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A central challenge in the verification of quantum computers is benchmarking their performance as a whole
and demonstrating their computational capabilities. In this work, we find a universal model of quantum com-
putation, Bell sampling, that can be used for both of those tasks and thus provides an ideal stepping stone
towards fault-tolerance. In Bell sampling, we measure two copies of a state prepared by a quantum circuit in the
transversal Bell basis. We show that the Bell samples are classically intractable to produce and at the same time
constitute what we call a circuit shadow: from the Bell samples we can efficiently extract information about the
quantum circuit preparing the state, as well as diagnose circuit errors. In addition to known properties that can
be efficiently extracted from Bell samples, we give two new and efficient protocols, a test for the depth of the
circuit and an algorithm to estimate a lower bound to the number of T gates in the circuit. With some additional
measurements, our algorithm learns a full description of states prepared by circuits with low T -count.

Introduction. As technological progress on fault-tolerant
quantum processors continues, a central challenge is to
demonstrate their computational advantage and to benchmark
their performance as a whole. Quantum random sampling ex-
periments serve this double purpose [1–4] and have arguably
surpassed the threshold of quantum advantage [5–10]. How-
ever, this approach currently suffers several drawbacks. Most
importantly, it can only serve its central goals—benchmarking
and certification of quantum advantage—in the classically
simulable regime. This deficiency arises because evaluating
the performance benchmark, the cross-entropy benchmark, re-
quires a classical simulation of the ideal quantum computa-
tion. What is more, the cross-entropy benchmark suffers from
various problems related to the specific nature of the physical
noise in the quantum processor [9, 11, 12], and yields lim-
ited information about the underlying quantum state. More
generally, in near-term quantum computing without error cor-
rection, we lack many tools for validating a given quantum
computation just using its output samples.

In this work, we consider Bell sampling, a universal model
of quantum computation in which two identical copies of
a state prepared by a quantum circuit are measured in the
transversal Bell basis, see Fig. 1. We show that, in this model,
the outcomes are (i) simultaneously classically intractable to
produce on average over universal random circuits under a
standard assumption, (ii) yield diagnostic information about
the underlying quantum state, and (iii) allow for detecting and
correcting certain errors in the state preparation. Bell sam-
pling from random universal quantum circuits thus overcomes
the central practical problems of quantum random sampling as
a means to benchmark and demonstrate the computational ad-
vantage of near-term quantum processors. It also serves as a
stepping stone towards fault-tolerant quantum advantage: not
only can we naturally detect certain errors from the Bell sam-
ples, but the protocol is also compatible with stabilizer codes
in the sense that the Bell measurement between code blocks is
transversal for such codes and allows for the fault-tolerant ex-
traction of all error syndromes. Effectively, we may think of

∗ mail@dhangleiter.eu
† mgullans@umd.edu

the Bell samples as classical circuit shadows, in analogy to the
notion of state shadows coined by Aaronson [13] and Huang
et al. [14], since we can efficiently extract specific information
about the generating circuit or a family of generating circuits
from them.

Technically, we make the following contributions. We
provide complexity-theoretic evidence for the classical in-
tractability of Bell sampling from random universal quan-
tum circuits, following an established hardness argument
[4, 15, 16]. We introduce a new test to verify the depth of
quantum circuits. Here, we make use of the fact that from
the Bell basis samples one can compute correlation properties
of the two copies and in particular a swap test on any sub-
system. We observe that we can compare the measured aver-
age subsystem entropy to the maximal value achievable by a
bounded-depth quantum circuit in a given architecture in or-
der to estimate a lower bound on the depth of the circuit. For
random circuits, we can refine this test by making use of their
average entanglement properties as represented by the Page
curve [17, 18]. We further show that the Bell samples can
be used to efficiently measure the stabilizer nullity—a magic
monotone [19]—and give a protocol to efficiently learn a full
description of any quantum state that can be prepared by a cir-
cuit with low T -count. Here, we build on a result by Monta-
naro [20], who has shown that stabilizer states can be learned
from Bell samples. Finally, we give a protocol for detecting
errors in the state preparation based only on the properties of
the Bell samples.

Of course, the idea to sample in the Bell basis to learn about
properties of quantum states is as old as the theory of quantum
information itself and has found many applications in quan-
tum computing, including learning stabilizer states [20], test-
ing stabilizerness [21], measuring magic [22, 23], and quan-
tum machine learning [24]. The novelty of our approach is to
view Bell sampling as a computational model. We then ask
the question: What can we learn from the Bell samples about
the circuit preparing the underlying quantum state?

Bell sampling. We begin by defining the Bell sampling
protocol and noting some simple properties that will be useful
in the remainder of this work. Consider a quantum circuit C
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FIG. 1. The Bell sampling protocol. In the Bell sampling protocol
we prepare the quantum stateC ∣0n⟩⊗C ∣0n⟩ using a quantum circuit
C, and measure all qubits transversally in the Bell basis across the
bipartition of the system.

acting on n qubits, and define the Bell basis of two qubits as

∣σr⟩ = (σr ⊗ 1) ∣Φ
+
⟩ , where ∣Φ+⟩ = (∣00⟩ + ∣11⟩)/

√
2, (1)

and for r ∈ {0,1}2 we identify

σ00 = 1, σ01 =X, σ10 = Z, σ11 = iσ01σ10 = Y. (2)

The Bell sampling protocol proceeds as follows, see Fig. 1.

1. Prepare ∣C⟩ ∶= ∣C⟩ ⊗ ∣C⟩ ∶= C ∣0n⟩ ⊗C ∣0n⟩.

2. Measure all qubit pairs (i, i + n) for i ∈ [n] ∶=

{1,2, . . . , n} in the Bell basis, yielding an outcome
r ∈ {0,1}2n.

It is easy to see that the distribution of the outcomes r can
be written as

PC(r) =
1

2n
∣⟨C ∣σr ∣C⟩∣

2
(3)

where σr = σr1rn+1⊗σr2rn+2⊗⋯⊗σrnr2n is the n-qubit Pauli
matrix corresponding to the outcome r = (r1, r2, . . . , r2n),
and C denotes complex conjugation of C. In order to perform
the measurement in the Bell basis, we need to apply a depth-1
quantum circuit consisting of n transversal cnot-gates fol-
lowed by Hadamard gates on the control qubits and a mea-
surement of all qubits in the computational basis.

Our first observation is that Bell sampling is a universal
model of quantum computation. In particular, we show that
Bell sampling from random circuits is classically intractable
under certain complexity-theoretic assumptions. At the same
time, we also show that we can use the very same samples
to efficiently infer properties of and detect errors in the state
preparation. The Bell samples can thus simultaneously be
used for quantum computation and act as a classical shadow
of the quantum state preparation that may be used to charac-
terize a quantum device.

Computational complexity. We first show that Bell sam-
pling is a universal model of quantum computation. To show
this, we observe that we can estimate both the sign and the
magnitude of ⟨C ∣Z ∣C⟩ for any quantum circuit C from Bell
samples from a circuit C ′(C) in which we use a variant of
Ramsey interferometery with a single ancilla qubit in each

copy of the circuit, see the Supplementary Material (SM) [25].
We then show that approximately sampling from the Bell sam-
pling distribution PC is classically intractable on average for
universal random quantum circuits C with Ω(n2) gates in a
brickwork architecture (as depicted in Fig. 1), assuming cer-
tain complexity-theoretic conjectures are satisfied, via a stan-
dard proof technique, see the SM [25] for details. The ar-
gument puts the complexity-theoretic evidence for the hard-
ness of Bell sampling from random quantum circuits in linear
depth on a par with that for standard universal circuit sampling
[1, 5, 26–29].

Bell samples as classical circuit shadows. Samples in the
computational basis—while difficult to produce for random
quantum circuits—yield very little information about the un-
derlying quantum state. In particular, the problem of verifica-
tion is essentially unsolved since the currently used methods
require exponential computing time. In contrast, from the Bell
samples, we can efficiently infer many properties of the quan-
tum state preparation ∣C⟩⊗ ∣C⟩. Known examples include the
overlap tr[ρσ] of a state preparation ρ⊗σ via a swap test, the
magic of the state ∣C⟩ [22], and the outcome of measuring any
Pauli operator P ⊗ P [30]. Here, we add two new properties
to this family. We give efficient protocols for testing the depth
of low-depth quantum circuits, for testing its magic, and for
learning quantum states that can be prepared by a circuit with
low T -count.

Let us begin by recapping how a swap test can be performed
using the Bell samples, and observing some properties that are
useful in the context of benchmarking random quantum cir-
cuits. To this end, write the two-qubit swap operator S = P⋁2−

P⋀2 as the difference between the projectors onto the symmet-
ric subspace P⋁2 = ∣σ00⟩ ⟨σ00∣ + ∣σ01⟩ ⟨σ01∣ + ∣σ10⟩ ⟨σ10∣ and
the antisymmetric subspace P⋀2 = ∣σ11⟩ ⟨σ11∣. The overlap
tr[ρσ] = tr[(ρ⊗ σ)S] can then be directly estimated up to
error ϵ from M ∈ O(1/ϵ2) Bell samples as

1

M
(∣{r ∶ πY (r) = 0}∣ − ∣{r ∶ πY (r) = 1}∣) . (4)

For quantum state preparations ρ ⊗ ρ, the overlap quantifies
the purity tr[ρ2] of ρ. Using randomized compiling imple-
mented independently on two copies of a fixed circuit, we can
convert experimentally relevant noise on the two copies into
an effective Pauli channel [31, 32]. Errors also decohere into
Pauli channels in repeated rounds of syndrome extraction in
stabilizer codes [33, 34]. At low noise rates η ≪ 1 we can
then approximate ρ ≈ (1 − η) ∣C⟩ ⟨C ∣ + ησ, and a simple cal-
culation shows that the purity can be used to estimate the fi-
delity from the relation 1− tr[ρ2] = 2(1−F ) +O(η2), where
F = ⟨C ∣ρ ∣C⟩. Moreover, in the case of random circuits, there
is an exact mapping between average fidelity and purity for
any noise rate; see the SM [25] for details.

We can compare this to other means of estimating the fi-
delity of a quantum state. One method that has been widely
used recently is cross-entropy benchmarking (XEB), which
uses only classical samples from computational-basis mea-
surements [5, 35]. This method can yield reliable estimates
of the fidelity of the underlying quantum state under a weaker
version of the white-noise approximation [5, 36]. But while
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FIG. 2. Depth-dependent Page curves. (a) The maximal subsys-
tem entanglement entropy depends on the circuit architecture and
depth (shades of blue) until the half-cut entanglement reaches its
maximal value given by n/2. We measure the subsystem entropy at
half-cuts to obtain the maximal sensitivity to different circuit depths.
(b) We detect errors in the Bell samples by detecting strings that lead
to a non-zero estimate of the purity of ρ.

Bell sampling is computationally and sample efficient, XEB
requires computation of ideal output probabilities of C, mak-
ing it infeasible for already moderate numbers of qubits. An-
other means for fidelity estimation, shadow fidelity estimation
[14, 37], requires implementing deep Clifford circuits and is
only practical for specific states such as stabilizer states [38].
In the SM [25], we also discuss the relation of Bell sampling
to other means of verifying quantum computations.

In the following, we will assume that the purity test has
succeeded, and resulted in a value close to unity.

Depth test. We now describe a Bell sampling protocol to
measure the depth of a quantum circuit C which is promised
to be implemented in a fixed architecture, i.e., with gates ap-
plied in layers according to a certain pattern. The basic idea
underlying the depth test is to use swap tests on subsystems of
different sizes in order to obtain estimates of subsystem puri-
ties. For a subsystem A of [n], the subsystem purity is given
by PA(ρ) = tr[ρ2A], where ρA = trAc[ρ] is the reduced den-
sity matrix on subsystem A ⊂ [n]. It can be estimated from
the fraction of outcome strings with even Y -parity πY (rA) on
the substrings rA = (ri, rn+i)i∈A.

Our test is based on the observation that the amount of
entanglement generated by quantum circuits on half-cuts
reaches a depth-dependent maximal value until it saturates at a
circuit depth that depends on the dimensionality of the circuit
architecture, see Fig. 2(a) for an illustration. In order to lower-
bound the depth of a circuit family we choose a subsystem
size at which the distinguishability between different depths
is maximal. This is typically the case at half-cuts, where the
Rényi-2 entanglement entropy SA(ρ) = − logPA(ρ) can be
at most n/2. At the same time, the entanglement entropy is
bounded as a function of depth SA(d) ≤ d∣∂A∣, where ∂A is
the number of gates applied across the boundary ofA in every
layer of the circuit. We now compute an empirical estimate
Ŝn/2 of SA(∣C⟩ ⟨C ∣) for a size-n/2 subsystem A using the
Bell samples. In order to obtain a lower bound on the depth of
the circuit C generating a given set of Bell samples, we com-

pute the maximum d such that Ŝn/2−ϵ ≥ d ⋅ ∣∂A∣ up to an error
tolerance ϵ depending on the number of Bell samples. We can
further refine this test for random quantum circuits by exploit-
ing their average subsystem entanglement properties, known
as the Page curve [17]. Depth-dependent Page curves have
been computed analytically [18] and numerically [39] for a
few circuit architectures and random ensembles.

