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Abstract

We develop a boundary integral equation-based numerical method to solve for the electrostatic
potential in two dimensions, inside a medium with piecewise constant conductivity, where the
boundary condition is given by the complete electrode model (CEM). The CEM is seen as the
most accurate model of the physical setting where electrodes are placed on the surface of an
electrically conductive body, and currents are injected through the electrodes and the resulting
voltages are measured again on these same electrodes. The integral equation formulation is based
on expressing the electrostatic potential as the solution to a finite number of Laplace equations
which are coupled through boundary matching conditions. This allows us to re-express the solution
in terms of single layer potentials; the problem is thus re-cast as a system of integral equations on
a finite number of smooth curves. We discuss an adaptive method for the solution of the resulting
system of mildly singular integral equations. This forward solver is both fast and accurate. We
then present a numerical inverse solver for electrical impedance tomography (EIT) which uses our
forward solver at its core. To demonstrate the applicability of our results we test our numerical
methods on an open electrical impedance tomography data set provided by the Finnish Inverse
Problems Society.
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1 Introduction

In this paper we undertake two separate challenges. The first is to produce a fast and accurate novel
solver for the electrostatic potential in a 2-dimensional conductive body, where the conductivity is
assumed to be piecewise constant, and where the boundary condition is given by current injections
according to the complete electrode model. This setting is often studied in connection with the
electrical impedance tomography (EIT) inverse problem. The second aim of this paper is to use this
forward solver to then build a fairly straightforward EIT inverse solver which we test on a set of open
data for some real-world EIT experiments.

We will start by briefly introducing the setting that we consider for both our forward solver and
our inverse solver.

1.1 The setting for our problem: Body configurations and experiments

The objects of study in the first part of our paper will be solutions to the electrostatic potential
equation:

∇ · (σ(x)∇u) = 0, (1)

for u defined over a compact domain Ω0 ⊂ R2 with smooth boundary. The electric conductivity σ(x)
of the conductive body Ω0 is assumed to be piecewise constant.

In the particular setting we consider here, one can visualize the conductive body Ω0 as consisting
of “islands” Ωi of different shapes and different conductivities sitting inside a conductive medium. A
number of electrodes L are placed at the boundary of the conductive body, and direct or alternating
currents I⃗ are injected precisely at those electrodes. The currents here consist of L numbers I⃗ =
(I1, . . . , IL) subject to the restriction that

∑L
i=1 Ii = 0. The voltages (up to a grounded electrode) are

measured again at the L electrodes. So these are again captured by L − 1 numbers (since one of the

electrodes is grounded) which we list out in V⃗ = (U1, . . . , UL−1).

Thus a particular configuration B⃗, among a set B of permitted configurations, of conductive bodies
inside a media, with certain fixed electrodes e1, . . . eL touching the boundary determines a current-to-
voltage map RB⃗(·), which we denote by

V⃗ = RB⃗(I⃗).
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The map RB⃗ is called the resistance matrix [41]. We use the subscript B⃗ to stress the dependence of

the map on the configuration B⃗ ∈ B. The map is linear in I⃗, but its dependence on B⃗ is of course very
much non-linear.

Finding the configuration B⃗ using the knowledge of RB⃗ is the topic of the EIT inverse problem. This
question has been studied very extensively both in the pure math literature (see the pioneering works
[42, 38], which have led to many generalizations) and also in more real-world settings. We note that the
transition from mathematical solutions to real-world reconstructions is often a difficult one, owing to
the well-known ill-posedness of the problem. If one allows a very large space of possible conductivities
σ(x), then it is known [37, 45] that changes of the conductivity can result in comparatively much

smaller changes in the measured voltages map RB⃗(I⃗), for a given injection I⃗. Sensitivity of measured
voltages to perturbations of the conductivity σ have been considered in [15].

If more restrictions are imposed on the conductivity inside the body then better stability is possible.
In [3] it was shown that the recovery of piecewise constant conductivity with finitely many bodies is
Lipschitz stable (at least from the full Dirichlet-to-Neumann map). The Lipschitz constant, however,
is not estimated. In fact the proper understanding of the stability of reconstruction should also depend
on the norms in which (differences in) conductivities are measured. We do not touch on this matter
further, but turn to potential uses of EIT.

1.2 EIT as an imaging tool

EIT has been proposed and developed as a possible tool in medical imaging over many decades. A
resource on possible uses, and the state-of-the art in 2005, is [24]. Let us very briefly describe some
areas of more intense inquiry.

As discussed in [37, 45], the severe ill-posedness of EIT, at least when one seeks to reconstruct
conductivities that could a priori lie in a very large dimensional space seems to suggest that one
cannot in general expect high-resolution reconstructions. However, its non-invasive and inexpensive
nature makes it an attractive candidate for medical imaging.

Medical imaging applications of EIT include imaging lung function [27, 28]; studies towards breast
cancer detection [6]; and towards brain imaging [4, 13]. A further very interesting use of EIT is when
one does not seek full imaging, but rather to detect very coarse features inside a body. One such
application is to decide whether a stroke is due to haemorraging or a blood clot–in other words, using
EIT towards stroke detection [1].

We also mention that the EIT problem can have variants, where one has less information than
discussed in the previous section. For example, in some real-world instances one can have the shape
of the boundary ∂Ω0 not known. (One such instance is when the boundary is changing in time, due
to breathing during lung monitoring). Also, the contact impedances of the electrodes at the interfaces
with the body can not be assumed, and must also be determined. A reference for the reconstruction
of these parameters is [2].

