance ~ R; similarly, 7¢ is the relaxation time of the field ¢ across
its correlation length &, and it represents its slowest timescale in the vicinity of the critical point (for non-conserved
dynamics).

Upon appropriately rescaling the integration variables, both the cumulant generating function in Eq. (18) of the
main text and the moments of the particle position Z can be recast in the form of scaling functions which depend
only on dimensionless ratios of the typical time and length scales of the system. Consider, for instance, the average
position in Eq. (19) of the main text in the case of non-conserved dynamics, where the integral over momenta p can
be computed upon choosing a Gaussian interaction potential V}, = exp(—pZR2 / 2). One possible choice is to rescale

momenta by £, so that after some manipulation one gets

A2 R /T/k T
<Z>=(VTs)></€£d><g<x7f, . f) (83

where the second factor highlighted on the r.h.s. is dimensionless. Similarly, we introduced above the auxiliary function

1 *° b2x — 2f(a,b, {m;}) b2y
g(Xﬂ"'lﬂT%’/’TB)E*/ da db exp|:—a_b_ , (84)
A4m) 2 Jo [F(a,b, {m ]2 4f(a;b, {m:})
fla,b{m})=a+b+ni+m5 (1—e ™), (85)
which depends on dimensionless parameters, while the parameter
TRT,
X =g = (1p08)? (86)

v

can be interpreted as the squared Péclet number of the system, i.e., x = (Pe)2. Alternatively, we note that in the
context of microrheology experiments conducted in viscoelastic media [29] one can identify the Weissenberg number
Wi = 75/(27,), where 7 is the (single) relaxation timescale of the medium. It follows that the parameter x in Eq. (86)
can be seen as the product of two Weissenberg numbers, one for each of the two dominant relaxation timescales of
the field, i.e., 7r and 7¢. The remaining dimensionless parameters {m;} encode the ratios of the typical length or time
scales of the system. In the limit in which 7¢ > 7, (strong confinement [30, 31], or close to criticality), the function
f(a,b,{m;}) in Eq. (85) simplifies, and the dependence on the three parameters {m;} can be replaced by that on a
single parameter 74 defined as

4 = L7 /¢, (87)
2. =R+ T/k. (88)
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Note that 7 may be regarded as the effective particle radius, once its average thermal fluctuations have been taken
into account: indeed, \/T'/k is the typical thermal fluctuation of the particle position in a trap at thermal equilibrium.
We thus obtain in this limit

/\2
(z) = VT&@Q’(X»ZT/O, (89)
f'(a,b,ma) = a+b+ 73, (90)

with the function ¢’ defined as g in Eq. (84), but with f replaced by f’ above.

B. Behavior as a function of the drag speed v

The average position (Z) in the steady state is plotted in the inset of Fig. 3(b) in the main text as a function of
the trap velocity v, for the case of non-conserved dynamics in d = 1. For any finite value of r, i.e., of the correlation
length € = r—1/2, one can generically identify three regimes and a crossover:

o Low-velocity (adiabatic) regime, for 0 < v < vy. When v = 0 the system is in equilibrium, and the average
particle position is not modified by the presence of the field [28], thus yielding (Z(v = 0)) = 0. Inspecting
Eq. (19) of the main text shows that (Z) x —v, i.e., a linear dependence of (Z) on v for small v.

o Intermediate crossover, for v < v < vy;. Here | (Z) | reaches a maximum and behaves in a possibly non-
monotonic way (depending on the choice of the various parameters).

o High-velocity (adiabatic) regime, for vir < v < wrrr. The amplitude of the average position starts decaying as
[(Z)] x v~ 1.

o “Depinning” regime, for v 2 vrrr. At very high speeds, one can check that (Z) tends to a small but finite value.

These regimes correspond to those observed for the correction oc A? to the dissipation rate (W), o v (Z) in Fig. 3(b)
in the main text, which grows like oc v? for small v (as it is the case for the usual Stokes friction), while it is
v-independent for intermediate v, and finally grows like o v in the last regime.

