
Mechanic: A Learning Rate Tuner

Ashok Cutkosky
Boston University

Boston, MA
ashok@cutkosky.com

Aaron Defazio
Meta, FAIR

New York, NY
adefazio@meta.com

Harsh Mehta
Google Research

Mountain View, CA
harshm@google.com

Abstract

We introduce a technique for tuning the learning rate scale factor of any base optimization algorithm
and schedule automatically, which we call mechanic. Our method provides a practical realization of
recent theoretical reductions for accomplishing a similar goal in online convex optimization. We rigorously
evaluate mechanic on a range of large scale deep learning tasks with varying batch sizes, schedules, and
base optimization algorithms. These experiments demonstrate that depending on the problem, mechanic
either comes very close to, matches or even improves upon manual tuning of learning rates.

1 Introduction

Modern deep learning is driven by first-order stochastic optimization algorithms. These are algorithms that
are designed to solve the classical stochastic optimization problem:

minF (x) = minE
z
[f(x, z)]

where z is a minibatch of examples, x ∈ Rd is the model parameters, and f is the loss incurred by using
weights x on the minibatch z. A first-order algorithm follows the protocol:

1. Output a tth iterate xt.

2. Sample a random minibatch zt.

3. Compute gt = ∇f(xt, zt) (the gradient is taken with respect to xt only).

4. Possibly update some internal algorithm state based upon gt in preparation for computing the next
iterate xt+1.

The prototypical such optimization algorithm is stochastic gradient descent (SGD), which exemplifies
the attractive features of this approach: it is computationally cheap (running in O(d) time per update), and
with proper tuning obtains minimax optimal convergence guarantees [21, 3]. Modern practice makes use of a
wide range of variants of SGD, such SGD with momentum, AdaGrad [20], Adam [27], AdamW [30] or Lion
[9]. Interest in such improvements to SGD is driven by the increasing computational demands of training
large neural networks: better optimization means cheaper training, which translates to significant savings in
terms of time, cost, and environmental impact.

Most modern algorithms for training neural networks are equipped with a scalar “scale factor” or “learning
rate” hyperparameter s ∈ R. Roughly speaking, these algorithms produce iterates of the form xt+1 =
xt + s · ut where ut is some update vector produced as a function of the observed gradients g1, . . . ,gt (we
will use bold font for vectors in Rd like u and normal font for all other quantities like s). As an example,

1

ar
X

iv
:2

30
6.

00
14

4v
2

 [
cs

.L
G

]
 2

 J
un

 2
02

3

the classical SGD algorithm sets ut = −ηtgt for some sequence of scalars {ηt} typically called the schedule.
The formula for the SGD update is:

xt+1 = x1 − s ·
t∑
i=1

ηigi. (1)

The process of selecting the optimal s is called “tuning“, and is a key resource sink in machine learning.
The typical approach is simply to try many possibilities to find the empirically optimal s, which requires
multiple expensive training runs. This paper introduces a technique for choosing s automatically on-the-fly
in order to avoid this expense.

Our procedure, which we call mechanic, is a generic wrapper around any base optimization algorithm
(base) that produces a new optimizer which does not require tuning of the scalar s. The base optimization
algorithm is allowed make any kind of update (for example, it may use any kind of schedule, preconditioner
or weight decay). If xbase

t ∈ Rd is the tth iterate of base, then the wrapper will produce a scalar st ∈ R
and set the tth iterate of the wrapped algorithm to be xt = xbase

1 + st(x
base
t − xbase

1). As an example,
suppose that base is the classical SGD algorithm with update equation (1). Then, given st, we would set
xt+1 = xbase

1 − st
∑t
i=1 ηigi. Disregarding for now the fact that the gradients gi actually depend on the

iterates xi
1, we see that xt is what the tth iterate of SGD would have been if the schedule were scaled by st.

Removing tuning of learning rate scalars is already a well-studied problem. One of the main attractions of
early work in “adaptive” optimization such as AdaGrad and Adam [20, 34, 27] is that these algorithms require
less tuning than ordinary SGD. Over the last decade, a number of works have aimed to tackle this problem
from both an empirical and theoretical perspective [4, 7, 38, 14, 35, 28, 6, 24, 17, 2, 31, 11]. Empirical studies
often take the route of “hypergradient descent”: that is, differentiating the update step of the optimization
algorithm itself (e.g. [4, 7]). Strangely, it appears to be difficult to prove that such schemes behave well:
theory-based approaches often adopt rather different strategies. Instead, we start from known theory and
propose a few important modifications to produce a simple and effective practical implementation. We then
rigorously evaluate our algorithm on a variety of datasets. We emphasize that our primary contribution is
not new theoretical development, but instead the translation between theory and practice, which involves
fusing several known analytical techniques as well as subtle departures from theory.

Previous works that investigate deep learning performance of “learning-rate free” optimization inspired by
theory (e.g. [39, 15, 17, 24]) have already demonstrated impressive results. However, these works typically
build “hand-crafted” algorithms that often blend theoretical analysis with specific empirically successful
algorithms such as Adam. In contrast, our wrapper works well with any base algorithm and so can seamlessly
integrate new empirical advances in optimization: one does not need intimate familiarity with the analysis
of our approach to apply it to a new algorithm.

2 Background: Online Convex Optimization

We develop our formalism via online convex optimization (OCO) [41, 23, 37]. OCO is a popular framework
for design and analysis of stochastic optimization algorithms. In brief, for each of T rounds (corresponding
to T iterations of optimization), the OCO algorithm must first output a tth iterate xt, after which the
algorithm is presented with a tth loss function `t. Typically, one envisions the case `t(x) = `(x, zt) for some
fixed loss ` and new data point zt. The goal of an algorithm alg is to minimize the regret Ralg(̊x):

Ralg(̊x) ,
T∑
t=1

`t(xt)− `t(̊x).

Many references focus primarily on the case x̊ = argmin
∑T
t=1 `t(x) in order to consider the single scalar

value supx̊RT (̊x) [45, 40], but we will employ the formulation of regret as a function above instead as it is

1This seems like a significant issue to disregard, but we will provide mathematical justification presently.

2

strictly more general. When `t is convex, then with gt , ∇`t(xt) (or, more generally when gt is a subgradient
of `t at xt), we have:

Ralg(̊x) ≤
T∑
t=1

〈gt,xt − x̊〉 , Ralg
linear(̊x).

As a result, the vast majority of OCO algorithms provide analysis that bounds only the linearized regret
Ralg

linear(̊x). Such algorithms do not need to observe the entire function `t: instead, they only make use of
the gradients gt. That is, the tth output of alg (i.e. xt) is purely a function of the previous sequence of
gradients g1, . . . ,gt−1 so that alg is a first-order algorithm.

2.1 Learning the Scale in OCO

Just like stochastic optimization algorithms, most OCO algorithms also require a scale factor s. In fact,
many stochastic optimization algorithms (such as SGD and AdaGrad) are also OCO algorithms. Setting
ηt = η for all t, SGD ensures the regret bound:

RSGD(̊x) ≤ RSGD
linear(̊x) ≤ O

(
‖x̊− x1‖2

sη
+ sη

T∑
t=1

‖gt‖2
)
. (2)

From this equation, one can deduce in hindsight that for any given x̊, the optimal value for s is ‖x̊−x1‖
η
√∑T

t=1 ‖gt‖2
,

which would provide the bound:

RSGD with tuned s
linear (̊x) ≤ O

‖x̊− x1‖

√√√√ T∑
t=1

‖gt‖2

 .