We remark that these entanglement-based tests rely on uni-
versal features of quantum chaotic dynamics. As a result, they
are also expected to be applicable to generic Hamiltonian dy-
namics, similar to how ideas for standard quantum random
sampling have recently been extended to this case [40, 41].

Magic test and Clifford+T learning algorithm. Another
primitive that can be exploited in property tests of quantum
states using the Bell samples is the fact that for stabilizer states
∣S⟩, the Bell distribution is supported on a coset of the stabi-
lizer group of ∣S⟩ [20]. Leveraging this property allows for
efficiently learning stabilizer states [20], testing stabilizerness
[21], learning circuits with a single layer of T -gates [42] and
estimating measures of magic [22, 23]. Here, we describe a
simple, new protocol that, from the Bell samples, allows us
to efficiently estimate the stabilizer nullity, a magic monotone
[19], and learn states that can be prepared by quantum circuits
with t ∈ O(logn) T -gates.

Our learning algorithm proceeds in two steps. In the first
step, we find a compression of the non-Clifford part of the
circuit, similarly to Refs. [43, 44]. To achieve this, using
Bell difference sampling [21], we find a Clifford unitary UC
corresponding to a subspace C ⊂ F2n

2 such that UC ∣ψ⟩ has
high fidelity with ∣x⟩ ∣φ⟩ for some computational-basis state
∣x⟩ on the first dim(C) qubits, and a state ∣φ⟩ on the remain-
ing qubits containing the non-Clifford information. The di-
mension of C satisfies dim(C) ≥ n − t. The number of T -
gates required to prepare ∣ψ⟩ is therefore lower-bounded by
the stabilizer nullity M(∣ψ⟩) ∶= n−dim(C), which is a magic
monotone [19]. We show that only O(n/ϵ) Bell samples are
sufficient to ensure that ∣ψ⟩ is ϵ-close to a state with exact sta-
bilizer nullity given by the estimate M̂ ofM(∣ψ⟩). To the best
of our knowledge this is the most efficient way of measuring
the magic of a quantum state to date.

In the second step of the learning algorithm, we charac-
terize the state ∣φ⟩ on the remaining n − dim(C) ≤ t qubits
using pure-state tomography, for example via the scheme of
Ref. [45], giving an estimate ∣φ̂⟩. The output of the algorithm
is then given by a classical description of ∣ψ̂⟩ = UC ∣x⟩ ∣φ̂⟩.
The learning algorithm runs in polynomial time and succeeds
with high probability in learning an ϵ-approximation to ∣ψ⟩
in fidelity using O(n/ϵ) Bell samples and O(2t/ϵ2) measure-
ments to perform tomography of ∣x⟩ ∣φ̂⟩.

Using Clifford+T simulators [e.g. 46–48] we can now pro-
duce samples from and compute outcome probabilities of ∣ψ̂⟩
in time O(2t). We note that the exponential scaling in t is
asymptotically optimal since the description of a state with
stabilizer nullity t has 2t + n − t real parameters. Our algo-
rithm generalizes to arbitrary non-Clifford gates.

To summarize, we have given efficient ways to extract
properties of the circuit C—its depth and an efficient cir-
cuit description for circuits with low T -count—using only
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a small number of Bell samples. Further properties of ∣C⟩
that can be efficiently extracted from the Bell samples include
the expectation values of any diagonal two-copy observables
A = ∑r ar ∣σr⟩ ⟨σr ∣ and different measures of magic [22]. The
Bell samples thus serve as an efficient classical shadow of C.

Error Detection and Correction In the last part of this pa-
per, we discuss another appealing feature of Bell samples: we
can perform error detection and correction. The idea that re-
dundantly encoding quantum information in many copies of
a quantum state allows error detection goes back to the early
days of quantum computing. Already in 1996, Barenco et al.
[49] have shown that errors can be reduced by symmetriz-
ing many copies of a noisy quantum state. More recently
Refs. [50–52] used measurements on multiple copies to sup-
press errors in expectation value estimation. In our two-copy
setting, some simple single-sample error detection properties
follow immediately from the tests in the previous section.

First, we observe that an outcome in the antisymmetric sub-
space, i.e., an outcome r with πY (r) = 1, is certainly due to an
error. We can thus reduce the error in the sampled distribution
by discarding such outcomes. We show in the SM [25] that
such error detection reduces the error rate of a white-noise
model by approximately a factor of 2. Quantum computa-
tions in the Bell sampling model with error detection can thus
achieve equal fidelities to circuit model computations, where
no error detection is possible, in spite of the factor of 2 in qubit
overhead.

Second, we note that Bell samples are compatible with sta-
bilizer codes. For such codes, the Bell measurement between
code blocks is a transversal measurement, and allows to ex-
tract the syndrome σ ⊗ σ for σ ∈ Pn in the stabilizer of the
code [30]. If a detectable/correctable error occurred in one of
the code blocks, this syndrome detects/identifies that error up
to stabilizer equivalence. The fact that the Bell measurement
is transversal implies that an error in the Bell measurement
does not spread, so that local error channels or coherent errors
in the entangling cnot gates in the Bell measurement reduce
the overall measurement fidelity by (1 − ϵ)n, where ϵ is the
error rate per Bell pair. Bell sampling is thus feasible in the
regime of ϵ≪ 1/n. We also note that antisymmetric errors in
the Bell measurement are detectable.

Finally, we observe that quadratic error suppression is pos-
sible for estimating the expectation values of diagonal two-
copy observable A, through the estimate tr[Aρ⊗2]/ tr[Sρ⊗2],
similar to virtual distillation [50–52]. Specifically, this is true
for estimating the expectation ⟨E0∣P ∣E0⟩

2 of a Pauli observ-
able P in the ground state ∣E0⟩ of a gapped Hamiltonian by
choosing A = (P ⊗ P )S, see the SM [25] for details.

Discussion and outlook. In this work, we have considered
Bell sampling as a model of quantum computation. We have
shown that many properties of the quantum circuit preparing
the underlying state can be extracted efficiently, and that in
particular certain errors in the state preparation can be de-
tected from single shots. Based on this, we have argued that
the Bell samples act as classical circuit shadows. Since Bell
sampling is universal this allows us to perform universal quan-
tum computations whose outputs also yield information about
the quantum circuit. This makes Bell sampling an interesting

computational model, and our main focus in this work is to
establish this fact.

We leave it as an open question how much overhead is
required when performing computations with Bell sampling.
While our BQP-completness proof requires an additional an-
cilla qubit, it is conceivable, that one can encode an n-qubit
computation in the circuit model using two copies of an m-
qubit system with m ≤ n via Bell sampling.

Bell sampling is not only interesting conceptually, however.
It is also realistic. Since the Bell basis measurement requires
only transversal cnot and single-qubit gates, it can be natu-
rally implemented in unit depth on various quantum processor
architectures with long-range connectivity. These include in
particular ion traps [53] and Rydberg atoms in optical tweez-
ers [54]. It is more challenging to implement Bell sampling
in geometrically local architectures such as superconducting
qubits [5]. In such architectures, one can interleave the two
copies in a geometrically local manner such that the Bell mea-
surement is a local circuit; however, this comes at the cost of
additional layers of SWAP gates for every unit of circuit depth.
Alternatively, one can use looped pipeline architectures to im-
plement the Bell measurement [55].

But is Bell sampling also practical in the near term? To sat-
isfactorily answer this question, various sources of noise need
to be analyzed in detail—tasks we defer to future work but
mention here. For some of our protocols, including the purity
test and the error detection protocols we discuss the effect of
noise sources on the state preparation. But how severely does
measurement noise affect the outcomes? In other instances,
including the depth and magic test, and the low-T count learn-
ing algorithms we have restricted ourselves to (nearly) pure
state preparations. We can at least certify that these algorithms
are applicable because the purity of the state preparation can
be independently checked. But in currently realistic scenar-
ios, the state preparation of deep circuits will never be pure.
An important question is therefore whether we can formulate
noise-robust versions of these protocols.

While we have exploited the purity of the state ∣C⟩ in our er-
ror detection protocol, it is in an interesting question whether
it is possible to detect additional errors from the Bell samples.
For instance, it might be possible to exploit the fact that the
subsystem purity of the target state is low for large subsys-
tems, see Fig. 2.

We have shown that classically simulating the Bell sam-
pling protocol with universal random circuits is classically in-
tractable. An exciting question in this context is whether the
complexity of Bell sampling might be more noise robust than
computational-basis sampling in the asymptotic scenario. For
universal circuit sampling in the computational basis Gao and
Duan [56] and Aharonov et al. [57] developed an algorithm
that simulates sufficiently deep random circuits with a con-
stant noise rate in polynomial time. In the Supplementary Ma-
terial [25] we give some initial evidence that this simulation
algorithm fails for Bell measurements. If the hardness of Bell
sampling indeed turns out to be robust to large amounts of cir-
cuit noise, we face the exciting prospect of a scalable quantum
advantage demonstration with classical validation and error
mitigation.
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Note: While finalizing this work, we became aware of
Refs. [58, 59], where the authors independently report algo-
rithms similar to the one we present above for learning quan-
tum states generated by circuits with low T -count. After this
work was completed, we collaborated on the physical imple-
mentation of Bell sampling in a logical qubit processor, illus-
trating the feasibility of our results to near-term devices [60].
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V. Vuletić, and M. D. Lukin, Logical Quantum Processor
Based on Reconfigurable Atom Arrays, Nature , 1 (2023),
arxiv:2312.03982.

[61] P. Erdös and A. Rényi, Probabilistic Methods in Group Theory,
J. Anal. Math. 14, 127 (1965).

[62] S. Garnerone, T. R. de Oliveira, and P. Zanardi, Typicality
in Random Matrix Product States, Phys. Rev. A 81, 032336
(2010).

[63] B. Collins, C. E. Gonzalez-Guillen, and D. Perez-Garcia, Ma-
trix Product States, Random Matrix Theory and the Principle of
Maximum Entropy, Communications in Mathematical Physics
320, 663 (2013), arxiv:1201.6324.

[64] M. Fukuda and R. Koenig, Typical Entanglement for Gaussian
States, Journal of Mathematical Physics 60, 112203 (2019),
arxiv:1903.04126.

[65] H. Zhu, R. Kueng, M. Grassl, and D. Gross, The Clifford Group
Fails Gracefully to Be a Unitary 4-Design, arXiv:1609.08172
[quant-ph] (2016), arxiv:1609.08172.

[66] B. W. Reichardt, F. Unger, and U. Vazirani, Classical Com-
mand of Quantum Systems, Nature 496, 456 (2013).

[67] U. M. Mahadev, Classical Verification and Blind Delegation of
Quantum Computations, Ph.D. thesis, University of California,
Berkeley (2018).

https://doi.org/ 10.1103/PhysRevX.9.031013
https://doi.org/10.1103/PhysRevX.11.031057
https://doi.org/ 10.1103/PhysRevX.11.041036
https://doi.org/ 10.1103/PhysRevX.11.041036
https://doi.org/ 10.1103/PhysRevX.7.041061
https://doi.org/ 10.1103/PhysRevX.7.041061
https://doi.org/10.1038/s41586-022-04592-6
http://arxiv.org/abs/2203.13123
http://arxiv.org/abs/1810.03176
http://arxiv.org/abs/2211.03999
http://arxiv.org/abs/2305.13409
http://arxiv.org/abs/2305.15398
https://doi.org/10.1038/s41586-023-06927-3
http://arxiv.org/abs/2312.03982
https://doi.org/10.1007/BF02806383
https://doi.org/10.1103/PhysRevA.81.032336
https://doi.org/10.1103/PhysRevA.81.032336
https://doi.org/10.1007/s00220-013-1718-x
https://doi.org/10.1007/s00220-013-1718-x
http://arxiv.org/abs/1201.6324
https://doi.org/10.1063/1.5119950
http://arxiv.org/abs/1903.04126
http://arxiv.org/abs/1609.08172
https://doi.org/10.1038/nature12035


i

Supplementary Material for “Bell sampling from quantum circuits”

Dominik Hangleiter and Michael J. Gullans

CONTENTS

S1. BQP-completeness of Bell sampling i

S2. Classical hardness of Bell sampling i
A. Hiding i
B. Average-case GapP hardness of approximating

outcome probabilities ii
1. Worst-case GapP hardness of approximating

outcome probabilities ii
2. Near-exact average-case hardness iii
3. Anticoncentration iv

S3. Learning circuit properties from Bell sampling iv
A. Measuring purity and fidelity v

1. Purity and Fidelity v
2. Average fidelity v
3. Relation to verified quantum computation vi

B. Testing depth vi
C. Learning a Clifford + T circuit vii

1. The Bell distribution of low T -count quantum
states viii

2. The learning algorithm viii
3. Correctness of Algorithm 4 ix
4. Correctness of Algorithm 3 ix

S4. Error detection and correction x
A. Error reduction by error detection x
B. Noise in the Bell measurement x
C. Virtual distillation using the Bell samples xi

S5. Applying the noisy simulation algorithm to Bell
sampling xi
A. Recap of the algorithm xi
B. Strategy 1: Upper bounds on the trace distance xii
C. Strategy 2: The argument in the Bell basis xiii

References xiv

S1. BQP-COMPLETENESS OF BELL SAMPLING

In this section, we show that Bell sampling is BQP-
complete as a model of quantum computation in spite of the
fact that we are restricting to circuits of the form C ⊗ C and
measurements in the transversal Bell basis.