We can understand these behaviors starting from the effective equation of motion for the particle coordinate Z(t),
which can be obtained from Egs. (56) and (57) by solving for ¢ (t) in the second (linear) equation, and by inserting
this result into the first equation [21, 30, 32]. This yields

t
Yh(t) = —kZ(t) + v(t) + )\/ (g?;lip‘/peip'z(t) [Cp(t) + )\Vp/ ds xp(t — s)e PZE) | (91)

where the field susceptibility xp(u) is given in Eq. (59), while we introduced the colored Gaussian noise

0= [ dsGplt = s)(s). (92)

— 00

which has zero mean and the correlator Cp(t) [see Eq. (58)]. Equation (91) is markedly non-Markovian because of
the presence of a (nonlinear) memory term [i.e., the term that is proportional to xp(u)], and a colored multiplicative
noise term (p(¢). In the limits of very small and very large drag speed v, however, we physically expect to recover an
approximately Markovian description. First, for very small v, the field is fast enough to equilibrate with the particle
being fixed at its actual position, so that an adiabatic approximation is applicable [21, 28, 33, 34]. Second, for very
large v, the evolution of the field is so slow that the particle effectively encounters a field landscape that is effectively
static, i.e., quenched.

To make these statements more substantial, it is interesting to investigate the properties of the nonequilibrium
steady state of the field, characterized by the formation of a comoving stationary profile around the particle, which
we dubbed shadow in the main text. Its analytical expression is found by averaging Eq. (17) of the main text over
thermal fluctuations and by setting 9, (¢p) = 0, which yields, at the leading order in A [31],

A PPV, exp[-Tp?/(2r)]
(Ppley = — — : (93)
Yo ap —ip -V

where we used Eq. (18) of the main text, for A = 0, in order to express the average (exp(—ip-Z)) = g(p) at the
numerator of the resulting expression. The shadow is plotted in Fig. 3(a) of the main text for the case of d = 1
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and non-conserved dynamics. Qualitatively, as the value of the speed v increases, the shadow becomes increasingly
asymmetric (with its wavefront becoming steeper and its wake longer), and its overall amplitude decreases towards
zero. In the limit of a point-like particle — which is obtained by choosing an interaction potential V(x) = §(x) —
one can explicitly compute the inverse Fourier transform of Eq. (93) in d = 1 non-conserved dynamics by complex
integration, finding

o A Y 7 P 2
{e( ))st (U’y¢)2+(2/€)2 p 2 Izl (UE’Y¢> . oy

Accordingly, the shadow decays exponentially, in front or behind the particle (i.e., for z — +00), over two generically
distinct length scales

. [ 1+ (€0rp/2) <m/z>} , (95)

respectively, as reported in the main text. From this expression of ¢4 it appears that 1/(v4£) is a natural velocity
scale of this problem and, in fact, we shall see below that it coincides with the velocity vy under which the dynamics
is adiabatic. Close to equilibrium, i.e., for v < vy = 1/(74¢), Eq. (94) reduces to

(Pl = e, (96)

which is symmetric as expected, and extends over distances of O(¢). Conversely, for large speeds v > v; the amplitude
of the shadow decreases as 1/v, and decays in its front over a typical length 1/(vvyy) < &, and in its wake over the
length &2vv, > ¢, Notably, by using a more realistic interaction potential V(x) that takes into account the finite
particle radius R < £, Eq. (94) would still describe the tails of the shadow, i.e., its behavior for |z| > R.

