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Abstract.
In this work, we propose a numerical method to compute the Wasserstein Hamiltonian flow (WHF), which is a Hamiltonian

system on the probability density manifold. Many well-known PDE systems can be reformulated as WHFs. We use parameterized
function as push-forward map to characterize the solution of WHF, and convert the PDE to a finite-dimensional ODE system,
which is a Hamiltonian system in the phase space of the parameter manifold. We establish theoretical error bounds for the
continuous time approximation scheme in Wasserstein metric. For the numerical implementation, neural networks are used as
push-forward maps. We design an effective symplectic scheme to solve the derived Hamiltonian ODE system so that the method
preserves some important quantities such as Hamiltonian. The computation is done by fully deterministic symplectic integrator
without any neural network training. Thus, our method does not involve direct optimization over network parameters and hence
can avoid errors introduced by the stochastic gradient descent (SGD) or methods alike, which is usually hard to quantify and
measure in practice. The proposed algorithm is a sampling-based approach that scales well to higher dimensional problems. In
addition, the method also provides an alternative connection between the Lagrangian and Eulerian perspectives of the original
WHF through the parameterized ODE dynamics.

Key words. Hamiltonian dynamics; Wasserstein Hamiltonian flow; Deep learning; Symplectic Euler scheme; Numerical
analysis.

1. Introduction. Wasserstein Hamiltonian flow (WHF) describes the time evolution of a Hamiltonian
system on a Wasserstein manifold. It can be formulated as the following first-order Hamiltonian system of dual
coordinates on the Wasserstein manifold, which is the space of probability densities equipped with optimal
transport distance [48],

∂tρ =
δ

δΦ
H(ρ,Φ),(1.1a)

∂tΦ = − δ

δρ
H(ρ,Φ),(1.1b)

with given initial values

(1.2) ρ(0, x) = ρ0(x) and Φ(0, x) = Φ0(x).

In (1.1), x ∈ Rd (our theory applies to any Riemannian manifold M without boundary but for simplicity we
only consider M = Rd in this work) and δ

δρ is the L2 first variation, ρ is the probability density, i.e., a non-

negative function with
∫
Rd ρ(x)dx = 1, Φ is called the dual function, whose gradient provides the vector field

transporting ρ on the Wasserstein manifold, and ρ0 and Φ0 are their initial values respectively. We consider
the following general class of Hamiltonian:

H(ρ,Φ) =

∫
Rd

1

2
|∇Φ(x)|2ρ(x)dx+ F(ρ),(1.3)

where the first term is the kinetic energy associated with the 2-Wasserstein metric, and F(ρ) is a potential
functional defined on the Wasserstein manifold, which typically is one or a combination of the three terms
appeared in the following formula,

F(ρ) =

∫
Rd
V (x)ρ(x)dx+

∫
Rd
U(ρ, x)dx+

∫∫
Rd×Rd

W (x− y)ρ(x)ρ(y)dxdy.(1.4)

Here the first term is determined by the linear potential V , the second one is a nonlinear functional U of ρ such
as entropy or Fisher information, and the third is an interactive potentialW between particles whose population
density is given by ρ. Recent work [11] reveals that WHF has deep connections to many well-known partial
differential equations (PDEs), such as Wasserstein geodesic, Vlasov and Schrödinger equations, just to name
a few. WHF provides an alternative framework and a set of new tools originated from optimal transport that
potentially can be used to study those PDEs and relevant applications. However, computation of WHF remains
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a challenging problem, especially in higher dimensions. In this work, we develop a computational framework to
solve WHF by leveraging several techniques together, including generative models, neural networks, symplectic
integrator, and Wasserstein metric on density manifold. In particular, our method is readily scalable to solve
WHFs in high-dimensional spaces.

There are two main objectives in this paper. The first one is to derive an effective finite-dimensional
approximation of WHF (1.1) by using reduced-order models. While the theory developed in this paper is
applicable to general reduced-order models, we use a special class known as neural networks due to their
excellent empirical approximation power in this study. Our derivation is conducted on a parameter space
equipped with an induced Wasserstein metric and a submanifold of the probability density space where a
density function ρ is determined by a push-forward map parameterized by a neural network. For convenience,
we call the induced Wasserstein metric on the parameter space as the pullback Wasserstein metric in this
paper. The resulting Hamiltonian system is a set of coupled ordinary differential equations (ODEs) for the
neural network parameter and its dual, which is a finite-dimensional approximation to the infinite-dimensional
WHF (1.1). We call this new Hamiltonian system the parameterized WHF (PWHF).

Our second objective is to develop a symplectic numerical scheme to solve the PWHF. This is accomplished
by introducing an approximation to the pullback Wasserstein metric, which can be efficiently computed by
recently developed machine learning techniques, such as residual neural networks [27, 28] or continuous nor-
malizing flows [9, 23]. The algorithm is designed by using samples only so that it is readily scalable to
high-dimensional problems. Moreover, the proposed method allows effective computation of both particle
motion of the Hamiltonian system in the classical phase space and the density evolution on the Wasserstein
manifold simultaneously.

Here we highlight several main features of the proposed method:
• (Dimension reduction) The PDEs (1.1), which can also be viewed as an infinite-dimensional dynamical

system, is effectively approximated by a finite-dimensional ODE system and solved by a customized
symplectic numerical scheme.

• (Computation effectiveness) A simplified Wasserstein metric is introduced to greatly reduce the com-
putational cost when compared to that of the pullback Wasserstein metric on the parameter space.

• (Training free) The proposed method does not involve non-convex optimization algorithms like stochas-
tic gradient descent (SGD) methods which are commonly adopted in machine learning. This avoids
errors introduced by those optimization methods that are usually difficult to control and analyze.

• (Symplectic structure preservation) The proposed scheme preserves the symplectic structure of PWHF.
Thus the Hamiltonian is conserved, even for large time horizon.

• (Error estimation) The convergence of the proposed scheme is guaranteed by error estimates obtained
in the Wasserstein metric.

• (Eulerian and Lagrangian formulation) PWHF provides a natural connection bridging the Eulerian
and Lagrangian formulations of the underlying Hamiltonian system.

The remainder of the paper is organized as follows. In Section 2, we describe the related work to this
study. We briefly introduce the WHF, and its equivalent formulations in Section 3.1. We derive the PWHF
and its simplified dynamics in Sections 3.2 and 3.3 respectively. In Section 3.4, we show that the density ρθ
obtained by PWHF is a good approximation to the true solution with provable error bound. Then we provide
a numerical algorithm to effectively solve the PWHF, with details about the simplified pullback Wasserstein
metric tensor in Section 4. Numerical results are given in Section 5. We provide a discussion about potential
applications of PWHF on other types of problems in Section 6 and conclude the paper in Section 7.

2. Related work. The formulation of WHF studied here is first introduced in the paper [11] where a
derivation framework based on Lagrangian functional for general WHF on density manifold is proposed. This
work also reveals the connections between WHF and several well-known PDEs through examples. Numerical
methods have been developed for solving the WHF in recent works [12, 13], in which the classical finite
difference and shooting techniques are used to solve WHF in lower dimensions.

We note that the idea of introducing the metric defined on probability manifold to parameter space
originates from [3] in which the Fisher metric is discussed. Later, the case of Wasserstein metric was introduced
and studied in [35] and [10]. Soon after, the Wasserstein gradient flows defined on the parameter space of the
generative model were introduced in [33, 34, 38, 39].

The present study is mostly inspired by a recent work on parametric Fokker-Planck equation (PFPE)
[34, 39] which establishes a finite-dimensional approximation of the Fokker-Planck equation (FPE) by using
push-forward maps, neural networks, and Wasserstein metric. Leveraging the viewpoint that the FPE is the
gradient flow of relative entropy functional on Wasserstein manifold [29, 40], PFPE is derived by taking the
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gradient flow of relative entropy projected onto the parameter space equipped with the pullback Wasserstein
metric. The resulting PFPE is a system of ODEs for the parameters. Our work follows a similar strategy.
We use the same parameter space defined by push-forward maps and neural networks, and a similar pullback
Wasserstein metric on the parameter space. Different from PFPE, our aim is to establish PWHF on the
parameterized Wasserstein submanifold. In addition, we introduce a new metric, which can be viewed as a
close approximation to the one introduced in [39]. Such a new metric does not require ρθ-weighted Helmholtz
projection of vector fields ∂θTθ in [39]. As a result, using the new metric enables us to directly compute PWHF
via customized symplectic scheme with provable accuracy and significantly reduced computational cost.

Since introduced in the seminal works [30, 31] to describe the limiting behavior of stochastic differential
games, the mean field games (MFGs) have been studied extensively including numerical methods [1, 2, 7] and
machine learning based approaches [32, 14, 43]. The works reported in [43, 37] provide methods for computing
MFG in high dimensional cases. The WHF is closely related to MFG systems at least in their mathematical
forms, i.e., the MFG systems with quadratic kinetic energy can be treated as WHFs with boundary conditions.

Hamiltonian Monte Carlo algorithms introduced in [16] aim at generating samples from a given probability
distribution by evolving an associated Hamiltonian system in the phase space. We refer readers to [5, 20] and
the references therein for more details. Instead of sampling from a fixed terminal distribution, our research in
the paper computes the entire density evolution of Hamiltonian flow.

There are also numerous pieces of research [24, 47, 8, 45, 45] focusing on recovering the Hamiltonian,
and predicting the dynamics of certain physical systems based on observed trajectories. This is called inverse
problem in computing Hamiltonian system in some literature. Neural networks are widely utilized in those
studies to make the computation scalable for high-dimensional settings. Nevertheless, there are significant
differences between our problem and theirs, with the most prominent one being that we aim at solving for the
entire probability flow while the aforementioned researches always focus on particle-wised computation.

In a broader sense, PWHF and the proposed numerical method provide an alternative approach that
can potentially be applied to solve some PDEs in higher dimension by using neural networks. In the past
few years, various machine learning methods have been developed for solving PDEs. For example, a deep
learning method based on backward stochastic differential equations (SDEs) has been designed to solve high
dimensional parabolic PDEs in [17]. Deep Ritz method (DRM) is studied to solve PDEs whose solutions
can be reformulated as the minimizers of variational forms [18]. Physics-informed neural network (PINN) is
proposed as a general framework to solve PDEs by minimizing the residual in least squares sense [41, 25].
Weak adversarial network (WAN) solves PDEs in weak forms through a minimax approach [50, 4]. More
recently, Fourier neural operator [36], DeepONet [49], and Neural control [19] are constructed to approximate
the solution operators by neural networks so that the computation can be carried out more efficiently when the
same PDEs must be solved repetitively with different initial or boundary conditions. Those and many more
studies have shown that deep neural networks (DNN) possess great potentials in handling high-dimensional
PDEs with various non-linearities.

3. Parameterization of Wasserstein Hamiltonian flow. In this section, we first briefly review the
Wasserstein metric and WHF, then we derive the parameterization of WHF and suggest a strategy to speed
up its computation by using an approximate Wasserstein metric. We provide a comprehensive error analysis
of PWHF in the end.

3.1. Formulation of Wasserstein Hamiltonian flow. The review here follows the formulation detailed
in [11]. For simplicity, let M be a smooth manifold without boundary. Let us consider the space of smooth
density functions supported on M with finite second moment:

P(M) =
{
ρ ∈ C∞(M) : ρ ≥ 0,

∫
M

ρ dx = 1,

∫
M

|x|2ρ dx <∞
}
,(3.1)

and its tangent space at ρ ∈ P(M):

TρP(M) =
{
σ ∈ C∞(M) :

∫
M

σ dx = 0
}
.(3.2)

We also denote the interior of P(M) as P+(M) := P(M) ∩ {ρ > 0}.
We introduce the tangent bundle and the cotangent bundle of P by denoting

(3.3) T P =
⋃
ρ∈P
{ρ} × TρP,
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as the tangent bundle of P and

(3.4) T ∗P =
⋃
ρ∈P
{ρ} × T ∗ρP,

as the cotangent bundle of P. Here for each ρ the cotangent spaces T ∗ρP is taken as

C∞(Rd)/R = {[Φ] : Φ ∈ C∞(Rd)},

where [Φ] is the equivalent class of functions that are identical to Φ up to a constant, i.e., [Φ] = {Φ+c : c ∈ R}.
In the following discussion, we always write the equivalent class [Φ] as Φ for simplicity. It is clear that∇φ = ∇Φ
for any φ ∈ [Φ]. Thus

we also denote ∇[Φ] as ∇Φ for convenience.
The space P(M) becomes a metric space when equipped with the Wasserstein distance. For any ρ1, ρ2 ∈

P(M), the 2-Wasserstein distance (we call it Wasserstein distance for short hereafter) between ρ1 and ρ2 is
given by [48]

W2(ρ1, ρ2) =
(

inf
π∈Π(ρ1,ρ2)

∫∫
|x− y|2dπ(x, y)

)1/2

,

where Π(ρ1, ρ2) is the set of joint distributions on Rd × Rd with ρ1 and ρ2 as the marginals. This distance
naturally induces a metric on P(M). In fact, for any ρ ∈ P(M) and σ ∈ TρP(M), let us denote ∆ρ := ∇·(ρ∇)
and ∆†ρ be its pseudo inverse operator, i.e., Φ = (−∆ρ)

†σ implies σ = −∆ρΦ.
It is shown that Φ is unique up to a constant for any given σ [11]. Then the Wasserstein metric is defined

by gW (ρ)(·, ·) : TρP(M)× TρP(M)→ R as follows,

gW (ρ)(σ1, σ2) =

∫
M

σ1(x)(−∆ρ)
†σ2(x) dx =

∫
M

∇Φ1(x) · ∇Φ2(x)ρ(x) dx,(3.5)

where −∆ρΦi(x) = −∇ · (ρ(x)∇Φi(x)) = σi(x) for any x ∈M and i = 1, 2.
It is known that, equipped with the Wasserstein distance, the density manifold P(M) becomes a Rieman-

nian manifold on which various differential operators and geometric flows can be established. In particular,
WHF is derived by considering the following variational problem,

I(ρ) = inf
ρ

{∫ T

0

L(ρ, ∂tρ) dt : ρ|t=0 = ρ0, ρ|t=T = ρT

}
,(3.6)

where L(ρ, ∂tρ) = 1
2g
W (ρ)(∂tρ, ∂tρ)−F(ρ) is a functional defined on T P known as the Lagrangian, and ρ0 and

ρT are some given initial and terminal densities respectively. The solution of (3.6) satisfies the Euler-Lagrange
equation which can be written as a second-order PDE

∂ttρ+ ΓW (∂tρ, ∂tρ) = −gradWF(ρ),(3.7)

where ΓW is a quadratic function of ∂tρ called the Christopher symbol given by

ΓW (∂tρ, ∂tρ) = −
{

∆∂tρ∆
†
ρ∂tρ+

1

2
∆ρ(∇∆†ρ∂tρ)2

}
,(3.8)

and gradW is the gradient operator on Wasserstein manifold, which is defined by following the standard
Riemannian geometry: for any curve {ρ(t, ·)}t∈(−δ,δ) with ρ|t=0 = ρ0,

d
dtρ|t=0 = ρ̇|t=0 = ρ̇0, and δ > 0 on

P+(M), the gradient of F at ρ0 in the sense of Wasserstein metric is defined by the unique tangent vector
gradWF(ρ0) such that the following identity holds:

d

dt
F(ρ(t, ·))

∣∣∣∣
t=0

= gW (ρ0)(gradWF(ρ0), ρ̇0).

