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We provide a universal tight bound on the energy gap of topological insulators by exploring
relationships between topology, quantum geometry, and optical absorption. Applications of our
theory to infrared absorption near topological band inversion, magnetic circular dichorism in Chern
insulators, and topological gap in moiré materials are demonstrated.

A fundamental property of all insulating states of mat-
ter is the presence of an energy gap, the minimum amount
of energy that can be absorbed by the system. Insulating
states are not all equivalent, and can be distinguished by
the topological property of the ground state wavefunc-
tion. In particular, topologically nontrivial insulators,
such as Chern insulators [1, 2], cannot be smoothly con-
nected to trivial atomic insulators without closing the
energy gap.

In this work, we ask the question: is there a fundamen-
tal bound on the energy gap of topological insulators?
And we provide an affirmative answer. A general tight
bound on the energy gap of topological insulators having
finite Chern numbers is derived by relating topological
invariant to optical absorption. Our work also reveals a
direct connection between quantum geometry and optical
absorption.

Our bound on topological gap can be derived in a
surprisingly simple way as follows. Consider the opti-
cal conductivity σ(ω) of an insulator with energy gap
∆. The optical conductivity consists of longitudinal and
Hall parts σL and σH , σ(ω) = σL(ω) + σH(ω), which
are symmetric and antisymmetric with respect to spatial
indices respectively. In particular, ReσL represents the
absorption of linearly polarized light, while the imagi-
nary part ImσH represents magnetic circular dichroism,
namely, the difference in the absorption of left-handed
and right-handed circularly polarized light.

Let us now consider the absorbed power P± under
circularly polarized light of left and right handedness
E(t) = E (cos(ωt),± sin(ωt)), which is given by

P± = (Reσxx ± Imσxy)E
2. (1)

(For now we assume isotropic optical conductivity to sim-
plify the notation; the general proof will be presented
later.) Since P± must be non-negative for any frequency,
we must have

Reσxx ≥ |Imσxy|. (2)

It then follows that

∫ ∞

0

dω
Reσxx(ω)

ω
≥
∫ ∞

0

dω
|Imσxy(ω)|

ω

≥
∣

∣

∣

∣

∫ ∞

0

dω
Imσxy(ω)

ω

∣

∣

∣

∣

. (3)

To proceed, we apply the Kramers–Kronig relation to
relate the real and imaginary parts of the optical Hall
conductivity:

∫ ∞

0

dω
Imσxy(ω)

ω
= −π

2
σxy(0). (4)

The dc Hall conductivity σxy(0) is purely real. For insu-
lators, σxy(0) is equal to the quantized many-body Chern
number of the ground state [1]:

σxy(0) =
e2

h
C, (5)

where C takes integer or fractional values for integer or
fractional Chern insulators respectively [3].

Combining the inequality (3) with the Kramers-Kronig
relation Eq. (4) and the TKNN formula (5), we find

∫ ∞

0

dω
Reσxx(ω)

ω
≥ e2

4~
|C|. (6)

Since optical absorption can only occur at frequen-
cies above the energy gap ∆, the left hand side is al-
ways smaller than or equal to ~

∫∞

0
dωReσxx(ω)/∆ ≡

~W 0/∆, where W 0 is the optical spectral weight. Hence
we find the following upper bound on the energy gap:

∆ ≤ 4~W 0

e2|C| . (7)

Finally, using the standard optical sum rule that re-
lates the spectral weight to charge density n and mass m
(more discussions later)

W 0 =
π

2

ne2

m
, (8)

we arrive at a simple and elegant result:

∆ ≤ 2π~2n

m|C| . (9)

This relation sets the fundamental bound on the energy
gap on Chern insulators. As seen from the above deriva-
tion, this result holds in complete generality and is even
applicable to strongly interacting systems such as frac-
tional Chern insulators.
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In the following sections, we elaborate on how this gap
bound can be understood in terms of the topology, quan-
tum geometry, and energy absorption. We begin by pre-
senting a new sum rule for optical absorption and mag-
netic circular dichroism in insulators. Unlike the stan-
dard f -sum rule that relates the optical spectral weight
to the charge stiffness [4], our sum rule relates a general-
ized optical weight—defined as the negative-first moment
of the absorptive part of optical conductivity— to the
quantum geometry of occupied and excited bands, see
Sec. I and II. When the full frequency range 0 < ω <∞
is considered, the generalized optical weight is shown to
be a ground state property, and the real part of our sum
rule recovers a relation previously derived in the study of
electronic polarization in insulators [5].

The quantum geometric description of optical conduc-
tivity enables us to connect topological invariant and the
energy gap. Using the standard and generalized opti-
cal sum rules, we discover a general tight bound on the
energy gap of topological insulators (Sec. IV and V).
Applications of our theory to infrared absorption near
topological band inversion (Sec. III), magnetic circular
dichroism in Chern insulators (Sec. IV), and topologi-
cal gap in moiré bands in twisted semiconductor bilayers
(Sec. VII) are demonstrated. Although the most of the
discussion is done for noninteracting systems for simplic-
ity, the topological gap bound is carried over to interact-
ing systems, as we can see from the above derivation. We
will discuss the generalization of our results to interacting
systems in Sec. VIII.

I. GENERALIZED OPTICAL WEIGHT

With the Kubo formula, we can calculate σµν(ω) for
general noninteracting electronic systems. In the present
work, we shall mostly consider the optical conductivity
of insulators. Then, the optical conductivity σµν(ω) at
zero temperature is determined by interband transitions
as given by:

σµν(ω) =
e2

~

∫

[dk]
∑

a,b

−iεabAµ
abA

ν
ba

~ω + εab + iδ
fab, (10)

where a, b are indices for the bands, εab = εa(k)− εb(k),
εa(k) is the band dispersion. fab = fa − fb with fa =
Θ(µ−εa(k)) the Fermi distribution function at zero tem-
perature with the chemical potential µ. e(< 0) and ~ are
the charge of electrons and the Planck constant. The in-
tegral is over the Brillouin zone, and [dk] is shorthand for
ddk/(2π)d with the spatial dimension d. δ is an infinites-
imal positive quantity appearing in the Kubo formula.
Aab is the interband Berry connection defined as

Aab = 〈uka|i∇k|ukb〉 , (11)

where |uka〉 is the cell-periodic part of Bloch wavefunc-
tion of the band a at wave vector k. In deriving Eq. (10),

we neglect the wavevector of light and coupling to the
magnetic field.