Lemma 1 (BQP-completeness). Bell sampling is BQP-
complete.

Proof. Consider an arbitrary quantum circuit C. Then esti-
mating the probability of measuring the first qubit of C in
the ∣1⟩ state up to additive precision is BQP-complete. The
idea of the proof is to design a circuit C ′ such that we can in-
fer p1 ∶= tr[(∣1⟩ ⟨1∣ ⊗ 1n−1)C ∣0n⟩ ⟨0n∣C†] from Bell samples

from C ′. Let ρ = tr[n]∖{1}[C ∣0
n⟩ ⟨0n∣C†] be the reduced

density matrix of the first qubit of the state C ∣0⟩ before the
measurement. Then our task is to estimate p1 = tr[ρ ∣1⟩ ⟨1∣]
from Bell sampling.

To achieve this, we make use of the fact that we can in-
fer the square of any Pauli expectation value ⟨C ∣P ∣C⟩2 up to
additive precision from Bell samples from ∣C⟩ ⊗ ∣C⟩ for any
circuitC. Starting from an arbitrary quantum circuitC we add
an ancillary qubit (labeled by 0) before the first qubit and run
the circuit C ′ = e−i

π
8 (Z0Z1+Z0)(H ⊗C), where H denotes the

Hadamard gate. The resulting marginal state on the ancillary
qubit is then given by

tr[n][e
−iπ8 (Z0Z1+Z0)(∣+⟩ ⟨+∣ ⊗ ρ)ei

π
8 (Z0Z1+Z0)

=
1

2
(1 + (

1

2
−
1

2
⟨C ∣Z1 ∣C⟩)X + (

1

2
+
1

2
⟨C ∣Z1 ∣C⟩)Y ) .

(S1)

From Bell samples from ∣C ′⟩ ⊗ ∣C ′⟩ we can now estimate
∣ ⟨C ′∣X0 ∣C

′⟩ ∣ = ∣1 − ⟨C ∣Z1 ∣C⟩ ∣/2 = p1.

S2. CLASSICAL HARDNESS OF BELL SAMPLING

In this section, we provide complexity-theoretic evidence
that sampling from the Bell distribution PC up to constant
total-variation distance (TVD) error is classically intractable.

In order to show this, we follow a standard proof strategy,
which has three main ingredients.

1. Hiding: The distributions over outcomes and circuit in-
stances are interchangeable.

2. Average-case GapP hardness of approximating the
output probabilities. While we cannot prove this in
any instance, we typically provide evidence for it using
three ingredients:

(a) Worst-case GapP hardness of approximation,
(b) Average-case GapP hardness of near-exact com-

putation, and
(c) Anticoncentration.

We defer the reader to Section III of Ref. [1] for a detailed
exposition of the proof strategy.

A. Hiding

Consider the Bell sampling distribution

PC(r) =
1

2n
∣ ⟨σr ∣C ⊗C ∣02n⟩ ∣2 (S2)

=
1

2n
∣ ⟨Φ+∣ (σr ⊗ 1)(C ⊗C) ∣02n⟩ ∣2. (S3)
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Then, using that ∣Φ+⟩ = vec(1)/
√
2, we find that

(σr ⊗ 1) ∣Φ
+
⟩ = (
√
σr ⊗

√
σr
T
) ∣Φ+⟩ , (S4)

and hence

PC(r) = ∣ ⟨Φ
+
∣
√
σrC ⊗

√
σr
T
C ∣02n⟩ ∣2, (S5)

so that for x such that
√
σr ≠

√
σr
T , we cannot write PC(r) =

P ′C(0
n) for some C ′ = C ′(C, r). And indeed, while

√
X
T
=

√
X and

√
Z
T
=
√
Z, we have

√
Y
T
≠
√
Y .

This means that hiding does not hold on the full output
distribution. However, we can restrict ourselves to the a pri-
ori known support of the Bell sampling distribution, which is
given by the symmetric subspace, characterized by πY (r) = 0.

Indeed, we can view the fact that
√
Y
T
≠
√
Y as a signature

of the fact that the corresponding Bell state is not symmetric.
Conversely, consider an even number of Y -outcomes. Specif-
ically, for a two-qubit state with two Y -outcomes, we can ex-
plicitly check that

√
Y ⊗ Y

T
=
√
Y ⊗ Y .

Hence, hiding holds on the symmetric subspace for any ar-
chitecture that includes a layer of single-qubit gates that is
invariant under

√
X,
√
Y ,
√
Z at the end of the circuit.

Furthermore, defining Cr =
√
σrC we observe that

∣ ⟨σr ∣Cs ∣0
2n⟩ ∣

2
= ∣ ⟨σr⊕s∣C ∣0

2n⟩ ∣
2, (S6)

since
√
σrσs

√
σr ∈ Pn, where Pn is the Pauli group with

phases in {±1,±i}.

B. Average-case GapP hardness of approximating outcome
probabilities

1. Worst-case GapP hardness of approximating outcome
probabilities

Lemma 2. Given a quantum circuit C, it is GapP-hard to
compute 2−n∣ ⟨C ∣σr ∣C⟩ ∣

2 up to relative error < 1/2.

Proof. In order to perform the Bell basis measurement we ap-
ply cnot(H ⊗ 1) across all pairs of qubits. Writing ∣C⟩ =
∑x cx ∣x⟩, the pre-measurement state then transforms as

∣C⟩ ⊗ ∣C⟩ =∑
xy

cxcy ∣x⟩ ∣y⟩ (S7)

cnot⊗n

ÐÐÐÐ→∑
xy

cxcy ∣x⟩ ∣x⊕ y⟩ (S8)

(H⊗1)⊗n

ÐÐÐÐÐ→∑
xyz

(−1)x⋅zcxcy ∣z⟩ ∣x⊕ y⟩ =∶ ∣C⟩ . (S9)

Consider a state ∣C⟩ on n + 1 qubits and the (0n1,0n+1)-

Bell amplitude

⟨0n1∣ ⟨0n+1∣C⟩ = ∑
xyz

(−1)x⋅zcxcy ⟨0
n1∣z⟩ ⟨0n+1∣x⊕ y⟩

(S10)

= ∑
x

(−1)x⋅0
n1c2x (S11)

= ∑
x∶xn=0

c2x − ∑
x∶xn=1

c2x. (S12)

Let us now specify ∣C⟩ ∶= ∣Cf ⟩ ∝ ∑x ∣x⟩ ∣f(x)⟩ up to nor-
malization, where f ∶ {0,1}n → {0,1} is an efficiently com-
putable Boolean function. Observe that for b ∈ {0,1}

(1⊗ ⟨b∣)∑
x

∣x⟩ ∣f(x)⟩ = ∑
x∶f(x)=b

∣x⟩ . (S13)

For b = 1 the state (S13) is normalized by the square root of the
number of accepting inputs of f , given by #f ∶= ∣Acc(f)∣ ≡
∣{x ∶ f(x) = 1}∣, and for b = 0 by

√
2n −#f . Hence, the

coefficients of ∣Cf ⟩ = ∑x∈{0,1}n+1 cx ∣x⟩ are given by

cyb ≡ (⟨y∣ ⊗ ⟨b∣) ∣Cf ⟩ =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1/
√
#f, f(y) = b = 1

1/
√
2n −#f, f(y) = b = 0

0 otherwise.
(S14)

Let us now add another qubit so that we have n + 2 qubits
in total. Given an arbitrary efficiently computable Boolean
function g ∶ {0,1}n → {0,1} let us define

fg ∶ {0,1}
n+1
→ {0,1} (S15)

fg(y) = {
1 if y = (x, g(x))
0 if y = (x,¬g(x)).

(S16)

We now reversibly compute the function fg obtaining n+2-bit
outcome strings (y, fg(y)) with the property that fg(y) = 1
if y = (x, g(x)). So the (n + 1)st qubit encodes the outcome
of g while the last (i.e., (n+ 2)nd) qubit encodes the outcome
of fg .
fg can be efficiently computed: Let D be the circuit that

maps ∣x⟩ ∣b⟩ → ∣x⟩ ∣g(x) ⊕ b⟩. Then the quantum circuit C =
(1n⊗cnot(X⊗1))(D†⊗1) computes ∣y⟩ ∣0⟩ ↦ ∣y⟩ ∣fg(y)⟩.

We observe that

∣Acc(fg)∣ = ∣Rej(fg)∣ = 2
n+1
/2 (S17)

and, moreover, we have1

∣Acc(g)∣ = ∣{y ∈ Acc(fg), yn = 1}∣ = ∣{y ∈ Rej(fg), yn = 0}∣,
(S18)

∣Rej(g)∣ = ∣{y ∈ Acc(fg), yn = 0}∣ = ∣{y ∈ Rej(fg), yn = 1}∣.
(S19)

1 We start labelling indices at 0 and hence xn is the n + 1st bit of x.
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To see the latter, just observe that

∣{y ∈ Acc(fg), yn = 1}∣ = ∣{(x, g(x)) ∶ g(x) = 1}∣

= ∣{(x,¬g(x)) ∶ ¬g(x) = 0}∣ = ∣Acc(g)∣. (S20)

Let us consider the outcome string (0n11,0n+2) and com-
pute the corresponding amplitude of the state ∣Cfg⟩ = ((H ⊗

1) ⋅ cnot)⊗(n+2) ∣C⟩ ⊗ ∣C⟩ as

⟨0n11,0n+2∣Cfg⟩ = ∑
xyz

(−1)x⋅zcxcy ⟨0
n11∣z⟩ ⟨0n+2∣x⊕ y⟩ (S21)

= ∑
x

(−1)x⋅(0
n11)c2x (S22)

= ∑
x∶xn=0,xn+1=0

c2x − ∑
x∶xn=1,xn+1=0

c2x − ∑
x∶xn=0,xn+1=1

c2x + ∑
x∶xn=1,xn+1=1

c2x (S23)

(S17)
=

1

2n
(∣{y ∈ Rej(fg) ∶ yn = 0}∣ − ∣{y ∈ Rej(fg) ∶ yn = 1}∣) (S24)

+
1

2n
(∣{y ∈ Acc(fg) ∶ yn = 1}∣ − ∣{y ∈ Acc(fg) ∶ yn = 0}∣) (S25)

(S18)
=

2

2n
(∣Acc(g)∣ − ∣Rej(g)∣) ≡

1

2n−1
gap(g) (S26)

This shows that the output amplitudes of Bell sampling from
universal quantum circuits can encode the gap of any #P-
function. Finally, we reduce the outcome to the all-zero
outcome—and by the hiding property any outcome in the
symmetric subspace—by observing that the output string cor-
responds to the ∣1⟩⊗n ∣Z⟩⊗2 outcome and hence we can define
C̃fg = (1

⊗n ⊗ (Z1/2)⊗2)Cfg to show that ⟨02(n+2)∣Cfg⟩ is
GapP-hard to compute.

By Proposition 8 of Bremner et al. [2] (see also Lemma 8 of
Ref. [1]), approximating ∣ ⟨02n∣C̃fg⟩ ∣

2 up to any relative error
< 1/2 or additive error 1/22(n+1) is GapP-hard.

Notice that this argument also proves that computing cer-
tain Pauli coefficients of an n-qubit quantum circuit is GapP
hard up to relative error < 1/2 since the circuit Cfg we have
used in the encoding of the gap of a #P function is real and
∣ ⟨C ∣σr ∣C⟩ ∣

2 = ∣ tr[∣C⟩ ⟨C ∣σr]∣
2 for a real circuit C. Notice,

however, that we cannot reduce to the all-zero string in this
case. This is also easy to see since the probability of the all-
zero outcome of a real circuit is always one.

Conversely, if we include the
√
Z ⊗
√
Z gate at the end of

Cfg , this shows that computing the overlap ∣ ⟨C ∣C⟩ ∣2 is GapP-
hard in general.

The next step in applying the Stockmeyer argument is to
see if approximate average-case hardness is plausible. To this
end we can/need to make two arguments.

2. Near-exact average-case hardness

First, we need to show (near-)exact average-case hardness,
see [1, Sec. IV.D.5] for the available techniques.

Consider a circuit C with some Haar-random 2-qubit gates.
Let us follow the strategy by Krovi [3]. Analogously, we in-

terpolate every 2-qubit gateGi in the worst-case circuit C to a
Haar random gateHiGi withHi drawn from the 2-qubit Haar
measure.