By direct calculation, it can be shown that at any specific ρ ∈ P+(M) there is

gradWF(ρ) = gW (ρ)−1
(δF
δρ

)
= −∇ ·

(
ρ(x)∇δF

δρ
(x)
)
.

Furthermore, the second-order PDE (3.7) can be reformulated as a system of first-order PDEs given in the
following theorem.
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Theorem 3.1 ([11] Hamiltonian flow in dual coordinates). Consider Φ = (−∆ρ)
†∂tρ ∈ T ∗ρ P, then equation

(3.7) is equivalent to (1.1) which can be treated as a Hamiltonian system on T ∗P.

WHF (1.1) describes the evolution of density ρ as a function of space and time. This can be viewed as the
Eulerian formulation if using the language of classical fluid mechanics. Likewise, the dynamics can be written
in the Lagrangian formulation, which describes the particle motion, i.e., the evolution of particle position, X
as a function of time t. X is a random variable whose distribution follows the density ρ governed by (1.1).
The connections between two formulations are summarized in the following theorem.

Theorem 3.2 ([11]). Let (X(t))0≤t<t0 be a random process in Td with density ρ. Suppose X(t) satisfies

d2

dt2
X(t) = −∇ δ

δρ(t,X)
F(ρ(t,X),X), for any X0 ∈ Td,

Ẋ(0) = ∇Φ0(X0).

(3.9)

Then the density ρ(t, ·) of X is a solution of the WHF (1.1).

For simplicity, this theorem was presented with periodic boundary condition or the underlying manifold
being Td. By introducing a new momentum variable v(t,X), (3.9) is converted into a system of first-order
equations:

d

dt
X = v(t,X), X(0) = X0,(3.10a)

d

dt
v(t,X) = −∇ δ

δρ
F(ρ(t,X),X), v(0,X0) = ∇Φ(0,X0).(3.10b)

For convenience, we call the system (3.10) the particle WHF.

3.2. Parameterized WHF. As one of the main goals of this paper, we introduce the PWHF in this
subsection. The adopted strategy is to project the Lagrangian L in (3.6) onto a parameter space defined by
the push-forward maps, and then derive the corresponding Euler-Lagrange equation in the parameter space.

3.2.1. Parameter space defined by push-forward maps. Let T : Rd → Rd be a measurable map,
also called push-forward map in Rd. Given a reference distribution λ, the induced push-forward distribution,
denoted by T]λ, is defined as,

T]λ(E) = λ(T−1(E)) for all measurable E ⊂ Rd,

where T−1(E) is the pre-image of E.
Let us take T as parameterized map, namely for any θ ∈ Θ, Tθ : Rd → Rd is a parametric function with

parameter θ. Here Θ, as a subset of Rm, is called the parameter space, where m is the number of parameters of
Tθ (i.e., the dimension of θ). Typical examples of Tθ include Fourier expansion, finite element approximation,
and neural networks.

The map T(·)# : Θ→ P given by θ 7→ Tθ#λ naturally defines an immersion map from Θ to the probability
manifold P. Collecting all parameterized distributions together, i.e.,

PΘ =
{
ρθ = Tθ]λ : θ ∈ Θ

}
,

we obtain a finite-dimensional submanifold PΘ of P. We can define the tangent space of PΘ at each θ as
TρθPΘ = span{∂ρθ∂θ1

, · · · , ∂ρθ∂θm
}. The tangent bundle is then T PΘ = ∪θ∈Θ{ρθ}×TρθPΘ. On the other hand, the

cotangent space T ∗ρθPΘ is the dual space of TρθPΘ, and the cotangent bundle is T ∗PΘ = ∪θ∈Θ{ρθ} × T ∗ρθPΘ.
A counterpart to the Wasserstein metric defined on P can be introduced on the parameter space Θ ∈ Rm

by using the pullback operator through Tθ, i.e., G(θ) = Tθ]
∗gW , where gW is Wasserstein metric tensor given

in (3.5). This is the pullback Wassertein metric on the parameter space. It turns out that G(θ) is an m×m
positive semi-definite matrix which defines a bilinear form on the tangent space of Θ at θ, TθΘ ' Rm (rigorously
speaking TθΘ may be a subspace of Rm depending on the choice of Tθ as addressed in Remark 3.5 below). For
any θ ∈ Θ and ξ1, ξ2 ∈ TθΘ, we have

(3.11) G(θ)(ξ1, ξ2) = gW (ρθ)((Tθ])∗ξ1, (Tθ])∗ξ2),

where (Tθ])∗ξi is the tangent vector at Tθ]λ on the Wasserstein manifold due to the push-forward of ξi by the
map Tθ] for i = 1, 2.

This manuscript is for review purposes only.



6 H. WU, S. LIU, X. YE, AND H. ZHOU

Following the study detailed in [39], the metric tensor G(θ) takes the following form

(3.12) G(θ) =

∫
∇Ψθ(Tθ(z))∇Ψθ(Tθ(z))

> dλ(z),

where Ψθ = (ψθ,1, · · · , ψθ,m)> : Rd → Rm and ∇Ψθ is the m × d Jacobian of Ψθ. For each j = 1, 2, · · · ,m,
ψθ,j solves the following equation:

(3.13) ∇ · (ρθ∇ψθ,j(x)) = ∇ · (ρθ ∂θjTθ(T−1
θ (x))),

with condition limx→∞ ρθ(x)∇ψθ,j(x) = 0. We omit the derivation and the properties of G(θ). Interested
readers are referred to Section 3.1 of [39] for further details.

3.2.2. Parameterization of WHF. We introduce the parameterization of WHF in this section, which
is the first contribution of this work. Our treatment is outlined in the following flowchart:

Starting with a given Hamiltonian H(ρ,Φ)

⇓
By taking Legendre Transform of H, we obtain Lagrangian L(ρ, ρ̇)

⇓
Using L, we can define L on T Θ as L(θ, θ̇) = L((T·]λ)(θ), (Tθ]λ)∗θ̇)

⇓
By applying Legendre transform to L, we obtain the Hamiltonian in parameter space H(θ, p)

⇓
We formulate the PWHF as

θ̇(t) = ∂pH(θ(t), p(t)),

ṗ(t) = −∂θH(θ(t), p(t)).

Following this procedure, we derive the PWHF by leveraging the perspective of the Lagrangian mechanics.
To be more specific, as introduced in Section 3.1, we consider the Lagrangian

L(ρ, ρ̇) =
1

2
gW (ρ̇, ρ̇)−F(ρ),

where gW is defined in (3.5) and F(ρ) takes the general form in (1.4). We define the counterpart Lagrangian
L of L on T Θ as

L(θ, θ̇) = L(Tθ]λ, (Tθ])∗θ̇).

More precisely, denote ρθ = Tθ]λ, then (Tθ])∗θ̇ = ∂ρθ
∂θ θ̇, the Lagrangian L takes the following form

(3.14) L(θ, θ̇) = L
(
ρθ,

∂ρθ
∂θ

θ̇
)

=
1

2
θ̇>G(θ)θ̇ − F (θ),

where G(θ) is defined in (3.12), and F (θ) := F(ρθ). The detailed calculation of (3.14) is given in Appendix A.

Theorem 3.3 (Euler-Lagrange equation in parameter space). Consider the Lagrangian L defined in
(3.14), as well as the variational problem

IΘ(θ) = inf
θ

{∫ T

0

L(θ, θ̇)dt : ρθ|t=0 = ρ0, ρθ|t=T = ρT

}
.(3.15)

The Euler-Lagrange equation of the above variational problem is the following second-order ODE,

(3.16) G(θ)θ̈ +

m∑
k=1

θ̇k∂θkG(θ)θ̇ − 1

2
[θ̇>∂θkG(θ)θ̇]mk=1 = −∇θF (θ)
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with θ̇ = [θ̇k]mk=1. Here [ak]mk=1 represents an m-dimensional vector with ak as its kth component.

Proof. Recall the Euler-Lagrange equation of the parameterized variational problem (3.15) is

(3.17)
d

dt

∂

∂θ̇
L(θ, θ̇) =

∂

∂θ
L(θ, θ̇).

The left-hand side of (3.17) is

d

dt

∂

∂θ̇
L(θ, θ̇) = G(θ)θ̈ +

m∑
k=1

θ̇k∂θkG(θ)θ̇,

and the right-hand side of (3.17) is

∂

∂θ
L(θ, θ̇) =

1

2
[θ̇>∂θkG(θ)θ̇]mk=1 −∇θF (θ).

Plugging them into (3.17) yields (3.16).

Now we temporarily assume that G(θ) is non-singular for any θ ∈ Θ (the more general case where
G(θ) can be singular will be discussed in Remark 3.5), we can introduce the associated Hamiltonian via
Legendre transform. Specifically, we denote T ∗Θ as the phase space (cotangent bundle) of Θ, then define
H(·, ·) : T ∗Θ→ R as

(3.18) H(θ, p) = sup
θ̇

{θ̇>p− L(θ, θ̇)} =
1

2
p>G(θ)−1p+ F (θ).

Following the convention in classical mechanics [21], we introduce the momentum

(3.19) p =
∂L(θ, θ̇)

∂θ̇
= G(θ)θ̇.

Then the Hamiltonian system associated with (3.16) can be formulated as

θ̇ =
∂H(θ, p)

∂p
= G(θ)−1p,(3.20a)

ṗ = −∂H(θ, p)

∂θ
=

1

2
[p>G(θ)−1∂θkG(θ)G(θ)−1p]mk=1 −∇θF (θ).(3.20b)

We call the ODE system (3.20) the parameterized Wasserstein Hamiltonian flow (PWHF).

Remark 3.4 (Existence and uniqueness of PWHF). Under the assumption that G(θ) is non-singular on

Θ, one can verify that both ∂H(θ,p)
∂θ and ∂H(θ,p)

∂p are locally Lipschitz. Thus by the standard ODE theory,

the PWHF (3.20) must have a unique solution over a finite time interval [0, t∗) for some t∗ > 0 from any
given initial value. However, determining t∗ is a challenging problem due to the complex structure of Tθ and
geometry of PΘ. We leave this for future investigations.

Remark 3.5 (Singular G(θ)). In our derivation of the PWHF (3.20), the metric tensor G is assumed to
be non-singular. This assumption can be relaxed. If G is singular, the PWHF can be derived similarly with
the following modifications: we restrict TθΘ = T ∗θ Θ = R(G(θ)) ⊂ Rm at each θ, where R(·) denotes the
range (i.e., column space) of its argument matrix. Then G(θ) is positive definite, hence a non-degenerate inner
product, on the tangent and cotangent spaces with corresponding bundles denoted by {(θ, TθΘ) : θ ∈ Θ} and
{(θ, T ∗θ Θ) : θ ∈ Θ} respectively. We can define H(·, ·) : T ∗Θ→ R by

(3.21) H(θ, p) = sup
θ̇∈R(G)

{θ̇>p− L(θ, θ̇)} =
1

2
p>G(θ)†p+ F (θ),

where G(θ)† is the Penrose-Moore pseudo inverse of G(θ). In this case, the Legendre transform is well-defined,
because the maximizer θ̇ = G(θ)†p can be attained as long as p ∈ T ∗θ Θ = R(G(θ)), which is always true given

the definition of momentum p = G(θ)θ̇ ∈ R(G(θ)). The resulting Hamiltonian system on (θ, p) is the same as
(3.20a) and (3.20b) except for two modifications: G−1 is replaced by G†; and (3.20b) has an additional term
due to the derivative of the pseudo inverse G(θ)†. Detailed derivation procedure about this additional term
can be found in Section 3.4.2.
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3.2.3. Transformation between T ∗Θ and T ∗PΘ induced by the push-forward map. In the
previous section, we derive a Hamiltonian system PWHF (3.20) on the phase space T ∗Θ. But how the
parameter-momentum pair (θ, p) in PWHF relates to the probability-potential pair (ρ,Φ) in WHF is not
clearly illustrated. In this section, we connect (θ, p) to (ρ,Φ) ∈ T ∗PΘ by deriving a transformation τ that
maps every (θ, p) ∈ T ∗Θ to (ρθ,Φθ,p) ∈ T ∗PΘ. We again assume G(θ) is non-singular here for simplicity, and
the general singular case can be handled similarly by replacing G(θ)−1 with G(θ)† as described in Remark 3.5.

To determine the map from (θ, p) to Φθ,p, we recall that in the derivation of WHF (1.1) detailed in [11],
the relation between Φ and ρ̇ is given by

(3.22) Φ = ∂ρ̇L(ρ, ρ̇).