The optical conductivity (10) can be separated into the
symmetric part (σL) and the antisymmetric part (σH)
with respect to spatial indices:

σL,H
µν (ω) =

σµν(ω)± σνµ(ω)

2
. (12)

From now on, we will refer to the symmetric part σL as
longitudinal optical conductivity and the antisymmetric
part σH as optical Hall conductivity. The real part of the
longitudinal optical conductivity ReσL determines the
absorption of linearly polarized light, while the imaginary
part of the optical Hall conductivity ImσH represents the
differential absorption of left- and right-handed circularly
polarized light, known as magnetic circular dichroism.
These two components together constitute the absorptive
(Hermitian) part of optical conductivity related to the
energy dissipation: σabs ≡ ReσL+ i ImσH = (σ+σ†)/2.
σabs in insulators is given by:

σabs

µν (ω) = πωe2
∫

[dk]
∑

a,b

δ(εba − ~ω)Aµ
abA

ν
bafab. (13)

To establish a direct connection between optical ab-
sorption and quantum geometry, we introduce a general-
ized optical weight,

Wn
µν(Ω) ≡

∫ Ω

0

dω
σabs
µν (ω)

ωn
, (14)

where n ≥ 0 is an integer. W 0(Ω) is the standard op-
tical spectral weight below a cutoff frequency Ω, with
Ω = ∞ corresponding to the full spectral weight. Wn≥1

can be regarded as the negative-n-th moment of σabs in
frequency domain. For insulators, since optical absorp-
tion only occurs at frequencies above the gap, the inte-
gral in Eq. (14) is convergent and the generalized spectral
weightWn is finite for all n. For any given n, Wn(Ω) as a
function of the cutoff frequency Ω contains the full infor-
mation of optical conductivity, as σabs(ω) = ωn dWn/dω
and the reactive (anti-Hermitian) part of the optical con-
ductivity σrea(ω) = ReσH + i ImσL can be further ob-
tained from σabs through the Kramers-Kronig relation.

In this work, we focus on the negative-first moment of
the absorptive part of optical conductivity W 1(Ω). From
Eq.(13) we have

W 1

µν(Ω) ≡
∫ Ω

0

dω
σabs
µν (ω)

ω

=
πe2

~

∑

c,v

∫

εcv≤Ω

[dk]Aµ
vcA

ν
cv. (15)

where c, v run over the conduction bands and the valence
bands respectively, with fv = 1 and fc = 0. For a given
pair of conduction and valence bands, the k integral ex-
tends over the region where the energy gap εcv is below
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~Ω. Since Reσabs(ω)/ω = ǫ′′(ω) is the imaginary part of
the complex dielectric constant known as the loss factor,
the real part of W 1(Ω) represents the integrated dielec-
tric loss below frequency Ω.

In the limit Ω → ∞, W 1(∞) receives contributions
from all interband transitions. Then, the k integral in
Eq. (15) extends over the whole Brillouin zone, and c, v
run through all conduction and valence bands respec-
tively. In this case, the right-hand side of Eq. (15) only
depends on the interband Berry connection, which sug-
gests a quantum geometric origin of the generalized spec-
tral weight integrated over all frequencies W 1(∞).

More broadly, optical absorption below a given cutoff
frequency Ω involves a finite number of bands around the
Fermi level. For the moment, suppose that the energy
gaps between m highest valence bands and n lowest con-
duction bands, εcv(k), is smaller than ~Ω at all k, while
the energy gap to any higher conduction bands exceeds
~Ω. Then, optical absorption below frequency Ω comes
entirely from interband transitions among these m + n
bands over the whole Brillouin zone, and we have

∫ Ω

0

dω
σabs
µν (ω)

ω
=
πe2

~

m
∑

c=1

n
∑

v=1

∫

[dk]Aµ
vcA

ν
cv. (16)

This expression only involves interband Berry connection
as well, calling for a quantum geometric understanding.

II. QUANTUM GEOMETRY AND
GENERALIZED f-SUM RULE

To develop a quantum geometric theory of inter-
band optical conductivity, it is necessary to con-
sider multi-band manifold over k space. A set of
bands {|uk1〉 , ..., |ukr〉} in k-space defines a family of
r-dimensional Hilbert subspace parameterized by the
wavevector k, i.e., a vector bundle of rank r over the
Brillouin zone. The geometry of this multi-band mani-
fold can be characterized by a quantum geometric tensor,
a r× r matrix Qµν with matrix elements defined by (see
for example [6])

Qµν
ij = 〈∂µui|(1− P )|∂νuj〉 with i, j = 1, ..., r, (17)

where P =
∑r

i=1
|ui〉 〈ui| is the projection operator asso-

ciated with the r-dimensional subspace spanned by the
bands of interest.

In the single-band case (r = 1), Qµν reduces to a
scalar—the Abelian quantum geometric tensor, whose
symmetric part and anti-symmetric part with respect to
the spatial indices µ, ν are known as the quantum metric
and the Berry curvature respectively. In the case of a
multi-band manifold (r > 1), Qµν is a r× r matrix—the
non-Abelian quantum geometric tensor. We can read-
ily show (Qµν)† = Qνµ. Its symmetric part and anti-
symmetric part define the non-Abelian quantum met-
ric and the non-Abelian Berry curvature respectively:

Qµν = Gµν − i
2
Fµν , both of which are r × r Hermitian

matrices.
Armed with the notion of the quantum geometric ten-

sor for multi-band manifolds, we now establish a direct
connection between optical absorption and quantum ge-
ometry. First, note that
∑

c,v

Aµ
vcA

ν
cv =

∑

v

〈∂µuv|Pc|∂νuv〉

=
∑

v

〈∂µuv|(1− Pv)− (1− Pv − Pc)|∂νuv〉

where Pv,c is the projection operator onto the va-
lence/conduction band manifold. Using this identity, we
can rewrite Eq. (15):

∫ Ω

0

dω
σabs
µν (ω)

ω
=
πe2

~

∫

[dk] (TrQµν
v − Trv Qµν

0
) , (18)

where Qv,Q0 are non-Abelian quantum geometric ten-
sors associated with the m-dimensional valence band
manifold and the (m + n)-dimensional manifold of
combined valence and conduction bands, respectively.
Trv(. . . ) is the partial trace over the valence band,
namely, Trv O ≡∑v Ovv.