1.3 EIT recast as an optimization problem

We return to the setting where the space of possible conductivities B is assumed to be a finite-
dimensional space. The EIT problem in this setting is to determine (to a decent approximation) the

configuration of bodies B⃗ from a sufficient number of samples to the current-to-voltage map RB⃗ . In

more practical terms, we consider the setting where the space of bodies B⃗ is of finite dimension (say

D), and we consider a finite set I of injections I⃗. For each injection, we sample the voltages at all
electrodes, up to grounding. Thus we have |I| · (L− 1) pieces of data. Assuming |I| · (L− 1) ≫ D, we

can hope to reconstruct the configuration B⃗ ∈ B.
One way to achieve this is by a sufficiently accurate solver for the forward problem. Indeed, the

most “direct” method in the inverse problem is to consider the same experiments

I ∋ I⃗ 7→ V⃗ = RB⃗(I⃗),
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for B⃗ in the configuration space B and to minimize the error between the “measured” current-to-
voltage map samples and those that would be the samples, among all candidate configurations B⃗ ∈ B.
Perhaps the simplest measure of difference between to current-to-voltage maps is a sum of squares
between the differences of the voltages measured for the same injection.

Assuming we had an accurate solver for the problem for all configurations B⃗ ∈ B, and given a true
configuration B⃗true, and a fixed set I of current injections, we can consider the L2-cost function:

CostI(B⃗, B⃗true) =
∑
I⃗∈I

∥RB⃗(I⃗)− RB⃗true
(I⃗)∥2.

Thus, any solver for the forward problem can yield an EIT inverse solver: One would seek to identify
the configuration B⃗ ∈ B which minimizes the above cost function, among all B⃗ ∈ B. (Or more

generally, some suitable finite-dimensional subspace of B⃗, if one had a priori information on B⃗true). To
make this method practically applicable, one needs forward solvers that are fast and accurate. Speed
is needed since even a modest iterative minimization algorithm should be expected to take about
100 steps. Each step might involve finding the gradient of a function of many variables (at least 10,
perhaps); and each evaluation of the function involves solving at least 15 forward problems, even for
very simple models with relatively few (i.e. 16) electrodes. High accuracy is also essential, due to the
severe ill-posedness of the EIT inverse problem. As discussed, this roughly means that small errors in
the measurement lead to large errors in the reconstruction.

Our second result here is precisely to construct such an inverse solver out of our new forward solver,
and to test its performance on experimental data. The data we will consider is that produced by the
Finnish Inverse Problems Society (FIPS) in [22]. Of course, measurement error in the data can affect
the quality of the found minimum, in view of the ill-posedness of the inverse problem. There seems to
be some amount of measurement error in the FIPS data, which we will discuss later.

1.4 Alternative approaches to the EIT inverse problem

As an alternative to our inverse solver (which relies on minimizing a simple sum-of-squares function),
one could consider more cleverly chosen cost functions, or seek to incorporate a priori knowledge on
the possible solutions by adding a regularizer to the cost function, or by using Bayesian inference.
Some references on such approaches are [29, 40]. Further approaches to the inverse problem have
been proposed that do not involve minimization of a cost function at all. Indeed, the factorization
method [10, 12, 11, 30, 31] (see also factorization method for the CEM [26, 35]), monotonicity based
methods [21], as well as the implementation of the d-bar methods (specific to two dimensions) take sam-

ples of the current-to-voltage map to directly reconstruct B⃗. The factorization method is also taylored
to locating sharp jumps in conductivity; the d-bar method has also been tried in such experimental
settings; results for those methods are available in [27, 28, 32, 33].

We note that one could imagine combining such “direct” methods with an inverse solver based on
minimizing a cost function, by using a direct method first, to find an suitable “first guess” for the
desired B⃗true, say B⃗first−guess. This B⃗first−guess can then be used as the initial point for a suitable
optimizer.

We also mention recent progress on applying learning techniques to identify better cost functions,
or better regularizers [36]. It is possible that one can enhance the rudimentary inverse solver we present
here, by using “learned” data from a forward solver.

However, our aim in this paper is not to design a very good inverse solver based on, for example,
a smarter choice of cost function, or using a more tailored optimization software. Instead, we wish to
complement the new (fast and accurate) forward solver we obtain with a rather basic inverse solver,
which we test on experimental data.

In §2 we introduce the PDE for the electrostatic potential, and recast it as a coupled system of
integral equations. In §3 we present the numerical solver that implements the system derived in §2,
and discuss the adaptive refinements, as well as its convergence and accuracy. In §4 we study the FIPS
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open data set, and define the cost function that we will be minimizing for our inverse solver. We then
test our inverse solver on most of the FIPS data in §4.4.

2 The CEM PDE for the electrostatic potential recast as a
system of integral equations

The complete electrode model is widely considered to be the most accurate model for electrical
impedance tomography, where injections of current are performed through electrodes that touch
the boundary of the body. The CEM setting has been studied by many authors, both theoretically
(e.g. [39, 41]) and also numerically (see for instance [5, 16, 19, 17]).

We present only the very basics here in order to then derive the integral equation formulation of
this problem.

2.1 The complete electrode model as a system of coupled Laplace equations

Let Ω0 ⊂ R2 be a compact domain with smooth boundary. We let Ωi ⊂ Ω0, i = 1, 2, . . . , N be domains
inside Ω0, which represent “bodies” with smooth boundaries.

In the interior of the domain Ω0, the electrostatic potential u satisfies the elliptic PDE

∇ · (σ(x)∇u) = 0, (2)

in which σ(x) is assumed to be a constant σi inside each of the bodies Ωi when they do not overlap,

and equal to σ0 in Ω0 \ (
⋃N

i=1 Ωi).
The boundary condition on u on ∂Ω0 is as follows. Away from all electrodes ek, one has zero

current crossing into Ω0, so the condition is

σ∂nu = 0, x ∈ ∂Ω0 \ ∪L
k=1ek,

where n denotes the outward unit normal vector of Ω0. On the electrodes, the condition is two-fold.
The function should have constant Dirichlet data if the contact impedance of an electrode is zero. In
general one expects a (small) contact impedance zk > 0 on each electrode ek. So the condition of
constant voltage on the electrode ek reads

u(x) + σzk∂nu(x) = Uk, x ∈ ek,

in which Uk is an unknown constant (voltage) on the perfectly conducting electrode. We then prescribe
the total current through the electrodes ∫

ek

σ∂nu dlx = Ik,

with the only constraint that the total current through ∂Ω0 should vanish,
∑L

i=1 Ik = 0. As discussed,
the current-to-voltage map1 is then the map

R : (I1, . . . IL) 7→ (U1, . . . UL).

