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Abstract—Generative Adversarial Networks (GANs) have
shown notable accomplishments in remote sensing domain. How-
ever, this paper reveals that their performance on remote sensing
images falls short when compared to their impressive results with
natural images. This study identifies a previously overlooked
issue: GANs exhibit a heightened susceptibility to overfitting
on remote sensing images. To address this challenge, this pa-
per analyzes the characteristics of remote sensing images and
proposes manifold constraint regularization, a novel approach
that tackles overfitting of GANs on remote sensing images for
the first time. Our method includes a new measure for evaluating
the structure of the data manifold. Leveraging this measure,
we propose the manifold constraint regularization term, which
not only alleviates the overfitting problem, but also promotes
alignment between the generated and real data manifolds, leading
to enhanced quality in the generated images. The effectiveness
and versatility of this method have been corroborated through
extensive validation on various RS datasets and GAN models.
The proposed method not only enhances the quality of the
generated images, reflected in a 3.13% improvement in Frechet
Inception Distance (FID) score, but also boosts the performance
of the GANs on downstream tasks, evidenced by a 3.76%
increase in classification accuracy. The source code is available
at https://github.com/rootSue/Manifold-RSGAN.

Index Terms—Image Generation, Generative Adversarial Net-
works, Remote Sensing, Data Manifold.

I. INTRODUCTION

IN recent years, the field of artificial intelligence has wit-
nessed the emergence of Generative Adversarial Networks

(GANs) [1], a paradigm-shifting technology that has signifi-
cantly advanced the capabilities of image generation. Among
the myriad domains benefiting from this technology, remote
sensing (RS) imagery stands out as a particularly promising
area. Here, GANs have demonstrated their potential in data
generation or augmentation [2, 3, 4, 5], haze or cloud removal
[6, 7, 8, 9], and image super-resolution [10, 11, 12, 13]. In
this paper, our primary focus is on the application of GANs
to RGB images within the RS domain.
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(a) (b)
Fig. 1. The horizontal axis indicates the training process (the number of
real images shown to the discriminator). (a) Training curves of StyleGAN2
on NWPU and FFHQ datasets. We randomly sample 30,000 training images
from these two datasets, respectively. The GAN model diverges earlier when
trained on NWPU dataset. (b) The outputs of the discriminator during training
on NWPU dataset. As training progresses, the validation set of real images is
misclassified as generated images, highlighting the discriminator’s overfitting
issue on NWPU dataset.

Current GAN methods achieve remarkable success with
natural images. However, our research reveals a performance
gap when applied to RS images, as shown in Fig.1(a). The
vertical axis is the Fréchet Inception Distance (FID) score
[14], a commonly-used image quality evaluation metric, with
lower FID scores indicating higher image quality. We train
the same GAN model on datasets of identical size: a natural
image dataset (FFHQ [15]) and an RS image dataset (NWPU
[16]). Interestingly, the model diverges earlier when trained
on RS data compared to natural data (Fig. 1(a)), leading to
lower quality generated RS images. To understand the reasons
behind, we analyze the discriminator’s outputs for real and
generated images during training on NWPU dataset. Initially,
the distributions of outputs for real and fake images overlap
(Fig.1(b)). However, as the discriminator becomes more con-
fident, these distributions gradually drift apart. Additionally,
the accuracy of the discriminator on a separate validation set
decreases as training progresses. Based on these observations,
we conclude that GANs are more susceptible to overfitting
on RS image dataset compared to natural image dataset.
This overfitting leads to earlier divergence during training,
ultimately resulting in lower quality generated RS images.
More experiments are avaliable in Section III-B. As far as
we know, this is the first study that identify the overfitting
issue of GANs on RS data.

To understand why GANs are more prone to overfitting
on RS data, we analyze the key differences between RS
and natural image datasets. Compared to natural images, RS
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images typically cover larger area, encompassing a wider
variety of scenes and richer content. Consequently, we hy-
pothesize that the intrinsic dimension of the RS dataset is
larger than that of natural dataset. Highlighting a concept from
[17], learning a manifold requires a number of samples that
grows exponentially with the manifold’s intrinsic dimension.
Therefore, the discriminator might need more training images
from the RS dataset, compared to natural images, to effectively
capture the underlying data manifold. Our findings in Section
III-B support this hypothesis, confirming that the intrinsic
dimension of RS data is indeed higher than that of natural
images. Consequently, with datasets of the same size, GANs
are more likely to overfit on RS data compared to natural data.

The overfitting problem can significantly hinder the per-
formance of GANs. When the discriminator becomes overfit
to the training samples, its feedback to the generator be-
comes less meaningful, leading to training divergence, ex-
cessive memorization, and limited generalization [18, 19].
Consequently, the performance of GANs on tasks like data
augmentation could also be compromised. While current re-
search on GANs for RS data focuses on modifying network
architectures and loss functions to improve performance on
downstream tasks [20, 21], the issue of overfitting in the
discriminator specifically for RS data is overlooked. This
gap in research presents a unique opportunity to improve the
overall effectiveness of GANs for RS applications.

Motivated by our findings, we propose to leverage the real
data manifold to mitigate the overfitting problem of GANs
on RS data. Specifically, we propose the manifold constraint
regularization method (MCR) and integrate the regularization
term into GANs’ loss functions. MCR presents the discrimi-
nator with a more challenging task: capturing the underlying
manifold of the real data, rather than simply memorizing the
limited variations within the training dataset. This approach
helps to eliminate complex model that performs well solely
on training data and promotes model that performs well
across the entire data manifold, thereby mitigating overfitting.
Additionally, by minimizing MCR term, the generator aims to
align its output manifold with that of the real images, capturing
the authentic characteristics of the data and enhancing gener-
ative performance. Our methods is computationally efficient
and integrates seamlessly within existing GAN architectures,
requiring no major network modifications.

In summary, the contributions of this paper are:

• We identify a previously overlooked issue that the dis-
criminator in GANs is prone to overfitting on RS image
datasets, compared to natural images.

• We empirically demonstrate that RS datasets have higher
intrinsic dimension than natural datasets, which leads to
the discriminator easily overfitting to the RS datasets.