Eq. (18) shows that the optical absorption corresponds
to the change of the quantum geometry of the subspace
spanned by m valence bands when the n conduction
bands are added. If there is no optical transition allowed
between the valence and conduction bands due to, e.g., a
symmetry-based selection rule, the quantum geometry of
valence bands is unchanged when the Hilbert subspace is
enlarged to include conduction bands: Aµ

vc = 0 leads to
TrQµν

v = Trv Qµν
0

.
We now further show that the real part of Eq. (18)—

the integral of ReσL
µν(ω)/ω—can be expressed in an ele-

gant form using the quantum metric tensors alone:

∫ Ω

0

dω
ReσL

µν (ω)

ω

=
πe2

2~

∫

[dk]

(

m
∑

v=1

〈∂µuv|Pc|∂νuv〉+
n
∑

c=1

〈∂µuc|Pv|∂νuc〉
)

=
πe2

2~

∫

[dk] (TrGµν
v +TrGµν

c − TrGµν
0
) . (19)

Here Gv, Gc, G0 are the quantum metric tensor for the
manifold of valence bands, conduction bands, and these
bands combined, respectively.

Eq. (19) is the first main result of this work. It di-
rectly relates the optical absorption to the trace of the
non-Abelian quantum metric tensors. For a multi-band
manifold, TrGµν is a positive semi-definite d × d ma-
trix that is independent of the choice of basis states. It
measures how the multi-band subspace changes with k,
which can be seen from the squared norm of the change
of the projection operator P to second order in k:

Tr
[

(δP )2
]

=
∑

µ,ν

2TrGµνδkµδkν . (20)
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Note that the quantum metric of a manifold is not the
sum of the ones for its subspaces. In fact, the equa-
tion (19) shows that the generalized optical weight pre-
cisely measures the difference of the two.

As an example, let us consider a two-dimensional free
electron gas under a magnetic field, which exhibits Lan-
dau levels equally spaced by cyclotron energy ~ωc with
ωc = |eB|/m. An optical transition only occurs between
two adjacent Landau levels n − 1 ↔ n due to the an-
gular momentum selection rule. Based on Eq. (19), we
can use the quantum metric tensors to calculate gen-
eralized optical weight W 1 associated with this inter-
Landau-level transition. It is straightforward to show
that the Abelian quantum metric tensor for n-th Landau
level is constant in k space: gµνn = (~/|eB|)(n+1/2)δµν,
while the trace of the non-Abelian quantum metric tensor
for the two-Landau-level manifold is given by TrGµν

0
=

(~/|eB|)nδµν . Then, for the integer quantum Hall state
at filling factor ν, we have

∫ Ω

0

dω
Reσii(ω)

ω
=
e2

~

ν

4
for Ω > ωc. (21)

This result agrees with a direct calculation of optical con-
ductivity.

Returning to the discussion on general systems, in the
limit of the cutoff frequency Ω → ∞, an interband op-
tical transition is allowed between any pair of occupied
and unoccupied bands. In this case, our general formula
Eq. (18) and Eq. (19) can be further simplified. Since
the complete set of bands spans the entire Hilbert space,
the corresponding quantum geometric tensor Qµν

0
= 0 so

that Eq. (18) reduces to

∫ ∞

0

dω
σabs
µν (ω)

ω
=
πe2

~

∫

[dk] TrQµν . (22)

This elegant formula directly relates the negative-first
moment of optical conductivity W 1(∞) to the quantum
geometry of the ground state wavefunction. We regard
Eq. (22) as a generalized optical sum rule complemen-
tary to the standard f -sum rule which relates the optical
spectral weight W 0(∞) to the charge stiffness (Drude
weight).

We now discuss the real and imaginary parts of
Eq. (22) separately. The imaginary part relates mag-
netic circular dichroism σH to the Chern invariant of the
ground state:

∫ ∞

0

dω
ImσH

µν(ω)

ω
= − e2

4~
Cµν . (23)

where the Chern invariant Cµν ≡ 2π
∫

[dk]
∑

v Ω
µν
v is a

topological invariant defined by the integral of the total
Berry curvature of the occupied bands over the Brillouin
zone. In two dimensions, Cµν ≡ ǫµνC where C is an
integer. In three dimensions, Cµν ≡ ǫµνλCλ where Cλ is
a reciprocal lattice vector.

It is well known since the work of Thouless-Kohmoto-
Nightingale-Nijs (TKNN) [1] that the Chern invariant of

an insulating state manifests in quantized dc Hall con-
ductance: σH = Ce2/h in two dimensions and σH

µν =

ǫµνλCλe
2/h in three dimensions. The quantized Hall ef-

fect is a dissipationless transport phenomenon accom-
panied by zero longitudinal resistivity. Alternatively,
Eq. (23) shows that the Chern invariant can be measured
directly by magnetic circular dichroism, the difference in
optical absorption of left- and right-handed circularly po-
larized lights.

It is remarkable that the Chern invariant can be
measured through both dc Hall transport and opti-
cal magnetic circular dichroism. This is not a coinci-
dence. Eq. (23) and the TKNN formula are directly
related through the Kramers-Kronig relation between
the absoprtive and reactive parts of optical conductivity:
i
π
P
∫∞

−∞
dω σabs

µν (ω)/(ω−ω′) = σrea
µν (ω

′), where σrea(ω) =

ReσH + i ImσL. By setting ω′ = 0 and using the
general property σabs(−ω) = (σabs(ω))∗, the Kramers-
Kronig relation connects magnetic circular dichroism to
dc Hall conductivity:

∫∞

0
dω ImσH

µν(ω)/ω = −π
2
σH
µν(0).