Gi(θ) = exp(i(1 −
θ

2m
) logHi)Gi (S27)

= V †
i

4

∑
ki=1

ei(1−
θ

2m )ϕki ∣ψki⟩ ⟨ψki ∣ViGi (S28)

=∶ ∑
kj

ei(1−
θ

2m )ϕki G̃kj (S29)

where Vi diagonalizes Hi into eigenvectors ∣ψki⟩ and eigen-
values exp(iϕki). Notice that compared to Krovi [3], we in-
terpolate only by an angle θ/2m instead of θ/m. Now, we
consider the circuit C(θ) defined by replacing all the gatesGi
of C with Gi(θ). We can write the output probability as

∣ ⟨02n∣C(θ)⟩ ∣2 = ∣ ⟨Φ+∣
⊗n
C(θ) ⊗C(θ) ∣02n⟩

=

RRRRRRRRRRRR

∑
kij ∶i∈[m],j∈{0,1}

ei(1−
θ

2m )∑ij ϕkij ⟨Φ+∣
⊗n
G̃k00⋯Gkd1 ∣0

2n⟩

RRRRRRRRRRRR

2

= ∑
k,k′

ei(1−
θ

2m )∆ϕk,k′ ⟨Φ+∣ G̃k ∣0⟩ ⟨0∣ G̃
†
k ∣Φ

+
⟩ , (S30)

where k = (k00, k01, . . . , km1), G̃k = ∏ij Gkij and ∆ϕk,k′ =
∑ij(ϕkij −ϕk′ij). Since ∣∆Φk,k′ ∣/2m ∈ O(1), we can now fol-
low the argument of Krovi, replacing m ← 2m, to construct a
polynomial of degree d ∈ O(m/ log(m)2) that approximates
the output probabilities of Bell sampling. Using this poly-
nomial, we can run robust polynomial interpolation to obtain
near-exact average-case hardness.
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3. Anticoncentration

Finally, the question arises whether the output distribution
anticoncentrates. Recall that anticoncentration is defined as

Pr
C∼C
[PC(S) ≥

1

∣Ω∣
] ≥ γ, (S31)

for constant γ and the sample space Ω. Our standard tool for
showing anticoncentration is the Payley-Zygmund inequality
which lower bounds the anticoncentrating fraction in terms of
second moments as

Pr
C∼C
[Z ≥ αE[Z]] ≥ (1 − α)2

E[Z]2

E[Z2]
, (S32)

for a random variable Z with 0 ≤ Z ≤ 1 which we take to be
Z = PC(S).

This problem gets interesting for the Bell sampling circuits
since already a single copy of the Bell sampling state has two
copies of the circuit, so we will need second and fourth mo-
ments of the circuit family to show anticoncentration with the
standard technique. Recall that the Bell sampling output dis-
tribution is given by

PC(r) = ∣ ⟨σx∣C ⊗C ∣02n⟩ ∣2, (S33)

where σr = ∏Ni=1 σxi . Let’s assume that we have a four-design
and begin with the first moment.

E[PC(r)] = ⟨σr ∣E [C ⊗C ∣02n⟩ ⟨02n∣C†
⊗C†] ∣σr⟩ (S34)

=
1

D[2]
⟨σr ∣P[2] ∣σr⟩ , (S35)

where D[t] = (
d+t−1
t
) and P[t] is the projector onto the sym-

metric subspace of t copies (see [4] for a nice intro). We can
explicitly compute the expression as

⟨σr ∣P[2] ∣σr⟩ =
1

2
⟨σr ∣ (1 + S) ∣σr⟩ (S36)

= ⟨Φ+∣ (σ2
r ⊗ 1) ∣Φ

+
⟩ + ⟨Φ+∣ (σrσ

T
r ⊗ 1) ∣Φ

+
⟩ (S37)

= 2n(1 + (−1)πY (r)), (S38)

where we in abuse of notation we write ∣Φ+⟩ = ∣Φ+⟩⊗n

and observe that tr[XXT ] = tr[ZZT ] = tr[1] = 2n and
tr[Y Y T ] = −2n. We find—as expected—that the Bell state
with an odd number of singlet states (coresponding to σr = Y )
is in the antisymmetric subspace and therefore the projector
onto the symmetric subspace evaluates to zero in that case:

E[PC(r)] =
⎧⎪⎪
⎨
⎪⎪⎩

D−1
[2] = 2/(2

2n(1 + 2−n)) if πY (r) even
0 if πY (r) odd

.

(S39)

The output distribution is thus supported on the even Y -parity
sector on which all outcomes have equal expectation value
given by D−1

[2] = 2/(2n(2n + 1)). The size of the even-Y -
parity sector should be exactly given by this number since
these strings correspond to a basis of the symmetric subspace.

The second moment is more complicated. It reads

E[⟨σr ∣
⊗2
C⊗4 ∣0⟩ ⟨0∣ (C†

)
⊗4
∣σr⟩

⊗2
]

=
1

D[4]
⟨σr ∣

⊗2
P[4] ∣σr⟩

⊗2 (S40)

To compute this overlap on the symmetric subspace on which
σr = σ

T
r , we write P[f] = 4!−1∑σ∈S4

Pσ , where Pσ is the per-
mutation matrix corresponding to the element σ of the sym-
metric group S4. We observe that for a c = 1/3-fraction of the
permutations in the definition of P[4] the overlap evaluates to

tr[σ2
r]

2
/22n = tr[1]

2
/22n = 1, while for the other 1 − c frac-

tion, it evaluates to tr[σ4
r]/2

2n = tr[1]/22n = 1/2n. Viewing
the Bell state ∣Φ+⟩ as a vectorization of the identity matrix,
these correspond exactly to the cases in which there are one
versus two connected components in the resulting graph.

Consequently, we find

E[⟨σr ∣
⊗2
C⊗4 ∣0⟩ ⟨0∣ (C†

)
⊗4
∣σr⟩

⊗2
]

=
1

D[4]
(c +

1 − c

2n
) . (S41)

for all even Y -parity r (satisfying that πY (r) is even).
From this we find that if C generates a state 4-design, for all

r in the symmetric subspace

Pr[PC(r) ≥
α

D[2]
] ≥ (1 − α)2

1

c + 1−c
2n

D[4]

D2
[2]

(S42)

=
(1 − α)2

3! ⋅ (c + 1−c
2n
)

(2n + 3)(2n + 2)

(2n + 1)2n
(S43)

≥
(1 − α)2

6c
(S44)

By the result of Brandão et al. [5], this means that the Bell
sampling distribution anticoncentrates in linear depth. Given
the fact that we just copied two random circuits and qualita-
tively found the same results as for a single copy, we conjec-
ture that the Bell sampling distribution also anticoncentrates
in log-depth. To check this, we would have to directly com-
pute the moments of the output distribution, but this becomes
more complicated than for the single-copy case. This is be-
cause the local degrees of freedom the standard mapping to
a statistical-mechanical model [6–9], increase from 2 to 24
permutations.

S3. LEARNING CIRCUIT PROPERTIES FROM BELL
SAMPLING

In the following, we will detail the tests that can be per-
formed using just the samples from the Bell distribution.
Success on those tests—while falling short of loophole-free
verification—increases our confidence in the correctness of
the experiment.
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A. Measuring purity and fidelity

Our first observation is that, given some noisy state prepara-
tion ρ⊗σ, we can estimate tr[ρσ] from Bell measurements on
ρ⊗σ. To see this, observe that we can express the single-qubit
swap operator in the Bell basis as

S = ∣00⟩ ⟨00∣ + ∣11⟩ ⟨11∣ + ∣01⟩ ⟨10∣ + ∣10⟩ ⟨01∣ (S45)
= ∣σ00⟩ ⟨σ00∣ + ∣σ01⟩ ⟨σ01∣ + ∣σ10⟩ ⟨σ10∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

P⋁2

− ∣σ11⟩ ⟨σ11∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

P⋀2

(S46)

Hence, we can estimate the overlap

O(ρ, σ) = tr[ρσ] = tr[(ρ⊗ σ)S] (S47)

by taking the difference between the frequency of outcomes
with even parity of 11-outcomes and odd parity of 11-
outcomes

Ô =
1

M
(∣{r ∶ πY (r) = 0}∣ − ∣{r ∶ πY (r) = 1}∣) , (S48)

where M is the total number of measurements.
Let us now see what the quantity O(ρ, σ) corresponds to

for various assumptions on what ρ and σ are.

1. Purity and Fidelity

The weakest assumption is that ρ = σ. In this case

O(ρ, ρ) = tr[ρ2] = P (ρ) (S49)

is just the purity of ρ.
Using randomized compiling implemented independently

on each copy of the Bell sampling circuit, the effective noise
channel for the Bell samples can be approximately reduced
to a Pauli channel [10]. Strictly speaking, randomized com-
piling works well in the experimentally relevant setting in
which there are some ‘easy’ gates, say, Pauli gates, on which
the noise is approximately gate-independent and some ‘hard’
gates which have gate-dependent errors. In that setting, the
gate-dependent noise on the hard gates, except for those in
the last layer of the circuit, can be reduced to a Pauli chan-
nel. In this case, the effective density matrix on each copy can
approximately be written as

ρC(η) ∶= (1 − η) ∣C⟩ ⟨C ∣ + η σ, (S50)

for another density matrix σ. As we showed in the main text,
when η ≪ 1, the purity can then be used to estimate the fi-
delity

F (ρC(η), ∣C⟩ ⟨C∣) = 1 − η(1 − ⟨C ∣σ∣C⟩). (S51)

Generically, we expect that ⟨C ∣σ ∣C⟩ is exponentially small
since after randomized compiling, the deviation σ from the
ideal state ∣C⟩ ⟨C ∣ is uncorrelated with ∣C⟩ ⟨C ∣.

Indeed, a particularly simple realization of this noise model
occurs in the so-called white-noise approximation where σ =
1/2n. In that case, the correspondence between fidelity and
purity holds for any noise rate. From P (ρC(η)) we can easily
obtain an estimate of η since

tr[ρC(η)
2] = (1 − η)2 + η(1 − η)/2n + η2/22n, (S52)

which lets us directly estimate the fidelity

F (ρC(η), ∣C⟩ ⟨C∣) = 1 − η(1 − 1/2n). (S53)

2. Average fidelity

Finally, following an argument in Ref. [11], consider cir-
cuits C constructed from two-qubit gates which form a uni-
tary 2-design, and consider the noise setting in which a single-
qubit Pauli noise channel N = ∑i∈{0,...,3} piσi ⋅ σi with acts
on every qubit after the application of a two-qubit gate. Let
U = ∣U⟫⟪U †∣ ≡ vec(U ⋅U †) be the matricization of the adjoint
action of the two-qubit gateU , where we denote the vectoriza-
tion of a matrix A by ∣A⟫. The full circuit is then composed
of two copies of noisy unitary two-qubit channels given by
N⊗4U⊗2, where the cut is across the bipartition of the Bell
measurement, and let the noisy state be ρ(ϵ).

Then, we can express the fidelity between a state with noise
rate ϵ and a state with noise rate 0, as the purity of a state with
noise rate ϵ′. To see this, we evaluate the average over gates
in a single layer of the circuit. Then

EUN⊗4U⊗2 = ∑
π,σ

N
⊗4
∣π⟫⟪σ∣, (S54)

and we can evaluate

N
⊗2
∣1⟫ = N

′
⊗ 1∣1⟫ = ∣1⟫, (S55)

N
⊗2
(S) = ∑

ijk∈{0,...,3}

pipj(−1)
s(k)σi ⊗ σj ∣σk⟩ ⟨σk ∣σi ⊗ σj

(S56)

= ∑
ij∈{0,...,3}

pipj(σiσj ⊗ 1)S(σjσi ⊗ 1) (S57)

= ∑
k

qk(σk ⊗ 1)S(σk ⊗ 1) (S58)

≡ (N
′
⊗ 1)(S). (S59)

Here, we have defined s(k) = 1 for k = 4 (corresponding to
σk = Y ) and 0 otherwise. We also find the error probabilities
of the new noise channel N ′ as q0 = p20 + ∑i≠0 p

2
i and for

k ≠ 0, qk = 2pkp0 − ∑ij≠0 ∣ϵijk ∣pipj , where ϵijk denotes the
Levi-Civita symbol. Thus, we have moved noise from one
copy of the circuit to the other copy of the circuit, and thereby
related the quantities for fidelity (one noisy, one ideal copy)
and purity (two noisy copies).

For the depolarizing channel with depolarizing parameter
ϵ, we have p0 = 1 − 3ϵ/4, p1 = p2 = p3 = ϵ/4, so q0 = (1 −
3ϵ/4)2 + 3(ϵ/4)2, q1 = q2 = q3 = ϵ/2 − 2(ϵ/4)2. Hence, in
this case the type of noise channel even remains the same, and
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purity with local depolarizing strength ϵ simply corresponds to
fidelity with a different local depolarizing rate given by 2ϵ−ϵ2:

ECP (ρ(ϵ)) = ECF (ρ(2ϵ − ϵ2)), ∣C⟩ ⟨C ∣) (S60)

For more general types of Pauli noise, the noise channels N
and N ′ will be different; however, the mapping from purity
to fidelity carries over through appropriate redefinition of the
noise rate.