This result is minimax optimal [1], but requires knowledge of the unknown optimal s. Very recently, [6, 17, 24]
have produced algorithms that estimate the value of ‖xbase

1 − x̊‖ on-the-fly and use this estimate to quickly
identify the optimal scaling value s. These algorithms achieve impressive practical performance, but they
require an understanding of the closed-form solution for the optimal s value above. Our goal is to learn the
correct scaling regardless of the base algorithm.

To this end, we will leverage a scheme recently developed by [16] that allows one to automatically tune
the scale of a base OCO algorithm using another “meta” OCO algorithm. We reproduce their result below
(with notation altered to suit our application) along with the short proof:

Theorem 1 ([16]). Suppose base and tuner are both OCO algorithms. Let {xbase
t } ⊂ Rd indicate the

iterates of base in response to an arbitrary sequence of gradients {gt}, let and {st} ⊂ R indicate the iterates
of tuner in response to the sequence of scalars {ht = 〈gt,xbase

t − x1〉}. Define a new online algorithm
mechanic via:

xmechanic
t = xbase

1 + st · (xbase
t − xbase

1).

Then xmechanic
t ensures regret:

Rmechanic
linear (̊x) ≤ inf

s̊
Rtuner

linear (̊s) + s̊Rbase
linear((̊x− xbase

1)/̊s).

Proof. By definition, for any s̊, we have:

Rmechanic
linear (̊x) =

T∑
t=1

〈gt,xbase
1 + st · (xbase

t − xbase
1)− x̊〉

=

T∑
t=1

〈gt,xbase
t − xbase

1 〉(st − s̊) + s̊

T∑
t=1

〈gt,xbase
t − xbase

1 − (̊x− xbase
1)/̊s〉

= Rtuner
linear (̊s) + s̊Rbase

linear(x
base
1 + (̊x− xbase

1)/̊s).

3

With this result, the job of finding the optimal s is now completely relegated to tuner. For example, if
base is actually SGD with a learning rate η and s = 1 as in (2), we have

Rmechanic(̊x) ≤ Rmechanic
linear (̊x) ≤ inf

s̊
Rtuner

linear (̊s) +O

(
‖x̊− x1‖2

s̊η
+ s̊η

T∑
t=1

‖gt‖2
)
,

setting s̊ = ‖x̊−x1‖
η
√∑T

t=1 ‖gt‖2
:

≤ Rtuner
linear

 ‖x̊− x1‖

η
√∑T

t=1 ‖gt‖2

+O

‖x̊− x1‖

√√√√ T∑
t=1

‖gt‖2

 .

Thus, if tuner obtains low regret, then we will obtain the same regret bound as if we had optimally tuned
the scaling factor for SGD. Intuitively, the gradient ht provided to tuner approximates of the gradient
over the entire course of the base optimizer rather than just at the most recent iterate. That is, for SGD,

ht ≈ df(xt,zt)
ds where xt = x1 − s

∑t−1
k=1 ηkgk.

2.2 Parameter-Free Online Optimization

The problem with the above result is that we seem to have simply pushed the problem off to tuner: what
if tuner itself requires us to set a scale factor? Solving this problem has been the focus of a substantial
effort in the online optimization community [33, 32, 38, 14, 16, 35]. The most advanced such algorithms are
able to ensure:

Rlinear(̊s) =

T∑
t=1

ht(st − s̊) ≤ Õ

|̊s|
√√√√ T∑

t=1

h2
t

 . (3)

Thus, if we set ht = 〈gt,xbase
t − xbase

1 〉, we obtain:

Rtuner
linear (̊s) ≤ Õ

|̊s|
√√√√ T∑

t=1

〈gt,xbase
t − xbase

1 〉2

 .

In most standard analysis of online optimization algorithms, one assumes that ‖xbase
t − xbase

1 ‖ ≤ ρ for
some known ρ (e.g., by employing a projection step), and so by setting To show that this result yields an
effective tuner algorithm we observe that the vast majority of analyses of online optimization algorithms
(including SGD) involve an explicit projection step after the update (i.e. xt+1 = ΠD [xt − ηgt], where
ΠD[x] = argminx̂∈D ‖x− x̂‖. A typical choice for D is the ball of radius ρ centered at x1. After projecting

to the ball, advanced variants of SGD (such as a AdaGrad), ensure RSGD
linear(̊x) ≤ O(ρ

√∑T
t=1 ‖gt‖2) for

all ‖x̊ − x1‖ ≤ ρ. The projection step also ensures that
√∑T

t=1〈gt,xbase
t − xbase

1 〉2 ≤ ρ
√∑T

t=1 ‖gt‖2.

Thus, by setting s̊ = ‖x̊−x1‖
ρ , the combined algorithm mechanic obtains the optimal regret bound of

Õ(‖x̊ − x1‖
√∑T

t=1 ‖gt‖2). That is, mechanic is able to “learn” the optimal scaling s on-the-fly even

though this value depends on unknown values such as ‖x1 − x̊‖.
At no point in this process do we need access to the internal state of the base algorithm base. This

means that improvements to base will automatically be reflected in improvements to the overall algorithm.
In this paper, we investigate the performance of mechanic on deep learning tasks. We consider a variety of
settings for the base algorithm base (i.e. AdamW, Lion, SGD, with various batch sizes and learning rate
schedules of various shapes), and employ a parameter-free algorithm as the tuner to automatically find the
best scale factor for the base algorithm.

4

Algorithm 1 mechanic

1: Input: Base algorithm base, xbase
1 ∈ Rd, β ∈ [0, 1]n (default n = 6, β =

(0.9, 0.99, 0.999, 0.9999, 0.99999, 0.999999), λ ∈ R (default λ = 0.01). sinit ∈ R: first non-zero s value
(default sinit = 10−8). ε = 10−8: small value for numerical stability.

2: v0 ← 0 ∈ Rn, r0 ← 0 ∈ Rn, m0 ← 0 ∈ Rn, xref ← xbase
1 .

3: ∆1 ← 0 ∈ Rd
4: s1 ← 0 ∈ Rn. // We will use st,i to indicate the ith coordinate of st.
5: for t = 1 . . . T do
6: gk ← ∇f(xt, zt).
7: Send gt to base, receive update uk. // On its own, base would update xt+1 ← xt + uk.
8: [Optional] Set ∆t =

xt−xref

(
∑n

i=1 st,n)+ε
to save memory instead of storing ∆t from last round.

9: ∆t+1 ←∆t + ut.

10: ht ←
〈

∆t,gt +
λ(

∑n
i=1 st,n)‖gt‖xt

‖xt‖

〉
// Note use of ∆t rather than ∆t+1.

11: mt ← max(βmt−1, ht) (multiplications by β and maximum are taken coordinate-wise)
12: vt ← β2vt−1 + h2

t

13: rt ← βrt−1 − st−1ht
14: rt ← max(0, rt) // This step is used instead of more complicated procedures in Algorithm 2
15: Wt ← sinit·mt

n + rt
16: st+1 ← Wt√

vt+ε

17: xt+1 ← xref + (
∑n
i=1 st+1,n) ·∆t+1

18: end for

3 The mechanic algorithm

Our mechanic algorithm is specified in Algorithm 1. The algorithm is built by applying Theorem 1 to
a parameter-free tuner algorithm presented in Algorithm 2, which is described along with theoretical
analysis in Appendix C. However, when building mechanic, we modify the “pure” theoretically tractable
Algorithm 2 to simplify the implementation while still capturing the essential intuition and maintaining
the same performance. In the remainder of this section we will provide some intuition behind the tuner
update as used in mechanic as well as describing some potentially unfamiliar subtleties relating to our use
of exponentially weighted moving averages.

mechanic takes as input a base algorithm that generates update vectors ut as described in the previous
sections. We then set ∆t+1 =

∑t
k=1 uk = xbase

t+1 − xbase
1 . The majority of the algorithm contains our tuner

method, which is a variant of the analytically tractable Algorithm 2, with a few modifications. Note that the
indexing on ∆ is very important and may be counterintuitive: the definition of ht does not include ∆t+1,
but rather ∆t. ht is the “gradient” that is supplied to tuner, as described by Theorem 1.