For isotropic optical conductivity, this reduces to Eq. (4)
in the introduction.

From now on, we focus on the real part of Eq. (22):

∫ ∞

0

dω
ReσL

µν(ω)

ω
=
πe2

~

∫

[dk]gµν . (24)

where gµν ≡ TrGµν is the trace of the non-Abelian
quantum metric tensor of the occupied band manifold.
Equivalently, gµν is Abelian quantum metric tensor of
the Slater determinant state made of all the occupied
bands: |uk1uk2...ukr|.

We note that Eq. (24) was first derived by a different
method in the early seminal work of Souza, Wilkens and
Martin on electronic polarization and localization in in-
sulators [5]. There, the quantum metric is defined for the
many-body ground state with a twisted boundary condi-
tion. In the case of noninteracting band insulators, their
result reduces to Eq. (24). We also note that the integral
of the trace of the quantum metric is directly related to
the spread of the Wannier function in real space, as shown
in the pioneering work by Marzari and Vanderbilt [7].

While it has existed for a quarter of a century, the im-
plication of Eq. (24) for optical conductivity and quan-
tum geometry is not adequately explored. Some studies
in this direction can be found in [8–10] and references
therein. We hold the view that Eq. (24) is a fundamental
relation between the optical absorption and the ground
state property, which is universally applicable to all in-
sulators.

The right-hand side of Eq. (24)—the integral of the
quantum metric of the occupied bands gµν over the Bril-
louin zone—is a quantum property of insulating ground
states. Because of its relation to generalized optical
weight, we call it “quantum weight”:

Kµν ≡ 2π

∫

[dk]gµν . (25)
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As we shall demonstrate below, the quantum weight is a
central quantity that links together band topology, opti-
cal absorption and the insulating gap.

III. INFRARED ABSORPTION NEAR
TOPOLOGICAL BAND INVERSION

The quantum weight provides a quantitative measure
of the degree of “quantumness” in the insulating state.
To illustrate this point, we consider two distinct types of
insulators: atomic insulators and topological insulators,
which have small and large quantum weight respectively.

In an atomic insulator, electrons occupy highly-
localized atomic orbitals φn(r − R) located at lattice
sites R. The characteristic size of these orbitals ξ is small
compared to the lattice constant a, hence there is no hop-
ping between sites. In this case, the Bloch wavefunction
ψnk(r) is given by: ψnk(r) = (1/

√
N)
∑

R
eik·Rφn(r −

R). Assuming that the spatial overlap between atomic
orbitals on different sites is negligible, it is straightfor-
ward to show that the quantum geometric tensor of the
occupied band manifold is related to the matrix elements
of position operator between atomic orbitals on the same
site: Qµν

ij = Gµν
ij =

∑

n 〈φi|rµ|φn〉 〈φn|rν |φj〉 where i, j
belong to occupied orbitals, and n run through unoc-
cupied orbitals. Therefore the quantum weight K ∼
(ξ/a)2a2−d (d is spatial dimension) is also small, resulting
in weak optical absorption.

The opposite case of large quantum weight can be
found in narrow gap insulators near topological band in-
version. When inversion symmetry is present, the ef-
fective Hamiltonian H(k) for low-energy states generally
takes the forms of a massive Dirac fermion [11]:

H(k) = ∆Γ0 + v

d
∑

µ=1

kµΓµ (26)

where Γ0, ...,Γd are 4× 4 Dirac Gamma matrices satisfy-
ing {Γi,Γj} = 2δij . Tuning ∆ from positive to negative
induces a band inversion at k = 0 and results in a phase
transition between topologically distinct insulators. At
the critical point ∆ = 0, the low-energy spectrum is de-
scribed by massless Dirac fermions.

We now calculate the quantum metric g and quantum
weight K for this system, and evaluate the generalized
optical weight Σ. When H(k) takes the form

H(k) = Ek

d
∑

λ=0

nλ
k
Γλ (27)

with Ek > 0 and n is a unit vector, the projection op-
erator for the occupied bands can be written as Pk =
1

2
(1 +

∑

λ n
λ
k
Γλ). Using Eq. (20), we find the quantum

metric tensor is

gµν =
1

2
(∂µn) · (∂νn). (28)

Provided that the system has an insulating gap, n is
well defined in k space, and the quantum metric gµν is
finite. Near the band inversion transition, however, n

changes rapidly around k = 0 where the gap is small,
leading to a large gµν that may give dominant contribu-
tion to the quantum weight. Indeed, for the Dirac Hamil-
tonian Eq. (26), we find nk = (∆, vk)/

√
∆2 + v2k2. The

trace of quantum metric tensor is

gk ≡
∑

µ

gµµ
k

=
1

2

(d− 1)v2k2 + d∆2

(v2k2 +∆2)2
. (29)

As ∆ → 0, g diverges as 1/k2 near k = 0. There-
fore, near the topological phase transition, the quantum
weight has non-analytic dependence on the insulating
gap ∆ due to the contribution from low-energy states:
Kµν = (K/d)δµν where the asymptotic form of K at
small |∆| is given by

K ∼ |∆| (d = 3)

log(|∆|) (d = 2)

1/|∆| (d = 1) (30)

Importantly, the quantum weight exhibits a logarithmic
divergence in two dimensions and a power-law divergence
in one dimension.

By the general relation Eq. (24) between quantum
weight and generalized optical weight, a divergent quan-
tum weight necessarily implies strong optical absorption
at low photon energy. Indeed, a well-known example
is two-dimensional massless Dirac fermion systems such
as graphene. Here, the real part of optical conductivity
takes the universal value Reσ = πe2/(2h) over a broad
range of frequencies. Therefore, the negative-first mo-
ment of optical conductivity,

∫

dωReσ/ω, has a logarith-
mic divergence at low energy, which leads to the log |∆|
dependence in the presence of a Dirac mass gap, match-
ing the quantum weight shown by Eq. (30).