It is useful to write an equivalent formulation of the above problem, recasting the equation as
a set of harmonic functions away from all interfaces ∂Ωi, with suitable matching condition at those

1We include the zero voltage on the one grounded electrode.
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Figure 1: An example configuration of a domain Ω0 with three bodies Ω1,Ω2 and Ω3 with their
associated conductivities σ0, . . . , σ3, respectively. On the intersection Ω2∩Ω3 we define the conductivity
to be σ2 + σ3. In this example there are four electrodes ei, i = 1, 2, 3, 4, whose locations on ∂Ω0 are
marked with gray color.

interfaces. The complete electrode model (CEM) problem for (2) with N domains Ωi inside a domain
Ω0 (see Figure 1) is given by the following system:

∆u = 0, x ∈ Ω0 \ ∪N
i=1∂Ωi,

σ∂nu = 0, x ∈ ∂Ω0 \ ∪L
k=1ek,

u+ σzk∂nu = Uk, x ∈ ek, k = 1, . . . , L,∫
ek

σ∂nu dlx = Ik, k = 1, . . . , L,

[u] = 0, on ∂Ωi, i = 1, . . . , N,

[σ∂nu] = 0, x ∈ ∂Ωi, i = 1, . . . , N.

(3)

We explain the notation used above: To each body Ωi, i = 0, 1, . . . , N , we assign a conductivity σi > 0.
To allow the bodies to overlap, we use the convention

σ(x) :=

{∑N
i=1 σiχi(x), x ∈ ∪N

i=1Ωi

σ0, x ∈ Ω0 \ ∪N
i=1Ωi,

in which χi(x) = 1 if x ∈ Ωi and χi(x) = 0 otherwise is an indicator function for the body i. We use
the notation [ξ](x) = ξ+(x)− ξ(x)−, where ξ(x0)

+ (resp. ξ(x0)
−) is the limit of ξ(x) as x → x0 from

Ω0 \ Ωi (resp. from Ωi). We assume that the interfaces ∂Ωi, i = 1, . . . , N , intersect transversely and
at most at finitely many points; the interface condition — the last equation of (3) — is well-defined
everywhere apart from these possible intersection points.

The electrode potentials Uk in (3) are unknown constants that are implicitly determined by the
known electrode currents Ik. Each electrode has a known, constant, positive contact impedance zk.
Due to charge conservation and so that the problem will have a solution, we require that there is no
net current into the domain, i.e.

L∑
k=1

Ik = 0.
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Finally, for uniqueness of the solution we impose
∑L

k=1 Uk = 0. Under these conditions, well-posedness
of (3) in H1(Ω0) is well known, see for example [39, 41].

2.2 Derivation of the boundary integral equations

As discussed above, the “real world” EIT problem occurs in spatial dimension 3. It is possible however
to produce experimental data that corresponds to spatial dimension two when all objects involved (the
bodies, the medium in which they are placed, as well as the electrodes) are defined over a cylindrical
region Ω ⊂ R3, with Ω = D × [0, h], D ⊂ R2, and all objects enjoy cylindrical symmetry: i.e. they
are invariant under changes in the coordinate x3 ∈ [0, h], and moreover the boundary conditions on

the currents J⃗ at the two boundaries {x3 = 0}, {x3 = d} are J⃗ = 0⃗. This setting can be achieved
experimentally (see the data set below), and is the 3D “lift” of the 2D setting that we consider. In
particular our forward solver applies only to 2D. Our approach to this problem is via single-layer
potentials, which we present next.

We note that an earlier paper by two of the authors, joint with K. Bower and K. Serkh presented
a boundary integral equation method for piecewise constant conductivities in 2D, where a more “clas-
sical” Neumann boundary condition is imposed [8]. A similar approach of using single layer potentials
to solve a Robin boundary value problem for the Laplace equation was taken in [46]. Beyond the fact
that the CEM is a realistic model in the presence of electrodes, we add that the numerics need to be
more attuned to the presence of singularities of the solution where the electrodes terminate. Further-
more, in this paper we allow for the bodies Ωi in the interior to overlap, which requires novelty in the
numerics, to obtain precision near the intersection points of the boundaries ∂Ωi, ∂Ωj . This particular
idea was first developed in [7].

We represent the solution u of (3) as a sum of single layer potentials

u(x) =

N∑
j=0

S∂Ωj
[γj ](x), (4)

with the single layer potential S∂Ωj
[γj ] defined via

S∂Ωj
[γj ](x) :=

∫
∂Ωj

G(x, y)γj(y) dly,

with the weakly singular kernel

G(x, y) :=
1

2π
log(|x− y|).

We note that the single layer potential is a harmonic function, ∆S∂Ωj
[γj ] = 0. Using the classical

jump relations for single layer potentials, we see that

γi = [∂nu] = ∂n+u− ∂n−u, on ∂Ωi, i = 1, . . . , N.

The normal derivative of the single layer potential is given for x ∈ ∂Ωi by

∂n±S∂Ωi
[γi](x) = K∗

∂Ωi
[γi](x)±

1

2
γi(x)

(see e.g., [14, 34]), which we may write for x ∈ ∂Ωi, i = 0, . . . , N as

∂n±S∂Ωj
[γj ](x) =

∫
∂Ωj

K(x, y)γj(y) dly ± γj(x)δij ,

in which δij is the Kronecker delta symbol. Above K∗ is the adjoint of the Neumann-Poincaré operator
given by

K∗
∂Ωi

:=
1

2π

∫
∂Ωi

(x− y) · n(x)
|x− y|2

γi(y) dly, x ∈ ∂Ωi.
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Let

K(x, y) :=
(x− y) · n(x)
2π|x− y|2

.