To gain some intuition behind the update, let us consider the case that n = 1 and β = 1.0 (that is,
without employing any exponentially-weighted moving averages). We keep track of the quantity Wt =
sinit ·mt−

∑t
k=1 hksk, which is usually called the “wealth” of the algorithm (the quantity rt = −

∑t
k=1 hksk

is sometimes called the “reward”). sinit specifies the starting value for st and should be an under-estimate
of the true optimal scaling. We then set st+1 = Wt√

vt
(neglecting the ε included for numerical stability). To

understand this update strategy, we can re-write the update as:

st+1 = st ·
√
vt−1√
vt
− stht√

vt
≈
(

1− h2
t

2vt

)
st −

stht√
vt
.

Thus, the update looks like a combination of an AdaGrad-esque gradient descent step with learning rate

scaled by st and a kind of “adaptive decay” (multiplication by 1− h2
t

2vt
). The adaptive decay is very important

for stabilizing the algorithm: without it the values for st are prone to unchecked exponential growth due to

5

scaling by st in stht√
vt

. Intuitively, this decay is the minimum amount required to prevent instabilities.

In Appendix C, we provide a formal Theorem bounding the regret of a variant of the procedure described
above. Roughly speaking, for β = 1 this result suggests:

T∑
t=1

ht(st − s̊) ≤ O

(̊s+ max
t
st) ·mT + s̊ · log(T s̊/sinit)

√√√√ T∑
t=1

h2
t

 . (4)

In fact, the dependence of O(log(T) in equation (4) can be improved to O(
√

log(T)) via more complicated
algorithms (e.g. [16, 35, 8]). However, we favor the simpler update and pleasing resemblance to familiar
algorithms like AdaGrad via the Taylor expansion analysis above. Using a more advanced algorithm did not
appear to improve performance in practice. Of note, the dependence on sinit is very mild: this suggests that
we should be able to set sinit to a very small value without damaging performance. In practice, we choose
sinit = 10−8.

We hypothesize that the simplified tuner we use in mechanic in fact possesses a rigorous theoretical
analysis (although perhaps only with respect to simpler non-fully-worst-case adversaries), but demonstrating
such a bound appears to involve difficult technical hurdles. In particular, our implemention is designed to
be “scale-free”: rescaling the values of gt by any constant scalar will have no effect on st. This property
was first achieved only recently in theoretical analysis of parameter-free algorithms [35], and as-yet requires
significantly more involved algorithms [35, 25].

3.1 The use of β

We include β to introduce some recency bias in the statistics recorded by mechanic, a common feature of
practical optimizers. Mathematically, we accomplish this by up-weighting the tth feedback to tuner by β−t:
ht → htβ

−t. Thus, for example, we have vt =
∑t
k=1 h

2
kβ
−2kt and rt = −

∑t
k=1 hksk−1β

−k
s . Using these

weights directly results in numerical stability issues as the weights become exponentially large. Instead, since
we only need to maintain the correct ratio Wt√

vt
, we can cancel a factor of β−ts from both sides, giving the

update equations in Algorithm 2.
We found that tuning the value of β can significantly improve performance on different tasks. Thus, we

incorporated multiple β values simultaneously in a way that obviates the need for such tuning.
Our approach is inspired by work on “combining” parameter free algorithms [13]. The idea is sim-

ple: parameter-free algorithms typically ensure Rlinear(0) ≤ ε for some constant ε set by the user. So, if
st,1, . . . , st,n are the outputs of n parameter-free algorithms with regret bounds R1

linear(̊s), . . . , R
n
linear(̊s), we

have for any j:

T∑
t=1

ht

(
n∑
i=1

st,i − s̊

)
=

T∑
t=1

ht(st,j − s̊) +
∑
i 6=j

T∑
t=1

ht(st,i − 0)

= Rjlinear(̊s) +
∑
i 6=j

Rilinear(0) ≤ Rjlinear(̊s) + (n− 1)ε.

So, with small constant additive overhead in the regret, the sum of all the outputs st,1 + · · ·+ st,n achieves
the same regret as the best of all the outputs. Motivated by this observation, we instantiate n = 6 copies of
tuner with different β values and add their iterates to produce a final scaling.

3.2 Weight decay

Finally, we found that an addition of a peculiar weight-decay-esque term helped significantly on certain
tasks, including vision tasks with smaller datasets, multi-objective NLP tasks and especially with reducing
the variance in final results for all tasks. Specifically, rather than providing ht = 〈gt,∆t〉 as the input to

6

Model Size Pre Opt MLM Optimizer MNLI-m/mm QNLI SST-2 QQP

BERT-B 110M
AdamW 71.5

AdamW 84.3/84.8 91.0 92.4 90.1
M-AdamW 83.7/83.5 90.6 91.9 90.5

M-AdamW 71.7
AdamW 84.7/85.1 91.2 93.3 90.7

M-AdamW 84.5/84.4 91.3 92.5 91.1

BERT-B 110M
Lion 71.8

Lion 83.4/83.5 86.8 89.7 89.4
M-Lion 83.1/83.8 89.9 91.0 90.2

M-Lion 72.0
Lion 84.5/84.2 89.0 91.2 90.8

M-Lion 84.2/84.2 88.6 91.1 90.2

BERT-L 340M
AdamW 75.4

AdamW 86.2/86.4 92.2 93.9 91.3
M-AdamW 86.1/86.4 92.5 93.7 91.5

M-AdamW 75.3
AdamW 86.3/86.5 92.7 94.4 91.4

M-AdamW 86.1/86.3 91.7 93.5 91.5

BERT-L 340M
Lion 75.7

Lion 86.7/86.6 90.7 92.9 91.1
M-Lion 86.0/86.2 90.3 93.4 91.2

M-Lion 75.5
Lion 87.4/87.4 92.9 93.3 91.7

M-Lion 87.2/87.1 91.5 92.3 91.6

Table 1: Comparing mechanic on BERT. 5 largest datasets from GLUE. Results reported are peak validation
scores averaged over 3 runs, both for the baseline and mechanic tuned models.

the tuner algorithm, we instead provide ht = 〈gt +
λ‖gt‖(

∑n
i=1 st,i)xt

‖xt‖ ,∆t〉. We conjucture that this term is

helpful in the common case that the base algorithm itself is incorporating regularization or weight-decay.
This extra term is the derivative of the regularizer x 7→ λ‖gt‖ (

∑n
i=1 st,i) ‖x‖. From a standard theoretical

perspective, this regularization may seem overly large. However, it may not have as big an impact as one
might imagine because the base algorithm does not see this regularization. Instead, the base algorithm may
(or may not) perform weight decay using another method that mechanic has no insight into. That said,
we do not propose an analytical explanation for this modification. We simply observed that in practice it
performed well with a fixed λ = 0.01.