Unlike the standard spectral weight
∫

dωReσ which
gives equal weight to low and high frequency, the gen-
eralized optical weight

∫

dωReσ/ω gives large weight to
optical conductivity at low frequency. By f -sum rule,
the full spectral weight only depends on the electron
density and therefore is insensitive to any details of the
system. In contrast, the generalized optical weight is
directly connected to the ground state wavefunction as
shown by Eq. (24), and therefore provides a powerful
tool for studying topological phase transitions involving
a dramatic change in the ground state, such as the topo-
logical band inversion discussed above.

IV. QUANTUM WEIGHT, TOPOLOGICAL
INVARIANT, AND 100 % MAGNETIC

CIRCULAR DICHROISM.

We have so far established a direct relation between
optical absorption and quantum geometry. In partic-
ular, the generalized optical weight integrated over all
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frequencies is given by the quantum weight of the occu-
pied bands. In this section, we consider quantum weight
of topological bands. We mainly focus on Chern insu-
lators in two dimensions, noting that the generalization
to three dimensions and to quantum spin Hall insulators
with conserved spin U(1) symmetry is straightforward.

The quantum weight in two dimensional systems is
a dimensionless quantity. Interestingly, the quantum
weight is lower bounded by the topological Chern num-
ber. This lower bound naturally follows from the relation
between the quantum geometry and optical absorption as
shown below. The crucial observation is that, the opti-
cal absorption, which is related to quantum geometry, is
always non-negative.

Let us consider the case of a circularly polarized light
at frequency ω: Ex(t) = E cos(ωt) and Ey = ±E sin(ωt),
or equivalently, Eω = E(x̂±iŷ), with ± corresponding to
left and right handedness. The induced current is given
by jω = (σxx ± iσxy, σyx ± iσyy)E. The absorbed power
is thus

Re(j∗ω ·Eω) =
(

Re(σxx + σyy)± 2 ImσH
xy

)

E2. (31)

Since the absorbed power must be non-negative for every
frequency, we must have

Re(σxx + σyy) ≥ 2
∣

∣ImσH
xy

∣

∣. (32)

This is the relation (2) we used in the introduction. By
dividing ωn and integrating over frequency, we obtain a
general inequality between the moments of σabs as

Wn
xx(Ω) +Wn

yy(Ω) ≥ 2
∣

∣Wn
xy(Ω)

∣

∣. (33)

In particular, for n = 1 and Ω = ∞, we can rewrite this
with the quantum weight K and the Chern number C
with Eq. (22) and (23). Then we obtain the following
inequality between the quantum weight and Chern num-
ber C:

K ≡
∑

i=x,y

Kii ≥ |C|, (34)

where C ≡ 2π
∫

[dk]Ωxy is the Chern number of the
ground state. It is clear from our derivation above that
when the quantum weight of the occupied band manifold
saturates the Chern number bound K = |C|, the equality
in Eq. (32) must also be satisfied at all frequencies—that
is to say, the system only absorbs circularly polarized
light of one handedness, but not the other at all, namely,
exhibits 100% magnetic circular dichroism.

The lower bound on the quantum weight (34) can
also be derived from an inequality between the quan-
tum metric and the Berry curvature:

√
det g =√

gxxgyy − gxygyx ≥ |Ωxy|/2. This inequality was first
derived for single band cases by Roy [12] and later
generalized to multiple band cases [13]. Noting that
tr g = (gxx+ gyy) ≥ 2

√
det g and integrating the inequal-

ity over the Brillouin zone, we recover the bound (34).
It is remarkable that the mathematical relation between

the quantum metric and the Berry curvature is closely
linked to the fact that the optical absorption of circu-
larly polarized light must always be non-negative.

Note that the quantum metric g and the Berry curva-
ture Ω used here are for the Slater determinant state of
the entire occupied band manifold, |uk1uk2...ukr|, which
applies to an arbitrary number of occupied bands. Also
note that while the Chern number is additive, i.e., the
Chern number C for the occupied band manifold is the
sum of the Chern number for each band, the quantum
weight K is not.

As an example, consider a two-band Hamiltonian of
the form shown in Eq. (27), with d = 2 and Gamma ma-
trices replaced by 2 × 2 Pauli matrices σx, σy, σz. Then,
the unit vector nk in k space defines a mapping from the
two-dimensional Brillouin zone (which is a torus) to the
Bloch sphere. The Chern number C and the quantum
weight K are given by: C = 1

2

∫

[dk] n · (∂xn × ∂yn),

K = 1

4

∫

[dk]
∑

µ=x,y(∂µn)
2, respectively. Then, from

the inequality (1/2)
∑

µ=x,y(∂µn)
2 ≥ |n · (∂1n × ∂2n)|,

the bound K ≥ |C| follows immediately. This bound
is saturated when nk takes special instanton configura-
tions [14].

We may call Chern insulators having minimum quan-
tum weight K = |C| “minimal Chern insulator”. An ex-
ample is the integer quantum Hall state in Landau level
systems: for any integer filling ν ≥ 1, it can be shown
that the quantum weight of occupied Landau level mani-
fold is K = ν = |C|. It should be noted that the concept
of minimal Chern insulator applies to systems with an ar-
bitrary number of occupied bands. In multiband cases,
C and K are defined through the non-Abelian quantum
geometric tensor. In the special case of a single occupied
band where C andK are defined by the Abelian quantum
geometric tensor, the condition for the minimal Chern in-
sulator K = |C| implies two conditions: (1) the so-called
trace condition for the Chern band, tr g = |Ωxy|, is sat-
isfied at every k point, and (2) either Ωxy or −Ωxy is
positive semi-definite over the entire Brillouin zone [15–
17].

In time-reversal-invariant systems with spin-orbit cou-
pling and spin sz conservation, the Chern number of all
occupied bands must be zero, but occupied spin-↑ bands
and spin-↓ bands can have equal and opposite Chern
numbers: C↑ = −C↓ ≡ Cs. In this case, the quan-
tum weight is bounded by twice the spin Chern number:
K = K↑ +K↓ ≥ |C↑|+ |C↓| = 2|Cs|.