The kernel K(x, y) has a removable singularity on the diagonal, provided ∂Ωi is C2-smooth. By

defining K(x, x) = κ(x)
4π , where κ(x) is the curvature at point x ∈ ∂Ωi, we find that K is a continuous

function.
Substituting (4) into (3), we obtain the integral equation formulation of the CEM.

Off electrodes:

−1

2
σ(x)γ0(x) + σ(x)

N∑
j=0

∫
∂Ωj

(
K(x, y)− δ1j

)
γj(y) dly = 0, x ∈ Ω0 \

L⋃
k=1

ek. (5)

On electrodes:

−1

2
zkσ(x)γ0(x) +

N∑
j=0

∫
∂Ωj

(
G(x, y) + zkσ(x)K(x, y)

)
γj(y) dly = Uk, (6)

for x ∈ ek, k = 1, . . . , L;∫
ek

(
− 1

2
σ(x)γ0(x) + σ(x)

N∑
j=0

∫
∂Ωj

K(x, y)γj(y) dly

)
dlx = Ik, (7)

for k = 1, . . . , L.
On interfaces:

1

2
(σ+(x) + σ−(x))γi(x) + (σ+(x)− σ−(x))

N∑
j=0

∫
∂Ωj

K(x, y)γj(y) dly = 0, (8)

for x ∈ ∂Ωi, i = 1, . . . , N . In (5), we replace the kernel K(x, y) by K(x, y)− δ1j . This enforces [8] that
the total charge on the outer interface satisfies∫

∂Ω0\∪L
i=1ei

γ(x) dlx = 0.

3 Numerical implementation of the BIEM

3.1 Discretization of the integral equations

The integral equations (5) – (8) are discretized using the Nyström method. We first parametrize the
interfaces ∂Ωi by q ∈ [0, 1) and then discretize these curves by taking a grid of Mi > 0 points qij ,
j = 0, . . . ,Mi− 1. For accuracy, we use two different discretization schemes on the interfaces, panelled
and uniform. Specifically, we split the outer interface into panels ensuring that there are panel breaks
at the electrode boundaries. We also split interfaces that are within a specified distance to another
interface into panels. Moreover, in the case that two or more interfaces overlap, we break panels at
the intersection points that are found with a quasi-Newton method. We subdivide panels neighboring
intersections points and electrode boundaries dyadically following [23]. On panelled interfaces, we use
Gauss-Legendre quadrature on each panel. On uniform interfaces, we use trapezoidal rule quadrature
for the periodic q ∈ [0, 1). This is exponentially convergent provided the interface is distant from other
interfaces [44].

The kernel G(x, y) + zkσ(x)K(x, y) in (6) has a logarithmic singularity and so we use auxiliary
nodes [20] to accurately evaluate these integrals. Specifically, for each node qij ∈ ek on an electrode,
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we introduce an auxiliary set of nodes {xi} ∈ ek on each side of qij . These nodes and their associated
weights {wi} are a generalized Gaussian quadrature [9] designed to integrate∫ ∆q

0

f1(q) log q + f2(q) dq

for smooth functions f1 and f2
2. This quadrature requires samples of the integrand at the nodes {xi}

rather than samples of f1 and f2.
The use of this generalized Gaussian quadrature is enabled by properties of the logarithm. The

quadrature does not depend on ∆q since log cq = log c+ log q so that ∆q can be scaled away without
changing the form of the integrand. Additionally, for F (q) = |x(q) − x(qij)|, the singular part of the
kernel can be written as

logF (q) = log
(
F (qij) + (q − qij)F

′(q∗)
)
= log(q − qij) + log(F ′(q∗))

using the mean value theorem and F (qij) = 0. Thus, our integrands can be written as f1(q) log q+f2(q)
for smooth f1 and f2. We assume that sufficient dyadic subdivisions have been made so that the charge
density γi is well-approximated by a polynomial near the node qij . To obtain the values of the charge
densities at the nodes {xi} we use Lagrange interpolation, which can be augmented into the system of
equations for CEM since this interpolation is a linear operation. This interpolation is well-conditioned
since the interpolation nodes are either the Gauss-Legendre nodes on panels or uniform on a periodic
q ∈ [0, 1) [43].

After discretization, the equations (5) – (8) become a linear system,

Ag = I, g ∈ RM+L, (9)

in which M =
∑N

i=0 Mi is the total number of grid nodes. The equations (5), (6), and (8) yield one
block of the matrix A. The equations (7) are then appended to the system as a wide block matrix.
Similarly, since the electrode potentials Uk are unknown, they are appended to the system as a tall
block matrix. Roughly speaking, the matrix A has the form

A =

(
K U
N 0

)
,

in which K ∈ RM×M contains the (discretized) equations (5), (6) and (8); U ∈ RM×L contains zeros
on rows corresponding to nodes off electrodes and −1’s on rows corresponding to electrodes; and
N ∈ RL×M contains the (discretized) equations (7). Here 0 is an L×L zero matrix and the right-hand
side is given by the injected currents by I = (0, . . . , 0, I1, . . . , IL)

T ∈ RM+L. The matrix K is dense
and by far the largest block of A making A a dense matrix.

Solving for g in (9) yields directly the values of the voltages Uk, k = 1, . . . , L, on the electrodes ek.
This is useful for our electrical impedance tomography inverse problem since those voltages are all that
is needed to evaluate the objective function. It is not necessary to evaluate the solution u of (3) at all,
in stark contrast to the case of Dirichlet or Neumann boundary conditions. Additionally, in practice
one performs many injections, that is, solves the system Ag = I for several different right-hand sides
I. We solve Ag = I for a matrix I := (I1, . . . , Im) with Gaussian elimination, solving the multiple
injections simultaneously.

3.2 Adaptive grid refinement

To accurately resolve the charge densities and have a robust forward solver, we use adaptive grid
refinement. We use the spectral resolution of the charge density on an interface to determine whether
or not to increase the number of nodes on that interface.