• To address overfitting, we propose MCR method, which
consists of two components: feature distribution compact-
ness measure and data manifold evaluation function.

• We theoretically prove that MCR can evaluate the dis-
tance between different manifolds. Extensive experiments
across multiple RS datasets and GAN models verifies the
effectiveness of our method.

In the remainder of this paper, we commence with a review
of related works in Section II, and analyze plausible reasons
for the subpar results of GAN models on RS images in Section
III. Then we provide details of our proposed method in Section
IV, followed by theoretical analysis of our approach in Section
V. We show the substantially-improved performances of our
method over standard GAN models and related techniques for
solving overfitting in Section VI. Finally, we wrap up with a
discussion in Section VII.

II. RELATED WORK

A. Generative adversarial networks

GANs are notorious for training instability and mode
collapse. Various adversarial losses have been proposed to
stabilize the training or improve the convergence of the
GAN models [1, 22, 23]. Additionally, numerous efforts
have been made to address this issue using regularization
methods [24, 25, 26, 27], or modifying network architectures
[15, 28, 29, 30, 31, 32, 33]. Other than these problems, the
overfitting of the discriminator is also a common challenge.

The overfitting problem occurs when the discriminator
becomes overly complex with a large number of parameters,
resulting in memorization of the training data rather than
learning the underlying data distribution. To mitigate this
issue, several strategies have been proposed, which can be
divided into the following categories. The first category is
data augmentation methods [18, 34, 35, 36], which utilizes
traditional data augmentation methods, such as rotation and
color transformation, to increase the amount of training data.
The second type is regularization, which adds regularization
term to the loss function of the discriminator [19, 37], allowing
it to learn more discriminative representations under limited
training data. InsGen [37] proposes a contrastive learning
objective to enhance the adversarial loss in the few-shot gen-
eration setting. AdaptiveMix [38] narrows down the distance
between hard samples and easy samples, where hard samples
are regarded as the samples that are difficult for discriminator
to classify. The third category is model architecture improve-
ment. FastGAN [39] introduces a self-supervised discriminator
and a Skip-Layer channel-wise Excitation module for efficient
few-shot image synthesis. MoCA [40] proposes prototype-
based memory modulation module to improve the generator
network of a GAN. The proposed method in this paper falls
into the second category by introducing manifold constraint
regularization, a novel approach that addresses the overfitting
problem of GANs on RS data from the manifold perspective
for the first time.

Previous works [41, 42] introduce geometry constraints to
GANs loss functions. These methods utilize statistical mean
and radius to approximate the geometry of the real data,
but they lack accurate constraints on the data manifold and
may lose important geometrical information. Other approaches
[43, 44, 45] offer more precise control, but they require modi-
fications to the network architecture. In contrast, our approach
avoids the limitations of prior work by being applicable to any
GAN model without requiring network architecture changes,
offering both efficiency and effectiveness.
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B. GAN in the RS field

In this paper, our primary focus is on RGB images in the
RS domain. Existing GAN models in the RS field can be
categorized into two main types based on their applications.

The first type revolves around data generation or aug-
mentation [2, 3, 4, 5, 46]. For instance, Lin et al. intro-
duced MARTAGAN [2], marking the pioneering applica-
tion of GANs to remote sensing images. MARTAGAN, an
extension of DCGAN [47], introduce enhancements like a
multi-feature layer in the discriminator and feature loss in
the generator to improve image representations. This work
demonstrated the potential of GANs to augment datasets and
enhance unsupervised classification accuracy. Similarly, Yu et
al. propose Attention GANs [3], designed for unsupervised
classification tasks, by integrating attention mechanisms into
GANs to bolster the discriminator’s representation capabilities.
Furthermore, Wu et al. [46] propose a comprehensive change
detection framework utilizing GANs to tackle various RS
change detection tasks. Their approach incorporates an image-
to-image generator to capture spectral and spatial variations
between multi-temporal images.

The second type pertains to GANs applied in image en-
hancement tasks, such as image super-resolution [10, 11,
12, 13] and cloud or haze removal [6, 7, 8, 9]. Examples
include the work by Wu et al. [10], which introduce a GAN-
based edge-enhancement network designed to reconstruct
high-resolution RS images, employing adversarial learning to
restore edge details obscured by noise. Guo et al. [12] have
refined the Super Resolution Generative Adversarial Network
[48] by altering both the internal and external connections of
the residual block and modifying the loss function to incorpo-
rate the Charbonnier penalty for improved performance. In the
realm of haze removal, Hu et al. [6] propose edge-sharpening
cycle-consistent adversarial network (ES-CCGAN), ubstituting
the standard residual network with a dense convolutional net-
work to enhance edge clarity in images. The edge-sharpening
loss function of ES-CCGAN is designed to further recover
clear ground-object edges. For cloud removal, Li et al. [8]
develope a semi-supervised technique, CR-GAN-PM, merging
GANs with a physical model to address cloud distortions in
unpaired images from various regions.

Our contribution aligns with the first category, focusing on
addressing the overfitting challenge in GANs on RS image
generation. Our goal is to enhance the quality of gener-
ated images and improve the discriminator’s effectiveness,
thereby elevating GAN performance in data generation and
augmentation tasks. This paper marks a pioneering effort to
specifically tackle issues related to the overfitting in the context
of RS image generation, underscoring our novel approach to
improving GAN applications within this domain.

III. PRELIMINARY STUDY AND ANALYSIS

In this section, we first introduce the basic framework of
GANs. Then we explore the overfitting problem of GAN
models on RS image generation tasks. Finally, we analyze
plausible reasons about the poor results of the GAN models
on RS images and derive the motivation for this paper.

A. Preliminary GANs

The GAN model aims to learn the distribution of training
samples. Based on the idea of the zero-sum game, a GAN
model consists of a generator G and a discriminator D. The
generator aims to generate realistic samples to fool the dis-
criminator, while the discriminator tries to distinguish between
real and fake samples. When the model reaches the final equi-
librium point, the generator will model the target distribution
and produce counterfeit samples, which the discriminator will
fail to discern. Let LD and LG denote the loss functions of
the discriminator D and the generator G, respectively. The
training of the GAN frameworks can be generally illustrated
as follows:

min
D

LD = − E
x∼Pdata

[D(x)] + E
z∼pz

[D(G(z))] (1)

min
G

LG = − E
z∼pz

[D(G(z))] (2)

where Pdata denotes the real data distribution, and Pz is
usually the normal distribution.