V. QUANTUM WEIGHT AND TOPOLOGICAL
GAP

Next, we establish a general upper bound on the quan-
tum weight of real materials:

K ≤ 2π~2n

mEg

, (35)
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with n the electron density, m the electron mass, and Eg

the energy gap of the insulator (the precise definition of
Eg will be discussed below). This inequality applies very
broadly to systems whose Hamiltonian takes the form

H =
p2

2m
+ V (r) + p ·A(r) +A(r) · p, (36)

where V and A can be any function of particle coordi-
nate. Moreover, our result still holds when V (r) and
A(r) are spin (or pseudospin) dependent matrices.

We now derive the inequality relating quantum weight
and energy gap, Eq. (35), from the perspective of opti-
cal absorption. We first note that optical absorption in
insulators only occurs at frequencies above a threshold
ω ≥ Eg/~, where Eg is the minimum energy required to
optically excite the system, called the optical gap. Eg

must be greater than or equal to the gap in the energy
spectrum denoted as ∆: Eg ≥ ∆. For clean, noninter-
acting insulators, Eg is the minimum direct band gap
at which the optical transition is allowed. Since the real
part of the optical conductivity Reσii(ω) onsets aboveEg

and is always non-negative, the negative-first moment of
optical conductivity has an upper bound

∫ ∞

0

dω
Reσii(ω)

ω
≤
∫∞

0
dωReσii(ω)

Eg/~
. (37)

By the standard f -sum rule [4], when the Hamiltonian
takes the form of Eq. (36), the full optical spectral weight
is given by the charge stiffness:

∫ ∞

0

dωReσii(ω) =
π

2

ne2

m
(38)

which is independent of any details of the system. Com-
bining Eqs. (37), (38) and Eq. (24) immediately yields
the upper bound on the quantum weight Eq. (35).

We further offer a heuristic argument for the inequal-
ity between quantum weight and energy gap of an insu-
lator, Eq. (35). As shown in [5, 7, 18] (and references
therein), the quantum weight K is directly related to the
electronic localization length ξ in the insulating ground
state: K ∼ (ξ/a)2 where a is the lattice constant. On
the other hand, the Heisenberg uncertainly principle dic-
tates that for a given energy of confinement Eg, the lo-

calization length ξ cannot be smaller than ~/
√

mEg, as
in a harmonic oscillator. This leads to the inequality
between quantum weight and energy gap of the lowest
band, which corresponds to the filling factor ν = 1 or
density n ∼ 1/a2.

Putting together the lower and upper bounds on the
quantum weight, Eq. (34) and (35), we arrive at a re-
markable relation

|C| ≤ K ≤ 2π~2n

mEg

. (39)

Eq. (39) is a key result of our work. In one stroke, it links
together band topology, quantum geometry, and energy
gap of insulating states.

Interestingly, both lower and upper bounds on quan-
tum weight are saturated simultaneously in the integer
quantum Hall state of Landau level systems. Here, the
energy gap is Eg = ~eB/m and the density is n = νB/Φ0

where ν is the filling factor and Φ0 = h/e is the flux quan-
tum. Then, the upper bound 2π~2n/(mEg) = ν is equal
to the lower bound—the Chern number C = ν. Then,
the quantum weight must be K = ν, matching our ear-
lier result, Eq. (21). That both bounds on the quantum
weight are saturated is a special feature of Landau level
systems.

The Landau level example shows that the lower and
upper bounds on the quantum weight of insulators,
Eq. (39), are both tight for the general case.

VI. MICROSCOPIC AND EFFECTIVE
THEORIES

As our upper bound for quantum weight Eq. (35) as-
sumes the Hamiltonian of the form Eq. (36), we now
discuss its applicability to real materials. As a matter of
fact, the microscopic Hamiltonian for all solids takes the
form of Eq. (36), with m the bare electron mass and V
the periodic potential of the ions. Moreover, the external
magnetic field and the microscopic spin-orbit interaction
~/(4m2c2)s · ∇V × p can be captured by Eq. (36) with
spin-independent and spin-dependent vector potentials
respectively. Therefore, the inequality Eq. (35) consti-
tutes a fundamental relation applicable to all real materi-
als. Applied in this way, the mass and the carrier density
in Eq. (35) should be the bare electron mass m0 and the
total density of electrons including core electrons, in the
same spirit that the optical spectral weight integrated
over all frequencies counts all electrons.

For practical purposes, we often use an effective Hamil-
tonian Heff , in the form of continuum or tight-binding
model, to describe the low-energy degrees of freedom
that are well separated from high-energy ones. For ex-
ample, the effective theory of doped semiconductors is
based on the k · p continuum Hamiltonian of doped elec-
trons or holes with an effective mass. As another exam-
ple, for tight-binding models, the effective Hamiltonian
is described by a k-dependent matrix. In these cases,
the f -sum rule (38) is modified as [4, 19]:

∫

dω σL
µν(ω) =

π
2
ne2(m−1

∗ )µν , where the effective mass is given by

(m−1

∗ )µν =
1

n

∫

[dk]
∑

v

〈uv|(∂µ∂νHeff,k)|uv〉 , (40)

and n is the carrier density in the effective theory.
Since any effective theory and effective model param-

eters for solids are ultimately derived from the “univer-
sal” Hamiltonian Eq. (36), the fundamental bound with
n the total charge density and m the bare mass always
holds. Furthermore, a tighter bound can often be found
within effective models. For example, consider a two-
dimensional electron system with a weak periodic po-
tential V (r). The periodic potential induces the Bragg
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scattering of the electron wavefunctions and results in
the formation of Bloch bands. In the low density limit
na2 ≪ 1 (where a is the lattice constant and n is to-
tal charge density), this periodic system is effectively de-
scribed by a two-dimensional electron gas with an ef-
fective mass m∗. By treating the periodic potential as a
perturbation, one can show that m∗ is always larger than
the bare mass m. For example, for a square lattice po-
tential V (r) = 2V (cos(Gx)+cos(Gy)), the effective mass

is given by m∗ = m
(

1 + 8V 2

ε2
G

)

with εG = ~
2G2/(2m).