2This quadrature was computed with GGQ available at https://github.com/JamesCBremerJr/GGQ.
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Figure 2: Left: The adaptively selected quadrature grid. The quadrature nodes on interfaces are
denoted by dots colored by the conductivity inside the interface on which they are located. The
electrode locations are marked with solid red and green curves at the top and bottom of the outer
interface. The red crosses mark the panel breaks. Note how our adaptive method refined locations
where the interfaces are close to each other. Right: The computed solution u of (3). We observe that
the potential u is approximately constant near the electrodes. Recall that on the overlap region of
two bodies the conductivity is defined to be the sum of the conductivities of the bodies, which can be
seen in the left figure on the overlap of the two bottom-left bodies. The top-right body has a lower
conductivity than the two bodies on the bottom-left.

For a uniform interface with Mi nodes, we expand the charge density γi in a Fourier sum

γi(q) =

K∑
k=−K

cke
2πikq, ck =

∫ 1

0

γi(q)e
−2πikq dq

in which Mi = 2K + 1. If the two highest Fourier coefficients |cK−1| and |cK | are below a specified
threshold, then we say that the charge density has been resolved accurately and Mi nodes are sufficient
to resolve the charge density. If the coefficients are not below the specified threshold, we increase the
number of nodes and re-solve the linear system until the coefficients |cK−1| and |cK | are small enough.

On interfaces with panels and composite Gauss-Legendre quadrature, we use the Legendre series on
each panel separately. If the last two Legendre coefficients of the charge density are above a specified
threshold, we refine the panel. If the number of nodes on a panel exceeds a specified maximum number
of nodes we instead split the panel into four smaller panels. This procedure is repeated and the linear
system is re-solved until the highest order coefficients of the Legendre polynomials are below a specified
threshold on each panel.

Figure 2 demonstrates adaptive refinement of the grid.

3.3 Numerical validation and experiments

To validate our BIEM solver for CEM, we compared with a simple finite element method (FEM)
solver for the CEM. Since we did not attempt to optimize the FEM solver, we do not dwell on a speed
comparison of the two methods. However, the BIEM solves a simple problem in approximately 1 to
10 milliseconds while our FEM implementation takes several seconds or minutes. We compare the
two approximate solutions u of (3) obtained by FEM and BIEM in Figure 3, we expect to see largest
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difference in the evaluated solution near the boundary. Despite the close evaluation problem, voltages
are accurately computed by the BIEM.

To test the convergence of the BIEM we toggled adaptivity off and instead used a fixed number
of nodes per panel and per uniform interface. Let ui denote the numerically obtained solution with i
nodes per panel. Figure 4 displays the solution to (3) in a configuration with two conductive bodies
and two electrodes. To study convergence, we calculated the errors between the solutions ui with

successively increasing number of nodes per panel, and the arising voltages Vi = U
(i)
1 − U

(i)
2 between

the two electrodes. We note that with our adaptive method toggled on we can reach desired accuracy
in voltages automatically without the need for an excessively large number of nodes.
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Figure 3: Numerical validation of the BIEM by comparison of the potentials u obtained using
FEM and BIEM in a simple configuration. The 16 electrode locations are marked with black
lines: active electrodes are located at the right side of the domain. The largest relative difference
|uBIEM − uFEM|/∥uFEM∥L∞(Ω0) between the two solutions is attained at the edges of the active elec-
trodes.
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Figure 4: Left: the numerical solution u to (3) with 1158 nodes in total. The point (x0, y0) is marked
by a red cross. Middle: the refinement study of the absolute differences |u1158(x0, y0)− ui(x0, y0)| as
a function of the total number of nodes at a point (x0, y0) ∈ Ω0. Right: the difference |V1158 − Vi|
between voltages as a function of the total number of nodes.

4 Experimental setup and numerical results for the inverse
solver

In this second part of the paper, we wish to discuss how our new forward solver can be used for solving
the EIT inverse problem and to present the results of a rather rudimentary inverse solver on a set of
open data [22] produced by the Finnish Inverse Problems Society3 (FIPS). We start by discussing the
experimental setup used to produce the FIPS data set.

4.1 The open EIT data set [22]: Experimental setup

The experiments were conducted using a tank of circular cylinder shape. The diameter of the tank was
28 cm. Sixteen rectangular electrodes (height 7 cm, width 2.5 cm) made of stainless steel were attached
equidistantly on the inner surface of the tank. The electrodes were marked with orange tapes on the
tank wall.

The tank was filled with saline up to the height of 7 cm, i.e., to the top level of the electrodes. The
measured value of the conductivity was 300µS/cm and temperature was 19◦C. The amplitudes of the
injected currents were 2mA and their frequencies were 1 kHz. Corresponding to each current injection,
voltages were measured between all adjacent electrodes. Various different phantoms (metal cylinders
and plastic inclusions) were placed in the tank in different configurations and the corresponding voltages
then recorded.

The voltage measurements are always performed at all pairs of adjacent electrodes. However, there
are different collections of injections: Injections are always between two electrodes; these are performed
according to five different patters; in the “adjacent” subset only adjacent electrodes are excited. In
the “skip k”, k = 1, 2, 3 subsets only two electrodes separated by k non-excited electrodes are excited;
in the “all against 1” data set, electrode 1 carries negative current and positive current is injected into
each of the other 15. We note that each of these 5 data sub-sets forms a basis for the set of possible
EIT data within the CEM model.

The part of the data set that we use here is only that of “adjacent” injections of current. Let us
number the 16 electrodes by e1, . . . , e16. For convenience, we introduce the convention that e17 = e1.
Then currents +J and −J are injected across adjacent electrodes ei, ei+1, i = 1, . . . , 16. There are thus

16 injections or “experiments” I⃗, yet only 15 of them are independent (the last one can be reproduced
by summing the first 15). For each i ∈ {1, . . . , 16}, the voltage is measured at all adjacent electrodes

(ej , ej+1): For each such injection I⃗, we evaluate the voltage differences V(j) = Uj+1−Uj , j = 1, . . . 16.