3.3 Runtime and Memory Cost

mechanic incurs little additional cost over that of base. In Algorithm 1, we denote d-dimensional vectors
with bold font, and n-dimensional vectors and scalars with normal font (note that typically n = 6). We use
1 additional O(d) memory slot, and four O(d)-time steps in lines 8, 9, 10 and 17. All other steps are O(1)
or O(n) time and so have negligible cost.

4 Experiments

4.1 Masked Language Modeling

We perform BERT pre-training on the Wikibooks dataset following the procedure from [18] with a few minor
changes, most notably, we omit the Next Sentence Prediction (NSP) loss following [29]. Masked language
modeling (MLM) requires reconstructing randomly masked tokens given an input sequence of tokens. As
shown in Table 1, using mechanic leads to a noticeable improvement in MLM accuracy.

Varying batch size and model size: Past works observe that the scale factor s should decrease as
either batch size is decreased or model size is increased [5, 22]. To inspect the scale factor that mechanic

7

(a) Varying batch size

(b) Varying model size

Figure 1: Scaling values s learned by mechanic while varying batch size and model size.

learns, we vary the batch size and model size while pre-training BERT using mechanic. As shown in Figure
1, in both cases, mechanic learns to decrease the scale factor s when decreasing the batch size and when
increasing the model size.

Finetuning pre-trained models: In addition to pre-training, we evaluate our models on the 5 largest
datasets from the GLUE suite [44]. One possible failure mode of mechanic tuned pre-trained models could
have been that, even though they lead to high accuracy at pre-training time, transfer learning may fail at
finetuning time.

To ensure that standard transfer learning pipelines still works with mechanic pre-trained models, we
finetune them without a learning rate tuner using the AdamW optimizer and find not that only mechanic
pre-trained models lead to higher accuracy at pre-training time, they also outperform in finetuning more
often than not. We finetune BERT-B (110M) and BERT-L (340M) models for at most 10 epochs on each of
the GLUE datasets and report results on the GLUE dev set in Table 1.

Using mechanic for finetuning: We also investigated using mechanic for finetuning. Typically, to not
erase the progress already made, a much lower base learning rate is employed at finetuning time. This could
easily have been a potential failure mode of any kind of automatic learning rate tuner as such strategies might
“explore” a high learning rate at the beginning of the optimization procedure. Fortunately, we observed that
this inductive bias typically baked at finetuning time is still maintained when using mechanic.

8

Model Size Pre Opt Pre Acc Optimizer I1K Cifar100 Cifar10

CNN from scratch on CIFAR datasets

ResNet-18 11M
- - Mom - 77.6 95.4
- - M-Mom - 75.3 94.1
- - M-Mom (λ = 0.1) - 76.6 95.3

WRN-40-10 56M
- - Mom - 79.9 -
- - M-Mom - 79.6 -

Pre-train on JFT-300M

ViT-B/16 86M
AdamW 48.5

Mom 84.7 91.9 99.1
M-Mom 84.7 90.7 99.1

M-AdamW 49.9
Mom 84.2 91.5 99.1

M-Mom 84.1 90.3 99.1

ViT-B/16 86M
Lion 47.0

Mom 85.3 92.1 99.2
M-Mom 85.2 91.0 99.2

M-Lion 49.6
Mom 84.7 92.3 99.2

M-Mom 84.6 90.9 99.1

ViT-L/16 307M
AdamW 54.4

Mom 86.7 93.9 99.5
M-Mom 86.6 92.7 99.5

M-AdamW 54.4
Mom 86.3 93.4 99.4

M-Mom 86.0 92.0 99.3

ViT-L/16 307M
Lion 52.0

Mom 86.7 93.8 99.4
M-Mom 86.7 93.0 99.4

M-Lion 55.4
Mom 87.2 94.0 99.4

M-Mom 87.2 93.4 99.4

Table 2: Comparing mechanic on vision models. All fine-tuning results are averaged over 3 independent
runs with different seeds.

4.2 Image Classification

In this Section, we present results on popular Image Classification tasks. Apart from training from scratch,
we also perform transfer learning experiments where we pre-train on the popular JFT-300M [43] dataset
and finetune on ImageNet, Cifar-10 and Cifar-100 datasets. We follow the exact setting employed in [19] for
both pre-training and finetuning.

As shown in Table 2, mechanic is quite competitive across the board and produces results either very
close to the baseline or better. Since mechanic optimizes for the train loss, in general, we observe that it
results in better test performance on tasks with large amounts of data where the model is unable to overfit
to the train set. For instance, we see that mechanic beats the baseline substantially when pre-training ViT
models on JFT-300M, whereas it lags slightly behind on smaller datasets like ImageNet-1k or CIFAR-10/100.
Even though we fix λ to 0.01 as default for all our reported experiments, we find that for small datasets like
CIFAR-10, increasing it led to better test performance.

4.3 Comparison with D-adaptation

Recently, [17] introduced the D-adaptation algorithm, with the same goal of learning the correct scale s for
SGD and Adam base optimizers. D-adaptation showed impressive empirical results on a range of popular
deep learning tasks, so we compare mechanic with D-adaptation on a selection of tasks that D-adaptation

9

0 50 100 150 200 250 300
Epoch

75

80

85

90

95
Te

st
 A

cc
ur

ac
y

(%
)

CIFAR-10 (WRN-16-8)

D-Adapt SGD (95.56% SE 0.04)
SGD (95.59% SE 0.03)
Mechanic (95.46% SE 0.03)

0 50 100 150 200 250 300
Epoch

55

60

65

70

75

80

Te
st

 A
cc

ur
ac

y
(%

)

CIFAR-100 (DenseNet)

D-Adapt SGD (76.90% SE 0.06)
SGD (76.41% SE 0.14)
Mechanic (75.44% SE 0.08)

0 10000 20000 30000 40000 50000 60000
Step

5

6

7

8

Te
st

 L
os

s

IWSLT14 (LSTM)

Adam (4.31 SE 0.003)
Mechanic Adam (4.31 SE 0.004)
D-Adapt Adam (4.33 SE 0.003)

0 10000 20000 30000 40000 50000 60000
Step

15

20

25

30

35

40

Te
st

 P
er

pl
ex

ity

BookWiki (GPT Transformer)

Adam (19.49 SE 0.012)
D-Adapt Adam (19.46 SE 0.019)
Mechanic Adam (18.60 SE 0.038)

Figure 2: Comparing mechanic with D-adaptation and Adam or SGD with manually tuned learning rates
on vision and language tasks.

worked well on, using code provided by the authors. Hyper-parameter settings were kept the same to ensure
a fair comparison. In contrast to D-adaptation, mechanic does not require modification for different base
optimizers and, as shown in Figure 2, it remains quite competitive on small datasets like CIFAR-10/100 while
outperforming both a manually tuned baseline and D-adaptation on bigger tasks like IWSLT14 and language
modeling on BookWiki dataset. We present additional results in Appendix B.3, including a comparison on
a suite of 12 logistic regression problems.

5 Conclusion

mechanic is a new technique for scaling the updates of any base optimization algorithm. Our approach
provides a practical implementation of recent developments in optimization theory, and is able to match the
performance of tuned baselines on large-scale machine learning tasks. This work suggests several natural
future directions. First, is there a theoretical motivation for our weight-decay term? Next, is it possible
to leverage similar techniques to learn a per-layer scale factor? Such a capacity would not significantly
increase computation cost, but by allowing more degrees of freedom may yield a method that significantly
outperforms baselines since it is infeasible to manually tune a scale factor for every layer.