Via Fuchs-van-der-Graaf this gives a bound on the TVD
distance of the sampled distribution Q from the Bell distribu-
tion PC as

TVD(PC ,Q) ≤
√
1 − (1 − η(1 − 2−n))2 (S61)

η≪1
≈
√
2η(1 − 2−n). (S62)

3. Relation to verified quantum computation

The results in this section imply that arbitrary quantum
computations in the Bell sampling model (with randomized
compiling or in an encoded setting) can be verified efficiently
just from the classical Bell samples under specific assump-
tions about the noise in the physical device. Let us briefly
pause and contextualize this point in the context of protocols
for the verification of quantum computations in different mod-
els of computation. Efficiently verifying a quantum compu-
tation in full generality is known to be possible only using
comparably complicated schemes that require large overheads
compared to a bare quantum circuit.

The specific schemes we have in mind are blind verified
quantum computation [12], verification using two spatially
separated entangled quantum computers [13], and classically
verifiable quantum computation using post-quantum cryptog-
raphy [14]. All of these settings make strong assumptions
about the capabilities of a quantum device. Blind verified
computation requires a large space overhead compared to the
circuit model since it makes use of measurement-based quan-
tum computation and requires the ability to prepare single-
qubits perfectly. The classical leash protocol of Reichardt
et al. [13] requires two spatially separated quantum computers
which share a large number of Bell pairs, since it relies on the
rigidity of CHSH inequalities. It also involves a space-time
mapping similar to measurement-based quantum computation
and therefore incurs a high space-overhead. Finally, the proto-
col of Mahadev [14] requires a high overhead since the quan-
tum computation needs to be performed in a post-quantum
secure homomorphic encryption scheme and is based on the
assumption that such schemes exist.

Bell sampling is a model of quantum computation that al-
lows one to efficiently glean information about a quantum
state prepared by an arbitrary circuit from measurements in a
single basis only. It is a setting that is realistic in the near and
intermediate term, namely one where two copies of a circuit
are entangled on a single device. The price to be paid for the

small overhead (just a factor of 2) is that the obtained informa-
tion is conditional on assumptions about the noise occurring
in the physical device. For instance, when we use randomized
compiling, that assumption boils down to an assumption about
single-qubit Pauli gates and the last circuit layer being nearly
noise-free, while the remainder of the noise on the other gates
is not context-dependent. We think of this setting as com-
parable to blind-verified computation, which can be viewed
as imposing an assumption on the noise in the single-qubit
state preparation step. For verification of random circuits on
average (through the average state fidelity) the assumption
we have used (but which could be weakened) is local gate-
independent noise.

While we have made an effort to obtain a good initial un-
derstanding of the types and amounts of noise required for the
verification protocol to work, an exhaustive characterization
would go far beyond the scope of this letter. We hope that our
discussion of Bell sampling as a validated model of quantum
computation will motivate future research into specific instan-
tiations.

B. Testing depth

Another property that we can efficiently check from the
Bell samples is subsystem purity and thereby the entangle-
ment structure of the state. To this end, given a subsystem
A ⊂ [n] we simply consider the substrings rA = (ri ∶ i ∈
A) ∪ (rn+i ∶ i ∈ A) corresponding to this subsystem and then
run the purity test.

Now, we can use the maximal entanglement achievable by
circuits in a certain architecture, in order to test for their depth.
For geometrically local circuits in large local dimension with
entangling two-qubit gates, the maximal entanglement which
can be generated in any subsystem is simple: it is just given by
the number of entangled pairs which can be generated by the
circuit across the boundary of the considered region. Thus, for
depth-d circuits in a one-dimensional geometry (with closed
boundary conditions), the maximal entanglement entropy of a
contiguous subsystemA is given byEA(d) =min{2d, ∣A∣, n−
∣A∣, n/2}. In higher dimensions, for a subsystem A this in-
creases to EA(d) = min{∣∂A∣d, ∣A∣, n − ∣A∣, n/2}, where ∂A
is the number of edges in the interaction graph protruding out
of the subsystem A. The maximal entanglement EA(d) is
thus a depth-dependent property.

This picture provides us with a simple way to test the depth
of a circuit from the Bell samples. We estimate PA(ρ) =
tr[ρ2A] for random contiguous subsystems of size ∣A∣ = n/2
and compare the results to the maximal achievable entangle-
ment in each subsystem in a given architecture with circuit
depth d. The minimal d for which PA(ρ) ≥ EA(d) is our
lower bound for the circuit depth.

The estimate of the subsystem purity is obtained from the
substrings rA as

P̂A =
1

M
(∣{r ∶ πY (rA) = 0}∣ − ∣{r ∶ πY (rA) = 1}∣) , (S63)

and ∣P̂A − tr[ρ2A]∣ ≤
√
2 log(δ/2)/M with probability at least
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1 − δ. Hence, in order to obtain an estimate of the Rényi-2-
entanglement entropy for a circuit of depth d ≤ n/2—given
by 2−O(d)—2O(d) samples are required. This means that log-
depth circuits can be efficiently validated, while larger depth
requires superpolynomially many Bell samples.

Algorithm 1 Depth test from maximal entanglement
Input: Bell samples b0, . . . , bM ← Pψ , error tolerance ϵ > 0.

1: Estimate P̂A(∣ψ⟩ ⟨ψ∣) as defined in Eq. (S63) for a contiguous
subsystem A with ∣A∣ = n/2 obtaining an estimate Pn/2, for
example using a median-of-means estimator.

Output: dl =max{d ∶ − log(Pn/2 + ϵ) ≥ En/2(d)}

We can further refine the depth test by using properties of
random quantum circuits. Consider first a Haar-random pure
state. It has been known since the seminal work of Page [15]
that the average entanglement of subsystems of increasing size
obeys the now so-called Page curve: as the subsystem size in-
creases to n/2, its average entanglement entropy increases, as
it increases beyond n/2, it decreases back to 0 at subsystem
size n. The precise shape of the Page curve including the so-
called Page correction—the deviation of the entanglement at
subsystem size n/2 from maximal entanglement—is known
for various families of random quantum states [16–19]. No-
tably, Garnerone et al. [16] show that random MPSs exhibit
typical entanglement whenever the bond dimension scales at
least as a square of the system size.

However, depth-dependent Page curves have to the best of
our knowledge not been computed analytically yet. Nonethe-
less, empirically one finds that for various circuit families,
the bounds EA(d) can be nearly exhausted, see for example
Ref. [20].

Rather than comparing to the maximal achievable entan-
glement EA(d), if we have a depth-dependent Page curve, we
can compare the result to the anticipated value of the Page
curve TA(d) = − log(EC∼Cd tr[(trAc ∣C⟩ ⟨C ∣)2]) for a size-
n/2 subsystem A for the circuit family Cd of a given depth
d.

Algorithm 2 Depth test from average entanglement

Input: Bell samples bC1
0 , . . . , bCL

M ← PC forC1, . . . ,CL ← C, error
tolerance ϵ > 0.

1: Estimate 1
K ∑

L
i=1 P̂A(∣ψ⟩ ⟨ψ∣) with P̂A defined as in Eq. (S63),

from choosing a contiguous subsystem with ∣A∣ = n/2 obtaining
an estimate Pn/2, for example using a median-of-means estima-
tor.

Output: dl =max{d ∶ − log(Pn/2 + ϵ) ≥ tA(d)}

Small amounts of noise The presence of a small amount
of noise only slightly distorts our estimate of the purity and
subsystem purity. We can always write the noisy state as

ρ = (1 − η) ∣ψ⟩ ⟨ψ∣ + ηχ, (S64)

where χ ⊥ ∣ψ⟩ ⟨ψ∣. The deviation of its purity from unity is
then given by

∣1 − trρ2∣ = 2η +O(η2) (S65)

and likewise for the subsystem purity

∣ tr ∣ψ⟩ ⟨ψ∣
2
A − trρ2A∣ (S66)

≤ 2η ∣tr ∣ψ⟩ ⟨ψ∣
2
A − tr ∣ψ⟩ ⟨ψ∣A χA∣ +O(η

2
) (S67)

≤ 2η(tr ∣ψ⟩ ⟨ψ∣
2
A + 1) +O(η2) (S68)

≤ η(3 + 2−O(d)) +O(η2). (S69)

Hence to verify depth we need states with exponentially small
impurity 2−O(d) in the circuit depth d.

Larger amounts of noise The discrepancy of the Page
curve for a pure state and the Page curve of a mixed state
can be intuitively understood: For a maximally mixed state
the Rényi-2 entropy of subsystems of size k is exactly given
by − log 2−k, and hence, as a function of subsystem size, it is
just given by the subsystem size. The entanglement entropy
of a white-noise state ρ = (1−η) ∣ψ⟩ ⟨ψ∣ +η1/2n is thus given
by

− log trρ2A =

− log [(1 − η)2 tr(∣ψ⟩ ⟨ψ∣
2
A) + (2η(1 − η) + η

2
)2−k]

= − log [(1 − η)2 tr(∣ψ⟩ ⟨ψ∣
2
A)]

+
(2η(1 − η) + η2)2−k

(1 − η)2 tr(∣ψ⟩ ⟨ψ∣
2
A)

+O(2−2k), (S70)

which yields a good approximation for tr(∣ψ⟩ ⟨ψ∣2A) ≫ 2−k.

C. Learning a Clifford + T circuit

In this section, we show that a quantum state prepared by a
circuit with few non-Clifford gates can be learned efficiently.
We separate the proof into several steps. First, we derive the
expansion of the operator ∣ψ⟩ ⟨ψ∣ corresponding to a quantum
state ∣ψ⟩ generated by a Clifford circuit with few T gates. This
operator determines the Bell sampling distribution, and in de-
riving it, we will already see the central concepts we will use
in the learning algorithm. Motivated by this decomposition,
we elaborate the algorithm. Finally, we analyze statistical er-
rors when running the algorithm and show the output of the
algorithm is close to ∣ψ⟩ in fidelity.

Before we describe the protocol, let us recap some sim-
ple properties of the Bell samples from the stabilizer state
∣S⟩ ⟨S∣ = 2−n∑σ∈S σ with n-dimensional stabilizer group
S ⊂ Pn, i.e., a commuting subgroup of the n-qubit Pauli
group Pn. For stabilizer states ∣S⟩, the complex conjuga-
tion ∣S⟩ = σk ∣S⟩ is described by a Pauli operator σk that de-
pends on ∣S⟩ [21]. Let us denote by roman letters the binary
symplectic subspace S ⊂ F2n

2 corresponding to a subgroup
S of Pn, which includes all but the phase information about
S. For a, b ∈ F2n

2 , the symplectic inner product is given by
ω(a, b) ∶= (∑

n
i=1 aibn+i − bian+i) mod 2.

From Eq. (3) it immediately follows that the output distri-
bution of Bell sampling from ∣S⟩ ⊗ ∣S⟩ is supported on the
affine space S ⊕ k ∶= {s ⊕ k ∶ s ∈ S}. We can therefore learn
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S from differences of the Bell samples bi ⊕ bj ∈ S, and the
missing phases of the stabilizers from a measurement of the
corresponding stabilizer operators [21].

1. The Bell distribution of low T -count quantum states

Consider a state ∣ψ⟩ = CtTxtCt−1Txt−1⋯Tx1C0 ∣0⟩ gener-
ated by a circuit comprising t + 1 Clifford layers Ci and t T
gates at positions xi ∈ [n] for i ∈ [t]. Then, we can shift the
T -gates to the end of the circuit as

∣ψ⟩ = T̃t⋯T̃1Ct⋯C0 ∣0⟩ =∶ T̃t⋯T̃1 ∣S⟩ , (S71)

where we have defined T̃i = Ct⋯CiTxiC
†
i⋯C

†
t . Hence, we

can write

∣ψ⟩ ⟨ψ∣ =
t

∏
i=1

(α1 + iβPi) ∣S⟩ ⟨S∣
t

∏
j=1

(α1 − iβPj)K
†, (S72)

where Pi = Ct⋯CiZxiC
†
i⋯C

†
t , α = cos(π/8) and β =

sin(π/8), and K ∶ ∣ψ⟩ ↦ ∣ψ⟩ is the complex-conjugation op-
erator. In as next step, we rewrite ∣ψ⟩ ⟨ψ∣ in terms of the sta-
bilizer groups S which stabilizes ∣S⟩ and G = ⟨P1, . . . , Pd⟩
as

∣ψ⟩ ⟨ψ∣ =
1

2n
⎛

⎝
∑
σg∈G

αgσg
⎞

⎠

⎛

⎝
∑
σs∈S

σs
⎞

⎠

⎛

⎝
∑
σg′∈G

αg′σg′
⎞

⎠
K†,

(S73)

where the prefactors are given by

αg = ∑
x∈{0,1}d∶∏i P

xi
i =sign(x)σg

αd−∣x∣(iβ)∣x∣ sign(x). (S74)

Now, we make use of the fact that the complex conjugation
operatorKacting on the stabilizer state ∣S⟩ can be written as a
Pauli-Z matrix σk ∶= σ⊗s10 for some s ∈ {0,1}n depending on
∣S⟩ as K ∣S⟩ = σk ∣S⟩. This gives us

∣ψ⟩ ⟨ψ∣ =
1

2n
⎛

⎝
∑
σg∈G

αgσg
⎞

⎠

⎛

⎝
∑
σs∈S

σs
⎞

⎠
σk
⎛

⎝
∑
σg′∈G

βg′σg′
⎞

⎠

= ∑
σg,σg′∈G

αgβg′σgΠSσkσg′

= ∑
σg,σg′∈G

αgβg′(−1)
⟨g′,k⟩σgΠSσg′σk, (S75)

where ΠS = ∑σs∈S
σs/2

n ≡ ∣S⟩ ⟨S∣ denotes the projector onto
the ground space of S. Moreover, we let βg = αg ⋅ (−1)πY (g).