3https://www.fips.fi/
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Note that these voltages are constrained by the condition
∑16

j=1 V(j) = 0. Thus our data set consists
of 15× 15 independent elements.

4.2 The configuration space for the bodies and conductivities, and the
inverse solver

The inverse solver has at its core the forward solver presented in the first part of this paper. It then
relies on a simple minimization (optimization) of a sum-of-squares function CostI(B⃗, σ⃗) which we now
define in detail.

Firstly, the configuration space B of N piecewise constant conductivities B⃗ will be written as the
product of N “bodies” B⃗shapes and “conductivity inside the bodies”, σ⃗. So in particular:

B⃗ = (B⃗shapes, σ⃗),

where B⃗shapes ∈ B, and B stands for the “configuration space” of N “bodies” inside a disk; σ⃗ ∈ RN+1
+

is the parameter space of the conductivities of each of the N bodies, and σN+1 is the conductivity of
the medium (saline in the case of these experiments).

The “configuration space” of bodies B in this particular situation consists of A bodies which are
ellipses, and B bodies which are polygons; in particular either triangles or convex quadrilaterals. (We
take A,B as known below). We note that we allow different bodies to overlap. In the case of overlap,
the conductivity over the overlap region is taken to be the sum of the conductivities assigned to the
bodies.

Each configuration (B⃗shapes, σ⃗) would then yield a set of 15×16 voltages, if we were to perform the
same 16 injections of current on adjacent electrodes and measured the same 16 voltages differences as
just described: Letting Ii, i = 1, 2, . . . , 16 be the 16 injections and j ∈ {1, . . . , 15} we define

V(j, Ii, B⃗shapes, σ⃗)

to be the voltage difference we would measure between ej , ej+1 if we performed the injection of current

Ii on the configuration of bodies given by (B⃗shapes, σ⃗).
We let

Vexperimental(j, Ii)

be the experimentally measured voltage difference between ej , ej+1 for the injection of current Ii.
The very direct approach to the inverse problem that we then take is to minimize the function

Cost[(B⃗shapes, σ⃗)] := 106 ·
16∑
i=1

15∑
j=1

[V(j, Ii, B⃗shapes, σ⃗)−Vexperimental(j, Ii)]
2 (10)

over the configuration space (B⃗shapes, σ⃗) ∈ B×RN+1
+ . (We will also be minimizing some variants of this

cost function, obtained by a suitable pre-conditioning of the measured voltages V experimental(j, Ii)–see
(11) below).

The minimization is performed using optimization software; we use Matlab’s fmincon-function.
This involves certain choices for the fmincon function, most importantly an initial guess and con-
straints on the bodies; but also running the inverse solver involves the specifying of parameters for the
forward solver that will be used within the inverse solver. Scaling the cost by a large number (the 106

in (10)) improves the effectiveness of the optimization software.
We describe our choices for the fmincon function in brief. Firstly, we choose to freeze some of the

parameters and not solve for them. In the results we present, we are trying to “find” N bodies, each of
which is either an almost perfect conductor (the metal rings) or complete insulators (plastic polygons–
either triangles or squares); so in most instances we just set the conductivities σi corresponding to the
almost-perfect-conductors/almost-insulators to very large/very small artificially chosen numbers, and
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minimize the cost function Cost[(B⃗shapes, σ⃗)], when those parameters are held fixed. We found that

this minimization yields almost the same results for B⃗shapes, compared to when σ⃗ is allowed to vary.
The only constraint we impose is that the bodies should stay inside the (fixed) disk Ω0, and that

σi ≥ 0. In particular, during steps in the iteration we can have two different bodies overlapping. This
is not a problem, since in our forward solver works seamlessly in this setting. (Recall we make an
auxiliary choice that the conductivity over the overlap region should be the sum of the conductivities
of the overlapping bodies). This is a powerful feature of our forward solver, since allowing bodies to
overlap allows the inverse solver to take steps where different bodies move through each other and
eventually separate again.

The space of parameters when we have A ellipses and B triangles, as well as (N + 1) unknown
conductivities is [5 × A + 6 × B + (N + 1)]-dimensional. If we have B quadrilaterals instead of B
triangles it is [5 × A + 8 × B + (N + 1)]-dimensional. The last N + 1 dimensions correspond to the
elements of σ⃗ ∈ RN+1

+ , when all of them are variable.
Here the benefits of our forward solver are evident: One solution of the forward solver takes 0.01

seconds at most, which allows the possibility to converge to an approximate (local) minimum in a very
short time. Since we just wish to give a report on the performance of the inverse solver within short
time constraints, we only allow the inverse solver to run for 128 steps. We also constrain the initial
condition B⃗inital to be “somewhat” close to the correct position, at least visually. We note that the
optimizer at times takes large steps in the parameter space B, so its intermediate steps can move much
farther from the “visually correct” values compared to the initial guess.

We present the results of the inverse solver for a large part for the experiments published in the
FIPS open data set in the next section. Before presenting these results, we make a few remarks.

4.3 The issue of inaccurate measurements

As in all real world experiments, the measurements should be expected to involve some error. In the
FIPS data set this is apparent in two ways described below. Recall that each subset of measurements
(“adjacent”, “skip k”, k = 1, 2, 3 and “all against 1”) form a basis for the space of all possible
measurements. In particular, had the measurements had perfect precision, any one of these data
subsets would suffice to reconstruct the others, by simple linear algebra. This fact enables us to detect
some errors in the measurements.

Firstly, consider separately each of the five lists of experiments in the FIPS; we can call each of
these a data “subset”; they are encoded in a 16 × 16 matrix. Each of these data subsets viewed on
its own is subject to the constraints that each of the corresponding rows and columns should sum to
zero. This reflects the two properties that given one fixed injection between any pair ea, ea+1, then
the corresponding voltages should satisfy

∑16
i=1[Ui+1 − Ui] = 0 (taking U17 = U1). And also that

summing over any row calculates the voltage difference when the injection is zero. Nonetheless, the
latter property of elements of rows summing to zero does not hold in any of the data subsets. So this
is a first evidence of errors in measurement within each of the five data subsets. The second evidence
comes by comparing different data subsets.