If restricting (ρ, ρ̇) on T PΘ, i.e., setting (ρ, ρ̇) as (ρθ, (Tθ])∗θ̇) = (ρθ,
∂ρθ
∂θ · θ̇), we obtain

(3.23) Φ = ∂ρ̇L
(
ρθ,

∂ρθ
∂θ
· θ̇
)

= −∆†ρθ (−∇ · (ρθ∇Ψ>θ θ̇)) = Ψ>θ θ̇,

where Ψθ : Rd → Rm is defined in (3.13). On the other hand, we define the momentum p ∈ T ∗θ Θ through

p = G(θ)θ̇ in (3.19). Thus, θ̇ = G(θ)−1p, and by plugging this into (3.23), we obtain

(3.24) Φθ,p = Ψ>θ G(θ)−1p.

By combining ρθ and Φθ,p together, we obtain the following transformation τ from T ∗Θ to T ∗PΘ:

τ : T ∗Θ −→ T ∗PΘ,

(θ, p) 7−→ (Tθ]λ, Ψ>θ G(θ)−1p).(3.25)

Further discussions on the geometric properties, such as whether or not τ preserves the symplectic form, are
provided in Appendix B.

Once the solution {θ(t), p(t)} to PWHF is computed, the transformation τ gives a valid approximation
to the solution (ρ(t, ·),Φ(t, ·)) of WHF. However, in order to significantly improve computation efficiency of
PWHF, we will introduce a simplified version of the pullback Wasserstein metric G(θ) in the next section, and
establish a bound for the approximation error, measured by the Wasserstein metric, between our numerical
solution (ρθ(t), ∂θTθ(t) ◦ T−1

θ(t)(·)θ̇(t)) and the solution (ρ(t, ·),∇Φ(t, ·)) of the original WHF.

3.3. PWHF with a simplified metric. Theorem 3.3 reduces the PDE in density space to a parameter-
ized system in finite-dimensional space, hence potentially providing a way to compute the WHF by numerical
algorithms. However, the computational cost to solve (3.16), as well as (3.20), is still high. The main difficulty
comes from the computation of the metric tensor G. More precisely, directly evaluating G requires solving
m different elliptic PDEs where m is the number of parameters in the pushforward map Tθ, in which m can
be very large if we choose Tθ to be neural networks. In [39], a bi-level minimization scheme is proposed to
circumvent this challenge. By introducing several auxiliary functions, the term G(θ)−1θ is calculated as the
critical point of a min-max problem. However, it may still be expensive to solve such optimization problems
in general. In this paper, we develop another strategy by introducing a simplified metric Ĝ and use it to
replace G in the derivation. This new metric not only yields much simpler implementation and more effective
computations, but also enables us to establish a theoretical estimate in Wasserstein metric to quantify the
error of the approximation. Furthermore, our investigation shows that both the computation and theory can
be extended to the general case where Ĝ is not necessarily invertible, but positive semi-definite with constant
rank. Numerical results also demonstrate excellent approximation accuracy of this new metric.

Definition 3.6 (Simplified pullback Wasserstein metric in Θ). Let Tθ be the pushforward map and λ be
the reference distribution, we define the simplified pullback Wasserstein metric on PΘ as:

Ĝ(θ) =

∫
∂θTθ(z)

>∂θTθ(z) dλ(z).(3.26)

It is worth mentioning that this definition is directly inspired by (3.12) and (3.13). A more in-depth
motivation is influenced by the work of Otto [40] in which the Wasserstein metric is defined through an
isometric submersion from the space of push-forward operators O onto the Wasserstein manifold of density
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P(Rd). Here by the space of push-forward operators we meant that O is the set of smooth transformations T
on Rd. Let us consider the map T : Θ 3 θ 7→ Tθ ∈ O. We define the pullback metric on Θ as

Ĝ(θ) = T ∗gL2(λ),

where T ∗ is the pullback operation induced by T and gL2(λ) is the metric on the tangent space of O. To

evaluate Ĝ(θ), we consider any curve {θ(t)}−ε≤t≤ε in Θ, and denote θ̇(0) = d
dtθ(t)|t=0. By the definition of

pullback operation, we have

Ĝ(θ̇(0), θ̇(0)) = gL2(λ)

(
d

dt
Tθ(t)|t=0,

d

dt
Tθ(t)|t=0

)
= θ̇(0)>

(∫
Rd
∂θTθ(z)

>∂θTθ(z) dλ(z)

)
θ̇(0).

Thus we obtain (3.26). More precisely, we have Ĝ(θ) = (Ĝ(θ)ij)1≤i,j≤m, and

Ĝ(θ)ij =

d∑
k=1

∫
Rd
∂θiT

(k)
θ (z) · ∂θjT

(k)
θ (z) dλ(z),

where T
(k)
θ : Rd → R is the kth component of Tθ : Rd → Rd. The form of Ĝ(θ) indicates it as an m × m

semi-positive definite matrix for any θ ∈ Θ.
Replacing G by Ĝ in the expression of L, we can establish similar results as those stated in Theorem 3.3.

Theorem 3.7. Consider the variational problem

ÎΘ(θ) = inf
θ

{∫ T

0

L̂(θ, θ̇)dt : ρθ|t=0 = ρ0, ρθ|t=T = ρT

}
,(3.27)

where L̂ is defined as

(3.28) L̂(θ, θ̇) =
1

2
θ̇>Ĝ(θ)θ̇ − F (θ).

The Euler-Lagrange equation for the variation formulation is

(3.29) Ĝ(θ)θ̈ +

m∑
k=1

θ̇k∂θkĜ(θ)θ̇ − 1

2
[θ̇>∂θkĜ(θ)θ̇]mk=1 = −∇θF (θ).

Remark 3.8. In the 1-dimensional case, the simplified metric Ĝ coincides with the exact matrix G, see [39]
for a proof.

The following theorems state conditions for the matrix Ĝ to be invertible.

Theorem 3.9 (Positive definiteness of Ĝ). The metric Ĝ(θ) defined in (3.26) is positive definite if and
only if the m vectors {∂θkTθ : k = 1, · · · ,m} are linearly independent in L2(Rd;Rd, λ).

The proof of Theorem 3.9 is trivial and hence omitted. In what follows, we also provide a sufficient
condition for Ĝ to be invertible.

Theorem 3.10. If the metric G(θ) defined in (3.11) is positive definite, then Ĝ(θ) is positive definite.

Proof. Denote wi = ∂Tθ
∂θi
◦ T−1

θ − ∇ψi where −∆ρθψi = −∇ · (ρθ ∂Tθ∂θi
◦ T−1

θ ) for each i = 1, . . . ,m. Then

∇ · (ρθwi) = 0. Denote W = [w1, . . . , wm] ∈ Rd×m. For any θ̇ ∈ Rm, we have

θ̇>Ĝ(θ)θ̇ = θ̇>G(θ)θ̇ +
∑
i,j

∫
∇ψi · wjρθdxθ̇iθ̇j +

∫
|Wθ̇|2ρθdx

= θ̇>G(θ)θ̇ +

∫
|Wθ̇|2ρθdx

≥ θ̇>G(θ)θ̇,

where we used the fact
∫
∇ψi · wjρθdx = −

∫
ψi∇ · (ρθwj)dx = 0 for all i, j in the second equality. Hence

G(θ) � 0 implies Ĝ(θ) � 0.
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However, the converse of Theorem 3.10 is not necessarily true, as shown in the following counter example.

Example 3.11. On R4, let us consider Tθ(x) = x + θ1~v1(x) + θ2~v2(x), where ~v1(x) = (−x2, x1, 0, 0)>,
~v2(x) = (0, 0,−x4, x3)> are two rotational fields. One can verify that Tθ is invertible for any θ = (θ1, θ2). We
set reference λ = N (0, I4). Direct calculation shows that ∂Tθ

∂θ1
= ~v1, ∂Tθ

∂θ2
= ~v2 are linearly independent. By

Theorem 3.9, Ĝ(θ) is positive definite for any θ ∈ R2. On the other hand, we examine the positive definiteness
of G(θ) at θ = (0, 0). To find it, we first compute ρθ = N (0, diag((1 + θ2

1)I2, (1 + θ2
2)I2)). Then we solve

(3.30) −∇ · (ρθ∇ψ1(x)) = −∇ · (ρθ
∂Tθ
∂θ1
◦ T−1

θ (x)), θ = (0, 0).

The right hand side equals

−∇ρθ(x) · ~v1(T−1
θ (x))− ρθ(x)∇ · ~v1(T−1

θ (x)).

Recall at θ = (0, 0), ρθ = N (0, I4), we verify that both ∇ρθ(x) · ~v1(T−1
θ (x)) = 0 and ∇ · ~v1(T−1

θ (x)) = 0. Thus
the right hand side of (3.30) equals 0, so does ∇ψ1 = 0. By similar argument, ∇ψ2 = 0. Therefore, the metric
tensor G((0, 0)) = O2, the 2× 2 zero matrix, which is not positive definite.

3.4. Error bound for the continuous time PWHF. In this subsection, we give error estimates on
the continuous time dynamics (3.29). We assume that the matrix Ĝ has constant rank for θ ∈ Θ. The main
results of this section are Theorem 3.24 (error bound on ρ) and Theorem 3.27 (error bound on Φ). We shall
express (3.29) as a Hamiltonian system first.

Let us start by recalling some properties of the pseudo inverse operator for a positive semi-definite matrix.
As introduced before, Ĝ(θ)† is the Penrose-Moore pseudo inverse of the matrix Ĝ(θ). We write them as Ĝ†

and Ĝ respectively for notation simplicity below. The Penrose-Moore pseudo inverse operator is a well-defined,
one-to-one linear mapping. In addition, by [22, Theorem 4.3], we know that if Ĝ has constant rank, then

∂θkĜ
† = −Ĝ†(∂θkĜ)Ĝ† + Ĝ†Ĝ†(∂θkĜ)(I − ĜĜ†) + (I − Ĝ†Ĝ)(∂θkĜ)Ĝ†Ĝ†.(3.31)

Further, Penrose-Moore pseudo inverse satisfies the following estimate for any η ∈ Rm:

|Ĝ(θ)†η| ≤ 1

λmin(Ĝ(θ))
|η|,(3.32)

where | · | is the standard Euclidean norm of vectors and λmin(Ĝ(θ)) is the smallest nonzero eigenvalue of Ĝ(θ).

3.4.1. Parameterization of the potential energy. To obtain the error estimates, we need to express
the potential energy in terms of the pushforward map, which is given in this subsection.

If we have ρ = T]λ for some reference density λ and push-forward map T , the connection between ρ and
T is explicitly given by

ρ(x) = λ ◦ T−1(x)det(
d

dx
T−1(x)).(3.33)

Consider the parameterized push-forward map Tθ as well as the density function ρθ = Tθ]λ, we have

[
∂θρθ + divX

(
ρθ · ∂θTθ ◦ T−1

θ

)]
◦ Tθ = 0,(3.34)

where divX denotes the divergence operator with respect to x.
In the following, we consider the variation of F(ρ), and denote its function value at x as δ

δρF(ρ, x). Assume
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δ
δρF(ρ, ·) is smooth for each ρ, then for F (θ) = F(ρθ) we can verify:

∇θF (θ) =

∫
δF
δρ

(ρθ(x), x)∂θρθ(x) dx

=

∫
δF
δρ

(ρθ(Tθ(z)), Tθ(z))∂θρθ(Tθ(z)) det(∇zTθ(z)) dz

= −
∫
δF
δρ

(ρθ(Tθ(z)), Tθ(z))divX
[
ρθ(Tθ(z))∂θTθ(z)

]
det(∇zTθ(z)) dz

= −
∫
δF
δρ

(ρθ(x), x)divX

[
ρθ(x)∂θTθ ◦ T−1

θ (x)
]
dx

=

∫
∇δF
δρ

(ρθ(Tθ(z)), Tθ(z))
>∂θTθ(z)ρθ(Tθ(z)) det(∇zTθ(z)) dz

=

∫
∂θTθ(z)

>∇ δ

δρ
F(Tθ]λ(·), ·) ◦ Tθ(z) dλ(z).(3.35)

3.4.2. Simplified Hamiltonian dynamics with the pseudo inverse operator. In this part, we
study properties of the parameterized dynamics (3.29) in detail. From the equivalence between the Lagrange
and Hamiltonian mechanics, the second-order ODE (3.29) is equivalent to a first order Hamiltonian system
with Hamiltonian

H(θ, p) =
1

2
p>Ĝ†p+ F (θ).(3.36)

Remark 3.12. To derive the Hamiltonian system from the Lagrange mechanics, we require θ̇ ∈ R(Ĝ). This

condition can be verified as long as the initial value θ̇(0) lies in the range Ĝ(θ(0)), which shall be proved in
Lemma 3.19.

In the remaining part of this section, we make the following assumption:

Assumption 1. Assume that Ĝ(θ) is a smooth function of θ and

λmin,Θ := inf
θ∈Θ

λmin(Ĝ(θ)) > 0,

where λmin(Ĝ(θ)) is the smallest positive eigenvalue of matrix Ĝ(θ). We also assume

CΘ := sup
θ∈Θ

max
k
‖∂θkĜ(θ)‖ <∞,

where ‖∂θkĜ(θ)‖ is the standard matrix 2-norm of ∂θkĜ(θ).

Remark 3.13. Under assumption 1, the smallest nonzero singular of Ĝ(θ) is a smooth function of θ, and

λmin,Θ > 0 implies that Ĝ(θ) is constant rank, hence (3.31) holds.

Proposition 3.14. Under Assumption 1, the following is the Hamiltonian dynamics of (3.36):

θ̇ = Ĝ†p,(3.37a)

ṗ =
1

2
[(Ĝ†p)>(∂θkĜ)Ĝ†p]mk=1 −∇θF (θ)− S(θ, p),(3.37b)

where

S(θ, p) =
1

2

[
p>Ĝ†Ĝ†(∂θkĜ)(I − ĜĜ†)p+ p>(I − Ĝ†Ĝ)(∂θkĜ)Ĝ†Ĝ†p

]m
k=1

.(3.38)

Moreover, (3.37) is equivalent to (3.29).

Proof. First of all, we have

d

dt
θ = ∇pH(θ, p) = Ĝ†p,

which gives the equation in (3.37a). As for (3.37b), we apply (3.31) to

d

dt
p = −1

2
[p>∂θk(Ĝ†)p]mk=1 −∇θF (θ)
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Similarly, we can also prove that the dynamics (3.16) is equivalent to the Hamiltonian system (3.37) with

Ĝ replaced by G under the assumption that G is constant rank. We note that the term S(θ, p) in (3.38) is the

extra term mentioned in Remark 3.5 if replacing Ĝ by G. S vanishes if Ĝ or G is invertible. The Hamiltonian
structure guarantees the boundedness of |θ̇|, which further allows us to give a prior estimation on the error.