Let us denote by ⟨G,S⟩ = {σgσs ∶ σg ∈ G, σs ∈ S} the
group generated by G and S , and by G ⊕ σ = {σgσ ∶ σg ∈ G}
the shift of G by σ. We notice that all Pauli operators appear-
ing in the sum are elements of ⟨G,S⟩ ⊕ σk with dimension
dim(⟨G,S⟩) ≤ n + t. Let us decompose ⟨G,S⟩ = ⟨C,L⟩ into
a maximally commuting subgroup C, i.e., the maximal sub-
group with the property that [σs, σl] = 0, ∀σs ∈ C, σl ∈ ⟨G,S⟩
(the stabilizer group), and a ‘logical’ subgroup L (which is

ambiguous because it can be shifted by any element of C.
On the level of the corresponding symplectic vector spaces,
C = H ∩H⊥, where H⊥ = {s ∈ F2n

2 ∶ ω(s, h) = 0∀h ∈ H},
and H ∶= span(G,S). To find C one thus simply needs to
solve a linear system of equations. Thus, dim(C) ≥ n − t
while dim(L) ≤ 2t. Then we can decompose every element σ
of ⟨G, S⟩ as σg = σl(g)σc(g) = σc(g)σl(g) for σl(g) ∈ L and
σc(g) ∈ C.

We can then rewrite Eq. (S75) as

∣ψ⟩ ⟨ψ∣ (S76)

= ∑
σg,σg′∈G

αgβg′σl(g)σc(g)ΠS∖CΠCσc(g
′
)σl(g

′
)σk

(S77)

= ∑
σg,σg′∈G

αgβg′σl(g)ΠS∖C σc(g)ΠCσc(g
′
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=ΠC

σl(g
′
)σk

(S78)

= ∑
σg,σg′∈G

∑
σ∈S∖S′

αgβg′

2dim(L)
σl(g)σσl(g

′
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈L

ΠCσk (S79)

=∶ ∑
l∈L

λlσlΠCσk =∶ ∑
h∈span(L,C)⊕k

q(h)σh. (S80)

In the first equality we have used that ΠS = ΠCΠS∖C , and
in the last equality we have grouped the operators in L and
defined its coefficients as λl ∈ C, l = 1, . . . ,4t. Fixing an L
such that span(L,C) = H , and given l ∈ L we fix the phase
of the corresponding σl ∈ L in the logical (non-commuting)
subgroup L to be +1, making the coefficients λl unique. Since
L decomposes C into 2dim(L) disjoint cosets, for h = l⊕s⊕k,
we also define q(h) = λl/2dim(C).

When we perform Bell sampling from ∣ψ⟩⊗∣ψ⟩, a Bell sam-
ple b will then be distributed as

Pψ(b) = ∣ tr[∣ψ⟩ ⟨ψ∣σb]∣
2
/2n = 2n∣q(b)∣2. (S81)

In particular the distribution is supported on span(C,L) ⊕ k.
A subspace S ⊂ {0,1}n is isotropic if for all s, t ∈ S,

ω(s, t) = 0. An isotropic subspace S thus corresponds to a
commuting subgroup S, since ω(s, t) = 0 iff [σs, σt] = 0.
The maximal isotropic subspace C of H is called the radical
of H , which is given by radH = C ∩C⊥.

2. The learning algorithm

Our learning algorithm is based on the decomposition (S80)
and the resulting Bell distribution (S81). In the algorithm, we
assume access to state preparations of ∣ψ⟩

Algorithm 3 Magic estimation
Input: M ∈ N

1: Perform Bell sampling from ∣ψ⟩, obtaining samples
b0, . . . , bM ← Pψ .

2: Compute all Bell differences b(i,j) = bj ⊕ bi.
3: Define G′ = span({b(i,j)}i,j), and t̂ = dim(G′) − n.
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Algorithm 4 Clifford+T learning algorithm
Input: Error threshold ϵ, failure probability δ.

1: Run Algorithm 3 with M = 2n log(1/δ)/ϵ, yielding t̂,G′.
2: Find a set of generators s1, . . . , st̂ of the radical C′ = radG′ of
G′ by solving a linear system of equations.

3: Find a Clifford unitary UC′ such that UC′σsiU
†
C′ = ±Zi for all

i = 1, . . . , t̂.
4: Let M ′ = O(2k log(1/δ)/ϵ2). Prepare M ′ copies of U ′C ∣ψ⟩.

Measure qubits 1, . . . , n − t̂ in the computational basis, and
qubits n − t̂ + 1, . . . , n according to the pure-state tomography
scheme of Ref. [22], yielding data setsX = {x1, . . . , xM

′
},D =

{d1, . . . , dM
′
}. Let x ∈ {0,1}n−t̂ be the majority outcome of

the computational-basis measurements.
5: Remove those elements dk for which xk ≠ x from D.
6: Run the recovery algorithm of Ref. [22] on D.

Output: UC′ , x, ∣φ̂⟩.

3. Correctness of Algorithm 4

To show the correctness of the algorithm, we proceed in
several steps. In the first step, we show that the state UC′ ∣ψ⟩
is close to a product state ∣x⟩ ⊗ ∣φ⟩, since all elements of C′

are close to stabilizers of ∣ψ⟩. In the second step, we show that
the tomographic estimates we obtain from measuring the first
n − t̂ qubits in the computational basis, and performing state
tomography on others, yield an overall reconstruction ∣ψ̂⟩with
fidelity at least 1 − ϵ with the target state ∣ψ⟩.

Lemma 3. Let C ′ be the radical of the subspace spanned by
M ∈ O(n log(1/δ)/ϵ) Bell samples from a pure state ∣ψ⟩, and
let UC′ be the associated Clifford unitary. Then with proba-
bility at least 1 − δ over the Bell samples, there is a bit string
x ∈ {0,1}dim(C

′
) and a pure state ∣φ⟩ ∈ (C2)⊗n−dim(C

′
) such

that ∣ ⟨x∣ ⟨φ∣ψ⟩∣2 ≥ 1 − ϵ.

Proof. We begin by observing that all elements of C′ are ap-
proximate stabilizers of ∣ψ⟩. To see this, we observe that for
any Pauli operator P we can measure ⟨ψ∣P ∣ψ⟩2 using the Bell
samples B = {b1, . . . bM} as [23]

⟨ψ∣P ∣ψ⟩
2
≈ ê(P ) ∶=

1

M
(∣{b ∈ B ∶ P ⊗ P ∣σb⟩ = +1 ∣σb⟩}∣

− ∣{b ∈ B ∶ P ⊗ P ∣σb⟩ = −1 ∣σb⟩}∣). (S82)

Let us write the Pauli operators corresponding to the Bell sam-
ples σbi = σgiσk for gi ∈ G′ and σk the Pauli operator corre-
sponding to complex conjugation. Then, for all c ∈ C ′ and
i ∈ [M], [σc, σgi] = 0, since C ′ is the radical of G′. Hence,

σc ⊗ σc ∣σbi⟩ = σcσbi ⊗ σc ∣Φ
+
⟩ (S83)

= ±(σcσgiσcσk ⊗ 1) ∣Φ
+
⟩ (S84)

= ±(σgiσk ⊗ 1) ∣Φ
+
⟩ = ± ∣σbi⟩ , (S85)

where the sign depends on whether σTc = ±σc and σkσc =
±σcσk, but not on the Bell sample bi. Hence, all estimated
expectation values e(σc) = 1. This implies that our estimate
for ⟨ψ∣U †

C′Z
z1
1 ⋯Z

zn−t̂
n−t̂

UC′ ∣ψ⟩
2 equals 1 for all z ∈ {0,1}n−t̂,

and therefore the first n − t̂ qubits of UC′ ∣ψ⟩ are close to a
computational-basis state.

We now bound the distance of ρL = tr[n−t̂]c[∣ψ⟩ ⟨ψ∣] from
a computational-basis state. By the union bound with failure
probability δ, M ≥ 2 log(1/δ)/ϵ Bell samples are sufficient to
ensure that ∣e(σc) − ⟨ψ∣σc ∣ψ⟩

2
∣ < ϵ and hence ⟨ψ∣σc ∣ψ⟩

2
∣ >

1 − ϵ [24]. By another union bound, this imples that M ≥

2n log(1/δ)/ϵ samples are sufficient to ensure that this is the
case for all c ∈ C ′. Let s(σc) = sign(⟨ψ∣σc ∣ψ⟩). Then can use
direct fidelity estimation [25] to compute the fidelity with the
computational-basis state ∣x⟩ that satisfies ⟨x∣Zc ∣x⟩ = s(σc),
where Zc = UC′σcU †

C′ . We find

tr[ρL ∣x⟩ ⟨x∣] =
1

2n−t̂
∑
c∈C′
[s(σc) tr[ρLZc] (S86)

≥
1

2n−t̂
∑
c∈C′
[s(σc)s(σc)(1 − ϵ)] (S87)

= 1 − ϵ, (S88)

since
√
1 − ϵ ≥ 1 − ϵ.

What remains to be shown is that the state UC′ ∣ψ⟩ is
ϵ-close to the product state ∣x⟩ ∣φ⟩ with some ∣φ⟩ in fi-
delity. To see this, we observe that we can write UC′ ∣ψ⟩ =
∑y ay ∣y⟩ ∣φy⟩ for some post-measurement states ∣φ⟩y = ⟨y∣ ⊗
1 ∣ψ⟩ /∥(⟨y∣ ⊗ 1) ∣ψ⟩∥. We find ∣αx∣2 ≥ 1 − ϵ, and setting
∣φ⟩ ∶= ∣φ⟩x proves the claim.

The tomography steps 4 returns x with exponentially low
failure probability. By discarding those elements from D for
which xi ≠ x in step 5, we ensure that the remaining elements
will yield an estimate ∣φ̂⟩ that has fidelity at least 1 − ϵ with
∣φ⟩x, which yields the claim.

The overall runtime of the algorithm is polynomial in n and
2t, since finding UC′ is achieved by solving a linear system of
equations, and we perform quantum state tomography on at
most t qubits in the last step.

4. Correctness of Algorithm 3

The estimate t̂ of the stabilizer nullity t of ∣ψ⟩ clearly
satisfies t̂ ≤ t. It immediately follows from Lemma 3 that
there is a state ∣ϕ⟩ = U †

C′ ∣x⟩ ∣φ⟩ with fidelity ∣ ⟨ϕ∣ψ⟩ ∣2 ≥ 1 − ϵ
and stabilizer nullity exactly t̂. To see this, observe that
M(∣ϕ⟩) = M(∣x⟩) + M(∣φ⟩) = 0 + t̂, since the stabilizer
nullity is additive for product states.

We also note that we the subspace G′ carries probability
weight 1 − ϵ of both the Bell distribution Pψ and the charac-
teristic distribution Cψ of ∣ψ⟩. The characteristic distribution
of ∣ψ⟩ is defined as Cψ(b) = 2n∣p(b)∣2, where we write

∣ψ⟩ ⟨ψ∣ = ∑
b

p(b)σb. (S89)

To show this directly, we formulate the following Lemma,
which generalizes a well-known result of Erdös and Rényi
[26] to nonuniform distributions over subspaces of Fn2 .
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Lemma 4 (Weighted subspace generation). Let S ⊂ {0,1}n

be a binary subspace of dimension at most n and P ∶ S →
[0,1] be a probability distribution over that subspace. Then
the subspace S′ ∶= span(s1, . . . , sM) ⊂ S spanned byM sam-
ples si ← P with label i = 1, . . . ,M has the property that
∑s∈S∖S′ P (s) < ϵ with probability at least 1 − δ whenever

M ≥ 2n log(n) log (2/δ) /ϵ. (S90)

Proof. We construct the subspace iteratively, observing that
the first i samples which have been drawn generate a subspace
Si = span(s

1, . . . , si). The (i + 1)th sample si+1 now either
lies in Si or in its complement. If it lies in the complement
the dimension of Si+1 = span(S, si+1) is increased by 1 com-
pared to Si, if it lies in Si its dimension remains unchanged.
Suppose the complement of Si has probability weight at least
ϵ. Then the probability that after drawing k additional sam-
ples, none of them lies in the complement of Si is given by
1 − (1 − ϵ)k and hence k = log δ/ log(1 − ϵ) ≥ 2 log(1/δ)/ϵ
samples are sufficient that dim(Si+k) ≥ dim(Si) + 1 with
probability at least 1 − δ. Repeating this argument n times,
the total success probability is given by (1−δ)n unless P (S∖
Si) < ϵ for some i ∈ [nk]. Choosing the failure probability
in every step as δ/n and observing that (1 − δ/n)n ≥ 1 − 2δ
proves the claim.