Since each of the five data subsets is a basis for all possible experiments, one should in particular
obtain from it all the experiments in all the other four data subsets. However, the data obtained, say,
from the “adjacent” data subset fails to reproduce the experiments in the remaining data sets. We
note that the mismatch between the measurements that should have agreed can at times be significant:
seeking to reproduce the skip-1 data set using the adjacent data set as a basis can lead to approximately
0.02V (1%) voltage difference between the different data sets, when the maximum sought voltages are
approx. 1.8V.

Data subset used: In the results we present below, we rely exclusively of the “adjacent” data subset.
In particular the cost function (10) is constructed using the experimental Voltages V experimental(j, Ii)
corresponding to the adjacent data set. However, to illustrate the effect of measurement errors on our
reconstruction we will construct two different cost functions and seek to minimize these two functions
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separately. The first cost function Costraw is built out of raw data, inserting exactly the voltages
V experimental(j, Ii) from the “adjacent” data set. The second one, Costcorrected, is built out of explicitly
correcting the experimentally measured voltages V exprimental, by imposing an ansatz on how the errors
across the different experiments are related. This pre-conditioning of the measured data results in
the minimum of the cost function Costcorrected being much lower than that of the raw cost function
Costraw. Moreover the visual quality of the reconstruction is most often similar, but at times much
better than that obtained from the raw cost function.

Reconstruction of the contact impedances zk: It is known that errors in the contact impedances
can lead to error in the reconstructions. This effect can be alleviated by performing the voltage
measurements at electrodes through which no current is injected [25]. In this work however we did not
follow this approach, since we chose to use the entire “adjacent” data subset. We chose to estimate the
unknown contact impedances zk, k = 1, . . . , 16, first by using the measurements done in a tank filled
only with saline. The zk’s that were determined thus were then used in all subsequent experiments.

Dependence of “found solution” on the initial guess: Given the relatively small number of steps
that we are allowing our optimizer to take, the final result depends on the initial guess; this is true for
both the cost functions we minimize–the “raw” one and the “corrected” one. (This could of course also
be explained by the cost function having many local minima–we are not sure if this is the case). For
completeness, we include an example of the same problem solved twice: Once with a “worse” initial
guess and once with a “better” one. (In both cases, “worse” or “better” is in a visual sense). We
find that when we start with a better initial guess then (for the small number of steps we allow the
optimizer to take), the reconstruction is visually better. See Figure 11. Crucially however, better visual
fit at the end of the optimization also corresponds to better final “scores” for the cost functions. This
gives substantial hope that more a tailored optimizer will be able to get even better results, without
dramatically increasing the time needed (notwithstanding the issue of errors in the measurements).
We also note that certain approaches to EIT that do not rely on optimization [12, 11, 27, 28, 32, 33,
10, 30, 31, 38] could be used to provide a reasonable first approximation for the solution, which could
then be used as an initial guess for an inverse solver like the one we describe here.

4.4 Figures of some reconstructions

We present outcomes of our inverse solver applied to many of the “phantoms” considered in the FIPS
experimental data.4

The pictures we present below are the result of minimizing two cost functions: The first is the
“raw” Cost function, which is defined in (10), as well as a “corrected” Cost function, which we now
describe.5

The “corrected” Cost function is given by the same formula (10), by replacing the experimental

voltages Vexperimental(j, Ii) by a corrected version Vexperimental
corrected (j, Ii), so

Costcorrected[(B⃗shapes, σ⃗)] := 106 ·
16∑
i=1

15∑
j=1

[V(j, Ii, B⃗shapes, σ⃗)−Vexperimental
corrected (j, Ii)]

2. (11)

Here the “corrected” voltages are obtained by an ansatz on the errors in the measurements. We assume
that for all the experiments, the current Ii is measured correctly, yet at each pair of electrodes, given by
j ∈ {1, . . . , 16} the voltage V exprimental(j, Ii) are measured with an error, which to high approximation
is the same, regardless of the location of bodies. In other words, we assume the error is of the form
E(j, Ii). We then identify the error E(j, Ii) using the empty tank data. We identify the conductivity
(and constant impedances) and find what the voltages should have been for the found conductivity and

4We remark that other inverse solvers have been tried on the same data set; the reader can see some reconstructions
obtained by other inverse solvers in [18, 22].

5The idea of the corrected cost function is entirely due to Joshua Fadelle, as part of an undergraduate summer
research experience at the University of Toronto; his work is co-funded by a Mathematics Department Research Award.
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contact impedances. We then define E(j, Ii) to the difference between the experimentally measured
voltages and the values they should have had.

In particular we define

V experimental
corrected (j, Ii) := V experimental(j, Ii)− E(j, Ii),

and define the function Costcorrected[(B⃗shapes, σ⃗)] using (11).
We will present the results of minimizing both cost functions, which we now denote by Costraw and

Costcorrected to make their distinction clear. Let us denote by

B⃗raw
found−shapes, σ⃗raw

found−shapes

the results of the minimization for the “raw” cost function Costraw. We denote by

B⃗corrected
found−shapes, σ⃗corrected

found−shapes

the results of the minimization for the “corrected” cost function Costcorrected. The pictures of the
found solutions for these two cost functions are displayed in figures 5–11. We next summarize what
appears in those figures.

Recall that the minimization of either cost function that we perform requires an “initial guess”
concerning the location of the bodies and their conductivities.

In the left column we display the initial guess for B⃗shapes. (The blue curves superimposed on the
pictures of the “phantoms”). This initial guess is the same for the minimization of both the “raw”
and the “corrected” cost functions.

In the middle column we display the “found” bodies B⃗raw
found−shapes (the red curves) for the “raw”

cost function Costraw, (10); i.e. the bodies corresponding to the obtained minimizer

B⃗raw
found =

(
B⃗raw

found−shapes, σ⃗raw
found

)
(12)

of the cost function (10).