As we emphasized in the main text, choosing positive values of the coupling constant A and V(x) in Eq. (15) results
in an effective attraction between the particle and the shadow; we are interested here in how this attraction modifies
the steady-state average particle position (Z). Let us assume initially that this deterministic attraction dominates over
the (non-Gaussian) thermal fluctuations induced by the field, which are encoded in the noise term (,(¢) in Eq. (92).
Focusing on the two Markovian limits described above, we can approximately replace the field ¢p in Eq. (56) by its
mean value, i.e., by the shadow given in Eq. (93). This approximation implies that

d
dﬂz))d P <eip'z> (Pp)g - (97)

00 2(0) =~ (2) + [

The second term on the right hand side represents a field-induced effective force which, in the steady state defined
by 0 (Z(t)) = 0, counterbalances the restoring force — (Z) of the harmonic trap. For small speeds v, the shadow
is essentially symmetric [see Eq. (96)] around its center which we will denote as z,. Linearizing Eq. (97) around the
unperturbed position (Z) = 0 (for simplicity, we consider below the case d = 1) renders in general

WO Z) = =K (Z) = Nky (Z) = 2), (98)

where the expression of the effective linear strength x4 and of z, introduced above can be found on the basis of the
expression of the shadow in Eq. (93) — as they are not necessary for our argument, we do not provide them here. In
the steady state and at leading order in the coupling A, we thus find

(Z) ~ AQ%Z,,. (99)

At small but nonzero v, one expects the center of the shadow to lag behind the average particle position (which
effectively “drags” the shadow), i.e., 2z, = av + (’)(vz) with some a < 0. Accordingly, Eq. (99) with this expression for
zp predicts that | (Z) | has a linear dependence on v for small velocities, as observed in Fig. 3(b) in the main text (see
the inset), and as discussed above.

The simplified description presented above is expected to become less accurate as v increases, because the rear-
rangement of the field can no longer be assumed to be instantaneous, and the particle actually moves considerably
(due to the dragging) while the shadow forms. The spatial extension of the shadow is of O(£) in this regime [see
Eq. (96)], so it builds over a timescale 7¢ ~ v4£? in the case of non-conserved dynamics [see Eq. (82)]. This timescale
should be compared with the time 7 taken by the trap to span a distance of the order of the field correlation length
&, ie., 7~ ¢&/v. The two timescales balance at

vr ~ 1/(74€), (100)
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which we identify as the end of the first regime, i.e., the beginning of the crossover in Fig. 3(b) of the main text. This
estimate assumes also that 7 < 7, i.e., that the field relaxes faster than the typical timescale set by the harmonic
trap (which is typically the case in experimental realizations with colloidal particles — see Section VIIB).

For intermediate velocities vy < v < vy, the behavior of (Z) is fully determined by non-Markovian effects which,
contrary to the previous regimes, cannot be explained in terms of a simplified model. Conversely, for v > vy, we
can again replace the field by its expectation value as in Eq. (97). In this high-velocity regime, the shadow is so
asymmetric [see Fig. 3(a) of the main text] that it is no longer meaningful to treat it as a point-particle concentrated
in its center z, [as we essentially did in Eq. (98)]. In spite of this difficulty, it actually turns out that its form can still
be determined analytically. In particular, from Eq. (93) one can first compute

dp . A [ dpipVye TP/2R) X [dp. g .
8$ = aac — wr — PR 4 T o~ T v p°/(2K) ipx 101
el / 2 (Pr)a € v ) 2 iy vov ) 27 PC v, o

where the approximation introduced in the last equality is expected to be valid when v exceeds all the relevant ratios
of length and time scales of the system. This requires, inter alia, that

Ty < Ti (102)

[see Eq. (82)], which justifies the replacement of the field ¢p by its mean value in Eq. (97). Moreover, we assume (as
done above and in the main text) that the interaction potential V() is characterized by a single length scale R (i.e.,
the particle radius), so that V, provides an effective cutoff over momenta p > 1/R. In the denominator of Eq. (101),
we can thus impose the large velocity condition «;,, < pv in correspondence of p ~ 1/R, so that this condition is
satisfied for all values of p < 1/R: this gives [with reference to Eq. (82)]

Ty L TR. (103)