Lemma 3.15. Assume the potential F (θ) can be bounded from below, i.e., Fmin := infθ∈Θ F (θ) > −∞.
Suppose (θ, p) is solved from (3.37) with initial values (θ(0), p(0)), and we denote H0 = H(θ(0), p(0)). Under
Assumption 1, |θ̇| can be uniformly upper bounded by

(3.39) |θ̇| ≤

√
2(H0 − Fmin)

λmin,Θ
.

Proof. Since the value of the Hamiltonian H(θ, p) is conserved for any time t when (θ, p) solves the
Hamiltonian system (3.37), we have

(3.40)
1

2
θ̇>Ĝ(θ)θ̇ + F (θ) = H(θ(0), p(0)), for any t ≥ 0.

By (3.32) and the fact that θ̇ = Ĝ†p ∈ R(Ĝ), we have

(3.41)
1

2
θ̇>Ĝ(θ)θ̇ + F (θ) ≥ 1

2
λmin(Ĝ(θ))|θ̇|2 + Fmin ≥

1

2
λmin,Θ|θ̇|2 + Fmin.

Combining (3.40) and (3.41) yields (3.39).

3.4.3. Simplification of PWHFs. In this subsection, we show that the Hamiltonian system (3.37) can

be simplified even when Ĝ is not invertible. Specifically, we shall show that Ĝ(θ(t))θ̇(t) − p(t) remains zero
as long as its initial value is zero. In this case, we can also show that the term S(θ(t), p(t)) = 0 for all t.

To this end, we need to investigate properties of the metric Ĝ. From its definition (3.26), we can see that Ĝ
is the inner product matrix for the functions {∂θkTθ : k = 1, · · · ,m} in the L2(Rd;Rd, λ) space. We define
Qθ := span{∂θkTθ(·) : k = 1, · · · ,m} to be the subspace of L2(Rd;Rd, λ). The following lemma gives the
orthogonal projection operator from L2(Rd;Rd, λ) onto Qθ.

Lemma 3.16. Define kernel Kθ(·, ·) : Rd × Rd →M(Rd), where M(Rd) is the space of d× d matrices,

Kθ(z
′, z) = ∂θTθ(z

′)Ĝ†(θ)∂θTθ(z)
>,(3.42)

and the linear operator Kθ on L2(Rd;Rd, λ) as

Kθ[f ](·) = ∂θTθ(·)Ĝ†(θ)
∫
∂θTθ(z)

>f(z) dλ(z)(3.43)

=

∫
Kθ(·, z)f(z) dλ(z).(3.44)

where f ∈ L2(Rd;Rd, λ). Then the operator Kθ is the orthogonal projection from L2(Rd;Rd, λ) onto Qθ ⊂
L2(Rd;Rd, λ).

Proof. Assume 〈f, ∂θkTθ〉L2(λ) = 0, for k = 1, · · · ,m, then
∫
∂θTθ(z)

>f(z) dλ(z) is the zero vector, as a
result Kθ[f ] = 0.

On the other side, for ∂θkTθ ∈ Qθ with k = 1, · · ·m, the vector ~v =
∫
∂θTθ(z)

>∂θkTθ(z) dλ(z) is the k-th

column vector of the matrix Ĝ, so ~v = Ĝek, which implies that we can decompose ek = Ĝ†~v+η with η ⊥ R(Ĝ).
We first claim that ∂θTθ(·)η is the zero function. In fact we have

0 = Ĝη =

∫
∂θTθ(z)

>∂θTθ(z)η dλ(z),

which shows that ∂θTθ(z)η ∈ Qθ is orthogonal to the linear space Qθ, hence equals to zero.
We can check

Kθ[∂θkTθ](·) = ∂θTθ(·)Ĝ†(θ)
∫
∂θTθ(z)

>∂θkTθ(z) dλ(z)

= ∂θTθ(·)Ĝ†~v
= ∂θTθ(·)(ek − η) = ∂θkTθ(·)

So Kθ is the orthogonal projection from L2(Rd;Rd, λ) onto Qθ.
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The following proposition is a direct result of Lemma 3.16:

Proposition 3.17. For any f ∈ L2(Rd;Rd, λ), we have∫
∂θTθ(z)

>f(z) dλ(z) ∈ R(Ĝ).(3.45)

Proof. By the property of projection operator Kθ, we know that Kθ[f ] = ∂θTθγ
∗ with

γ∗ = argminγ

∫ ∣∣∂θTθ(z)γ − f(z)
∣∣2 dλ(z).(3.46)

Through the normal equation of (3.46), we have∫
∂θTθ(z)

>f(z) dλ(z) =

(∫
∂θTθ(z)

>∂θTθ(z) dλ(z)

)
γ∗ = Ĝ(θ)γ∗ ∈ R(Ĝ).

With Proposition 3.17 and the integral form (3.35) of ∇θF (θ), we conclude:

Proposition 3.18. For energy F with smooth L2 first variation, we always have ∇θF (θ) ∈ R(Ĝ(θ)).

Now we go back to the parameterized system (3.37). Under Assumption 1, {θ} is a C2 curve on Θ, hence
we can define the following function Γθ(·, t) ∈ L2(λ) associated to θ,

(3.47) Γθ(z, t) =

m∑
k=1

θ̇k∂θk∂θTθ(z)θ̇ + ∂θTθ(z)θ̈.

The following lemma provides an explicit expression on the time derivative of Ĝ(θ)θ̇ − p.
Lemma 3.19. If (θ, p) solves the parameterized system (3.37), then there is

d

dt
[Ĝ(θ)θ̇ − p] =

∫
∂θTθ(z)

>
[
Γθ(z, t) +∇ δ

δρ
F(Tθ]λ(·), ·) ◦ Tθ(z)

]
dλ(z) + S(θ, p)(3.48)

Proof. We first have

Ĝ(θ)θ̈ =

∫
∂θTθ(z)

>∂θTθ(z)θ̈ dλ(z).

In addition, there is

d

dt
(Ĝ(θ)θ̇) =

∫ m∑
k=1

θ̇k∂θk∂θTθ(z)
>∂Tθ(z)θ̇dλ(z) +

∫
∂θTθ(z)

>

 m∑
k=1

θ̇k∂θk∂θTθ(z)θ̇

 dλ(z) + Ĝ(θ)θ̈

=
1

2
[θ̇>(∂θkĜ)θ̇]mk=1 +

∫
∂θTθ(z)

>

 m∑
k=1

θ̇k∂θk∂θTθ(z)θ̇ + ∂θTθ(z)θ̈

 dλ(z)

=
1

2
[θ̇>(∂θkĜ)θ̇]mk=1 +

∫
∂θTθ(z)

>Γθ(z, t) dλ(z),

where

1

2
[θ̇>(∂θkĜ)θ̇]mk=1 =

1

2

[∫
θ̇∂θk∂θTθ(z)

>∂Tθ(z)θ̇dλ(z) +

∫
θ̇∂Tθ(z)

>∂θk∂θTθ(z)θ̇dλ(z)

]m
k=1

=
[ ∫

θ̇∂θk∂θTθ(z)
>∂Tθ(z)θ̇dλ(z)

]m
k=1

=
[ ∫

∂θk

( m∑
j=1

θ̇j∂θjTθ(z)
)>
∂Tθ(z)θ̇dλ(z)

]m
k=1

=

∫
∂θ

( m∑
j=1

θ̇j∂θjTθ(z)
)>
∂Tθ(z)θ̇dλ(z)

=

∫ m∑
j=1

θ̇j∂θj∂θTθ(z)
>∂Tθ(z)θ̇dλ(z)
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Combining the results above and (3.37b), we get

d

dt
[Ĝ(θ)θ̇ − p] =

1

2
[θ̇>(∂θkĜ)θ̇]mk=1 +

∫
∂θTθ(z)

>Γθ(z, t) dλ(z)−
(

1

2
[θ̇>(∂θkĜ)θ̇]mk=1 −∇θF (θ)− S(θ, p)

)
=

∫
∂θTθ(z)

>
[
Γθ(z, t) +∇ δ

δρ
F(Tθ]λ(·), ·) ◦ Tθ(z)

]
dλ(z) + S(θ, p)

which yields (3.48).

We are ready to establish the estimation on the magnitude of Ĝ(θ(t))θ̇(t)− p(t).

Theorem 3.20. Let (θ, p) be the solution of (3.37) and denote r(t) := Ĝ(θ(t))θ̇(t)−p(t) and R(t) := |r(t)|2,
then there is

R(t) ≤ R(0)eCSt,(3.49)

where CS := 2
√

2m(H0 − Fmin)CΘλ
−3/2
min,Θ.

Proof. Taking the time derivative of R(t), we obtain

(3.50)

d

dt
R(t) = 2〈r(t), d

dt
r(t)〉

= 2
〈
Ĝθ̇ − p,

∫
∂θTθ(z)

>
[
Γθ(z, t) +∇ δ

δρ
F(Tθ]λ(·), ·) ◦ Tθ(z)

]
dλ(z) + S(θ, p)

〉
= 2
〈
Ĝθ̇ − p,

∫
∂θTθ(z)

>
[
Γθ(z, t) +∇ δ

δρ
F(Tθ]λ(·), ·) ◦ Tθ(z)

]
dλ(z)

〉
+ 2〈Ĝθ̇ − p, S(θ, p)〉.

By Proposition 3.17, we know that
∫
∂θTθ(z)

>[Γθ(z, t) +∇ δ
δρF(Tθ]λ(·), ·) ◦ Tθ(z)] dλ(z) ∈ R(Ĝ(θ)). Due to

the property of pseudo inverse operator, Ĝ(θ(t))θ̇(t)− p(t) is orthogonal to the subspace R(Ĝ(θ)), hence the
first term in (3.50) vanishes. As a result, we can simply write:

d

dt
R(t) = 〈Ĝθ̇ − p, S(θ, p)〉.(3.51)

By Lemma 3.15, we know that θ̇ is uniformly bounded, so we can show that∣∣∣[p>Ĝ†Ĝ†(∂θkĜ)(I − ĜĜ†)p]mk=1

∣∣∣ =
∣∣∣[θ̇Ĝ†(∂θkĜ)(p− Ĝθ̇)]mk=1

∣∣∣
≤
√
m|θ̇|

λmin(Ĝ)
max
k
‖∂θkĜ‖ · |Ĝθ̇ − p|

≤ 1

2
CS · |Ĝθ̇ − p|.

Similarly, we can also bound
∣∣∣[p>(I − Ĝ†Ĝ)(∂θkĜ)Ĝ†Ĝ†p]mk=1

∣∣∣ by 1
2CS · |Ĝθ̇ − p|. These two bounds and the

definition of S(θ, p) in (3.38) yield

|S(θ, p)| ≤ 1

2
CS · |Ĝθ̇ − p|.(3.52)

Combining (3.51) and (3.52), we get:

d

dt
R(t) ≤ 2|Ĝθ̇ − p| · |S(θ, p)| ≤ CS · |Ĝθ̇ − p|2 = CSR(t).

Applying Gronwall’s inequality yields (3.49).

An immediate consequence of Theorem 3.20 is that Ĝ(θ(t))θ̇(t) − p(t) = 0 for all t as long as p(0) =

Ĝ(θ(0))θ̇(0) which implies R(0) = 0. This result is summarized in the following proposition, whose proof is
omitted.
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Proposition 3.21. Under the same assumption as in Theorem 3.20, and set p(0) = Ĝ(θ(0))θ̇(0) for any
θ̇(0) ∈ Rm. Then system (3.37) is equivalent to:

θ̇ = Ĝ†p,(3.53a)

ṗ =
1

2
[(Ĝ†p)>(∂θkĜ)Ĝ†p]mk=1 −∇θF (θ).(3.53b)

We denote the ODE system (3.53) as Parameterized Wasserstein Hamiltonian Flow with simplified metric, or
for short as PWHF.

3.4.4. Error Analysis on the PWHF. In Section 3.1, we discussed the particle WHF. Here we consider
its counterpart for the PWHF, i.e., the particle level dynamics induced by our parameterized dynamics in
parameter space:

(3.54) Ÿ
Θ

=
d

dt

(
∂θTθ(z0)θ̇

)
=

m∑
k=1

θ̇k∂θk∂θTθ(z)θ̇ + ∂θTθ(z)θ̈ = Γθ(T−1
θ (Y Θ), t),

where θ satisfies the ODE (3.53). This Lagrangian perspective enables us to carry out the error analysis results
of PWHF. To be more specific, for a fixed initial position z0, we first estimate the difference between the vector
fields that drive X and Y Θ. The result leads to an estimation on the l2 distance between X and Y Θ for
t > 0. To achieve this goal, we introduce the particle level dynamics of the parameterized system, and provide
several useful lemmas. Here we assume the function δ

δρF to be Lipschitz continuous in the L2(Rd;Rd, λ) sense
as follows.

Assumption 2. There exists a constant CF such that for any two push-forward maps T and T̃ there is∫ ∣∣∣∇ δ

δρ
F(T]λ(·), ·) ◦ T (z)−∇ δ

δρ
F(T̃]λ(·), ·) ◦ T̃ (z)

∣∣∣2 dλ(z) ≤ CF
∫
|T (z)− T̃ (z)|2 dλ(z).(3.55)

Lemma 3.22 (2nd order dynamic of Y Θ). Let {θ} be a C2 curve on Θ. Assume

(3.56) Ÿ
Θ

(t) = Γθ(T−1
θ(t)(Y

Θ(t)), t), Y Θ(0) = Tθ(0)(z0), Ẏ
Θ

(0) = ∂Tθ(0)(z0)θ̇(0),

admits a unique solution for any z0 ∈ Rd. Then Y Θ(t) = Tθ(t)(z0) for t ≥ 0.

Proof of Lemma 3.22. We denote XΘ(t) = Tθ(t)(z0). Taking time derivative of XΘ twice, we obtain

(3.57) Ẍ
Θ

=
d

dt

(
∂θTθ(t)(z0)θ̇(t)

)
= Γθ(T−1

θ(t)(X
Θ), t).