Now, consider applying an external magnetic field to
create Landau levels. When the magnetic field is suf-
ficiently weak, the cyclotron gap of the integer quantum
Hall states is ~eB/m∗, which saturates the tighter bound
given by the effective theory. In the opposite limit of
a sufficiently strong field (beyond the applicable regime
of the effective theory), the energy spectrum consists of
free-electron Landau levels weakly perturbed by the peri-
odic potential. In this case, the cyclotron gap is approxi-
mately ~eB/m, which saturates the fundamental bound.

VII. TOPOLOGICAL GAP BOUND

Eq. (39) also implies a remarkable relation of the topo-
logical gap and the Chern number:

Eg ≤ 2π~2n

m|C| , (41)

which provides an upper bound to the energy gap in
Chern insulators. Note that the right-hand side depends
only on the carrier density, the electron mass, and the
Chern number of the ground state, and is independent
of any details of the system. While the band topology
describes the properties of the wavefunction rather than
the energy dispersion, the relation (41) shows that in real
materials described by the Hamiltonian Eq. (36), the en-
ergy dispersion and the band topology cannot be com-
pletely independent. Our bound on the topological gap
is saturated in Landau level systems as shown above, and
therefore is tight for the general case.

As seen from the above discussion, Eq. (41) provides
the upper bound on the optical gap Eg, i.e., the minimum
energy required for optical absorption. Since the spectral
gap ∆ cannot exceed Eg, the bound (41) also applies to
∆.

It is remarkable that our study of optical absorption
from the perspective of quantum geometry has led to the
discovery of the topological gap bound, a relation be-
tween band topology and energy spectrum which makes
no reference to optical properties. Nonetheless, its con-
nection to optical absorption is clear and direct. The up-
per bound on the topological gap can be reached if and
only if optical absorption occurs at a single frequency
ω = Eg/~, as shown by Eq.(37).

Our bound (41) is especially useful when applied to low
carrier density systems with nontrivial band topology.

As an example, we consider moiré superlattices formed
from two-dimensional semiconductors. Recent theoreti-
cal calculations [20, 21] have shown that twisted homobi-
layer transition metal dichalcogenide (TMD) tMoTe2 and
tWSe2 host topological bands over a broad range of twist
angles. In particular, the topmost moiré valence bands in
valley K and K ′, which carry opposite spins, have equal
and opposite Chern numbers C↑ = −C↓ = 1, resulting in
a quantum spin Hall insulator at the filling of two holes
per unit cell. The band topology is also manifested at
the filling of one hole per unit cell, where the Coulomb
interaction can induce spontaneous full spin/valley polar-
ization and drive the system into a quantum anomalous
Hall insulator [21]. This state has been experimentally
observed [22–24].

The moiré bands of tMoTe2 or tWSe2 are formed from
the parabolic band of the monolayer by the presence of
interlayer tunneling and layer-dependent potential that
are spatially modulated by the moiré superlattice. Thus,
the continuum model of moiré bands fits into the general
form of Eq. (36). This allows us to apply Eq. (41) to
obtain an upper bound on the gap between the topmost
and second moiré valence bands:

Emax

g =
2πν~2

m∗Aθ

, (42)

with ν = 1 the filling factor for this case, Aθ =√
3a20/(2θ

2) the area of the moiré unit cell, a0 the mono-
layer lattice constant and m∗ the effective mass of holes
in MoTe2 or WSe2. We emphasize that this bound is
completely independent of the form or strength of inter-
layer tunneling or superlattice potential.

We compare the topological gap bound Emax
g with

the minimum direct gap calculated from the continuum
model of Ref. [20], using model parameters fitted to first-
principles band structures for tMoTe2 [25]. Remarkably,
our bound is fairly tight at small twist angles as shown
in Fig. 1. At θ = 2.1◦, the upper bound Emax

g = 9.7meV
is only 1.67 times the calculated gap of 5.8meV.

We further calculate the quantum weight K using the
Bloch wavefunction of the continuum model. Indeed, as
shown in Fig. 1, K is found to be lower bounded by the
Chern number |C| = 1 and upper bounded by Emax

g /Eg

where Eg is the minimum direct gap in the continuum
model. Remarkably, the quantum weight is very close to
the Chern number throughout the twist angles shown
here. On the other hand, its upper bound Emax

g /Eg

shows a deep minimum at θ = 2.1◦.
Our topological gap bound, Eq. (42), provides a key

guiding principle for searching large gap topological in-
sulators in two-dimensional electron systems. It is par-
ticularly useful for moiré materials, where first principles
band structure calculation is challenging due to the large
unit cell and strong lattice relaxation involved. Without
relying on any microscopic details, we have shown that
the topological gap is fundamentally limited by the av-
erage kinetic energy of charge carriers 2π~2n/m∗. This
upper bound can only be increased by increasing the fill-
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a b c

FIG. 1. Topological gap bound in twisted homobilayer MoTe2. (a) The band structure of twisted MoTe2 at twist angle θ = 2.1◦.
The blue line is the highest valence band that has the Chern number C = 1. (b) The minimum direct gap between the highest
and second-highest valence bands and the upper bound of the gap (41) as a function of twist angle. (c) Quantum weight
K = Kxx+Kyy, Chern number C, and the upper bound by the gap (41) as a function of twist angle. As the gap, the minimum
direct gap between the highest and second-highest valence bands is used.

ing factor, reducing the moiré period, or choosing ma-
terials with smaller effective mass. For tMoTe2 with
m∗ = 0.62m0, the topological gap between the first and
second moiré bands cannot exceed 35meV at θ = 4◦.

Before concluding this section, we emphasize that
Eq. (41) is quite general and holds even for interacting
systems, as we showed in the introduction. In the next
section, we will present a complementary understanding
by formulating the quantum geometry for interacting sys-
tems.

VIII. INTERACTING SYSTEMS

As shown in the introduction, the bound on the topo-
logical gap holds quite generally even in interacting sys-
tems. In this section, we show that all the main results
of this work apply to interacting systems by construct-
ing a many-body quantum geometric description of the
optical conductivity. The key point is that both the stan-
dard f -sum rule Eq. (38) and our generalized sum rule
Eq. (22) can be formulated for an interacting system in
terms of the dependence of its ground state energy and
wavefunction on the twisted boundary condition.