Now, we have that span({bi}i) ⊕ k ⊂ G′, since for M >

n+t the Bell samples are linearly dependent and hence at least
one sample bj0 is in the span of all others. Let bM be such
a sample. Then span({b(i,M)}i ∈ span({b

i}i) and therefore
span({b(i,j)}i) ⊃ span({b

i}i). But this implies that Pψ(G′⊕
k) ≥ 1 − ϵ.

Let Qψ(a) = ∑b Pψ(b)Pψ(b + a) be the distribution of the
Bell difference samples. Then the differences b(2i,2i+1) for i ∈
{0, . . . , (M−1)/2} are distributed according toQψ . It follows
from Lemma 4 that if M ≥ 4n log(n) log(2/δ)/ϵ, Qψ(G′) ≥
1−ϵ with probability at least 1−δ. It follows from Proposition
10 of Ref. [27] that Cψ(G′) ≥ 1 − ϵ.

S4. ERROR DETECTION AND CORRECTION

In this section, we will outline some details of the error
detection procedure, and discuss potential issues that arise due
to noise in the Bell measurement itself.

A. Error reduction by error detection

In this section, we will calculate the amount of error re-
duction that it is possible by error detection using the global
symmetry. Recall that our error detection procedure runs as
follows.

Algorithm 5 Error detection
Input: Bell sample r ← Pρ.

1: if πY (r) = 1 then
2: Declare an error and abort.
3: end if

Output: r

Let us now quantify the amount of error reduction that is
possible using Algorithm 5. First, let us recall why the er-
ror detection is correct: Since we know that the purity of the
ideal state is unity, all samples which lead to a purity away
from unity must have been due to an error. These are exactly
the samples from the antisymmetric subspace, i.e., samples r
satisfying πY (r) = 1.

In the next step, we can compute the error reduction capa-
bilities of the algorithm. We do so in the simplest possible
model of noise: global white noise. In this model we write
each copy of the state as

ρ = ρC(η) = (1 − η) ∣C⟩ ⟨C ∣ + η1/2
n, (S91)

and hence the pre-measurement state as

ρ⊗ ρ = (1 − η)2 ∣C⟩ ⟨C ∣
⊗2
+
η(1 − η)

2n
(∣C⟩ ⟨C ∣ ⊗ 1

+ 1⊗ ∣C⟩ ⟨C ∣) +
η2

22n
1. (S92)

Again, we start with the case of s = 0. We observe that the
Bell distribution for the noisy state can be written as

Pρ(r) = (1 − η)
2PC(r) +

1

4n
Pe(η), (S93)

with the error probability Pe(η) = 2η(1 − η) + η2, i.e., the
distribution of the errors is uniform. Now, we observe that an
error falls into the antisymmetric subspace with probability
D[2]/2

2n = 1
2
(1 + 1/2n). Hence, the probability that an error

is detected is given by Pe(η) ⋅ 12(1 + 1/2n).
Now, we can consider the unnormalized postselected distri-

bution Q̃ρ(r) = (1−η)2PC(r)+δ[2](r)/D[2]Pe(η), and nor-
malize it as P̃ρ(r) = Q̃ρ(r)/(∑r Q̃ρ(r)), where δ[2](r) = 1 if
πY (r) = 0 and 0 otherwise. In order to compute the effective
error reduction, we find

argmin
ϵ
∥Pρ(ϵ) − P̃ρ(η)∥ℓ1

= η/2 +O(η2). (S94)

For η ≪ 1 we thus find an error reduction by a factor of 2
from the first stage of the error detection algorithm. Error
detection based just on the entire subsystem therefore recovers
the probability of no error compared to running computations
on a single copy.

In spite of doubling the number of qubits compared to
standard-basis sampling, we have thus achieved the same
overall post-selected fidelity at a given error rate.

B. Noise in the Bell measurement

Above, we have considered (local) noise in the state prepa-
ration while keeping the Bell measurements themselves error-
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free. Of course, in an actual implementation of Bell sam-
pling, the Bell measurements themselves will be noisy as well.
The Bell measurement is constituted of transversal cnot-
entangling gates and single-qubit measurements. The poten-
tial sources of error are therefore errors in the entangling gates
and errors in the measurement apparatus.

Since we can move all the errors before the Bell measure-
ment to the state preparation, which we have already dis-
cussed, we only have to consider errors after the entangling
gates. First, consider single-qubit noise channels N with
noise strength ϵ after each two-qubit entangling gates before
the measurements in the Hadamard and computational basis,
i.e.,

∣Φ⟩ ⟨Φ∣
+
→ cnotN †⊗2

(∣+⟩ ⟨+∣ ⊗ ∣0⟩ ⟨0∣)cnot, (S95)

and hence, the fidelity of the noisy measure-
ment with the ideal measurement is just given by
tr[N(∣0⟩ ⟨0∣) ∣0⟩ ⟨0∣] tr[N(∣+⟩ ⟨+∣) ∣+⟩ ⟨+∣] ≈ (1 − ϵ)2.
The global measurement fidelity is then just (1 − ϵ)2n, and
hence for noise rate ϵ ≪ 1/n, the fidelity is sufficiently high.
Notice that this is also the regime in which we can mean-
ingfully use the cross-entropy benchmark [11]. Coherent
errors such as cnot-over- or underrotations do not change
the overall picture, since all entangling gates are carried out
in parallel and hence the measurement fidelity just factorizes
into the local fidelities.

Of course, antisymmetric errors in the measurement will
also be detected by our detection procedure (assuming that
they do not combine with antisymmetric errors from the state
preparation). At a high level, these favourable properties of
the Bell measurement with regards to their susceptibility to
errors and their capabilities to detect them is what makes
them fault-tolerant gadgets in stabilizer codes as well.

Let us note, however, that this analysis will be drastically
different in architectures in which the cnot-entangling gates
cannot be carried out in a single circuit layer at the end of the
circuit such as geometrically local architectures. In such ar-
chitectures the error contribution from the Bell measurement
itself will be significant.

C. Virtual distillation using the Bell samples

We observe that even further error suppression is possible
in the white-noise model for estimation of expectation values
of observables that are diagonal in the Bell basis. Such ob-
servables can be written as A = ∑i,j∈{0,1} aij ∣σij⟩ ⟨σij ∣.

Writing an arbitray noisy state preparation of ∣ψ⟩ as

ρψ(ϵ) = (1 − ϵ) ∣ψ⟩ ⟨ψ∣ + ϵρ⊥, (S96)

where tr[ρ⊥ ∣ψ⟩ ⟨ψ∣] = 0, we can write the expectation value
with respect to ρ = ρψ(ϵ) as

tr[A(ρ⊗ ρ)] = (1 − ϵ)2 tr[A ∣ψ⟩ ⟨ψ∣
⊗2
]

+ϵ(1−ϵ) tr[A(ρ⊥ ⊗ ∣ψ⟩ ⟨ψ∣ + ∣ψ⟩ ⟨ψ∣ ⊗ ρ⊥)]+ϵ
2 tr[Aρ⊗2⊥ ].

(S97)

Combined with the purity estimate, we can then estimate the
ideal expectation value ⟨A⟩ψ = tr[A ∣ψ⟩ ⟨ψ∣

⊗2
] from the noisy

Bell sampling data from ρψ(ϵ)

ˆ⟨A⟩ψ =
tr[A(ρ⊗ ρ)]

tr[S(ρ⊗ ρ)]
= (1 − tr[ρ2⊥]ϵ

2) ⟨A⟩ψ +ϵ
2 tr[Aρ⊗2⊥ ]

+ (ϵ + ϵ2) tr[A(ρ⊥ ⊗ ∣ψ⟩ ⟨ψ∣ + ∣ψ⟩ ⟨ψ∣ ⊗ ρ⊥)] +O(ϵ
3
).

(S98)

Here, we have used that tr[ρψ(ϵ)2] = (1 − ϵ)2 + ϵ2 tr[ρ2⊥].
In particular, choosing A = (P ⊗ P )S, we can estimate
⟨ψ∣P ∣ψ⟩

2 with error suppression ϵ2. To see this, observe that
tr[A(ρ⊗ ρ)] = tr[PρPρ] and

ˆ⟨P ⟩
2

ψ =
tr[PρPρ)]

tr[ρ2]
= (1 − tr[ρ⊥]

2
ϵ2)⟨P ⟩2ψ

+ (ϵ + ϵ2) ⟨ψ∣Pρ⊥P ∣ψ⟩ + ϵ
2 tr[Pρ⊥Pρ⊥] +O(ϵ

3
). (S99)

Generically, the term ⟨ψ∣Pρ⊥P ∣ψ⟩ will be exponentially sup-
pressed and hence we obtain an error suppression from ϵ to
min{ϵ/2n, ϵ2}.

As a concrete example, consider the case where ρ ∝

e−βH for a local gapped Hamiltonian with gap ∆ satisfying
β∆ ≫ 1, and we are interested in estimating local Pauli ex-
pectation values in the ground state ∣E0⟩. Using the two-
copy observable A = (P ⊗ P )S we obtain the estimator
tr[PρPρ]/ tr[ρ2] = ∣ ⟨E0∣P ∣E0⟩ ∣

2 + O(e−2β∆). This iden-
tity follows because ⟨En∣P ∣E0⟩ for n ≠ 0 is generically sup-
pressed as an inverse polynomial in n for local gapped Hamil-
tonians and local operators P [28]. As a result, we can use
post-processing of the Bell samples to virtually “cool” the sys-
tem to half the temperature of the initial state.

S5. APPLYING THE NOISY SIMULATION ALGORITHM
TO BELL SAMPLING

In this section, we consider whether the noisy simulation
algorithm of Gao and Duan [29] and Aharonov et al. [30] ap-
plies to Bell sampling. Before we start, let us briefly recap the
algorithm. We will use the notation of Ref. [30].

A. Recap of the algorithm

The key idea is to write an output probability P (C,x) of a
random circuit C = UdUd−1⋯U1 with Haar-random two-qubit
gates Ui as a path integral

P (C,x) = ∑
s0,...,sd∈Pn

tr[∣x⟩ ⟨x∣ sd] tr[sdUdsd−1U
†
d]⋯

⋯ tr[s1U1s0U
†
1] tr[s0 ∣0

n
⟩ ⟨0n∣] (S100)

≡ ∑
s∈Pd+1

n

⟪x∣sd⟫⟪sd∣Ud∣sd−1⟫⋯⟪s1∣U1∣s0⟫⟪s0∣0
n
⟫

(S101)

=∶ ∑
s∈Pd+1

n

f(C, s, x), (S102)
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where Pn is the n-qubit Pauli group. This expression
can be easily seen from the fact that the Pauli matrices
form a complete operator basis and therefore tr[UρU †s] =

∑t∈Pn
tr[UtU †s] tr[ρt]. We also write U ∶= U ⋅ U † and

tr[ab] = ⟪a∣b⟫. Notice that in writing the path integral (S129),
we have normalized the Pauli matrices to tr[pp′] = δp,p′ for
p, p′ ∈ Pn.

We can also think of the Pauli path integral as a Fourier
decomposition of the output probabilities. In this Fourier rep-
resentation, the effect of local depolarizing noise can be easily
analyzed since it just acts as E(ρ) = (1 − ϵ)ρ + ϵ tr[ρ]1/2n.
The contribution of a Pauli path of a noisy quantum circuit
to the total output probability thus decays with the number of
non-identity Pauli operators in it (the Hamming weight of s)
as

P̃ (C,x) = ∑
s∈Pd+1

n

(1 − ϵ)∣s∣f(C, s, x). (S103)

The algorithm of Aharonov et al. [30] is based on approxi-
mating this sum by truncating it to paths with weight ∣s∣ ≤ ℓ
for some ℓ ∈ N. The approximation can then be computed
in time 2O(ℓ). Furthermore, since the output string just ap-
pears as ⟪x∣sd⟫, any marginal can be computed at the same
complexity. Replacing the outcome string x ∈ {0,1}n by a
string y with characters {0,1, ●}n, whenever there is a ● at
position i of y we write 12 at i, and eventually trace over
∏i∶yi∈{0,1} ∣yi⟩ ⟨yi∣i⊗1, which is efficient. The algorithm then

samples from the truncated distribution p̃(ℓ)C using marginal
sampling. What remains to be shown is that the total-variation
distance ∆ = TVD(p̃

(ℓ)
C , p̃

(ℓ)
C ) between the truncated and the

noisy distribution is sufficiently small in ℓ to give an effi-
cient algorithm. To this end, they provide an upper bound
on EC[∆2] using the Cauchy-Schwarz inequality, see Secs. 2
& 3 of Ref. [30].