We can verify that XΘ(0) = Tθ(0)(z0) and Ẋ
Θ

(0) = ∂θTθ(0)(z0)θ̇(0). According to the uniqueness of ODE

solution, we know Y Θ(t) = XΘ(t) = Tθ(t)(z0) for any t ≥ 0.

The following lemma decomposes the dynamics (3.56) into three parts, which provides us a way to estimate
the difference between the particle level dynamics (3.10) and (3.56).

Lemma 3.23. Under the same assumptions as in Theorem 3.20 with initial p(0) = Ĝ(θ(0))θ̇(0), we can
decompose the second-order particle level dynamics (3.56) as

(3.58)

Ÿ
Θ

=
(

Γθ(T−1
θ (Y Θ), t)−Kθ[Γθ(·, t)](T−1

θ (Y Θ))
)

+

(
∇ δ

δρ
F(Tθ]λ(Y Θ),Y Θ)−Kθ

[ δ
δρ
F(Tθ]λ(·), ·) ◦ Tθ

]
(T−1
θ (Y Θ))

)
−∇ δ

δρ
F(Tθ]λ(Y Θ),Y Θ),

which can also be written as a second-order system

(3.59)
Ẏ

Θ
= PΘ,

Ṗ
Θ

= (Id−Kθ)[Γθ(·, t) +∇ δ

δρ
F(Tθ]λ(·), ·) ◦ Tθ(·)](T−1

θ (Y Θ))−∇ δ

δρ
F(Tθ]λ(Y Θ),Y Θ).
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Proof. We can rewrite Ÿ
Θ

as:

(3.60)

Ÿ
Θ

=
(

Γθ(T−1
θ (Y Θ), t)−Kθ[Γθ(·, t)](T−1

θ (Y Θ))
)

+

(
∇ δ

δρ
F(Tθ]λ(Y Θ),Y Θ)−Kθ[∇

δ

δρ
F(Tθ]λ(·), ·) ◦ Tθ](T−1

θ (Y Θ))

)
−∇ δ

δρ
F(Tθ]λ(Y Θ),Y Θ)

+

(
Kθ[Γθ(·, t) +∇ δ

δρ
F(Tθ]λ(·), ·) ◦ Tθ](T−1

θ (Y Θ))

)
.

By Lemma 3.19, we know that∫
∂θTθ(z)

>
[
Γθ(z, t) +∇ δ

δρ
F(Tθ]λ(·), ·) ◦ Tθ(z)

]
dλ(z) =

d

dt
[Ĝ(θ)θ̇ − p]− S(θ, p).

By Theorem 3.20, we have that both d
dt [Ĝ(θ)θ̇ − p] and S(θ, p) equal to zero. Thus,∫

∂θTθ(z)
>
[
Γθ(z, t) +∇ δ

δρ
F(Tθ]λ(·), ·) ◦ Tθ(z)

]
dλ(z) = 0.

Then we can compute:

Kθ[Γθ(·, t) +∇ δ

δρ
F(Tθ]λ(·), ·) ◦ Tθ](T−1

θ (Y Θ))

= ∂θTθ(T
−1
θ (Y Θ))Ĝ†

∫
∂θTθ(z)

>
[
Γθ(z, t) +∇ δ

δρ
F(Tθ]λ(·), ·) ◦ Tθ(z)

]
dλ(z)

= 0.

Plugging the above identity into (3.60), we obtain (3.58).

To measure the first two terms in (3.58), we introduce two quantities that characterize the approximation
power of the push-forward map Tθ:

δ0 = sup
θ∈Θ

min
ζ∈T ∗

θ Θ

{∫
|∇ δ

δρ
F(Tθ]λ(·), ·) ◦ Tθ(z)− ∂θTθ(z)ζ|2 dλ(z)

}
= sup
θ∈Θ

{∫
|∇ δ

δρ
F(Tθ]λ(·), ·) ◦ Tθ(z)−Kθ[∇

δ

δρ
F(Tθ]λ(·), ·) ◦ Tθ](z)|2 dλ(z)

}
,(3.61)

and

δ1 =
∑

1≤i,j≤m

sup
θ∈Θ

min
ζ∈T ∗

θ Θ

{∫
|∂θi∂θjTθ(z)− ∂θTθ(z)ζ|2 dλ(z)

}

=
∑

1≤i,j≤m

sup
θ∈Θ

{∫
|∂θi∂θjTθ(z)−Kθ[∂θi∂θjTθ](z)|2 dλ(z)

}
.(3.62)

Another quantity δ2 measures how well the initial tangent space Qθ approximates the initial velocity:

δ2 = min
ζ∈T ∗

θ Θ

∫ ∣∣∣∇Φ(0, Tθ(0)(z))− ∂θTθ(0)(z)ζ
∣∣∣2 dλ(z)

=

∫ ∣∣∣∇Φ(0, Tθ(0)(z))−Kθ(0)[∇Φ(0, Tθ(0)(·))](z)
∣∣∣2 dλ(z).(3.63)

Now we are ready to provide an upper bound on the difference between ρθ of the PWHF and ρ of the
original WHF in the W2 sense based on the values of δ0, δ1, and δ2.

Theorem 3.24 (Error estimation on ρ). Let (ρ,Φ) be the solution of WHF (1.1) with given initial value
(ρ0,Φ0) on time interval [0, t0). Suppose p(0) =

∫
∂θT

>
θ(0)(z)∇Φ(0, Tθ(0)(z))dλ(z) and (θ, p) is the solution of
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PWHF (3.37) with initial value (θ(0), p(0)) Assume C∇Φ0
:= Lip(∇Φ0) < ∞ and denote ερ = W 2

2 (ρθ(0), ρ0)
as the initial approximation error. Then under Assumption 1 and 2, there is

(3.64) W 2
2 (ρθ(t), ρt) ≤ eCt

(
(1 + 2C2

∇Φ0
)ερ + 2δ2

)
+

(
3δ0
C

+
12δ1(H0 − Fmin)2

Cλ2
min,Θ

)
(eCt − 1). for 0 ≤ t < t0,

where C := 2 + 3C2
F , δ0 and δ1 are defined in (3.61) and (3.62) respectively, and H0 and Fmin are defined in

Lemma 3.15.

Proof. Let X be the process satisfying the system (3.10), i.e., X solves the ODE

(3.65) Ẍ = −∇X
δ

δρ(t,X)
F(ρ), X(0) ∼ ρ0, Ẋ(0) = ∇pH(X(0),∇Φ(0,X(0))) = ∇Φ(0,X(0)),

where ρ0(·) and Φ0(·) = Φ(0, ·) are the initial conditions of the WHF. We can verify that Law(X(t)) = ρ(t, ·)
for all t.

On the other hand, for {θ}t∈[0,t0), we consider the vector field Γθ(·, t) defined in (3.47) and another dynamic

(3.66) Ÿ (t) = Γθ(T−1
θ(t)(Y (t)), t), Y (0) = Tθ(0)(x0), Ẏ (0) = ∂θTθ(0)(x0)θ̇(0),

where x0 = X(0). From the definition of p(0) and proposition 3.17, we know that p(0) ∈ R(Ĝ(θ(0))), hence
we can apply the decomposition (3.58) for Y .

Suppose the Monge map from ρθ(0) = Tθ(0)]λ to ρ0, which exists and is unique under the 2-Wasserstein
metric, is given by ω and we assume the random variables X,Y are coupled via X(0) = ω(Y (0)).

Now consider the expected l2 distance between (X, Ẋ) and (Y , Ẏ )

(3.67) E(t) := E|(X, Ẋ)− (Y , Ẏ )|2.

Taking time derivative gives us

d

dt
E(t) = 2E((X, Ẋ)− (Y , Ẏ )) · ((Ẋ, Ẍ)− (Ẏ , Ÿ ))

≤ 2

√
E|(X, Ẋ)− (Y , Ẏ )|2

√
E|Ẋ − Ẏ |2 + E|Ẍ − Ÿ |2

≤ 2
√
E(t)

√
E(t) + E|Ẍ − Ÿ |2

≤ 2E(t) + E|Ẍ − Ÿ |2.(3.68)

From the fact that Kθ[∂θTθ θ̇](z) = ∂θTθ(z)θ̇, we can check

E|Γθ(T−1
θ (Y ), t)−Kθ[Γθ(·, t)](T−1

θ (Y ))|2

=

∫ ∣∣∣ m∑
k=1

θ̇k∂θk∂θTθ(z)θ̇ + ∂θTθ(z)θ̈ −Kθ
[ m∑
k=1

θ̇k∂θk∂θTθ(z)θ̇ + ∂θTθ(z)θ̈
]
(z)
∣∣∣2 dλ(z)

=

∫ ∣∣∣ m∑
k=1

θ̇k∂θk∂θTθ(z)θ̇ −Kθ
[ m∑
k=1

θ̇k∂θk∂θTθ(z)θ̇
]
(z)
∣∣∣2 dλ(z)

≤ |θ̇|4
∑

1≤i,j≤m

∫
|∂θi∂θjTθ(z)−Kθ[∂i∂θjTθ](z)|2 dλ(z)

=δ1|θ̇|4,

By the definition of δ0, we have

E
∣∣∣∣∇ δ

δρ
F(Tθ]λ(Y ),Y )−Kθ[∇

δ

δρ
F(Tθ]λ(·), ·) ◦ Tθ](T−1

θ (Y ))

∣∣∣∣2
=

∫
|∇ δ

δρ
F(Tθ]λ(·), ·) ◦ Tθ(z)−Kθ[∇

δ

δρ
F(Tθ]λ(·), ·) ◦ Tθ](z)|2 dλ(z)

≤ δ0.
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By Assumption 2 on the potential F(ρ), and notice that X is a push-forward of X(0) through the dynamics
(3.65), we have

E
∣∣∣∇ δ

δρ
F(Tθ]λ(Y ),Y )−∇ δ

δρ
F(ρ(X),X)

∣∣∣2 ≤ CFE|Y −X|2.(3.69)

Combining all last three inequalities and applying the decomposition in Lemma 3.23, we obtain

E|Ẍ − Ÿ |2 = E
∣∣∣ (Γθ(T−1

θ (Y ), t)−Kθ[Γθ(·, t)](T−1
θ (Y ))

)
+

(
∇ δ

δρ
F(Tθ]λ(Y ),Y )−Kθ[∇

δ

δρ
F(Tθ]λ(·), ·) ◦ Tθ](T−1

θ (Y ))

)
−
(
∇ δ

δρ
F(Tθ]λ(Y ),Y )−∇ δ

δρ
F(ρ(X),X)

) ∣∣∣2
≤ 3

(
δ0 + δ1|θ̇|4 + CFE|Y −X|2

)
≤ 3

(
δ0 + 4δ1

(H0 − Fmin)2

λ2
min,Θ

+ CFE|Y −X|2
)
.

Continuing from (3.68), we compute

d

dt
E(t) ≤ 2E(t) + 3

(
δ0 + 4δ1

(H0 − Fmin)2

λ2
min,Θ

+ CFE|Y −X|2
)

(3.70)

≤ 3δ0 + 12δ1
(H0 − Fmin)2

λ2
min,Θ

+ (2 + 3CF )E(t).(3.71)

Recalling C = 2 + 3CF and applying Gronwall’s inequality, we arrive at

(3.72) E(t) ≤ eCtE(0) +

(
3δ0
C

+
12δ1(H0 − Fmin)2

Cλ2
min,Θ

)
(eCt − 1).

Now we estimate the initial error

E(0) = E|X(0)− Y (0)|2 + E|Ẋ(0)− Ẏ (0)|2(3.73)

= Ez0∼λ|ω(Tθ(0)(z0))− Tθ(0)(z0)|2 + Ez0∼λ
∣∣∣∇Φ(0, ω(Tθ(0)(z0)))− ∂θTθ(0)(z0)θ̇(0)

∣∣∣2 .(3.74)

Since ω is the Monge map from ρθ(0) to ρ0, the term E|ω(Tθ(0)(z0)) − Tθ(0)(z0)|2 = W 2
2 (ρθ(0), ρ0) = ερ. For

the second term above, we have

Ez0∼λ
∣∣∣∇Φ(0, ω(Tθ(0)(z0)))− ∂θTθ(0)(z0)θ̇(0)

∣∣∣2
= Ez0∼λ

∣∣∣∇Φ(0, ω(Tθ(0)(z0)))−∇Φ(0, Tθ(0)(z0)) +∇Φ(0, Tθ(0)(z0))− ∂θTθ(0)(z0)θ̇(0)
∣∣∣2

≤ 2 Ez0∼λ
∣∣∣∇Φ(0, ω(Tθ(0)(z0)))−∇Φ(0, Tθ(0)(z0))

∣∣∣2 + 2 Ez0∼λ
∣∣∣∇Φ(0, Tθ(0)(z0))− ∂θTθ(0)(z0)θ̇(0)

∣∣∣2
≤ 2C2

∇Φ0
W 2

2 (ρθ(0), ρ0) + 2 Ez0∼λ
∣∣∣∇Φ(0, Tθ(0)(z0))− ∂θTθ(0)(z0)θ̇(0)

∣∣∣2 ,
and

Ez0∼λ
∣∣∣∇Φ(0, Tθ(0)(z0))− ∂θTθ(0)(z0)θ̇(0)

∣∣∣2
= E

∣∣∣∣∇Φ(0, Tθ(0)(z0))− ∂θTθ(0)(z0)Ĝ(θ(0))†
∫
∂θT

>
θ(0)(z)∇Φ(0, Tθ(0)(z))dλ(z)

∣∣∣∣2
= E

∣∣∣∇Φ(0, Tθ(0)(z0))−Kθ(0)[∇Φ(0, Tθ(0)(·))](z0)
∣∣∣2

= δ2.
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Thus the initial error

(3.75) E(0) ≤ (1 + 2C2
∇Φ0

)ερ + 2δ2.

Combining (3.72) and (3.75), we get

(3.76) E(t) ≤ eCt
(

(1 + 2C2
∇Φ0

)ερ + 2δ2

)
+

(
3δ0
C

+
12δ1(H0 − Fmin)2

Cλ2
min,Θ

)
(eCt − 1).