B. Problem Analysis

(a)

(b)
Fig. 2. (a) Training curves of BigGAN on TinyImageNet, FFHQ, NWPU and
PN datasets. The horizontal axis is the number of training steps. (b) Training
curves of StyleGAN2 on TinyImageNet, FFHQ, NWPU and PN datasets. The
horizontal axis indicates the training process (the number of real images shown
to the discriminator). These training curves highlight an earlier divergence on
RS datasets compared to natural ones, emphasizing our claim about the extent
of overfitting in RS data.

As previously stated, GANs are more susceptible to overfit-
ting on RS image dataset compared to natural image dataset.
Notably, the GAN model exhibits earlier divergence when
trained on the RS images (NWPU) compared to the natural
images (FFHQ), as depicted in Fig. 1. To extend our investi-
gation on the prevalence of overfitting across different datasets
and GAN architectures, we conduct further experiments using
the most popular GAN models: StyleGAN2 [29] and BigGAN
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Fig. 3. The overall architecture of our method. G and D are generator and discriminator. F is the MLP network for relationship matrix C. M represents
manifold, and S represents subspace.

[28]. We employ NWPU and PatternNet (PN) [49] for RS
image datasets, and FFHQ256 and TinyImageNet [50] for
natural image datasets. Each dataset comprises a random
sample of 30,000 images. The experiment results are shown
in Fig.2. The training curves of these GAN models underscore
an earlier divergence on RS datasets compared to their natural
counterparts, reinforcing our inference regarding the severity
of overfitting in RS data.

To identify the potential causes underlying this phe-
nomenon, we analyze the inherent differences between RS
RGB image and natural image. Compared to their natural
counterparts, RS images have a higher spatial resolution
and a larger coverage area, encompass a wider variety of
scenery, and exhibit richer content. Deep learning has an
underlying manifold assumption on the training data, i.e., high-
dimensional data can be embedded into low-dimensional man-
ifolds. This inherent assumption allows deep learning mod-
els to effectively handle high-dimensional data and achieve
remarkable performance, as explicitly confirmed by Pope
et al. [51]. It is well-established that learning a manifold
requires a number of samples that grows exponentially with
the manifold’s intrinsic dimension [17]. Hence, we conjecture
that GANs are more easily overfitting on RS image generation
tasks because of the higher intrinsic dimension of RS images.
Under limited training samples, the discriminator struggles to
learn the intricate manifold of the RS images, resulting in
a tendency to memorize the training data and overfit to the
dataset’s limited variations.

To validate our hypothesis, we employ the Maximum Likeli-
hood Estimation (MLE) method [52], the same approach used
by Pope et al. [51], to estimate the intrinsic dimension of the
RS images.

mk =

 1

n(k − 1)

n∑
i=1

k−1∑
j=1

log
Tk (xi)

Tj (xi)

−1

, (3)

TABLE I
THE INTRINSIC DIMENSION ESTIMATED BY MLE.

Dataset FFHQ TinyImageNet NWPU PN

MLE (k=3) 35 38 52 42
MLE (k=5) 34 36 53 44
MLE (k=10) 33 33 48 44
MLE (k=20) 31 30 44 42

where Tj(x) is the Euclidean (ℓ2) distance from x to its jth

nearest neighbor, and n is the number of samples. We conduct
this experiment with different values for k = 3, 5, 10, 20 and
a fixed sample size n = 30, 000. The results for the NWPU,
PN, FFHQ, and TinyImageNet datasets are presented in Table
I. As expected, the intrinsic dimensions of the NWPU and PN
datasets are indeed higher compared to those of the FFHQ and
TinyImageNet datasets.

Based on our experiments, we can infer that discriminator
is more susceptible to overfitting on RS data due to the higher
intrinsic dimension of the RS dataset compared to the natural
dataset. To address this issue, we propose introducing the data
manifold to constrain the discriminator. By encouraging the
learned features to align with the structure of the real data
manifold, we can guide the discriminator to learn the underly-
ing structure of the data distribution and avoid overfitting to the
local features of the training data. This approach favors model
that performs well across the entire data manifold, promoting
the discriminator to generalize well beyond the training data,
thereby mitigating the overfitting problem.

IV. METHODS

In this section, we initially present an assumption regard-
ing the real data manifold, accompanied by three critical
attributes that ideal representations of images ought to exhibit.
Subsequently, we introduce a novel measure to evaluate the
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data manifold of feature distribution. Building upon this, we
propose novel regularization term, which we call manifold
constraint regularization (MCR). The framework of the pro-
posed method is shown in Fig.3.

A. Preliminary Assumptions on Data Manifold

In practice, it is intractable to learn the data manifold in the
high-dimensional ambient space RD [51, 53]. Therefore, fol-
lowing the approach in [53, 54], we assume that the real data
manifold comprises of a union of low-dimensional nonlinear
submanifolds ∪k

j=1Mj ⊂ RD, where each submanifold Mj

is of dimension dj << D. Each submanifold Mj ⊂ RD

can be transformed to a linear subspace Sj ⊂ Rd, which
we refer to the feature space. From this assumption, we can
infer that images residing on the same submanifold share
similarities, whereas images on different submanifolds exhibit
distinct characteristics. Consequently, the ideal features of
these images should exhibit the following attributes:

• Between-submanifold Discrepancy: Features of images
from different submanifold should be highly uncorrelated.

• Within-submanifold Similarity: Features of images from
the same submanifold should be relatively correlated.

• Maximally Variance: Features should have as large di-
mension as possible to cover all the submanifolds and be
variant for the same submanifold.