Acknowledgements

We are grateful to Konstantin Mishchenko for fruitful discussions and Emil Praun for feedback on an earlier
draft of this paper. Ashok Cutkosky is supported by the National Science Foundation grant CCF-2211718
as well as a Google gift.

10

References

[1] Jacob Abernethy, Peter L Bartlett, Alexander Rakhlin, and Ambuj Tewari. Optimal strategies and
minimax lower bounds for online convex games. In Proceedings of the nineteenth annual conference on
computational learning theory, pages 415–424, 2008.

[2] Naman Agarwal, Rohan Anil, Elad Hazan, Tomer Koren, and Cyril Zhang. Disentangling adaptive
gradient methods from learning rates. arXiv preprint arXiv:2002.11803, 2020.

[3] Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Nathan Srebro, and Blake Woodworth.
Lower bounds for non-convex stochastic optimization. arXiv preprint arXiv:1912.02365, 2019.

[4] Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind.
Automatic differentiation in machine learning: a survey. Journal of machine learning research, 18,
2018.

[5] L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In Advances in Neural Information
Processing Systems (NIPS), 2008.

[6] Yair Carmon and Oliver Hinder. Making sgd parameter-free. Conference on Learning Theory, 2022.

[7] Kartik Chandra, Audrey Xie, Jonathan Ragan-Kelley, and Erik Meijer. Gradient descent: The ultimate
optimizer. Advances in Neural Information Processing Systems, 35:8214–8225, 2022.

[8] Liyu Chen, Haipeng Luo, and Chen-Yu Wei. Impossible tuning made possible: A new expert algorithm
and its applications. In Conference on Learning Theory, pages 1216–1259. PMLR, 2021.

[9] Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Yao Liu, Hieu Pham, Xuanyi
Dong, Thang Luong, Cho-Jui Hsieh, et al. Symbolic discovery of optimization algorithms. arXiv preprint
arXiv:2302.06675, 2023.

[10] Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Yao Liu, Hieu Pham, Xuanyi
Dong, Thang Luong, Cho-Jui Hsieh, Yifeng Lu, and Quoc V. Le. Symbolic discovery of optimization
algorithms, 2023.

[11] Xinyi Chen and Elad Hazan. A nonstochastic control approach to optimization. arXiv preprint
arXiv:2301.07902, 2023.

[12] Ashok Cutkosky. Artificial constraints and hints for unbounded online learning. In Proceedings of the
Thirty-Second Conference on Learning Theory, pages 874–894, 2019.

[13] Ashok Cutkosky. Combining online learning guarantees. In Proceedings of the Thirty-Second Conference
on Learning Theory, pages 895–913, 2019.

[14] Ashok Cutkosky and Kwabena Boahen. Online learning without prior information. In Conference on
Learning Theory, pages 643–677, 2017.

[15] Ashok Cutkosky and Kwabena A Boahen. Online convex optimization with unconstrained domains and
losses. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in
Neural Information Processing Systems 29, pages 748–756. Curran Associates, Inc., 2016.

[16] Ashok Cutkosky and Francesco Orabona. Black-box reductions for parameter-free online learning in
Banach spaces. In Conference On Learning Theory, pages 1493–1529, 2018.

[17] Aaron Defazio and Konstantin Mishchenko. Learning-rate-free learning by d-adaptation. arXiv preprint
arXiv:2301.07733, 2023.

11

[18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidi-
rectional transformers for language understanding. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota, 2019. Association for
Computational Linguistics.

[19] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In
International Conference on Learning Representations, 2021.

[20] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic
optimization. In Conference on Learning Theory (COLT), pages 257–269, 2010.

[21] Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic
programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

[22] Shixiang Shane Gu, Sergey Levine, Ilya Sutskever, and Andriy Mnih. Muprop: Unbiased backpropaga-
tion for stochastic neural networks. CoRR, abs/1511.05176, 2015.

[23] Elad Hazan. Introduction to online convex optimization. arXiv preprint arXiv:1909.05207, 2019.

[24] Maor Ivgi, Oliver Hinder, and Yair Carmon. Dog is sgd’s best friend: A parameter-free dynamic step
size schedule. arXiv preprint arXiv:2302.12022, 2023.

[25] Andrew Jacobsen and Ashok Cutkosky. Parameter-free mirror descent. In Proceedings of Thirty Fifth
Conference on Learning Theory, volume 178 of Proceedings of Machine Learning Research, pages 4160–
4211. PMLR, 2022.

[26] Michal Kempka, Wojciech Kotlowski, and Manfred K Warmuth. Adaptive scale-invariant online algo-
rithms for learning linear models. In International Conference on Machine Learning, pages 3321–3330,
2019.

[27] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014.

[28] Kfir Levy, Ali Kavis, and Volkan Cevher. Storm+: Fully adaptive sgd with recursive momentum for
nonconvex optimization. Advances in Neural Information Processing Systems, 34:20571–20582, 2021.

[29] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach.
ArXiv preprint, abs/1907.11692, 2019.

[30] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Conference
on Learning Representations, 2018.

[31] Zhou Lu, Wenhan Xia, Sanjeev Arora, and Elad Hazan. Adaptive gradient methods with local guaran-
tees. arXiv preprint arXiv:2203.01400, 2022.

[32] Brendan McMahan and Jacob Abernethy. Minimax optimal algorithms for unconstrained linear opti-
mization. In Advances in Neural Information Processing Systems, pages 2724–2732, 2013.

[33] Brendan Mcmahan and Matthew Streeter. No-regret algorithms for unconstrained online convex opti-
mization. In Advances in neural information processing systems, pages 2402–2410, 2012.

[34] H. Brendan McMahan and Matthew Streeter. Adaptive bound optimization for online convex opti-
mization. In Proceedings of the 23rd Annual Conference on Learning Theory (COLT), pages 244–256,
2010.

12

[35] Zakaria Mhammedi and Wouter M Koolen. Lipschitz and comparator-norm adaptivity in online learning.
Conference on Learning Theory, pages 2858–2887, 2020.

[36] Zakaria Mhammedi, Wouter M Koolen, and Tim Van Erven. Lipschitz adaptivity with multiple learning
rates in online learning. In Conference on Learning Theory, pages 2490–2511. PMLR, 2019.

[37] Francesco Orabona. A modern introduction to online learning. arXiv preprint arXiv:1912.13213, 2019.

[38] Francesco Orabona and Dávid Pál. Coin betting and parameter-free online learning. In D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information
Processing Systems 29, pages 577–585. Curran Associates, Inc., 2016.

[39] Francesco Orabona and Tatiana Tommasi. Training deep networks without learning rates through coin
betting. In Advances in Neural Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA, pages 2157–2167,
2017.

[40] S. Shalev-Shwartz. Online Learning: Theory, Algorithms, and Applications. PhD thesis, The Hebrew
University of Jerusalem, 2007.

[41] Shai Shalev-Shwartz. Online learning and online convex optimization. Foundations and Trends in
Machine Learning, 4(2):107–194, 2011.

[42] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 15(56):1929–1958, 2014.

[43] Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. Revisiting unreasonable effective-
ness of data in deep learning era. 2017 IEEE International Conference on Computer Vision (ICCV),
Oct 2017.

[44] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. ArXiv,
abs/1804.07461, 2018.

[45] Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In Pro-
ceedings of the 20th International Conference on Machine Learning (ICML-03), pages 928–936, 2003.