Accordingly, the second threshold velocity vy is expected to be provided by the smallest velocity v for which both
conditions in Eq. (102) and (103) are satisfied, which depends on the particular choice of parameters and specific
details of the system. In Eq. (101) we also recognize the term V,, = V,, exp[~Tp?/(2k)], featuring the Fourier transform
of the interaction potential V(z), corrected by a factor which takes into account the mean squared displacement of
the particle in the harmonic trap induced by the thermal fluctuations [see also ¢y in Eq. (88)]. Accordingly, in this
limit, the shadow becomes
A [T ~
(p(x))g ~ —— dz' V(). (104)
YoV J -0

[Here we assumed that (p(x)), — 0 for |x| — +o0, as expected from Fig. 3(a) in the main text.] As a consequence,
the effective force term in Eq. (97) scales in this regime as v~!, which produces an analogous dependence on v for the
average particle position (Z) in the steady state. Due to this very v=! dependence, we expect this deterministic effect
to die out for very large v. In this last (“depinning”) regime, the field is so slow with respect to the particle motion
that no shadow can build up, and the particle effectively sees a rough landscape whose features are solely determined
by the thermal fluctuations of the field. In order to describe this situation, we have to go back to the particle effective
equation (91), the average over thermal fluctuations of which yields

YO (Z) = —k (Z) + )\/éij)jdipr [<Cp(t)eip.z(t)> + AV, /Ooo du xp(u) <eip.[z(t)z(tu)]>] ] (105)

By using Novikov’s theorem [35, 36]

cori) = [ astewes) <§f([<)]> , (106)

where F[(] is any functional of the (Gaussian) noise ¢, we can compute the expectation value

<Cp(t)eip.z(t)> = ip/ds Cp(t —s) <eip»Z(t)(£ZI%>

2 t
o APVp / ds (=911 0 (¢ — o) <€ip'[Z(t)—Z(s)]> 7 (107)
’Yy —00 0
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where in the last step we used the equation of motion (91) of Z(t), we indicated by (...), the expectation value over
the unperturbed process with A = 0, and we discarded higher-order terms in A. The leading-order expression for the
dynamical structure factor
<eip»[Z<t>—Z<t—u>]> y e—P 0% (W) (108)
0 t—+oo
was computed in Ref. [28], with o(u) given in Eq. (77). Setting 0; (Z) = 0 in Eq. (105) and taking the limit for
t — 400 on its r.h.s. then yields the steady-state average position

(Z) = )\—2/ dp ip| V|2 /00 du |xp(u) + ﬁe"{”“/vyC (u) et W) 4 oA (109)
w ) @ma Pl et P |

This last expression indeed coincides with Eq. (19) in the main text, for any finite temperature T > 0, which can

be seen upon integrating by parts in du and by using the fluctuation-dissipation theorem in the form of Eq. (76).

It is simple to verify that the term proportional to xp(u) in Eq. (109) decays as 1/v for large v, as it encodes the

deterministic effect of the shadow. At large v, the only term that contributes is the one originating from the noise

(p(t) and proportional to the field correlator Cp(u), which explicitly becomes

2y = NT [ A% ippVif
 ky ) @m)d p24r

/000 duexp[(ip - v — /vy — ap)u — p*o?(u)| + O(AY). (110)

This term is proportional to the strength T of the thermal fluctuations and the coupling A? to the field, in agreement
with the interpretation we provided earlier in this section — i.e., that the features of the field landscape encountered
by the particle in this regime are determined by the critical fluctuations of the former. The identification of the value
vrrr of the velocity v at which this regime begins is, however, not straightforward: it marks the value at which the
field-induced thermal fluctuations start to dominate over its deterministic attraction. Since these fluctuations exhibit
a rather strong dependence on the distance r from the critical point [as it appears by inspecting the field correlator
Cp(u) in Eq. (58)], then vrsr also shows a similar dependence on the correlation length & = r~1/2 (as well as on the
temperature 7). In particular, Fig. 3(b) in the main text shows that vr;; decreases upon approaching the critical
point 7 = 0, while the extents of the first and second velocity regimes decrease.