Therefore, in order to accurately capture the real data mani-
fold, it’s desirable for the features from different submanifolds
to be as uncorrelated as possible. On the other hand, features
from the same submanifold should display a high correlation
and coherence. Simultaneously, the features should exhibit
maximum variance to cover all possible submanifolds. By
learning features that adhere to these properties, the discrim-
inator can be considered to have successfully captured the
underlying structure of the real data manifold.

B. Data Manifold Evaluation

Based on the data manifold assumption, features from dif-
ferent submanifolds should have a sparse feature distribution.
Conversely, features within the same submanifold should have
a compact feature distribution. Our first step is to establish a
metric for the compactness of the feature distribution by exam-
ining the relationships between features. Secondly, we design
data manifold evaluation function based on this measure.

Step I. We propose leveraging singular values to quan-
tify compactness. Recall that singular values (represented
by λi here) capture the amount of variance explained by
each principal component in a data matrix. Singular vectors
corresponding to larger singular values represent the principal
stretching directions of the data. In simpler terms, a larger
number of significant singular values indicates a more uniform
distribution, while fewer significant values suggest a more
compact distribution. Based on this principle, we propose the
following measure:

V(Z) =
∑
i=1

λ2
i = Tr(ZZT). (4)

A larger value of V(Z) indicates a broader span of the
singular vectors and thus greater uniformity of the data.
Considering computational efficiency, we opt for the trace of
ZZT in our method. In the Section V, we theoretically prove
V(Z) can measure the compactness of a distribution.

Step II. Building upon Eq. 4, we introduce a novel data
manifold evaluation function LTr(Z). This function leverages
the concept of feature compactness to assess how well the
learned features capture the underlying data manifold.

According to the aforementioned assumption, features of
different submanifolds should be maximally uncorrelated with
each other. Therefore, they together should span a space of
the largest possible volume or dimension, and V(Z) should
be as large as possible. Conversely, learned features of the
same submanifold should be highly correlated and coherent.
Therefore, they should only span a space of a very small
volume or dimension. To capture these contrasting properties,
our evaluation function, LTr(Z), incorporates both the overall
and within-submanifold compactness:

LTr(Z) =
1

2n
(Tr(ZZT)−

k∑
j=1

Tr(ZCjZT)) (5)

where Z = [z1, . . . , zn] ⊂ Rd×n denotes the representations
of images, C =

{
Cj ∈ Rn×n

}k

j=1
is a set of positive diagonal

matrices whose diagonal entries denote the membership of the
n samples in the k submanifolds. If the sample xi belongs to
the submanifold j, then Cj(i, i) = 1. Otherwise, Cj(i, i) = 0,
where i ∈ {1, ..., n} , j ∈ {1, ..., k}.

The first term, Tr(ZZT), measures the overall compactness
of the entire feature set, as defined by Eq. 4. The second
term,

∑k
j=1 Tr(ZCjZT), represents the compactness within

each individual class. The difference between these two terms
reflects the “dispersibility” between features from different
submanifolds, and a larger difference signifies better separa-
tion. Therefore, a higher value of LTr(Z) indicates that the
learned features effectively capture the intrinsic structure of
the data manifold, with features from different submanifolds
being well-separated and features within a submanifold being
well-clustered.

C. Manifold Constraint Regularization

Building on the concept of data manifold evaluation in-
troduced earlier, we propose a novel regularization term,
LMCR(Z,Z

′), to assess how well the generated image mani-
fold aligns with the real image manifold.

LMCR(Z,Z
′) =

1

2n
(Tr(Z̃Z̃T)− 1

2

k∑
j=1

Tr(ZCjZT)

− 1

2

k∑
j=1

Tr(Z ′C ′jZ ′T)),

(6)

where Z̃ = Z ∪ Z ′, Z and Z ′ represent the feature repre-
sentations of real and generated images, respectively. Cj and
C ′j are diagonal matrices encoding submanifold membership
information for real and generated data, respectively. k is the
number of submanifolds within the data.
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The first term of LMCR measures the compactness of the
joint distribution of real and generated images, i.e. the volume
of the space spanned by the real and generated features jointly.
The second and third terms measure the compactness of the
real and generated distributions individually. If the generated
image manifold aligns well with the real image manifold, then
the combined distribution should be compact, which translates
to a lower value for LMCR. Conversely, a larger value indicates
a significant deviation between the manifolds of real and
generated data. We theoretically prove that the LMCR could
measure the volume of the space between Z and Z ′. The proof
will be elaborated in the Section V.

D. Loss Functions

We incorporate the data manifold constraint as regulariza-
tion terms in the loss functions of GAN models, as depicted
in Eq.7 and Eq.8, where λ and γ are hyperparameters. Specif-
ically, we optimize the discriminator by maximizing LMCR,
which encourages it to focus on the underlying data manifold
and push the manifold of the generated samples to be mis-
aligned with that of the real images. Conversely, minimizing
LMCR guides the generator towards producing samples that
align closely with the real image manifold. This dual strategy
sharpens the discriminator’s ability to differentiate and guides
the generator towards producing higher-quality, more diverse
images.

min
D

LD = E
z∼pz

[D(G(z))]− E
x∼Pdata

[D(x)]

− λLMCR(Z,Z
′)

(7)

min
G

LG = − E
z∼pz

[D(G(z))] + γLMCR(Z,Z
′) (8)

The representations Z and Z ′ are learned by the discriminator.
It has been shown that different network layers are responsible
for different levels of detail in the images. Empirically, the
latter blocks of the network have more effect on the style (e.g.
texture and color) of the image whereas the earlier blocks
impact the coarse structure or content of the image [55].
Thus, we choose features from a shallow network layer of the
discriminator as representations Z and Z ′ in our experiments.

While the effectiveness of LMCR relies on knowing the
submanifold membership matrices C, obtaining this knowl-
edge can be expensive or impractical in unsupervised settings.
To address this challenge, we propose a novel unsupervised
approach to learn this information directly from the data.