Since

W 2
2 (Law(Y ),Law(X)) ≤ E|Y −X|2 ≤ E(t),

and Law(Y (t)) = ρθ(t) = Tθ(t)]λ and Law(X(t)) = ρ(t, ·), we obtain (3.64).

Remark 3.25. Assumption 2 can be verified if ∇ δ
δρF is Lipschitz. As a special case, for the linear potential

F(ρ) =
∫
V (x) dρ(x), Assumption 2 holds true if ∇V is Lipschitz continuous.

Remark 3.26. From the proof of Theorem 3.24, we can see that there is a tradeoff between {δi : i = 0, 1, 2}
and λmin,Θ. In fact, if we choose G̃ as the inner product matrix of a subspace Q̃ ⊂ Qθ, the arguments

in this section still hold true. The smallest positive eigenvalue λmin(G̃) is no less than λmin(Ĝ), while the
corresponding approximation errors {δ̃i : i = 0, 1, 2} are generally larger than the original ones. A more
detailed analysis of the relationship among these quantities may serve as a future research direction.

Theorem 3.27 (Error estimation on Φ). Denote ~uΘ(t, ·) := ∂θTθ(t) ◦ T−1
θ(t)(·)θ̇(t) : Rd → Rd. If the

Hamilton-Jacobi equation

(3.77)
∂Φ(t, x)

∂t
+

1

2
|∇Φ(t, x)|2 = −∇ δ

δρ
F(ρ(x), x), Φ(0, ·) = Φ0(·),

admits a C1([0, t1)× Rd) solution on a time interval [0, t1), then there is

(3.78)

∫
Rd
|~uΘ(t, x)−∇Φ(t, x)|2ρθ(t)(x) dx ≤ 2(1 + Lip(∇Φ(t, ·))) C(F , ρ0,Φ0, θ0, p0, Tθ).

for all 0 ≤ t < min{t0, t1}, where ρθ(t) = Tθ(t)]λ, C(F , ρ0,Φ0, θ0, λ, Tθ, t) is the bound on the right hand side of
(3.64) and depends on potential F , the initial values ρ0,Φ0, θ(0), p(0), the push-forward map Tθ, and time t.

Proof. We can upper bound the average velocity discrepancy E|Ẋ − Ẏ |2 by

(3.79) E|Ẋ − Ẏ |2 ≤ E(t),

where E(t) is defined in (3.67).
On the given time interval [0, t1) in which the Hamilton-Jacobi equation for Φ(t, ·) possesses a regular

solution, we can verify Ẋ = ∇Φ(t,X) for t ∈ [0, t1). On the other hand, we know Ẏ = ∂θTθ ◦T−1
θ (Y )θ̇. Thus

we have Ẏ = ~uΘ(t,Y ). From the inequality that |a+ b|2 ≥ 1
2 |b|

2 − |a|2 for any two vectors a, b ∈ Rd, we can

estimate E|Ẋ − Ẏ |2 as

E|Ẋ − Ẏ |2 = E|∇Φ(t,X)− ~uΘ(t,Y )|2

= E|∇Φ(t,X)−∇Φ(t,Y ) +∇Φ(t,Y )− ~uΘ(t,Y )|2

≥ 1

2
E|∇Φ(t,Y )− ~uΘ(t,Y )|2 − E|∇Φ(t,X)−∇Φ(t,Y )|2.(3.80)

Using the definition of E(t) given in (3.67), the second term in (3.80) can be bounded by

(3.81) E|∇Φ(t,X)−∇Φ(t,Y )|2 ≤ Lip(∇Φ(t, ·))E|X − Y |2 ≤ Lip(∇Φ(t, ·))E(t).

Combining (3.79), (3.80), and (3.81), we obtain

E|∇Φ(t,Y )− ~uΘ(t,Y )|2 ≤ 2(1 + Lip(∇Φ(t, ·)))E(t).

Recalling (3.76), we obtain the estimate (3.78).
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Remark 3.28. Theorem 3.27 reveals that the approximation quality of the momentum depends on the
current distribution ρθ. In regions where ρθ has higher density, a better approximation of ~uΘ(t, ·) of ∇Φ(t, ·)
is anticipated.

Remark 3.29. The time intervals [0, t0) and [0, t1) used in Theorems 3.24 and 3.27 are determined by the
singularity development of ρ and Φ in the WHF (1.1) respectively. However, we would like to highlight that the
solutions of PWHF (3.37) and (3.53) may exist beyond these singularities. The same is true for the solution of
the particle WHF (3.10) due to the solution existence and uniqueness of ODEs. When this happens, we may
use X and v to define ρ and Φ beyond the singularity of (1.1). The error estimates obtained in both theorems
still hold as long as both the solutions of (3.10) and (3.53) exist. The examples on Wasserstein geodesic and
harmonic oscillators given in Section 5 can illustrate this situation. In both examples, the solutions of PWHF
exist on [0,∞) while finite time singularities are developed in ρ and Φ in (1.1).

3.5. Two examples of the PWHF. To better convey our idea on how PWHF is proposed and formu-
lated, we present two illustrative examples that have exact solutions for (3.53).

3.5.1. Harmonic oscillator with affine transform as the push-forward map. Let us use an affine
transform Tθ(z) = Γz + b, θ = (Γ, b), z ∈ Rd as the parameterized push-forward map. Here Γ is a d × d
invertible matrix and b is a d dimensional vector. We consider a Hamiltonian system with Hamiltonian
H(x, v) = 1

2 |v|
2 + 1

2x
>Ux, where U is d× d self-adjoint and positive definite matrix. The corresponding WHF

is

∂ρ(t, x)

∂t
+∇ · (ρ(t, x)∇Φ(t, x)) = 0,

∂Φ(t, x)

∂t
+

1

2
|∇Φ(t, x)|2 = −1

2
x>Ux,

with F =
∫

1
2x
>Uxρ(x)dx.

We take the initial values of this WHF as Gaussian distribution and quadratic function respectively, i.e.,
ρ0 = N (µ,Σ), and Φ(0, x) = 1

2x
>Mx, where Σ is the covariance and M is a symmetric positive definite matrix.

We choose the reference distribution as the standard normal, i.e. λ = N (0, I).
If writing θ = (Γ11, ...Γ1d,Γ21, ...,Γ2d, ...,Γd1, ...,Γdd, b1, ..., bd), it can be verified that the metric tensor

Ĝ(θ) = Id(d+1)×d(d+1), which is a constant matrix. When projected on the parameter space, the potential
becomes

F (θ) = F(ρθ) =

∫
Rd

1

2
x>Uxρθ(x) dx =

∫
Rd

1

2
(Γz + b)>U(Γz + b) dλ =

1

2
Tr(Γ>UΓ) +

1

2
b>Ub.

Thus the proposed PWHF is formulated as

θ̇ = Ĝ(θ)−1p = p,(3.82)

ṗ =
1

2
θ̇>∇θĜ(θ)θ̇ −∇θF (θ) = −∇θF (θ).(3.83)

We set the initial value as

θ(0) = (
√

Σ, µ), p(0) = (M
√

Σ,Mµ).

Then one can verify that ρθ(0) = Tθ(0)]λ = Law(
√

Σz + µ) = N (µ,Σ) = ρ0, here z ∼ λ. Thus ερ stated

in Theorem 3.24 equals 0; On the other hand, we know (Γ̇(0), ḃ(0)) = θ̇(0) = p(0) = (M
√

Σ,Mµ), and
∂θTθ(0)(z)θ̇(0) = Γ̇(0)z + ḃ(0) = M

√
Σz + Mµ = MTθ(0)(z) = ∇Φ(0, Tθ(0)(z)). Then one verifies that δ2 = 0

whose formulation is stated in Theorem 3.24.
Both equations (3.82) and (3.83) can be reduced to the following second-order differential equation

Γ̈(t) = −∇Γ

(
1

2
Tr(Γ>UΓ)

)
, b̈(t) = −∇b

(
1

2
b>Ub

)
,(3.84)

Γ(0) =
√

Σ, Γ̇(0) = M
√

Σ; b(0) = µ, ḃ(0) = Mµ.(3.85)

Since ∇Γ

(
1
2Tr(Γ>UΓ)

)
= 1

2 (U>Γ + UΓ) = UΓ. Assume U has a spectral decomposition U = QΛQ>, by
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substitution Ξ(t) = Q>Γ(t), Ξ(t) solves the equation Ξ̈(t) = −ΛΞ(t). Then Ξ(t) = cos(t
√

Λ)Πc+sin(t
√

Λ)Πs
1,

where Πc,Πs are constant d × d matrix that need to be determined by using the initial condition. Thus,
Γ(t) = QΞ(t) = Q(cos(t

√
Λ)Πc + sin(t

√
Λ)Πs). Similarly, one can verify b(t) = Q(cos(t

√
Λ)vc + sin(t

√
Λ)vs),

where vc, vs are two constant d dimensional vectors.

One can determine Πc = Q>
√

Σ,Πs =
√

Λ
−1
Q>M

√
Σ, vc = Q>µ, vs =

√
Λ
−1
Q>Mµ from the initial

condition (3.85), and obtain the solution to the PWHF as

Γ(t) = (cos(t
√
U) + sin(t

√
U)
√
U
−1
M)
√

Σ,

b(t) = (cos(t
√
U) + sin(t

√
U)
√
U
−1
M)µ.

One can tell that

span

{
∂Tθ(·)
∂θl

}
1≤l≤d(d+1)

= span

{
...,

∂Tθ(·)
∂Γij

, ...,
∂Tθ(·)
∂bk

, ...

}
.

where ∂Tθ(x)
∂Γij

= xjei,
∂Tθ(·)
∂bk

= ek. Then

∇ δ

δρ
F(ρ, x) = Ux =

∑
1≤i,j≤d

Uijxjei ∈ span

{
∂Tθ
∂θl

}
1≤l≤d(d+1)

.

Thus the quantity δ0 introduced in (3.61) equals 0. On the other hand, since Tθ is linear w.r.t. to θ, ∂
2Tθ(·)
∂θ2 = 0,

thus δ1 as defined in (3.62) is also 0. Hence we verify that ερ, δ0, δ1, δ2 = 0, according to the error estimation
provided in (3.64), one can tell that the parameterized Hamiltonian flow {(Γ(t), b(t))} recovers the exact flow
{ρ(t, ·),Φ(t, ·)}.

In addition, denote (X,P t) = (Γ(t)z + b(t), Γ̇(t)z + ḃ(t)), one can verify

Ẋ = P , X0 ∼ N (µ,Σ);

Ṗ = −∇V (X), P 0 = ∇Φ(0,X0),

by direct calculation, this also leads to the aforementioned assertion.

3.5.2. Entropic potential with diagonal matrix as the push-forward map. Here we consider a
WHF with F(ρ) taken as the entropic potential E(ρ) =

∫
ρ log ρ dx, i.e.,

∂ρ(t, x)

∂t
+∇ · (ρ(t, x)∇Φ(t, x)) = 0, ρ(0, ·) = N (0, Id);(3.86)

∂Φ(t, x)

∂t
+

1

2
|∇Φ(t, x)|2 = −δE(ρ)

δρ
(t, x), Φ(0, x) =

|x|2

2
.(3.87)

Here we have δE(ρ)
δρ (t, x) = 1 + log ρ(t, x). Again, let us take the reference distribution λ = N (0, Id), and

the push-forward map is a linear transform with diagonal matrix, i.e., Tθ(z) = Dz, where D = diag(D1, ..., Dd)

is d× d diagonal matrix with Dk > 0 for 1 ≤ k ≤ d. Then the parameter θ = (D1, ..., Dd), and Ĝ(θ) = Id×d.
In addition, we have

E(ρθ) =

∫
ρθ log ρθ dx =

∫
Rd

log

(
1

(2π)
d
2 det(D)

)
− 1

2
x>D−2x

 ρθ dx = − log(2π)
d
2 −

d∑
k=1

logDk −
1

2
.

The PWHF is reduced to θ̈ = −∇θF (θ), and it becomes the following equation

(3.88) D̈k(t) =
1

Dk(t)

1Assume f : Rd → R is an analytical function with power expansion f(x) =
∑∞
k=0 akx

k, for any square matrix A, we
define f(A) =

∑∞
k=0 akA

k. Typically, if A is self-adjoint and has spectral decomposition A = Qdiag(λ1, ..., λd)Q>, then f(A) =
Qdiag(f(λ1), ..., f(λd))Q>.
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We set the initial values as

Dk(0) = 1, Ḋk(0) = 1, 1 ≤ k ≤ d.

By a similar argument as given in the previous example, one can verify that ρθ(0) = N (0, Id) = ρ0, as well as

∂θTθ(0)(z)θ̇(0) = ∇Φ(0, Tθ(0)(z)). Thus we have ερ = 0, δ2 = 0.
Since all the Dk solve the same differential equation with common initial conditions, we simply drop the

subscript and denote each Dk as D. By multiplying Ḋ(t) on both sides of (3.88), one can verify that D solves
Ḋ(t) =

√
1 + logD(t). And thus we can solve for

(3.89) D(t) = exp((χ−1(χ(1) +
e

2
t))2 − 1),

here χ(·) denotes the primitive function of et
2

. Let us denote X̂ = Tθ(Z) = D(t)Z with Z ∼ λ. Then it

can be verified that {X̂} solves the following Vlasov-typed ordinary differential equation associated to the
Wasserstein Hamiltonian flow (3.86), (3.87),

(3.90)
d2

dt2
X̂ = −∇δE(ρ)

δρ
(t, X̂) = −∇ log ρ(t, X̂),

d2

dt2
X̂0 ∼ ρ0,

d

dt
X̂0 = X0.

where ρ(t, ·) denotes the density of Law(X̂).

As a result, we can tell that ρθ = Tθ]λ = Law(X̂t) = N (0, D2(t)Id) exactly solves for ρt of the Hamiltonian
flow (3.86),(3.87). At the same time, the momentum ~uΘ obtained from the parameterized Hamiltonian flow

satisfies ~uΘ(t, X̂) = ∂θTθ ◦ T−1
θ (X̂)θ̇ = Ḋ(t)T−1

θ D(t)X̂0 = Ḋ(t)X̂0 = d
dtX̂. This verifies that ~uΘ(t, ·) exactly

solves for ∇Φ(t, ·) from the Hamiltonian flow (3.86),(3.87).