C. The case of critical non-conserved dynamics

It is instructive, at this point, to inspect the case of critical non-conserved dynamics, i.e., to consider r = 0 and
a=0. In d =1 and with a Gaussian interaction potential V,, (with zero mean and variance R), the average particle
position given in Eq. (19) of the main text can be simplified as

B _& > du exn| — (vu)?
@ =23 [ s | aita) <0 .
Y2 (u) = R? + u/vp + 0% (u). (112)

The corresponding curve for the dissipation rate is plotted in Fig. 3(b) in the main text (solid green line with £ = c0).
As the critical point is approached, we note that the crossover velocity v; described in Section VIB decreases; exactly
at criticality, the entire low-velocity (adiabatic) regime disappears, in agreement with the expression of vy given in
Eq. (100). Furthermore, for r — 0, critical fluctuations are found to play a major role, as signaled by the fact that
the crossover velocity vy also decreases considerably.

Interestingly, we note that the expression of (Z) for r = 0 in Eq. (112) has a finite, non-vanishing limit for v — 0,
while Eq. (19) of the main text, in the same limit but with a generic value of r, correctly vanishes independently of
r # 0; in fact, at equilibrium, the presence of the field does not modify the equilibrium distribution of the particle
[28]. We are thus led to the conclusion that the limits » — 0 and v — 0 do not commute: the physical interpretation
is that, when r — 0, the relaxation timescale 7¢ of the field diverges [see Eq. (82)] and therefore the system is out of
equilibrium for any finite value of v, no matter how small.

VII. NUMERICAL SIMULATION OF THE STOCHASTIC DYNAMICS

In this Appendix we provide further details regarding the numerical simulation of the coupled stochastic dynamics
of field and particle.
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A. Numerical integration scheme

The joint stochastic evolution of the field and the particle, given by Egs. (2) and (3) in the main text, is integrated
in time by using the stochastic Runge-Kutta method [37] with a fixed discretization time interval A¢. While the

particle evolves in continuous space (i.e., off-lattice), the field is defined on A = {Ax 2?21 liej, 1 </l; < L}, a cubic
grid of L% lattice points spaced Ax apart. We set out with ¢(x,t) and Y (¢) and define the first auxiliary increment

+ /27, 'TAtv(t) . (113)

Ki(t) = —At [, >V (x=Y(1) Vo(x, 1)+, 'k (Y = vt)
x€EA

Here, the field gradient is approximated by its lattice discretization,
(Vo(x)), = [ (x+ Aze;) — o (x — Aze;)] / (2Az). (114)

Further, v(t) denotes an uncorrelated Gaussian random vector with unit variance. The first increment K; is added

to Y(t) to obtain the auxiliary value Y (t) = Y () + K1 (t). The stochastic increment of the field is then evaluated by
using the auxiliary value as

o(x,t+ At) = —At [v(;l (V2 +7) o(x,t) — V(x — Y(t))} + /29, ' TA m(x, 1), (115)

where the Laplacian is approximated via

d(x + Az e, t) — 20(x,t) + d(x — Are;,t)] /(2Ax)2. (116)

M&

V2¢xt =

1=1

Hereafter, the position of the particle is updated using the new field configuration by defining the second auxiliary

increment
+1/2v, ' TAt v(t). (117)

The noise v(t) used in this second increment is identical to the one previously used in Eq. (113). Finally, Y(t) is
updated as

Ko(t) = —At |7, >V (x = Y () Vo(x,t + At) + 4, 'k (Y — vi)
xEA

Y(t+ At) = Y(t) + % Ky (t) + Ka(t)]. (118)

This scheme can be suitably adapted in order to to include, e.g., conserved field dynamics. As a second-order stochastic
Runge-Kutta integration scheme, the local truncation error in time is of order O(At3), and can be improved by using
higher-order schemes [37].