13

A Limitations

In this paper, we introduce a technique for automatically learning the right scale of the learning rate called
mechanic and evaluate it on a broad range of practical deep learning problems and settings. We find that,
depending on the problem, mechanic can be quite effective and even surpass performance of manual tuning
of learning rates at a fraction of the cost. We also find that in addition to training from scratch, mechanic
also works for finetuning.

While the initial set of results are encouraging, many challenges remain. Firstly, we found that mechanic
does not seem to work well with dropout [42]. While mechanic is effective against noise from sampling, we
believe there may be a more fundamental reason why dropout does not work well with mechanic. Second,
mechanic re-purposes the gradient coming from the train set for learning the learning rate, which means
it optimizes for train loss. This is different from manual tuning of learning rates where researchers tune it
based on performance on the validation set. A principled way to handle this discrepancy is also in interesting
avenue of future research.

B Additional Experimental Details

B.1 Hyperparams for BERT

Model Aug Optimizer β1 β2 lr sweep best lr Weight decay

BERT-B AdamW 0.9 0.999 [5e-4, 1e-3, 2e-3, 5e-3, 1e-2] 5e-3
BERT-L AdamW 0.9 0.999 [5e-4, 1e-3, 2e-3, 5e-3, 1e-2] 1e-3

BERT-B/L M-AdamW 0.9 0.999 0.01

BERT-B Lion 0.9 0.99 [5e-5, 1e-4, 2e-4, 5e-4, 1e-3] 5e-4
BERT-L Lion 0.9 0.99 [5e-5, 1e-4, 2e-4, 5e-4, 1e-3] 2e-4

BERT-B/L M-AdamW 0.9 0.99 0.1

Table 3: Critical hyperparameters we used for BERT pre-training. For the baselines we grid searched the
learning rate as shown in the table. Batch size 2k, trained for 150k steps on original Wikibooks dataset w/o
NSP loss (similar to Roberta). We found that a small amount of weight decay makes mechanic slightly
more effective.

Hyperparam Optimizer Without mechanic pre-training With mechanic pre-training

Learning Rate Adam [5e-5, 1e-4, 2e-4, 3e-4, 5e-4] [1e-5, 2e-5, 3e-5, 5e-5, 1e-4]
Learning Rate Lion [5e-6, 1e-5, 2e-5, 3e-5, 5e-5] [1e-6, 2e-6, 3e-6, 5e-6, 1e-5]
Batch Size [16, 32] [16, 32]

Weight Decay 0 0
Max Epochs 10 10

Learning Rate Decay Linear Linear
Warmup Ratio 0.06 0.06

Dropout 0.1 0.1
Attention Dropout 0.1 0.1

Table 4: BERT GLUE finetuning hparams with AdamW.

14

Hyperparam Value

Batch Size [16, 32]
Weight Decay 0
Max Epochs 10

Learning Rate Decay Linear
Warmup Ratio 0.06

Dropout 0.0
Attention Dropout 0.1

Table 5: BERT GLUE finetuning hparams when using mechanic at finetuning time. We found a limitations
of mechanic that it does not perform well in combination to dropout, so we set dropout rate to 0 for these
experiments.

B.2 Hyperparams for Image Classification

Model Aug Optimizer β1 β2 lr Weight decay Num epochs

ViT-B/16 AdamW 0.9 0.999 8e-4 0.1 7
ViT-B/16 M-AdamW 0.9 0.999 0.1 7
ViT-L/16 AdamW 0.9 0.999 4e-4 0.1 7
ViT-L/16 M-AdamW 0.9 0.999 0.1 7

ViT-B/16 Lion 0.9 0.99 1e-4 0.3 7
ViT-B/16 M-AdamW 0.9 0.99 0.3 7
ViT-L/16 Lion 0.9 0.99 1e-4 0.3 7
ViT-L/16 M-AdamW 0.9 0.99 0.3 7

Table 6: Critical hyperparameters we used for all the experiments, most of them directly repurposed from
[19]. For each baseline we repurposed a well-tuned base learning from previous work [19, 10]. Trained on
JFT-300M with batch size 4k with LR cosine decay schedule.

Hyperparam ImageNet CIfar100 Cifar10

Learning rate sweep {0.003, 0.01, 00.03, 0.06} {0.001, 0.003, 0.01, 00.03} {0.001, 0.003, 0.01, 00.03}
Batch size 512 512 512

Weight decay 0 0 0
Num steps 20k 10k 10k

Warmup steps 500 500 500
Learning rate decay Cosine Cosine Cosine

Dropout 0.0 0.0 0.0
Clipping norm 1.0 1.0 1.0

Table 7: We directly use ViT finetuning hyperparams recommended by [19]. For mechanic we also use
same hyperparameters, omitting just the learning rate sweep, since we don’t need it now. We use finetuning
resolution of 384.

15

Figure 3: Scaling values s learned by mechanic during ResNet18 training on CIFAR10 and WideResNet
training on CIFAR100. Shaded area represents max/min value over 3 runs. Dark line is average.

Hyperparam Value

weight decay [0.001, 0.0005, 0.0001]
lr [0.3, 0.1, 0.03]

SGD Momentum β 0.9
batch size 128
num epochs 200
schedule Step decay by 0.2 at 60, 120, 160 epochs

augmentations Random Crop, Random Horizontal Flip
Gradient clip by global norm 1.0

λ Kept at default 0.01

Table 8: Hyperparameters for tuning ResNet18 on CIFAR10 and WideResNet on CIFAR100

B.3 Hyperparams and additional results on comparisons with D-adaptation

C Theoretical Analysis

Here we provide the theoretically tractable version of tuner as well as its analysis.

C.1 Algorithmic Simplifications

To simplify the implementation of mechanic, we replaced all of the red text in Algorithm 2 with a single
line rt ← max(0, rt) right after the definition of rt. This is motivated by two ideas.

First, we conjecture that the clip operation using qt/
√
vt may even be unnecessary in theory2: we

observed no change from removing this operation in practice, and observe that the update has an intuitive
interpretation via the Taylor expansion discussed in Section 3.

Second, the clip operation on ht usingmt−1 is essentially designed to prevent the wealthWt from becoming
negative or zero using the gradient truncation technique employed by [12, 36, 35]. While less consistent with
known theory, we found it simpler to ensure the wealth Wt does become negative simply by clipping rt
directly (we did not clip Wt to be nonnegative as Wt = 0 would cause the algorithm to output st = 0 for
all future iterations). We found these changes simplified the algorithm while having no noticeable effect
on the performance. Although these deviations technically do not come with guarantees, the accomplish

2Removing the clip in theory may requiring some additional non-worst-case assumption.