4. Numerical scheme. In this section, we develop a numerical scheme to solve the PWHF (3.53). Since
(3.53) is a Hamiltonian system, it is desirable that the scheme has a symplectic structure. For clarity, we
denote the iteration number of variables as superscripts in this section.

Symplectic Scheme We start from the following sympletic Euler scheme [26],

θl+1 − θl

h
= ∇pH(θl+1, pl) = Ĝ(θl+1)†pl,(4.1a)

pl+1 − pl

h
= −∇θH(θl+1, pl),(4.1b)

where h > 0 is the time step size and l ∈ N is iteration number. Note that (4.1a) is implicit in θl+1, which
needs to be solved from this equation for fixed (θl, pl). To solve (4.1a), we employ a fixed point iteration
method. For convenience, we call the fixed point procedure the inner iteration for any fixed (θl, pl), while the
advancement in time, namely the iterations of (4.1) in l, the outer iteration. For each (θl, pl), we can solve for
θl+1 in (4.1a) by the following fixed point iterations:

ξl,j+1 = argmin
ξ

{1

2
ξ>Ĝ(αl,j)ξ − ξ>pl

}
,(4.2a)

αl,j+1 = θl + hξl,j+1.(4.2b)

for l = 1, 2, . . . . We have two choices to initialize the above fixed point iterations. The first one is to set
αl,0 = θl and ξl,0 = (θl−θl−1)/h, and the second choice is to set αl,0 = θl and ξl,0 = Ĝ(θl)†pl. The first choice
utilizes information from previous time step and is more computationally efficient, while the second choice
requires to solve a linear system, but generally performs better than the first one. We adopt the second way
to initialize α, ξ in all of our experiments.

If (αl,j , ξl,j) → (αl,∗, ξl,∗) as j → ∞, then we set θl+1 = αl,∗ and pl+1 = pl + h 1
2 (ξl,∗)>∇θĜ(θl+1)ξl,∗ −

h∇θF (θl+1). It can be shown that this fixed point iteration converges if λmin(Ĝ(θ)) is bounded away from 0.
In our experiments, the minimization subproblem of ξ is approximated by a one-step gradient descent with
step size γ:

ξl,j+1 = ξl,j − γ(Ĝ(αl,j)ξl,j − pl),
and the inner iteration (4.2) reduces to

ξl,j+1 = ξl,j − γ(Ĝ(θl + hξl,j)ξl,j − pl).
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which is the fixed point iterations applied to solving ξ from J(ξ) := (Ĝ(θl + hξ)ξ − pl = 0. Since ∇ξJ(ξ) =

h∇Ĝ(θl + hξ)ξ + Ĝ(θl + hξ), for certain choices of Tθ (e.g. Tθ(z) = Γz + b and z ∼ λ = N(0, I), or
Tθ(z) = z+σ(Γz+ b), or deeper ResNet, or normalizing flows with bounded σ, σ′, σ′′ where σ is the activation
function) we can show that there exists M > 0 such that ‖∇ξJ(ξ)‖ ≤ M for all ξ. Then τ ∈ (0, 1/M)
guarantees that the fixed point iteration is linearly convergent since I − τJ is a contraction.

Useful tricks in implementation in PyTorch We discuss a few tricks in implementing the symplectic
Euler scheme (4.1) when using a machine learning package such as PyTorch. PyTorch leverages automatic
differentiation and can quickly compute the gradient of a scalar valued function with input dimension d. How-
ever, it takes O(kd) complexity to compute the Jacobian of a vector-valued function with k output dimension.
In our case, we need to repeatedly compute the matrix-vector product involving ∂θTθ(z) and some vector
η ∈ Rd:

Ĝ(θ)η =

∫
∂θTθ(z)

>∂θTθ(z)η dλ(z).(4.3)

We need to do n × d times differentiation to get {∂θTθ(zi)}ni=1 where n is the number of samples and d is
dimension. To avoid such computation, we design a duplication trick based on chain rule to evaluate this
term without reducing the efficiency. We duplicate the push-forward map Tθ to get an identical copy Tθ̃, with

exactly the same structure and value of parameters, but the parameters θ̃ are detached from the computational
graph of the original parameters θ. Then we evaluate the scalar-valued integral:

loss(θ, θ̃) =

∫
Tθ(z)

>Tθ̃(z) dλ(z).(4.4)

We auto differentiate it with respect to the parameters θ̃ and compute the inner product between this gradient
and vector η:

g1(θ, θ̃) = ∂θ̃loss(θ, θ̃) · η =

∫
Tθ(z)

>∂θ̃Tθ̃(z)η dλ(z).(4.5)

Finally we auto differentiate g1 w.r.t parameters θ and notice the fact that θ̃ and θ has identical value, we get:

g2(θ, θ̃) = ∂θg1(θ, θ̃) =

∫
∂θTθ(z)

>∂θ̃Tθ̃(z)η dλ(z) = Ĝη.

In this way, we obtain the value Ĝη with high efficiency and accuracy. Similarly, we can also evaluate
[η>(∂θkĜ)η]mk=1, which shows up in the second equation in (3.53):

[η>(∂θkĜ)η]mk=1 = ∇θ[η>g2(θ, θ̃)] +∇θ̃[η
>g2(θ, θ̃)] = 2 · ∇θ[η>g2(θ, θ̃)].

Here we used chain rule and the fact that θ = θ̃.
Evaluate Ĝ†p by solving linear system In the fixed-point iteration, we need to compute ξ0 = Ĝ(θk)†pk

in the beginning of each inner iteration. The simplified form metric tensor Ĝ is defined through the push-
forward map via equation (3.26), which can be evaluated through samples, but the computational cost grows
fast when the number of parameters increases. Fortunately, the equations in (3.53) can be treated as linear
system, hence we can apply iterative method to solve the system. In this sense, we don’t require the full
information of matrix Ĝ, but just Ĝ as matrix-vector product operator. To find Ĝ†p, we consider the linear
system Ĝ(θ)η = p and apply iterative method to solve for η = Ĝ†p. Generally the condition number of Ĝ(θ)
can be very large, so we choose MINRES as the iterative solver [44].

Initialization In the experiments, the initialization for θ and p are treated differently:
• Initialize θ. We initialize θ to minimize the difference between ρθ0 and ρ0. It can be done via

minimizing the KL divergence or Stein’s discrepancy between ρθ0 and ρ0 [42]. In the experiments, we
choose the reference distribution the same as ρ0 and initialization for Tθ as the identity map, so the
initialization procedure for θ is generally omitted.

• Initialize p. From the particle interpretation of Φ, we can derive

p0 = Ĝθ̇0 =

∫
M

∂θT
>
θ (z)v(Tθ(z))dλ(z) =

∫
M

∂θT
>
θ (z)∇Φ(0, Tθ(z))dλ(z) = Eλ[∇θΦ(0, Tθ(z))].(4.6)

The above identity povides a natural way to initialize p from initial condition for Φ. We sample {zi}
Kp
i=1

from the reference distribution λ, and set p0 to be the sample expectation 1
Kp

∑Kp
i=1∇θΦ(0, Tθ(zi)).
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In summary, we suggest the following numerical algorithm to solve the PWHF.

Algorithm 4.1 Parameterized Wasserstein Hamiltonian flow solver

Initialize the neural network Tθ, and solve θ0 = argmin
θ
{DKL(ρ0‖ρθ)}

Initialize p0 = ∇θEz∼λ[Φ(0, Tθ(z))]
for l = 0, · · · ,K − 1 do

Sample {X1, · · · , XNθ} from ρθ
Apply MINRES to solve ξl,0 from equation Ĝ(θl)ξ = pl, set αl,0 = θl

for j = 1, · · · , nin do
Update αl,j = θl + hξl,j

Update ξl,j+1 = ξl,j − γ(Ĝ(αl,j)ξl,j − pl)
end for
Set θl+1 = αl,nin , ηl+1 = ξl,nin

Sample {X1, · · · , XNp} from ρθl+1 , evaluate ∇θF (θl+1)

Set pl+1 = pl + h
2 [(ηl+1)>∂θkĜη

l+1]mk=1 − h∇θF (θl+1)
end for

5. Numerical results. In this section, we demonstrate the performance of the proposed algorithm 4.1
by solving several examples with different potential energy F .

In our experiments, we use neural networks as the push-forward map Tθ unless stated otherwise. There
are multiple choices for the neural networks structure to represent Tθ. We can use the invertible neural
networks (e.g., normalizing flow [42], Real NVP [15] and neural ODE [9]) or non-invertible neural networks
(e.g., the multi-layer perceptron or ResNet [27]), both has its own advantages. Normalizing flow simplifies the
computation of log determinant of Jacobian matrix of the map, so we can easily compute the density function.
In some cases, the potential function explicitly depends on the value of density ρθ, invertible neural networks
provides an effective way to evaluate it. In this work, we use the residual neural network as push-forward map
if not specified:

Tθ = Id + fθ,(5.1)

where Id is the identity map and fθ : Rd → Rd is a standard multilayer perceptron with two hidden layers, and
each hidden layer contains 50 and 80 neurons for the 2D and 10D examples, respectively. We take hyperbolic
tangent function as the activation since we require the second-order derivative in the computation. The bias
for the output layer in fθ is set to be None. MINRES is applied to solve the linear system Ĝθ̇ = p with
tolerance 3 · 10−4. To solve the inner system, we set nin = 1 and run the algorithm. Experiments show that
nin = 1 is enough for most of the examples.

For all the experiments, we choose the reference distribution as λ = N (0, Id), and take ρ0 = Tθ]λ.
Generally initial θ is small, hence Tθ is close to the identity map and ρ0 is close to the standard Gaussian as
a result. For the computation, 50000 samples are generated from the reference distribution to evaluate the
matrix-vector product. For those cases with potential energy in the form F(ρ) = EρV (x), we use the same
sample size to evaluate F (θ). For other cases, we only use 12000 samples for the computation of F (θ) due to
the memory limitation.

It’s possible that Hamiltonian-type PDEs develop singularity in finite time. This means, at some time
t0, the density may become a delta function and/or Φ is no longer well-defined. Our method can treat this
singularity since the push-forward is still well-defined and smooth at time t0. See the geodesic equation and
harmonic oscillator as examples.

To examine our solutions, we use the particle level dynamics. Assume X(0, x0) = T (0, x0) solves the
system (3.9), i.e., T (t) is the ground truth push-forward map for the WHF. For some special potential energy,
T (t) have closed form solutions. Hence we can compare our results with true solutions. For other examples
where true solutions are not available, we generate 10000 random samples and run the particle level dynamics
to get numerical approximation to T (t), then we compare our results Tθ(t) with the particle level results.
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5.1. Geodesic equation as Wasserstein Hamiltonian flow. We first consider the geodesic equation
on R2 as a WHF, which corresponds to the zero potential case, i.e., F(ρ) ≡ 0. The equations are

∂

∂t
ρ+∇ · (ρ∇Φ) = 0,

∂

∂t
Φ +

1

2
|∇Φ|2 = 0.

The Wasserstein geodesic equation plays an important role in the optimal transport theory. The trajectory of
the corresponding particle level dynamics is a straight line, i.e., Tθ(t)(x0) = x0+v(x0)t where v(x0) = ∇Φ(0, x0)
is the initial velocity and x0 is an arbitrary initial position. With some choice of Φ, the system may develop
a singularity in finite time. The numerical experiments, which are presented next, show that our method can
approximate the solution very well, even beyond the singularity. The PWHF corresponding to the Wasserstein
geodesic equation is

(5.2)
θ̇ = Ĝ†p,

ṗ =
1

2
(Ĝ†p)>(∇θĜ)Ĝ†p.

We set λ = N (0, I) and choose Tθ as in (5.1). We initialize the neural network parameters θ0, take the initial
density as ρ0 = Tθ(0)]λ and Φ(0, x) = − 1

2x
2
1 with x = (x1, x2) ∈ R2. From the choice of Φ(0, x), we know that

for each initial position its velocity is always in the x1 direction with constant magnitude |x1|. As a result,
all points arrive at the x2-axis when t = 1 and the density function ρ(1, x) becomes a Gaussian supported on
the x2-aixs. We solve the parameter dynamics (5.2) and compare the reuslts with true solution. We choose 5
points randomly and plot the projection of their trajectories onto x1, x2 axis, as shown in Figure 1. The true
trajectories are Tt(x) = ((1− t)x1, x2). To show ρθ, we also draw 2000 samples from reference distribution λ
and then apply the neural network Tθ solved from our algorithm for different time, results are shown in Figure
2. Notice that T1(x) = (0, x2) for all x = (x1, x2) ∈ R2, which implies finite time singularity in ρ. Our solution
solves the problem very well despite the existence of singularity.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
time - axis

6

4

2

0

2

4

6

sp
ac

e 
- a

xi
s

(a) projection of trajectories in x1 direction
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(b) projection of trajectories in x2 direction

Fig. 1: Projection of trajectories with random initial positions. For each initial position x = (x1, x2), its
velocity v = (−x1, 0) is constant along time. As a result, the equation develops singularity at time t = 1, and
projection of Tθ(x) onto x1-plane intersects for all points.

5.2. Quadratic potential. The second example is the WHF in which the potential is set to be quadratic
function of the position variable, i.e., F(ρ) =

∫
Rd V (x)ρ(x)dx where V is a quadratic function of x. The problem

can be solved explicitly in this case as shown in Section 3.5.1, and the approximation error δ0, δ1 vanish if
we choose affine transform as the push-forward map. We verify the symplectic property as well as the linear
dependence between error and step size of our numerical scheme here. On the other side, the solution may
display interesting structure for some special combination of V (x) and Φ(0, x), which is the so called Lissajous
curve. We demonstrate this case in section 5.2.1.
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Fig. 2: Sample plots of computed ρθ at different time t

In our experiments, the potential function V and initial condition for dual variable Φ are taken as

(5.3)

V (x) =
∑
i

1

2
aix

2
i ,

Φ(0, x) =
∑
i

1

2
bix

2
i .