Specifically, we employ a three-layer Multi-Layer Percep-
tron (MLP) network, denoted as F , to learn the relationship
between data points in the feature space. This network takes
the features Z from the discriminator as input and outputs a
matrix M ∈ Rn×n. The elements of the j-th row of the M
matrix are the diagonal elements of the Cj matrix. Hence,
Cj(i, i) = M(j, i), where i ∈ {1, ..., n}. The key idea is that
elements along each row of M correspond to the submanifold
membership probabilities for a particular data point. In other
words, a higher value M(j, i) indicates a higher likelihood
that data points xi and xj belong to the same submanifold.

In order to train the network F , we employ a pre-trained
encoder network, denoted as fpre, to extract features for each

data point. These features are represented by the matrix Z̄ =
{z̄1, ..., z̄n}, where z̄i = fpre (xi), i ∈ {1, ..., n}. We define a
similarity measure based on the Euclidean distance between
feature vectors. Regarding the j-th element z̄j in Z̄ as the
anchor, we define that:

Mpro(j, i) = exp(−∥z̄i − z̄j∥22
/
τ) (9)

where τ is the temperature hyperparameter, z̄i is the i-th
sample in Z̄. Then, we can obtain:

Mpro
j = [Mpro(j, 1), ...,Mpro(j, n)] (10)

We in turn treat the samples in Z̄ as anchors and obtain
Mpro = [Mpro

1 , ...,Mpro
n ]

T. To this end, we give the prior
constraint Mpro of M based on the similarity of different pairs
of samples. The loss function of network F is as follows:

Lcon = ∥Mpro − F (Z)∥22 (11)

The network F is first pretrained on the training dataset,
with Z being extracted by fpre. Then, it is trained together
with the discriminator. In the optimal case, the network F will
learn the relationship between the samples, and M(i, j) will be
close to 1 for data points belonging to the same submanifold,
and close to 0 for points from different submanifolds. In our
experiments, we find that the choice of the pre-trained encoder
has little impact on the final results.

V. THEORETICAL ANALYSIS

In this section, we present theoretical analysis of the pro-
posed method, MCR. Firstly, we establish a theoretical connec-
tion between the compactness measure V(Z) and information
theory. Secondly, we prove that LTr can evaluate the data
manifold of features, and LMCR can measure the disparity
of the manifolds between generated images and real images.

We begin by demonstrating the connection between our
proposed measure, denoted by V(Z), and information theory.

Proposition 1: V(Z) = 1
2n Tr

(
ZZT

)
where Z =[

z1, . . . , zn
]

⊂ Rd×n can measure the compactness of a
distribution from its finite samples Z.

Proof 1:
Based on the first-order Taylor series approximation,

log det(C + D) ≈ log det(C) + Tr
(
DTC−1

)
, we can get

following equations.

1

2n
Tr(ZZT) =

1

2
(
1

n
Tr(ZZT) + log det(I))

≈ 1

2
log det(I +

1

n
ZZT)

In information theory, rate distortion can be used to measure
the “compactness” of a random distribution [56]. Given a
random variable z and a prescribed precision ϵ > 0, the rate
distortion R(z, ϵ) is the minimal number of binary bits needed
to encode z such that the expected decoding error is less than ϵ.
Given finite samples Z =

[
z1, . . . , zm

]
⊂ Rd×m, the average

number of bits needed is given by the following expression:
L(Z, ϵ) .

=
(
m+d
2m

)
log det

(
I + d

mϵ2ZZT
)
. As the sample size

m is large, our approach can be seen as an approximation of
the rate distortion, which completes our proof.
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Based on the above derivation, the proposed measure can
be rewritten as:

LTr ≈
1

2
log det(I + αZZT)

−
k∑

j=1

γj
2

log det(I + αjZCjZT)
(12)

where α = d
nϵ2 , αj =

d
Tr(Cj)ϵ2 , γj =

Tr(Cj)
n for j = 1, . . . , k.

Based on this proposition, we can infer that the optimal
solution of Eq.5 have following properties:

Theorem 1: Suppose Z∗ is the optimal solution that maxi-
mizes the function Eq.5. We have:

- Between-submanifold Discrepancy: If the ambient space
is adequately large, the subspaces are all orthogonal to each
other, i.e. (Z∗

i )
⊤
Z∗

j = 0 for i ̸= j.
- Maximally Variance: If the coding precision is adequately

high, i.e., ϵ4 < minj

{
nj

n
d2

d2
j

}
, each subspace achieves its

maximal dimension, i.e. rank
(
Z∗

j

)
= dj .

The proof for Theorem 1 is provided in the Appendix. In
summary, we initially assume that (Z∗

i )
⊤
Z∗

j ̸= 0. Based on
the Singular Value Decomposition (SVD) and the condition∑k

j=1 dj ≤ d, we infer that Z∗ cannot be the optimal solution
of Eq.5. This contradiction validates the Between-submanifold
Discrepancy. Using a similar approach, we demonstrate that
the outcome of Eq.5 is related to the singular values of Z∗

j .

Under the condition ϵ4 < minj

{
nj

n
d2

d2
j

}
, rank

(
Z∗

j

)
= dj ,

which confirms the Maximally Variance.
Hence, LTr effectively evaluates the data manifold of the

representations. Since the features of each submanifold, Zj

and Z ′
j , are similar to subspaces or Gaussians, their “distance”

can be measured by the rate distortion.

Linf(Z,Z
′) =

1

2nk

k∑
j=1

(Tr(Z̃jZ̃
T
j )−

1

2
Tr(ZjZ

T
j )

− 1

2
Tr(Z ′

jZ
′
j
T
)),

(13)

where Zj and Z ′
j represent the feature representations of real

and generated images belonging to submanifold j, respec-
tively. Z̃j = Zj ∪ Z ′

j , j ∈ {1, ..., k}, and k is the number
of submanifolds within the data.

The metric Linf quantifies the distance between the sub-
manifolds of real and generated images. A smaller Linf value
indicates that the submanifolds of the real and generated
data are more closely aligned. Given that submanifolds are
inherently smaller than the entire manifold, we can say that∑k

j=1(Tr(Z̃jZ̃
T
j ) ≤ Tr(Z̃Z̃T). This leads to the conclusion

that Linf ≤ LMCR. Essentially, minimizing LMCR during
training prompts the generator to produce images that closely
align with the real data manifold across all classes. This
inherently minimizes the disparity between submanifolds, as
indicated by a lower Linf value. Conversely, the discriminator
aims to maximize the separation between these manifolds by
maximizing LMCR, while concurrently drawing the features
within the same submanifold closer together.