In order to describe the optical conductivity in inter-
acting systems in terms of quantum geometry, we need
to introduce the twisted boundary condition. We con-
sider ground states with degeneracy r in the N -electron
system. Under twisted boundary condition, the ground
states satisfies

Ψaκ(r1, . . . , ri +Lµ, . . . , rN )

= eiκ·LµΨaκ(r1, . . . , ri, . . . , rN ), (43)

where Lµ = (0, . . . , Lµ, . . . , 0) specifies the system size
in µ-direction Lµ, and the vector κ specifies the twisted
boundary condition.

The optical conductivity σ(ω;κ) for many-body sys-
tems can be calculated with the Kubo formula as a func-
tion of κ. When the system is gapped, the optical con-

ductivity does not depend on the boundary condition κ

in the thermodynamic limit. Therefore, we can identify
the optical conductivity with the one averaged over κ,
denoted by σ̄(ω), as done in Ref. [3] for the dc Hall con-
ductivity. Noting that the twisted boundary condition κ

acts as the vector potential, σ̄(ω) can be written as

σ̄µν(ω) =
e2

~

∫

[dκ]
∑

n,m

−iEnmA
µ
nmA

ν
mnfnm

~ω + Enm + iδ
, (44)

whereEnm = En−Em is the energy difference between n-
th and m-th many body eigenstate, and ∂µ is the deriva-
tive with respect to κµ. fnm = fn − fm with the proba-
bility fn that n-th eigenstate is realized. At zero temper-
ature, the canonical distribution gives fn = 1/r when the
state n is one of the r-fold degenerated ground states and
otherwise fn = 0. Aµ

nm = 〈n,κ|i∂µ|m,κ〉 is the inter-
band Berry connection for the n-th and m-th eigenstates
the interacting system under the boundary condition κ.
As one can see from Eq. (44), the expression is the same
as the noninteracting cases (10) except that the quan-
tum geometric quantities are defined with the boundary
condition and that the band dispersion is replaced with
the eigenenergy En. Therefore, we can relate them to the
quantum geometry in the same way as the noninteracting
cases.

The quantum geometric tensor Qµν for the many-body
ground states is defined as

Qµν
ab = 〈∂µΨaκ|(1− Pκ)|∂νΨbκ〉 . (45)

where ∂µ refers to the derivative with respect to κµ,
and Pκ is the projection operator onto the ground state
subspace for the boundary condition κ. Qµν is in
general an r × r matrix and non-Abelian, satisfying
(Qµν)† = Qνµ. The symmetric and antisymmetric com-
ponents of Qµν define the quantum metric and Berry
curvature for the many-body states |Ψκ〉 respectively:
Qµν = Gµν − iFµν/2. The trace of them gives the
Abelian quantum geometry for the entire ground state
subspace: gµν = TrGµν ,Ωµν = TrFµν . If the ground
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state is unique, the quantum geometric tensor reduces to
the Abelian quantum geometric tensor.

Starting from the expression (44) and repeating the
same procedure as the noninteracting cases, we can de-
rive the bounds for many-body systems. Then we obtain
relations for the interacting systems as:

|C| ≤ K ≤ 2π~2n

mEg

, Eg ≤ 2π~2n

m|C| . (46)

Here, C, K are the Chern number and the quantum
weight for one of the ground states defined as

K = 2π

∫

[dκ]
∑

µ,a

Gµµ
aa fa =

Ktot

r
, (47)

C = 2π

∫

[dκ]
∑

a

Fµν
aa fa =

Ctot

r
, (48)

with the Chern number and the quantum weight
for the entire ground state subspace Ktot =
2π
∫

[dκ]
∑

µ g
µµ, Ctot = 2π

∫

[dκ]
∑

a Ω
µν .

The bound for many-body systems reduces to the in-
equalities (39), (41) in noninteracting systems. Since the
bounds for noninteracting systems are tight, the bounds
for many-body systems are also tight in general. As in
the noninteracting case, Eg appearing in the bound is the
optical gap. Since the spectral gap ∆ is always larger or
equal to Eg, the bound (41) holds for ∆ as well, leading
to Eq. (9) in the introduction.

We again emphasize that our results (46) hold quite
generally. Our bound applies even to disordered or non-
periodic systems. Remarkably the bound only depends
on the charge density and the mass, and is completely
independent of potential and interaction terms.

As an example, consider band insulators in the pres-
ence of Coulomb interaction. In general, interaction-
induced exciton effects reduce the optical gap, so that
the upper bound of the energy gap (46) still holds.

Another important application of our topological gap
bound is quantum Hall states in Landau level systems.

It follows from Galilean invariance that the cyclotron
resonance frequency is ωc even in the presence of in-
teraction [26]; therefore, the optical gap Eg = ~ωc al-
ways holds for Landau level systems at all filling fac-
tors. On the other hand, for the quantum Hall states
with σxy = Ce2/h, the filling factor ν is equal to C for
both integer and fractional quantum Hall states. With
n = νeB/h and ν = C, it follows that the optical
gap bound (46) reduces to Eg ≤ 2π~2n/(m|C|) = ~ωc.
Therefore, the optical gap bound (46) is saturated for
both the integer and fractional quantum Hall states. In
this sense, Landau level systems are optimal as both in-
teger and fractional Chern insulators. Our work further
implies that even when a superlattice potential or any
other perturbation violating Galilean invariance is added
to Landau level systems, the optical gap still cannot ex-
ceed ~ωc. Finally, we note that the spectral gap ∆ is con-
siderably smaller than the optical gap Eg in realistic frac-
tional quantum Hall states. Indeed, the magneto-roton
excitation significantly lowers ∆ compared to Eg = ~ωc

in Landau level systems [27].

In conclusion, we establish direct relations between
three fundamental properties of insulators—the energy
gap, quantum geometry, and topology—through the con-
sideration of optical conductivity of solids. Our work
opens new directions of research.
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