16

0 20 40 60 80 100
Epoch

60

70

80

90

Ac
cu

ra
cy

 (%
)

Sensorless

Adam (89.5 SE 0.01)
D-Adapt Adam (90.0 SE 0.07)
Mechanic Adam (89.3 SE 0.01)

0 20 40 60 80 100
Epoch

70

75

80

85

90

95

Ac
cu

ra
cy

 (%
)

Aloi

Adam (94.1 SE 0.01)
D-Adapt Adam (97.1 SE 0.01)
Mechanic Adam (96.6 SE 0.00)

0 20 40 60 80 100
Epoch

70

80

90

100

Ac
cu

ra
cy

 (%
)

DNA

Adam (100.0 SE 0.00)
D-Adapt Adam (100.0 SE 0.00)
Mechanic Adam (100.0 SE 0.00)

0 20 40 60 80 100
Epoch

20

40

60

Ac
cu

ra
cy

 (%
)

Glass

Adam (72.0 SE 0.16)
D-Adapt Adam (72.3 SE 0.19)
Mechanic Adam (67.6 SE 0.25)

0 20 40 60 80 100
Epoch

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Iris

Adam (98.3 SE 0.11)
D-Adapt Adam (98.6 SE 0.00)
Mechanic Adam (98.0 SE 0.07)

0 20 40 60 80 100
Epoch

70

72

74

76

78

Ac
cu

ra
cy

 (%
)

Letter

Adam (77.8 SE 0.01)
D-Adapt Adam (77.7 SE 0.01)
Mechanic Adam (77.7 SE 0.01)

0 20 40 60 80 100
Epoch

70

80

90

Ac
cu

ra
cy

 (%
)

Pendigits

Adam (96.2 SE 0.02)
D-Adapt Adam (95.8 SE 0.02)
Mechanic Adam (95.9 SE 0.08)

0 20 40 60 80 100
Epoch

20

40

60

80

Ac
cu

ra
cy

 (%
)

smallNORB

Adam (92.9 SE 0.03)
D-Adapt Adam (95.8 SE 0.04)
Mechanic Adam (90.8 SE 0.16)

0 20 40 60 80 100
Epoch

90

92

94

96

98
Ac

cu
ra

cy
 (%

)

USPS

Adam (98.6 SE 0.01)
D-Adapt Adam (98.6 SE 0.01)
Mechanic Adam (98.1 SE 0.01)

0 20 40 60 80 100
Epoch

30

40

50

60

70

80

Ac
cu

ra
cy

 (%
)

Vehicle

Adam (82.1 SE 0.08)
D-Adapt Adam (81.9 SE 0.16)
Mechanic Adam (80.7 SE 0.11)

0 20 40 60 80 100
Epoch

20

40

60

80

Ac
cu

ra
cy

 (%
)

Vowel

Adam (77.4 SE 0.11)
D-Adapt Adam (77.4 SE 0.15)
Mechanic Adam (76.4 SE 0.09)

0 20 40 60 80 100
Epoch

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Wine

Adam (100.0 SE 0.00)
D-Adapt Adam (100.0 SE 0.00)
Mechanic Adam (100.0 SE 0.00)

Figure 4: Comparing mechanic with D-adaptation and manually tuned learning rates on a suite of convex
tasks.

17

0 50 100 150 200 250 300
Epoch

10 2

100

102

Tr
ai

n
Lo

ss

CIFAR-10 (WRN-16-8)

D-Adapt SGD (1.3e-03 SE 4.9e-05)
SGD (1.6e-03 SE 4.6e-05)
Mechanic (2.9e-03 SE 9.1e-05)

0 50 100 150 200 250 300
Epoch

10 1

101

Tr
ai

n
Lo

ss

CIFAR-100 (DenseNet)

D-Adapt SGD (1.3e-02 SE 5.0e-04)
SGD (1.3e-02 SE 5.2e-04)
Mechanic (9.9e-03 SE 5.4e-04)

0 10000 20000 30000 40000 50000 60000
Step

20

40

60

80

100

Tr
ai

ni
ng

 P
er

pl
ex

ity

BookWiki (GPT Transformer)

Adam (20.19 SE 0.084)
D-Adapt Adam (20.16 SE 0.093)
Mechanic Adam (19.29 SE 0.103)

0 10 20 30 40 50
Epoch

0.4

0.5

0.6

0.7

0.8
Tr

ai
n

lo
ss

fastMRI Knee

Adam (0.4281 SE 0.00021)
Mechanic Adam (0.4810 SE 0.02901)
D-Adapt Adam (0.4276 SE 0.00028)

0 10000 20000 30000 40000 50000 60000
Step

5.0

7.5

10.0

12.5

Tr
ai

ni
ng

 L
os

s

IWSLT14 (LSTM)

Adam (4.27 SE 0.003)
Mechanic Adam (4.18 SE 0.004)
D-Adapt Adam (4.03 SE 0.002)

Figure 5: Complementary train set results of mechanic with D-adaptation and manually tuned learning
rates on vision and language tasks.

Algorithm 2 tuner(theoretically tractable version

1: Input: β ∈ [0, 1], W0: initial “wealth”.
2: v0 ← 0 ∈ R, r0 ← 0 ∈ R, qt ← 0 ∈ R, m0 ← 0 ∈ R, s1 ← 0 ∈ R
3: for t = 1 . . . T do
4: Output st.
5: Receive ht.
6: mt ← max(βmt−1, ht)

7: ĥt = clip(ht,−mt−1,mt−1) // Red text are steps that we omit in practice (see Algorithm 1)

8: qt ← βqt−1 + ĥt
9: rt ← βrt−1 − st−1ĥt

10: Wt ←W0 + rt // Blue text is changed in practice (see Algorithm 1)

11: vt ← β2vt−1 + ĥ2
t

12: st+1 ← Wt√
4m2

t+vt+ε
· clip(qt/

√
4m2

t + vt, 0, 1)

13: end for

similar intuitive goals and so we expected (and observed) that they simplified the implementation while not
damaging performance.

C.2 Eliminating W0 in favor of sinit

While tuner makes use of the “initial wealth” value W0, mechanic instead adopts a varying value for W0

proportional to sinit ·mt. This makes the first s value proposed by mechanic equal to sinit, which is more
intuitive to set than W0. The exponential growth in s allows us to set sinit to a very small value of 10−8. It
also makes the values for s “scale-free” in the sense that rescaling the updates ut by any constant will have
no effect on the resulting st.

18

C.3 Regret Bound

Theorem 2. With β = 1, Algorithm 2 guarantees for all s̊ ≥ 0:

T∑
t=1

ht(st − s̊) ≤W0 + (̊s+ max
t
st) ·mT +O

s̊ · log(T s̊mT /m1W0)

√√√√ T∑
t=1

h2
t

 .

Proof. First, we employ an argument developed by [12]:

T∑
t=1

ht(st − s̊) ≤
T∑
t=1

ĥt(st − s̊) +

T∑
t=1

|ĥt − ht|(|st|+ |̊s|)

≤
T∑
t=1

ĥt(st − s̊) + (max
t
|st|+ |̊s|)

T∑
t=1

|ĥt − ht|

=

T∑
t=1

ĥt(st − s̊) +mT (max
t
|st|+ |̊s|).