Here, we consider two possible strategies to prove the algo-
rithm remains efficient for Bell sampling. We show that the
first strategy fails, and give evidence that the second strategy
fails. Together, this provides some evidence that the algorithm
does not work, making Bell sampling a compelling candidate
for noise-resilient sampling.

B. Strategy 1: Upper bounds on the trace distance

The first strategy we consider is to adapt the upper bound
of Aharonov et al. [30] on TVD to an upper bound on the
trace distance. An upper bound ϵ on the trace distance of
the sampled quantum state shows that the optimal single-copy
measurement distinguishing probability is given by ϵ. In Bell
sampling we perform a two-copy measurement, and we can
bound the two-copy trace distance in terms of the single-copy
trace distance as

∥ρ⊗ ρ − σ ⊗ σ∥1 = ∥ρ⊗ ρ − ρ⊗ σ + ρ⊗ σ − σ ⊗ σ∥1
(S104)

≤ ∥ρ⊗ (ρ − σ)∥1 + ∥(ρ − σ) ⊗ σ∥1 (S105)
= 2∥ρ − σ∥1 (S106)

Consider the ideal pre-measurement state in the path inte-
gral formulation

ρ(C) = ∑
s∈Pd+1

n

∣sd⟫⟪sd∣Ud∣sd−1⟫⋯⟪s1∣U1∣s0⟫⟪s0∣0
n
⟫

(S107)

=∶ ∑
s∈Pd+1

n

g(C, s)∣sd⟫. (S108)

Then we can write the noisy state as well as the state which is
effectively generated when truncating the noisy path integral
to paths of weight ≤ ℓ as

ρ̃(C) ∶= ∑
s∈Pd+1

n

(1 − γ)∣s∣g(C, s)∣sd⟫, (S109)

ρ̃ℓ(C) ∶= ∑
s∶∣s∣≤ℓ

(1 − γ)∣s∣g(C, s)∣sd⟫ (S110)

∆ρ̃(C) ∶= ∑
s∶∣s∣>ℓ

(1 − γ)∣s∣g(C, s)∣sd⟫. (S111)

Analogously to Eq. (25) of Aharonov et al. [30], we can
bound the trace distance

∥∆ρ̃∥
2
1 ≡ EC∥ρ̃

ℓ
(C) − ρ̃(C)∥

2

1
(S112)

≤2nEC∥∆ρ̃(C)∥
2
2 (S113)

=2nEC tr[(∆ρ̃(C))†∆ρ̃(C)] (S114)

=2nEC ∑
s,s′∶∣s′∣,∣s∣>ℓ

(1 − γ)2∣s∣⟪s′d∣sd⟫g(C, s)g(C, s
′
)

(S115)

=2n ∑
s∶∣s∣>ℓ

(1 − γ)2∣s∣ECg(C, s)2, (S116)

using the Cauchy-Schwarz inequality and orthogonality of the
coefficients g(C, s) (note that this holds since it is just a local
property of EU [⟪q∣U ∣p⟫⟪r∣U ∣s⟫]).

Hence, in order to upper bound ∥∆ρ̃∥1 we need to upper
bound ∑sEC[g(C, s)2] for certain values of s. Aharonov
et al. [30] achieve this by upper bounding the total sum over
all s.

Following their strategy, we define a Fourier weight

Vk = 2
nEC ∑

s∶∣s∣=k

g(C, s)2, (S117)

and compute its properties.
We certainly have

V0 = 1 (S118)
Vk = 0 ∀0 < k ≤ d. (S119)

To see this, we just follow the argument of Aharonov et al.
[30]. In particular V0 = 2n⟪1∣1⟫2d⟪1∣0⟫2 = 1 since ⟪1∣0⟫ =
1/
√
2n and ⟪1∣1⟫ = 1.

What remains is to compute ∑k≥d+1 Vk. To this end, we
can compute—using a 2-design assumption on C—the total
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Fourier weight

∑
k≥0

Vk = 2
nEC ∑

k≥0

∑
s∶∣s∣=k

g(C, s)2 (S120)

= 2nEC ∑
s′,s

g(C, s)g(C, s′) (S121)

= 2nEC( ∑
s∈Pd+1

n

g(C, s))2 (S122)

= 2nEC( ∑
p∈Pn

⟨C ∣p ∣C⟩)2 (S123)

= 2n∑
p,p′

tr[EC ∣C⟩ ⟨C ∣
⊗2
(p⊗ p′)] (S124)

C 2−des
=

2n

2D[2]
∑
p,p′

tr[(1 + S)(p⊗ p′)] (S125)

=
2n

2D[2]
∑
p,p′
(2nδp,1δp′,1 + δp,p′) (S126)

=
2n

D[2]

2n + 4n

2
= 2n (S127)

Here, we have used orthogonality in reverse, and in lines
(S122) and (S123), we have used that ρ = ∑p p tr[ρp] =
∑s sdg(C, s) and hence tr[ρp] = ∑s∶sd=p g(C, s).

Putting everything together, analogously to Aharonov et al.
[30, Eq. (29)] we find that

∥∆ρ̃∥
2
1 ≤ 2

n
(1 − γ)2ℓ, (S128)

which remains trivial for ℓ ∈ o(n).
The same argument as in Ref. [30] thus cannot be used to

show that the algorithm works for any measurement strategy.
One might wonder if we can tighten the bound. We argue that
we cannot.

First, observe that the only strict inequality we have used
is to bound the trace distance by the Frobenius norm in
Eq. (S114). We can also hardly hope to remove the factor
of 2n incurred in this bound, however, because we expect the
state to be spread out in Hilbert space and the bound is tight
for the uniform distribution.

Second, observe that the trace distance upper bound is dom-
inated by the sum over all 4n Pauli matrices. Compare this to
the original algorithm, where the only non-zero contributions
to the final measurement outcomes were Pauli paths which
ended in a Z-type string since the overlap with a computa-
tional basis state was computed. This is a reduction by pre-
cisely the factor of 2n which we find in our upper bound on
the trace distance. Since the Bell distribution overlaps with al-
most all Pauli strings, we expect the upper bound to be similar
when done directly in the Bell basis.

C. Strategy 2: The argument in the Bell basis

Indeed, an alternative proof strategy is to directly upper
bound the total-variation distance of the truncated Bell distri-
bution. To this end we write the Bell-basis Pauli path integral

as

P (C, r) = ∑
s∈Pd+1

2n

⟪Φ+∣P†
r ⊗ 1n∣sd⟫⟪sd∣U

⊗2
d ∣sd−1⟫⋯ (S129)

⋯⟪s1∣U
⊗2
1 ∣s0⟫⟪s0∣0

2n
⟫ (S130)

=∶ ∑
s∈Pd+1

2n

f(C, s, r) (S131)

Writing si = (s0i , s
1
i ) with sji ∈ Pn, we observe that ⟪Φ+∣P†

r ⊗

1n∣sd⟫ = (−1)
⟨Pr,s

0
i ⟩+δ(s

0
i ,Y )δ(s0i , s

1
i ), where ⟨p, q⟩ = 1 if p

and q anticommute and zero otherwise. The boundary con-
dition for the end of the Pauli path is therefore that both
branches—copies of the system—must end at the same n-
qubit Pauli.

Valid paths are therefore of the form

(s00, s
1
0) → (s

0
1, s

1
1) → ⋯ → (s0d−1, s

1
d−1) → (s

0
d, s

0
d), (S132)

and there are (42n)d ⋅ 4n = 4n(2d+1) of them.
Next when we add noise to the circuit, the sum again trans-

forms to

P̃ (C, r) = ∑
s∈Pd+1

2n

(1 − γ)∣s∣f(C, s, r). (S133)

Let us now bound the total-variation distance between an
ℓ-truncated noisy path integral P̃ℓ and the non-truncated path
integral (S133) as

EC[∆2
] = EC (∑

r

∣P̃ (C, r) − P̃ℓ(C, r)∣)

2

(S134)

≤ 22nEC∑
r

(P̃ (C, r) − P̃ℓ(C, r))
2 (S135)

≤ 22nEC∑
r

⎛

⎝
∑
s∶∣s∣>ℓ

(1 − γ)∣s∣f(C, s, r)
⎞

⎠

2

(S136)

Aharonov et al. [30] now go forward to bound their expres-
sion analogous to (S136) (up to scaling and replacing r ← x.
Letting

Wk = 2
2nEC ∑

s∈Pd+1
n ∶∣s∣=k

f(C, s,0n)2 (S137)

be the total Fourier weight of a circuit at degree k, they use
the following properties:

• orthogonality of the Fourier coefficients, i.e.,

EC[f(C, s, x)f(C, s′, x)] = 0, ∀s ≠ s′ (S138)

• Bounds on the total Fourier weight

W0 = 1 (S139)
Wk = 0, ∀0 < k < d, (S140)

∑
k≥d+1

Wk ∈ O(1), (S141)

which follow from anticoncentration,

2nEC[p(C,x)2] ∈ O(2−n). (S142)

Notice that all of these properties are second-moment prop-
erties. In the Bell sampling, these become fourth moment
properties.
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a. Orthogonality Let us begin by considering the or-
thogonality property.

To this end, consider a single gate in the circuit. The exact
expression to compute is

EU∼µ⟪p0∣U ∣q0⟫⟪r0∣U ∣s0⟫⟪p1∣U ∣q1⟫⟪r1∣U ∣s1⟫, (S143)

p, q, r, s ∈ P24 . If µ is the Haar measure, using Weingarten
calculus, we can rewrite the expression as

∑
π,σ∈S4

Wg(πσ−1) tr(Wπ(p
0
⊗ p1 ⊗ r0 ⊗ r1))

× tr(Wσ(q
0
⊗ q1 ⊗ s0 ⊗ s1)). (S144)

which does not obviously simplify.
Fortunately, to show orthogonality in the single-copy case

(which involves only second moments), we can make use of
the right-invariance of our gate set under multiplication with
Pauli matrices, i.e., G ⋅ p = G for any p ∈ P2. Hence, we can
insert a expectation value over Pauli matrices,

EU∼Gf(U) = EU∼GEv∼P2f(Uv). (S145)

In our (two-copy) case, we therefore get

EU∼H⟪p0∣U ∣q0⟫⟪r0∣U ∣s0⟫⟪p1∣U ∣q1⟫⟪r1∣U ∣s1⟫ (S146)

= EU∼HEv∼P2⟪p
0
∣Uv∣q0⟫⟪r0∣Uv∣s0⟫⟪p1∣Uv∣q1⟫⟪r1∣Uv∣s1⟫

(S147)

= EU∼HEv∼P2 tr[p
0Uvq0v†U †] tr[r0Uvs0v†U †] (S148)

tr[p1Uvq1v†U †] tr[r1Uvs1v†U †]. (S149)

Hence, for orthogonality to hold it suffices that

Ev∈P2[v
⊗4
(p⊗ q ⊗ r ⊗ s)(v†

)
⊗4
] = 0. (S150)

Indeed,

Ev∈P2[v
⊗4
(p⊗ q ⊗ r ⊗ s)(v†

)
⊗4
] (S151)

=
1

16
∑
v∈P2

(−1)⟨v,p⟩+⟨v,q⟩+⟨v,r⟩+⟨v,s⟩p⊗ q ⊗ r ⊗ s

(S152)

=
1

16
∑
v∈P2

(−1)⟨v,pqrs⟩p⊗ q ⊗ r ⊗ s (S153)

= 0, ∀pq ≠ ikrs, (S154)

Eq. (S154) gives us the orthogonality property

EC∼Df(C, q, r)f(C, s, r) = 0, ∀q0s0 ≠ ikq1s1. (S155)

The proof follows straightforwardly from (S154), noting that
the last layer of Paulis is always the same across q and s.

While the condition q ≠ s that arises in the single-copy case
considered by Aharonov et al. [30] reduces summation over
P2
2 to summation over P2, the condition pq ≠ rswe find for the

2-copy case reduces summation over P2
4 to summation over

S = {p, q, r, s ∈ P2 ∶ pq = i
krs}. We have ∣S∣ = 42n ⋅ 4n = 43n

since we can choose p, q freely and then the pair r, s is con-
strained to rs = ikpq for some k of which there are 4n choices.
As a result, similar to the trace-distance calculation, we find
an additional exponential summation over Pauli strings, which
blows up the sum by a factor of 4n.

Notice, however, that the orthogonality condition (S154)
we have found is only a sufficient condition for the expectation
(S143) to vanish, and it could be that the full Haar average has
more zero terms. We expect, however, that condition (S154)
is the only condition. To prove that this is indeed the case, one
needs to compute the fourth moments (S143)—a task that we
leave to future work.

To summarize, in both strategies we run into an exponen-
tial blow-up in the summation that, as of now, results in an
exponential upper bound on the TVD between the sampled
distribution and the target distribution.
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