In the right column we display the “found” bodies B⃗found−shapes (the red curves) for the “corrected”
cost function Costcorrected (11),

B⃗corrected
found =

(
B⃗corrected

found−shapes, σ⃗corrected
found

)
. (13)

With labels we also note two parameters that relate to the optimization. We list the value of the
cost function (10), (11) at the found solutions (12), (13) respectively; we call this value the “Score”
obtained by our optimizer. For each experiment in the middle column

Score = Costraw[(B⃗
raw
found−shapes, σ⃗raw

found)]

and in the right-most column

Score = Costcorrected[(B⃗
corrected
found−shapes, σ⃗corrected

found )].

We also list the number iterations i that the optimizer took.

The initial guesses in the left columns of Figures 5-10 are chosen essentially at random, trying to
make sure they are reasonably far from the (visually) “correct” locations. The reader will note that
a few of the phantoms are not “found” very well, notably in the last two examples in Figure 7 or the
first two in Figure 9 the reconstruction from “raw” data is not as successful.

We next present some evidence that in the examples where the “raw data” reconstruction was not
very good, it is likely that the optimizer found only a local minimum. Our evidence for this is based
on performing a new optimization for the “poor” reconstruction of the last setting in Figure 7 (for the
same cost functions Costraw and Costcorrected) but changing the initial guess. We note that the found
solutions are better, both visually, and (crucially) in terms of the lower value of the Cost functions at
the found solution. This is performed in Figure 11.
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4.5 Conclusion

We introduced a novel boundary integral equation based solver for the electrostatic potential equation
(1), which we showed to be both fast and accurate. We used this forward solver to construct a bare-
bones inverse solver for the EIT inverse problem, which we then tested on the FIPS open data set.
Applying the EIT inverse solver on the raw data yields very satisfactory reconstructions and using it
on suitably pre-processed data can either maintain the quality of the reconstruction or even improve
it markedly.

The EIT method we introduced lends itself to further generalizations. The inverse solver could be
improved by a more tailored choice of cost function. One could utilize faster optimization algorithms
or algorithms that seek to also account for the error in the measurements as part for the inverse solver.
Of course, one could also seek to extend the methods to three dimensions to capture more potential
applications. These challenges will be undertaken in future research.
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Figure 5: The initial guess on the left; the found solution from raw data in the middle; the found solu-
tion from corrected data on the right. The score values of the cost functions Costraw and Costcorrected
at the found solutions are displayed above each photo. The visually estimated and the numerically
found centers of masses for the bodies are marked by a blue cross and a circle, respectively.
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Figure 6: The initial guess on the left, the found solution from raw data in the middle, the found solu-
tion from corrected data on the right. The score values of the cost functions Costraw and Costcorrected
at the found solutions displayed above each figure. The visually estimated and the numerically found
centers of masses for the bodies are marked by a blue cross and a circle, respectively.
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Figure 7: The initial guess on the left; the found solution from raw data in the middle; the found solu-
tion from corrected data on the right. The score values of the cost functions Costraw and Costcorrected
at the found solutions are displayed above each photo. The visually estimated and the numerically
found centers of masses for the bodies are marked by a blue cross and a circle, respectively.
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Figure 8: The initial guess on the left; the found solution from raw data in the middle; the found solu-
tion from corrected data on the right. The score values of the cost functions Costraw and Costcorrected
at the found solutions are displayed above each photo. The visually estimated and the numerically
found centers of masses for the bodies are marked by a blue cross and a circle, respectively.
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Figure 9: The initial guess on the left; the found solution from raw data in the middle; the found solu-
tion from corrected data on the right. The score values of the cost functions Costraw and Costcorrected
at the found solutions are displayed above each photo. The visually estimated and the numerically
found centers of masses for the bodies are marked by a blue cross and a circle, respectively.
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Figure 10: The initial guess on the left; the found solution from raw data in the middle; the found solu-
tion from corrected data on the right. The score values of the cost functions Costraw and Costcorrected
at the found solutions are displayed above each photo. The visually estimated and the numerically
found centers of masses for the bodies are marked by a blue cross and a circle, respectively.

Figure 11: The initial guess on the left; the found solution from raw data in the middle; the found
solution from corrected data on the right. Visually perfect initial guess can yield better reconstructions
and scores, compared to the last example of Figure 7.
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[10] M. Brühl, Gebietserkennung in der elektrischen Impedanztomographie, PhD thesis, Universitat
Karlsruhe, 1999.
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[36] S. Lunz, O. Öktem, and C. Schönlieb, Adversarial regularizers in inverse problems, Adv.
Neural Inf. Process Syst., 31 (2018).

[37] N. Mandache, Exponential instability in an inverse problem for the Schrödinger equation, Inv.
Probl., 17 (2001), pp. 1435–1444.

[38] A. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem, Ann.
Math., (1996), pp. 71–96.

[39] K. Paulson, W. Breckon, and M. Pidcock, Electrode modelling in electrical impedance
tomography, SIAM J. Appl. Math., 52 (1992), pp. 1012–1022.

[40] C. Schwab and C. Gittelson, Sparse tensor discretizations of high-dimensional parametric
and stochastic PDEs, Acta Numer., 20 (2011), pp. 291–467.

[41] E. Somersalo, M. Cheney, and D. Isaacson, Existence and uniqueness for electrode models
for electric current computed tomography, SIAM J. Appl. Math., 52 (1992), pp. 1023–1040.

[42] J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value
problem, Ann. Math., 125 (1987), pp. 153–169.

[43] L. N. Trefethen, Approximation Theory and Approximation Practice, Extended Edition, Soci-
ety for Industrial and Applied Mathematics, Philadelphia, PA, 2019.

[44] L. N. Trefethen and J. A. C. Weideman, The exponentially convergent trapezoidal rule,
SIAM Review, 56 (2014), pp. 385–458.

[45] G. Uhlmann, Electrical impedance tomography and Calderón’s problem, Inv. Probl., 25 (2009),
p. 123011.
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