VI. EXPERIMENTS

In this section, we first introduce the datasets used in our
experiments. Next, we provide the details of our experimental
setup. We then present the results, including both quantitative
metrics and qualitative examples, to demonstrate the effective-
ness of our proposed method compared to existing approaches.
Additionally, we showcase how our method benefits down-
stream tasks. Finally, we provide more ablation and analysis
of different components of our method.

A. Datasets

We use three RS datasets to evaluate our method: the UC
Merced Land Use (UCLand) Dataset [57], NWPU-RESISC45
(NWPU) Dataset [16] and PatternNet (PN) Dataset [49]. Their
information is shown in Table II.

TABLE II
DETAILS OF THE DATASET

Attribute UCLand NWPU PN

Images per class 100 700 800

Scene Classes 21 45 38

Resolution (m) 0.3 0.2-30 0.062-4.693

Image Size 256× 256 256× 256 256× 256

Source
United States

Geological Survey
Google Earth Google Earth

The UC Merced Land Use Dataset is one of the most widely
used datasets in the field of remote sensing scene classification.
It has 21 scene categories, each with 100 images. Each image
has the size 256 × 256 and a spatial resolution of 0.3m.
The images in the dataset come from more than 20 cities in
the United States, including Las Vegas, Los Angeles, Miami,
Santa Barbara, and Seattle.

The NWPU-RESISC45 Dataset has 31,500 images covering
more than 100 countries and regions around the world. It has
45 categories with 700 images in each category. Each image is
256× 256 pixels in size. The spatial resolution of this dataset
is up to 0.2m and the lowest is 30m. The images are varied
in lighting, shooting angle, imaging conditions, and so on.

The PatternNet Dataset is a large-scale high-resolution re-
mote sensing dataset. It has 38 categories with 800 images in
each category. Each image is 256 × 256 pixels in size. The
spatial resolution of this dataset varies from 0.06m to 4.7m
per pixel. The images in PatternNet are collected from Google
Earth imagery or via the Google Map API for some US cities.

B. Experiment Setup

Baseline Methods: We evaluate our approach to RS image
generation by comparing it with established GAN models,
including BigGAN [28] and StyleGAN2 [29]. We also bench-
mark our method against techniques specifically developed
to address GAN overfitting. These include the augmentation
methods ADA [18] and APA [35], regularization methods
LeCam [19], AdaptiveMix [38] and InsGen [37], as well
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(a) (b) (c) (d)
Fig. 4. The horizontal axis indicates the training process (the number of real images shown to the discriminator). (a) Training curves of our method on
NWPU dataset. (b) The outputs of the discriminator during training on NWPU dataset. (c) Training curves of our method on PN dataset. (d) The outputs of
the discriminator during training on PN dataset. No divergence occurs during training, and the discriminator maintains high accuracy on the validation set.
These findings suggest that MCR effectively alleviates the discriminator’s overfitting issue.

(a)

(b)
Fig. 5. (a) Training curves of BigGAN. (b) Training curves of StyleGAN2.
Our method (MCR) not only reduces discriminator overfitting but also attains
superior quality scores.

as few-shot generation methods FastGAN [39] and MoCA
[40].

Implementation Details: We use the official PyTorch im-
plementation of StyleGAN2, ADA, FastGAN, InsGen, MoCA
and AdaptiveMix. For BigGAN, APA and LeCam, we use
the implementations provided by [58]. Throughout our exper-
iments, we set hyperparameters λ = 1 and γ = 1. Further
details regarding the ablation study on these hyperparameters
can be found in Section VI-E.

Evaluation Metrics: We evaluate our method using Frechet
inception distance (FID) [14], as the most commonly-used
metric for measuring the quality and diversity of images
generated by GAN models. We also employ the Kernel In-
ception Distance (KID) [59], a metric that remains unbiased
by empirical bias [60], to further validate our results.

TABLE III
COMPARISON OF QUALITY SCORES (FID↓) ON THE UCLAND, NWPU

AND PN DATASETS

Methods Backbone UCLand NWPU PN

ADA StyleGAN2 74.25 11.97 33.53

APA StyleGAN2 78.54 21.67 33.75

AdaptiveMix StyleGAN2 70.95 13.53 34.63

LeCam StyleGAN2 72.66 15.73 31.26

InsGen StyleGAN2 95.65 10.92 50.76

FastGAN – 76.63 32.17 51.39

MoCA StyleGAN2 71.25 10.37 32.79

MCR (Ours) StyleGAN2 69.43 9.88 30.47

C. RS Image Generation

Training Stability. Fig.4 showcases the training process
of our method MCR (based on StyleGAN2) on NWPU and
PN datasets. Fig.4 (a) and (c) depict the FID curves during
training, indicating no early divergence. Fig.4 (b) and (d) show
the discriminator’s accuracy on the validation set, consistently
remaining high. These observations suggest that the proposed
method MCR effectively mitigates the discriminator’s overfit-
ting problem.

Quantitative Comparison. Next, we present a quantitative
comparison with established baselines. Fig.5 compares the
training curves of our method on NWPU and PN datasets
against BigGAN (Fig.5(a)) and StyleGAN2 (Fig.5(b)). Our
method not only alleviates discriminator overfitting but also
achieves superior quality scores.