The initial condition ¢(x,t = 0) = ¢(x) of the field ¢(x,t) is drawn from the Gaussian equilibrium distribution
of the decoupled field (i.e., with A = 0, see Section IV B). By applying a d-dimensional Fourier transform to ¢, one
obtains

0 = 3 ebrg,, (119)

peA—T

where p sums over the reciprocal lattice A~! = {% z;j:l pi€i,—L/24+1<p; < L/2}. We randomly draw the

complex modes ¢p € C for momenta belonging to the positive half-cube p € {p’ €A tp) > O}, containing all
vectors in the reciprocal lattice with positive first component; while the magnitude is drawn from a Gaussian random

distribution NV, i.e., ||¢p|| ~ N (0, (LQA%)Q (p* + 7’)) the complex phase 0 € U([0, 27)) is drawn from a uniform random

distribution ¢, leading to a random initial mode ¢, = ||¢p|le?®. If r = 0, we set ¢p—o = 0. Then, to ensure that ¢(x)
is real, we set ¢_p = ¢y, for the remaining vectors in the negative half-cube. The initial condltlon then follows from
inserting the random modes into Eq. (119). The particle is initialised at the centre of the trap at ¢t = 0. Since neither
the particle nor the field start in their joint equilibrium distribution (A # 0), we allow for thermalization by evolving
the system for typically 10% timesteps at a time discretization of At = 1072, after which we assume the system to
have settled into a (nonequilibirium) steady state.
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B. Choice of parameters

Here we discuss the choice of the values of the parameters of the model to be used in the numerical simulations, so
that they eventually correspond to the typical time and length scales observed in experiments with colloidal particles.
As a prototypical example, we consider the case of a um-sized colloidal particle immersed in a binary liquid mixture
close to its demixing transition [38-42], so that the field ¢ represents the relative concentration of the two species
that compose the mixture. It must be emphasized, however, that our model is not meant to reproduce quantitatively
the results of such experiments (for which hydrodynamic effects would need to be taken into account), but rather to
highlight the role played by spatial correlations. Moreover, other very diverse physical systems (such as inclusions
in lipid membranes [43-46], microemulsions [47-50], or defects in ferromagnetic systems [51-56]) also fall within the
scopes of our model, and they may entail very different time and length scales.

Binary liquid mixtures can undergo a demixing phase transition close to room temperatures [57], in correspondence
of which the correlation length ¢ = £(T) diverges. In real experiments, achieving large values of ¢ is generally
challenging, as it requires a fine-tuning and highly accurate control of the temperature throughout the sample.
However, in the following we will assume that £ can indeed be made much larger than the particle radius R, in order
to emphasize the qualitative effects of spatially extended correlations, which are the central topic of this paper.

Note that our model features several parameters, but only a limited number of physical units (i.e., mass, length,
time and temperature). As detailed in Ref. [30], close to the critical point, the system can be conveniently described
in terms of a reduced set of dimensionless parameters, which correspond to ratios of the typical time and length scales
of the system described in Section VI A. These parameters are

=R =15/ _ M d : (120)
= — = = — 1 —.
w s P TR/ Tk, g K/Rd7 a. € R

The first is the Weissenberg number w = Wi, which compares the shear rate due to dragging with the typical
relaxation time of the field 7g, over length scales of the order of the particle radius R. The second parameter, p,
compares the relaxation time of the field with the time scale 7, set by the harmonic trap. The effective coupling ¢
quantifies the strength of the interaction between the particle and the field. Finally, € is the ratio between the thermal
length | = \/kpT/(2k) (i.e., the mean-squared displacement of the particle in the trap according to equipartition in
equilibrium) and the particle radius R. Specializing these expressions to the case of critical non-conserved dynamics
in d = 2 (see Section VIA and Ref. [30]) yields g = A?/(kR?), w = Rvv,/2, and p = KR%*v4/7,.