So, in the following, it suffices to bound
∑T
t=1 ĥt(st − s̊). This is helpful because we will be able to use

the bound |ĥt| ≤ mt−1, and mt−1 is known before ĥt is revealed.
As is typical in the analysis of parameter-free algorithms, the proof proceeds by lower-bounding the

wealth. Define a function a(x) piecewise by:

a(x) =

 0 x ≤ 0
x2/2 x ∈ [0, 1]
x− 1/2 x ≥ 1

Notice that a(x) is differentiable, monotonically increasing and 1-Lipschitz. We are going to roughly show

that Wt ≥ Ω(exp(a(−
∑t
k=1 ĥk/

√
vt))), after which the regret bound will follow from the wealth-regret

duality [38].
The key technical inequality in the proof is the following: for any A, B, m with B ≥ 4m2, and any

|x| ≤ m, we have:

a

(
−A√
B

)
− x√

B
clip

(
−A√
B
, 0, 1

)
≥ a

(
−A− x√
B + x2

)
− x2

B
. (5)

Once (5) is established, we proceed as follows: defining ct =
clip(

∑t−1
k=1 ĥk/

√
4m2

t−1+vt−1,0,1)
√
vt

, we have:

log(Wt) = log(Wt−1) + log(1− ĥtct)

≥ log(Wt−1)− ĥtct − ĥ2
t c

2
t ,

where we have used ct ≤ 1/2 and the identity log(1−x) ≥ −x−x2 for x ≤ 1/2 (which applies since ĥt ≤ mt−1

19

by definition). Now, set A =
∑t−1
k=1 ĥk and B = 4m2

t−1 + vt−1 and x = ĥt in (5), we see that:

log(Wt)− log(Wt−1) ≥ − x√
B

clip

(
−A√
B
, 0, 1

)
− ĥ2

t

4m2
t−1 + vt−1

≥ a
(
−A− x√
B + x2

)
− a

(
−A√
B

)
− x2

B
− ĥ2

t

4m2
t−1 + vt−1

≥ a

 −
∑t
k=1 ĥk√

4m2
t−1 + vt

− a
 −

∑t−1
k=1 ĥk√

4m2
t−1 + vt−1

− 2ĥ2
t

4m2
t−1 + vt−1

≥ a

(
−
∑t
k=1 ĥk√

4m2
t + vt

)
− a

 −
∑t−1
k=1 ĥk√

4m2
t−1 + vt−1

− 2ĥ2
t

4m2
t−1 + vt−1

.

Thus by telescoping the sum, we have:

log(WT) ≥ log(W0) + a

(
−
∑T
k=1 ĥk√
vT

)
−

T∑
t=1

2ĥ2
t

4m2
t−1 + vt−1

.

Now, observe that
2ĥ2

t

4m2
t−1+vt−1

≤ 2ĥ2
t

vt
≤ 2(log(vt) − log(vt−1)), so we have

∑T
t=1

ĥ2
t

vt−1
≤ 2 log(TmT /m1) so

that overall:

WT ≥
W0m1

T 2mT
exp

[
a

(
−
∑T
k=1 ĥk√
vT

)]
.

Thus, if we define p(H) = W0m1

T 2mT
exp

[
a
(

H√
vT

)]
, we have WT ≥ p(−

∑T
k=1 ĥk). Now, we employ the reward-

regret duality:

T∑
t=1

ĥt(st − s̊) = sinit ·m+ s̊

T∑
t=1

(−ĥt)−WT

≤W0 + sup
G
s̊ ·G− p(G)

= W0 + p?(̊s)

≤W0 +O(s log(sT/sinit)
√
vT).

Where p? is the Fenchel conjugate of p and the evaluation of the conjugate follows from direct calculation
(see, e.g. [38, 16, 26]).

Thus, to prove the theorem we need only show (5). This is established via casework in a manner similar
to [26].

Case 1. −A√
B
≤ 0: In this case, the statement is equivalent to: x2

B ≥ a
(
−A−x√
B+x2

)
. Note that since −A√

B
≤ 0,

we have A ≥ 0. Therefore:

−A− x√
B + x2

=
−A√
B + x2

− x√
B + x2

≤ − x√
B + x2

.

Further, we clearly have − x√
B+x2

≤ 1 so that:

a

(
−A− x√
B + x2

)
≤ a

(
− x√

B + x2

)
=

x2

2(B + x2)
≤ x2

B
.

20

So, in the following we assume −A√
B
≥ 0.

Case 2. −A−x√
B+x2

≤ 0: In this case, it suffices to show −x√
B

clip
(
−A√
B
, 0, 1

)
≥ −x

2

B . The case assumption

implies m2 ≥ x ≥ −A ≥ 0. Therefore, since B ≥ 4m2, clip
(
−A√
B
, 0, 1

)
= −A√

B
so that −x√

B
clip

(
−A√
B
, 0, 1

)
=

xA
B ≥

−x2

B as desired.

So, in the following we now further assume −A−x√
B+x2

≥ 0.

Case 3. −A√
B
∈ [0, 1]: We have a

(
−A√
B

)
= A2

2B , and also since a(z) ≤ 1
2z

2 for all z, a
(
−A−x√
B+x2

)
≤ (A+x)2

2(B+x2) .

Thus, it suffices to show that A2

2B + xA
B ≥

(A+x)2

2(B+x2) −
x2

B , but this is equivalent to (A+x)2

2B ≥ (A+x)2

2(B+x2) −
x2

2B ,

which clearly holds.

Case 4: −A√
B
≥ 1 and −A−x√

B+x2
≥ 1: In this case it suffices to show −A√

B
− x√

B
≥ −A−x√

B+x2
− x2

B . To see this,

we have:

−A− x√
B + x2

=
−A√
B + x2

− x√
B + x2

≤ −A√
B
− x√

B
+ x

(
1√
B
− 1√

B + x2

)
≤ −A√

B
− x√

B
+

2x3

3B3/2

≤ −A√
B
− x√

B
+
x2

B
,

where in the second-to-last line we have used the fact that h 7→ 1√
B+h

is a convex in h, and in the last

line we have used
√
B ≥ m ≥ x.

Case 5: −A√
B
≥ 1 and −A−x√

B+x2
∈ [0, 1): In this case we need to show −A√

B
− 1

2 ≥
(A+x)2

2(B+x2) −
x2

B + x√
B

. To

see this, we first observe that since −A−x√
B+x2

∈ [0, 1), we have

A2 + 2Ax+ x2 ≤ B + x2

A2 + 2Ax ≤ B.

Thus, by quadratic formula, A ≥ −x−
√
x2 +B, so that we have A ∈ [−x−

√
x2 +B,−

√
B].

Next, our target identity can be rearranged into an equivalent form as follows:

−A√
B
− 1

2
≥ (A+ x)2

2(B + x2)
− x2

B
+

x√
B

0 ≥ (A+ x)2

2(B + x2)
+

A√
B

+
1

2
− x2

B
+

x√
B
,

so that it suffices to show the second line above. Notice that the RHS of this expression is convex in A and
so is maximized at the boundary of the range [−x−

√
x2 +B,−

√
B]. When A = −

√
B we have:

(A+ x)2

2(B + x2)
+

A√
B

+
1

2
− x2

B
+

x√
B
≤ (A+ x)2

2B
+

A√
B

+
1

2
− x2

B
+

x√
B

= − x
2

2B
≤ 0.

Alternatively, when A = −x−
√
x2 +B, we have

(A+ x)2

2(B + x2)
+

A√
B

+
1

2
− x2

B
+

x√
B

= 1−
√
x2 +B√
B

− x2

B

≤ 0.

This establishes the claimed inequality (5) and completes the proof.

21

	1 Introduction
	2 Background: Online Convex Optimization
	2.1 Learning the Scale in OCO
	2.2 Parameter-Free Online Optimization

	3 The mechanic algorithm
	3.1 The use of
	3.2 Weight decay
	3.3 Runtime and Memory Cost

	4 Experiments
	4.1 Masked Language Modeling
	4.2 Image Classification
	4.3 Comparison with D-adaptation

	5 Conclusion
	A Limitations
	B Additional Experimental Details
	B.1 Hyperparams for BERT
	B.2 Hyperparams for Image Classification
	B.3 Hyperparams and additional results on comparisons with D-adaptation

	C Theoretical Analysis
	C.1 Algorithmic Simplifications
	C.2 Eliminating W0 in favor of sinit
	C.3 Regret Bound