To further demonstrate the effectiveness of our proposed
method MCR, we compare its performance against established
methods for addressing discriminator overfitting. These meth-
ods typically fall into three categories: data augmentation, reg-
ularization, and architectural improvements. Although MCR
falls under the regularization category, we compare it with rep-
resentatives from all three categories. Table III summarizes the
experimental results on the UCLand, NWPU, and PN datasets.
Our method consistently outperforms all others: achieving a
2.14% improvement in FID on UCLand compared to the well-
established method. Similarly, on NWPU, our method achieves
an FID of 9.88 compared to MoCA’s 10.37, demonstrating
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TABLE IV
COMPARISON OF QUALITY SCORES (FID↓, KID(×10−3)↓) ON THE UCLAND, NWPU AND PN DATASETS (THE RED NUMBERS PRESENT OUR

IMPROVEMENT)

Methods
UCLand NWPU PN

FID KID FID KID FID KID

BigGAN+ADA 98.09-5.92 52.31-4.24 30.91-3.39 11.13-1.85 63.94-3.59 36.71-1.63

StyleGAN2+ADA 74.25-4.22 37.08-4.08 11.97-1.88 3.27-0.92 33.53-2.96 13.67-2.32

StyleGAN2+APA 78.54-4.39 39.25-3.79 21.67-2.78 8.54-2.03 33.75-4.84 13.34-2.99

BigGAN+ADA+LeCam 92.52-5.27 48.59-3.52 32.65-2.57 12.69-1.87 54.28-4.42 25.89-2.37

StyleGAN2+ADA+LeCam 70.89-3.91 32.21-2.86 14.38-2.34 4.97-1.47 25.87-2.86 9.32-1.73

Fig. 6. Experiment results on the UCLand Dataset. The generated images of StyleGAN2 (left), StyleGAN2+AdaptiveMix (middle) and our method (right).
The images generated by our method exhibit higher quality and diversity.

MCR’s clear advantage. Finally, on the PN dataset, our method
surpasses LeCam by 2.53%. It’s important to note that these
results are based on the same StyleGAN2 architecture. Overall,
MCR outperforms the second-best method by approximately
3.13% in terms of FID score. Table III clearly highlights
the consistent superiority of our method in addressing the
overfitting challenge.

Versatility. To verify the versatility of the method in this
paper, we conduct experiments on different combinations of
network architectures, enhancement methods and regulariza-
tion methods. Experimental results are reported in Table IV.
The red numbers in Table IV indicate the improvement of
the GAN models after using our method. In general, the FID
and KID scores for our proposed method indicate a significant
and consistent advantage over all the compared methods. In
detail, our comparison experiments can be divided into three
types. First, under different model structures, BigGAN and
StyleGAN2, our method is robust, which proves that our
approach can be applied to any model architecture. Second,
under different augmentation methods, ADA and APA, our

method still performs well. This shows that the proposed
approaches can be applied to other GAN models along with
existing augmentation approaches. Third, combined with the
regularization method LeCam, our method is still effective.
The proposed method can be viewed as an effective comple-
ment to existing regularization methods.

Qualitative Comparison. To validate the effectiveness of
the methodologies presented in this paper, we conduct qual-
itative experiments on three RS datasets. For each dataset,
we select a superior baseline method for benchmarking
purposes. Specifically, on the UCLand dataset, our method
is compared against StyleGAN2 and its extension, Style-
GAN2+AdaptiveMix. On the NWPU dataset, our method is
compared against StyleGAN2 and StyleGAN2+MoCA. Lastly,
for the PN dataset, we evaluate our method against Style-
GAN2 and StyleGAN2+LeCam. The generated images on the
UCLand dataset are presented in in Fig. 6.

We randomly select 60 samples from the generated images.
The baseline StyleGAN2 model generates similar images,
such as multiple parking lot images. In contrast, the imagery
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TABLE V
COMPARISON OF UNSUPERVISED CLASSIFICATION ACCURACY(%) ON THE UCLAND DATASET AND NWPU DATASET

Datasets

(training ratio)
UCLand(80%) UCLand(50%) NWPU(80%) NWPU(20%)

MartaGAN [2] 94.86±0.80 85.51±0.69 75.43±0.28 75.03±0.28

AttentionGAN [3] 97.69±0.6 89.06±0.50 — 77.99±0.19

StyleGAN2 95.29±0.31 87.32±0.22 80.13±0.39 76.53±0.17

StyleGAN2+ADA 95.71±0.42 89.05±0.33 82.40±0.17 78.16±0.23

StyleGAN2+MCR (Ours) 97.33±0.39 92.72±0.22 84.82±0.42 80.35±0.13

TABLE VI
COMPARISON OF SELF-SUPERVISED CLASSIFICATION ACCURACY(%) ON THE UCLAND DATASET AND NWPU DATASET

Method Backbone
UCLand NWPU

Original StyleGAN2 MCR(Ours) Original StyleGAN2 MCR(Ours)

SimCLR
ResNet18 67.59±0.38 69.61±0.92 70.48±0.88 68.86±0.91 69.43±0.22 71.24±0.19

ResNet50 69.39±0.67 70.25±0.28 71.80±0.35 69.72±0.52 71.16±0.75 72.60±0.23

MAE
ViT-base 93.23±0.41 94.34±0.42 94.47±0.38 89.84±0.28 90.21±0.19 90.29±0.53

Swin-T 92.71±0.26 93.44±0.32 93.33±0.17 90.21±0.43 89.87±0.59 91.03±0.22

produced through our approach demonstrates a more uniform
and varied distribution. Upon closer inspection, the images
crafted using our method exhibit a higher degree of realism,
with the shapes of objects appearing more regular and well-
defined, which are marked in the red boxes. Further visual
comparisons on the NWPU and PN datasets are presented in
the Appendix.

D. Unsupervised Classification

We employ the unsupervised classification task as a down-
stream experiment, aiming to both validate the effectiveness
of MCR and to demonstrate its practical application in real-
world tasks. We conduct two primary experiments. The first
one operates at the feature level, utilizing the discriminator
of the GAN as a feature extractor to perform unsupervised
classification based on the extracted features. The second ex-
periment operates at the image level, augmenting the original
dataset with images generated by the GAN, and executing
a self-supervised classification task based on this augmented
dataset. We select the UCLand and NWPU datasets for testing
the downstream task due to their inherent challenges for
unsupervised classification; one dataset has the least amount
of data while the other has the most categories.