Having identified the relevant parameters in Eq. (120), we now discuss which values of them are within experimental
reach. The typical magnitude of the thermal length [ can be estimated at room temperature T' ~ 300 K by assuming
a typical value of the optical trap strength x ~ 0.5 pN/um [40], yielding ! ~ 100 nm, and hence € ~ 0.1 for a um-sized
particle. Next, the typical relaxation time scale 74 of a near-critical binary mixture can be estimated by using model
H [58]. Within mode-coupling theory and for momenta p such that p§ < 1 (i.e., for small &, which has been the case
in past experiments [38-42]), the relaxation timescale of the field is given by [59]

75 ' (p) = D¢ p*, (121)
where
kT
- = 122
¢ 6mne’ (122)

and 7 is the fluid viscosity. By comparison with the diffusion coefficient Dg of the particle [42]

kgT

= 6B = 0.22(pm)?s ™, (123)

R

one can estimate the relaxation time scale of the field over distances of the order of the particle radius as

R¢
’/T2DR

TR = Ty(p ~ T/ R) =~ ~ 10ms, (124)

where we chose £ ~ R/50 (which is common for water-lutidine mixtures [41, 42]). Since the typical relaxation time
7. of optical traps is of the order of a few tens of ms [41], this gives p ~ 10~1. This value is expected to increase if
the correlation length £ can be made larger, since this generally entails longer relaxation times 7, [20]. Next, with
typical drag speeds up to a few tens of ym/s [60], one can explore small Weissenberg numbers up to w ~ 10~1. On
the other hand, the effective coupling g quantifies the strength of the interaction between the particle and the field,
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FIG. 1. Upper panel: scatter plot of the particle position, in the comoving frame, as measured in numerical simulations
in d = 2 and for a field with non-conserved dynamics. The average positions for v = 0 and v = 5 are indicated with a red
dot and a blue square, respectively. Lower panels: histograms of the particle position along the directions parallel (z)) and
perpendicular (z1) to the trap velocity v. In the simulations we used the parameter set given in Eq. (125), with ¢ given in
Eq. (88). In the plot, we indicated with a solid black line the Gaussian distribution, which is recovered for v = 0 (boundary of
the gray regions) or in the absence of particle-field interactions, i.e., for A = 0 (leftmost curve in the left panel).

and its amplitude thus depends on the specific coupling mechanism realized in a certain experiment. At present, it is
still unclear how to estimate its order of magnitude on the basis of past experimental data, but we clearly expect any
overall qualitative effect to be enhanced if g can be made larger. We finally keep an eye for consistency on the ratio
O = 7,/7. = p/(2w) [see Eq. (120)] of the shear rate to the trap time scale which, based on the estimates above for
p and w, is typically of O(1).

The experimentally accessible values of the parameters in Eq. (120) discussed above are reproduced in numerical
simulations by choosing the following set of values of the model parameters:

T=07 £=02 wv=5 R=2 A=10, r=10"" ~»;'=20, and 5,'=5, (125)

where space is expressed in units of the lattice spacing Az, and we furthermore chose a discretized time step At = 1072,
This choice corresponds, in fact, to w = 0.25, p = 0.2, ¢ = 0.66, © = 0.4, and g = 125. The lattice size L = 128
is chosen sufficiently large so as to accommodate the tails of the field shadow [see Fig. 3(a) in the main text], and
to avoid spurious field currents due to the stirring that the particle would generate if it were dragged around the
periodic boundaries [30].

C. Numerical measurement of the distribution of the particle position

Using the numerical simulation described above, we determined the statistics of the particle position, shown in
Fig. 1. In particular, for a field in d = 2 with non-conserved dynamics, the upper panel of Fig 1 presents a scatter
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plot of the particle position Z measured in the comoving frame. This shows clearly two of the main features already
emerging from the cumulant generating function, predicted perturbatively (i.e., for small \) in Eq. (18) of the main
text, namely:

1. At finite v, the steady-state average position (blue square in Fig. 1) lags behind the one obtained for v = 0 (red
dot). Note that the latter coincides with the average position found at A = 0, i.e., (Z) = 0, because the coupling
to the field does not modify the one-time properties of the particle position statistics at equilibrium (this result
was proven non-perturbatively in Ref. [28]).