In the first experiment, we use the learned representations Z
of the discriminator as features and apply a regularized linear
L2-SVM classifier, adhering to the methodology used in prior
studies [2][3]. The results, presented in Table V, underscore
the superior performance of our method compared to Style-
GAN2 and StyleGAN2+ADA across all tests. Our approach
consistently outperforms in the majority of the experiments,
affirming our method’s ability to learn enhanced represen-
tations that facilitate precise data classification. Specifically,
our method surpasses the baseline method by 4.16% on the

UCLand dataset. Similarly, on the NWPU dataset, our method
outperforms the baseline method by 4.80% and the second-
best method by 2.62%. These experiments further validate
that by applying the manifold constraint, the discriminator can
concentrate on the underlying data manifold and capture its
essential characteristics.

In the second experiment, we utilize self-supervised algo-
rithms SimCLR [61] and MAE [62] as classification methods,
choosing two distinct network architectures for each algorithm.
All these models are initially pre-trained on the ImageNet
dataset. We then augment the UCLand dataset with 1,050
generated images and the NWPU dataset with 9,000 generated
images. These images are generated using traditional data
augmentation, StyleGAN2, and our proposed method, respec-
tively. Following this, we train the self-supervised models on
these augmented RS datasets. These trained models are then
used as feature extractors, and a regularized linear L2-SVM
is employed for classification. As shown in Tables VI, the
algorithms trained on the dataset enhanced by our proposed
methods consistently outperform those trained on datasets
augmented by other approaches in terms of accuracy in most
experiments. With an average classification accuracy improve-
ment of 2.32%, these results underscore the effectiveness of
our proposed method in downstream tasks.

E. Ablation Study

In this section, we provide further ablation and analysis over
different components of our method.

Relationship Matrix C. We employ various methods to
construct the relationship matrix C. The first approach lever-
ages SimCLR and K-means. We utilize a pre-trained SimCLR
model to extract RS data features, followed by clustering using
K-means. The centroids resulting from this clustering process
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TABLE VII
ABLATION STUDY ON RELATIONSHIP MATRIX C

Methods UCLand NWPU PN

Baseline 74.25 11.97 33.53

K-means (20) 71.22 11.31 32.78

K-means (40) 72.28 11.02 31.33

learnable (SimCLR) 70.03 10.09 30.57

learnable (CLIP) 70.98 9.89 30.71

learnable (ResNet) 70.81 10.82 30.78

TABLE VIII
ABLATION STUDY ON FEATURES FROM DIFFERENT BLOCKS

Block 4 6 8 10 12

FID 14.92 14.05 10.09 16.23 23.19

TABLE IX
ABLATION STUDY ON REGULARIZING GENERATOR VS. DISCRIMINATOR.

Methods UCLand NWPU PN

Baseline 74.25 11.97 33.53
Only G 73.95 11.85 33.06
Only D 71.23 10.44 31.83
Ours 70.03 10.09 30.57

TABLE X
ABLATION STUDY ON THE HYPERPARAMETER λ

λ UCLand NWPU PN

0.1 80.60 16.93 40.09
0.5 74.43 12.91 34.92
0.7 69.26 10.68 30.81
1 69.43 9.88 30.47
3 73.22 12.31 33.78

TABLE XI
ABLATION STUDY ON THE HYPERPARAMETER γ

γ UCLand NWPU PN

0.1 78.29 18.87 41.13
0.5 74.62 13.16 34.92
0.7 71.26 10.73 31.92
1 69.43 9.88 30.47
3 73.24 13.09 35.07

serve as prototypes of the training data. In this experiment,
we consider 20 and 40 clustering centroids, respectively. The
second approach is a learnable matrix introduced in this paper.
We evaluate it using pre-trained encoders such as SimCLR,
CLIP [63], and a ResNet50 model (pretrained on ImageNet).
We utilize StyleGAN2+ADA as the baseline method. Table
VII presents the results of our ablation study on the UCLand,
NWPU, and PN datasets. Notably, the choice of the pre-trained
encoder has minimal impact on the results. In subsequent ex-
periments, we opt for the learnable approach and the SimCLR
model as the pre-trained encoder.

Representations Z. We conduct ablation studies on features
from different network layers. As different network layers are
related to different levels of details in the generated image, and
the earlier blocks of the network impact the coarse structure
or content of the image. We conduct experiments on NWPU
dataset with StyleGAN2+ADA model, which consists of 14
blocks. We choose 5 blocks for comparison, and the results
are shown in Table VIII. We empirically choose the outputs
of 8th block as the representations Z.

Regularizing generator vs. discriminator. Our default
method add regularization on the loss functions of both gener-
ator G and discriminator D. In this experiment, we investigate
the effectiveness of separately regularizing G and D. We
utilize StyleGAN2+ADA as the baseline method. Table IX
presents the results of the ablation study on UCLand, NWPU
and PN datasets. The No Regularization version yields poor
results as expected. Adding the regularization method on D
already brings significant improvement to the model under
different datasets. As proposed in our final method, adding
the regularization on both G and D achieves the best results.

Hyperparameters. We conduct the ablation study on
the hyperparameters λ and γ using StyleGAN2+MCR on
UCLand, NWPU and PN datasets. The FID scores are shown
in Table X and Table XI. Based on the experiment results, we
set λ = 1 and γ = 1 in the following experiments.

VII. CONCLUSION

In this study, we aim to address the challenges posed by
RS images in the context of GANs. We observe that RS
images exhibit higher intrinsic dimensions compared to natural
images, resulting in difficulties for the discriminator and an
increased risk of overfitting. To mitigate these issues, we
introduce a novel measure to capture the real data mani-
fold and propose the MCR method to effectively address
the discriminator overfitting while enhancing the generator’s
performance. We also present innovative learning paradigms
for the unsupervised generation of RS images. Our method’s
effectiveness is confirmed through theoretical analysis and
comprehensive experiments on three RS datasets using dif-
ferent GAN models. This demonstrates the adaptability and
efficiency of our approach.

As for future works, there are several intriguing avenues
for further research. Further exploration into the application
of the MCR method to other types of generative models
could yield interesting insights. Another valuable direction
would be investigating the impact of different RS image
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characteristics, such as varying resolutions or spectral ranges,
on GAN performance. This could provide crucial information
to refine our approach further. By pursuing these lines of
inquiry, we aim to continue enhancing the capabilities of
GANs in handling the intricacies of RS images.
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