2. The variance of the particle position increases in the directions parallel and perpendicular to v by a different
amount. Note that in the absence of the field (i.e., for A = 0) the particle variance would be (Z;Z,,),. = (T'/k)0im
[see Eq. (81)], independently of the value of v. Accordingly, the observed anisotropic change of the variance of
the particle position is the result of the combined effect of the presence of the field and of the dragging.

The lower panels of Fig. 1 show histograms of the distribution of the particle positions z and z, along the directions
parallel (left) and perpendicular (right) to the trap velocity v, respectively, compared to the case with v = 0 (gray
shading). Note that the distribution for v # 0 is non-Gaussian, although the non-Gaussian character is not immedi-
ately apparent for the values of the parameters used in this figure. However, this non-Gaussianity is evident at the
lowest perturbative order in A, as we discuss in the main text [see Eq. (18) of the main text].

D. Numerical measurement of the heat dissipation field

In Eq. (9) of the main text, we introduced the field dQ4 of heat dissipation and we determined it numerically for
a Gaussian field ¢ evolving in d = 2 according to a non-conserved dynamics (i.e., a = 0). This heat dissipation field
was shown in Fig. 2 of the main text. Here we provide supplementary information on the numerical aspects of its
determination.

In order to measure the heat field, we evaluate Eq. (9) of the main text for non-conserved Gaussian dynamics. For
the heat dQ, dissipated within a time interval [¢,¢ 4+ At] we find

oM | oM™
dQ¢ = |:6¢ + (5¢ :| Od¢(X,t)

= [(V2+71) ¢(x,t) + AV (x = Y (2))] 0 do (x,1), (126)

with the increment d¢ (x,t) numerically approximated by the forward difference ¢(x,t + At) — ¢(x,t). We are
interested in the average heat dissipated in the nonequilibirum steady state, i.e., in (dQ4). As discussed in Sec. IB,
the average ((V? + 1) ¢(x,t) o d¢ ) of the first contribution on the r.h.s. of Eq. (126) vanishes in the long-time limit.
Accordingly, it is therefore sufficient to evaluate the average of the second term. It remains to evaluate this second
term in the comoving frame in which the trap is at rest, and where the particle and the field are described by Z and
© [see Eqgs. (16) and (17) in the main text], respectively. Applying the Galilei transformations introduced in the main
text, the average heat in the comoving frame is then evaluated as

(dQy) (2) = (W/2)([V (2 = Z(1)) + V(2 = Z(t + AL))] - [p (7,1 + At) — ¢ (2,1)]) - (127)

In order to sample the nonequilibrium steady state, we average both in time and over an ensemble. Following the
procedure described in Sec. VIIA, we generate M ~ 103 trajectories of Z(™) and (™) (m = 1,..., M) of typically
N ~ 10° to 10% timesteps with a discretization of At = 1072, The initial condition of the field is chosen as prescribed
in Sec. VIIA, while the particle is initialized at Z(t = 0) = 0. We discard the first T, = 10* timesteps of the
numerical integration to allow the system to reach the nonequilibrium steady state in the comoving frame. This
duration is determined by inspection of (Z), ensuring it has converged to its steady state. The average over both time
and ensemble then reads

(AQ(z)) (128)
M N _g(m)(; _gm)((;
= Ly e > AR EEAN) Ve S BUEDAO) (o, 1)) — ) a0

m=1 J=Tin
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Dividing the result by At, one obtains the numerically estimated average dissipation rate <Q¢(z)> shown in Fig. 2 in
the main text.
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