Here ai is a positive real number while bi can be negative. The index i runs from 1 to d. We can write the
WHF as

∂

∂t
ρ+∇ · (ρ∇Φ) = 0,(5.4)

∂

∂t
Φ +

1

2
|∇Φ|2 = −

∑
i

1

2
aix

2
i ,(5.5)

ρ(0, ·) = Tθ0]N (0, I), Φ(0, x) =
∑
i

1

2
bix

2
i .(5.6)

From the particle version of equations, we know that both the position and velocity can be expressed
explicitly. In fact, the i-th component of solution is given as

(5.7) Xi(t, x) =
√

1 + b2i · xi · cos(
√
ai · t− arctan(bi)),
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where x = (x1, · · · , xd) ∈ Rd. The true push-forward map is

Tt(x) = A(t)x, A(t) = diag([
√

1 + b2i cos(
√
ai · t− arctan(bi))]

d
i=1).

We can see that ai determines the frequency, while bi determines the amplitude and initial phase.

5.2.1. 2D case with affine transform as the push-forward map. We first test the 2D harmonic
oscillator example with potential energy F(ρ) =

∫
R2

1
2 (2.25x2

1 + 0.36x2
2)ρ(x)dx and initial dual function

Φ(0, x) = − 1
2x

2
1 as in section 3.5.1. We choose affine transform as the push-forward map, i.e.,

Tθ(x) = Γz + b, θ = (Γ, b),Γ ∈ R2×2, b ∈ R2.

We pick up random initial position x0, compare the trajectory {Tθ(x) : t ∈ [0, 20]} from our solution with
the true trajectory {Tt(x) : t ∈ [0, 20]} in Fig 3.

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4

0.4

0.2

0.0

0.2

0.4

exact
PWHF

Fig. 3: Trajectory of randomly picked initial point

In this case, the true push-forward map lies in the space of parameterized functions {Tθ}θ∈Θ. In fact,
θ = (A(t),~0) gives Tθ ≡ Tt, hence the approximation error δ0, δ1 equal 0. Since we know the true solution, We
define the error as

ε̂ = max
l∈[0, 20h ]

1

Nθ

Nθ∑
i=1

|Tθ(lh)(zi)− Tlh(zi)|.

We check the linear dependence between the error ε̂ and step size h in Figure 4, which confirms our theoretical
estimate.

We also verify the symplectic preservation of our numerical scheme in Figure 5. We run Algorithm 4.1 and
plot the change of Hamiltionian ∆H(θk, pk) as the orange curve. In comparison, we replace the symplectic
step by a forward Euler step, and run the experiments, with corresponding Hamiltonian as the blue curve. It
is clear that the proposed symplectic scheme preserves the Hamiltonian while the forward Euler scheme does
not.

5.2.2. 2D case with Lissajous curve. For a single point x = (x1, x2) ∈ R2, its motion under the
Hamiltonian flow (5.4) is a 2-dimensional harmonic oscillator. Denote δβ0 = arctan(b1) − arctan(b2) as the

initial phase difference and r =
√

a1
a2

as the ratio of frequency for two components, it’s well-known that we

may have interesting periodic patterns known as Lissajous curve for some combination of (δβ0, r). Numerical
experiments show that our method can capture this structure as well. In fact, we run our algorithm for several
different combination of (δβ0, r), choose a suitable initial position, and plot its trajectory under the map Tθ in
Figure 6. To show the full structure of Lissajous curve, we run 20000 iterations which corresponds to physical
time t1 = 40.

In this part, We use neural network as push-forward map where Tθ is same as in section 5.1 and set
numerical step size h = 0.002 in the computation.
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1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.0

0.5

0.0

0.5

1.0 PWHF
exact

(a) δβ0 = π
2
, r = 1

2

0.6 0.4 0.2 0.0 0.2 0.4 0.6

1.0

0.5

0.0

0.5

1.0
PWHF
exact

(b) δβ0 = π
2
, r = 2

3

1.5 1.0 0.5 0.0 0.5 1.0 1.5

0.6

0.4

0.2

0.0

0.2

0.4

0.6

PWHF
exact

(c) δβ0 = π
2
, r = 3

4

Fig. 6: Demonstration of Lissajous curve. (a)-(c) are trajectory plots which show the Lissajous pattern.

We verify the velocity from our method in this subsection. We set

F(ρ) =

∫
R2

(
1

2
x2

1 +
1

3
x2

2

)
ρ(x) dx, Φ(0, x) = −1

2
x2

1.(5.8)

For a fixed initial point x = Tθ0(z) where z is from the reference distribution, its true velocity at time t is
v(t, x) = d

dtX(t, x) where X(t, x) is given in equation (5.7), and the velocity from our model can be evaluated

through ṽ(t, x) = ∂
∂θTθ(z) · θ̇t. We choose 20 initial points, plot their positions as well as the velocities on

the plane as in Figure 7. The start point of each arrow represents the position and arrow itself represents its
velocity. As shown in the figure, the true trajectories for different initial positions may intersect, which leads
to the singularity of density function ρt. The velocity ṽ from our model is still close to the true velocity despite
the singularity.

5.2.3. 10-D harmonic oscillator problem. Traditional numerical schemes suffer from the curse of the
dimensionality, namely the computational cost grows exponentially as the dimension increases, which makes
solving high-dimensional PDEs numerically extremely expensive. On the contrary, our method is sampling
based and can handle the challenges incurred from high dimensionality. To demonstrate it, we test our
algorithm on the 10-dimensional harmonic oscillator problem with

F(ρ) =

∫
R10

3

8
x2

1 +
1

2

10∑
i=2

x2
i

 ρ(x) dx, Φ(0, x) =
1

2

10∑
i=2

x2
i .

We use the residual neural network as in (5.1) with 80 neurons in each hidden layer. We solve the system
on a time period [0, 2π] with step size h = 0.001.
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Fig. 7: Evolution of positions and corresponding velocity

We generate 10000 samples from ρθ, plot the samples histograms (orange) projected to the second di-
mension and compare it with true density function ρ in Figure 8. Here the projection of ρ onto the second
dimension is a Gaussian distribution whose variance is a cosine function of time, depicted by the blue curve
in the figure. Similar to the geodesic equation example, ρ develops finite time singularity in this harmonic
oscillator case, while numerical results show that our algorithm solves the problem well despite the singularity
and dimension. We plot the empirical Hamiltonian from these samples in Figure 9. We emphasize that the
scale used in Figure 9 is concentrated around 9.35 with small variation. This indicates that the Hamiltonian is
essentially preserved while the kinetic and potential energy oscillate in the opposite phase in the computation
as shown in Figures 10 and 11 respectively.

5.3. Interaction potential. We consider some nonlinear potentials, such as the interaction potential or
entropy in the reminder of this section. The nonlinear terms are generally hard to evaluate directly through
the traditional methods, although some algorithms such as kernel density estimation [46, 6] can be used for it.
On the contrary, push-forward maps may provide a good alternative for this purpose.

Interaction potential is described through the following potential energy F :

(5.9) F(ρ) =

∫∫
R×R

C(x, y)ρ(x)ρ(y)dxdy.

F involves double integral of ρ and introduces nonlinearity, which makes the problem much harder to solve in
general. In physics, C(x, y) = a

|x−y|2 is often used to model gravity or Coulomb force. To avoid the numerical

instability we will use a modified Cb with b = 0.1 in the following experiment:

(5.10) Cb(x, y) =
1

b+ |x− y|2
.

We choose the same forward map Tθ as the neural network described in section 5.1. For this problem we don’t
have a close form solution, so we compare the result with particle level numerical simulations. More precisely,
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Fig. 8: Time evolution of the projected histogram for 10-d harmonic oscillator example
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we generate 10000 random samples and run the particle level dynamics to get numerical approximation to Tt,
then compare our results Tθ(x) with the numerical results. We pick an initial point x, plot its trajectory from
our model Tθ as well as the trajectory from numerical simulation in Figure 12, which shows good agreement.
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Fig. 12: Projection of trajectory in interaction potential model
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5.4. Entropic potential. Another example of nonlinear potential is

(5.11) Fentropy(ρ) =

∫
ρ(x) log ρ(x)dx.

If we take diagonal map Tθ(x) = Dθx as the push-forward map where Dθ is a diagonal matrix and θ is its
diagonal element, then the parameter dynamics can be solved exactly as shown in Section 3.5.2. Again we solve
the PWHF and compare our solution with true solution. The exact solution can be expressed as Tt(x) = D(t)x
with D(t) defined in (3.89). Figure 13 shows the results from our PWHF (blue) against the exact solution
(orange). They are nearly identical, which is expected because the error is close to zero according to the
theoretical estimates.
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Fig. 13: Value of D,Dθ

5.5. Empirical bound on δ0. In section 3.4, we proved the convergence result for our θ(t). There are
two crucial terms δ0, δ1 which show up in the error estimation (3.64) as well as (3.27). It’s generally hard to give
a sharp bound on these values, although one may resort to the well-known universal approximation theorem
stating that they are small if proper neural networks are used. We can provide an empirical calculations for
δ0 in the experiments.

We denote the approximation error at θ as:

δ(θ) =

∫
|∇ δ

δρ
F ◦ Tθ(z)−Kθ[∇

δ

δρ
F ◦ Tθ](z)|2 dλ(z).(5.12)

It is easy to see that δ0 can be replaced by δ̂0 = supt∈[0,T ] δ(θ(t)) in our error estimation, since only the
information of δ(θ) along the solution curve {θ(t) : t ∈ [0, T ]} is used in the proof.

Assume {θk : 0 ≤ k ≤ K} is the numerical solution from algorithm (4.1), where K = T/h is the number

of iterations. Denote the empirical bound on δ̂0 as:

δ̃0 = max
0≤k≤K

δ(θk).(5.13)

Let η = Ĝ(θ)†∇θF (θ) and notice that

Kθ[∇
δ

δρ
F ◦ Tθ](z) = ∂θTθ(z)Ĝ

†(θ)

∫
∂θTθ(z0)>∇ δ

δρ
F ◦ Tθ(z0)ρθ(z0) dλ(z0)

= ∂θTθ(z)Ĝ
†(θ)∇θF (θ)

= ∂θTθ(z)η.
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Hence we can rewrite δ(θ) as:

δ(θ) =

∫
|∇ δ

δρ
F ◦ Tθ(z)− ∂θTθ(z)η|2 dλ(z)

=

∫ [
η>∂θTθ(z)

>∂θTθ(z)η − 2∇ δ

δρ
F ◦ Tθ(z)>∂θTθ(z)η + |∇ δ

δρ
F ◦ Tθ(z)|2

]
dλ(z)

= η>Ĝ(θ)η − 2∇θF (θ)>η + Eρθ [|∇
δ

δρ
F ◦ Tθ(z)|2].

With the above identity, we are able to evaluate the empirical error δ̃0. We report its value for each linear
potential V (x) in table 1.

Table 1: Empirical approximation error

Experiment 2d Geodesic 2d Harmonic Oscillator 10d Harmonic Oscillator
Physical time T 4 40 10

Number of iterations K 2000 20000 10000
Empirical error δ0 0 0.0035 0.0908

6. Discussion. The proposed method is also potentially applicable to many other important topics, for
example, the nonlinear Schrödinger equation, the Schrödinger bridge problem, and the geodesic between two
points on Wasserstein manifold. However, it needs further investigations to extend our algorithm to them,
which is beyond the scope of this paper. We only provide a brief discussion here.

Geodesic between two points on Wasserstein manifold: In the numerical experiments, we consider
the initial value problem for Wasserstein geodesic equation with given ρ0,Φ0. The commonly encountered
geodesic problem is a 2-point boundary value problem, i.e., with given ρ0, ρT but no prior knowledge about
the initial Φ0. In this case, there is not enough information for us to initialize the p variable. A possible attempt
is to choose a initial guess Φ(0, ·) and then apply shooting method on the ODE dynamics. Collocation or finite
difference can be other options too. They deserve careful study in the future.

Schrödinger equation: Consider a potential V ∈ C∞(Rd) and functional F1 ∈ C∞(P+(Rd)) with
variation δ

δρF1(ρ) = f(ρ), the nonlinear Schrodinger equation is given by:

i
∂

∂t
ψ(t, x) = −1

2
∆ψ(t, x) + V (x)ψ(t, x) + f(|ψ|2)ψ(t, x).(6.1)

With the Madelung transform we can rewrite the complex wave function as ψ(t, x) =
√
ρ(t, x)eiΦ(t,x), then

the above equation in ψ can be reformulated as a Wasserstein Hamiltonian flow with Hamiltonian:

H(ρ,Φ) =

∫
Rd

1

2
|∇Φ(x)|2ρ(x)dx+

∫
Rd
V (x)ρ(x)dx+ F1(ρ) +

1

8

∫
Rd
|∇ log ρ(x)|2ρ(x)dx.(6.2)

Possible challenges may arise due to the nonlinear potential
∫
Rd |∇ log ρ(x)|2ρ(x)dx. This term involves the

computation of space derivative of log density function, which is generally unavailable for multi-layer perceptron
or the normalizing flow. One strategy is to use the Neural ODE as the push-forward map [9, 23], which supports
such a computation. Another possible solution is to reformulate this functional as a mininization problem and
estimate it via optimization techniques.

Schrödinger Bridge problem: Similar to the Schrodinger equation, the Schrödinger Bridge problem
can also be reformulated as WHF through the Hopf-Cole transform. Consider the Schrodinger bridge equation,
sometimes also known as “Schrödinger system”,

(6.3) ∂tηt =
1

2
∆ηt, ∂tη

∗
t = −1

2
∆η∗t

Here η, η∗ are two real valued functions. With the Hopf-Cole transformation:

(6.4) η =
√
ρeΦ/2, η∗ =

√
ρe−Φ/2,
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equation (6.3) becomes a Wasserstein Hamiltonian flow with Hamiltonian:

H(ρ,Φ) =

∫
Rd

1

2
|∇Φ(x)|2ρ(x)dx− 1

8

∫
Rd
|∇ log ρ(x)|2ρ(x)dx.(6.5)

The challenge in this problem is the combination of the difficulties in the two aforementioned examples. On
the one side, we need to handle the computational challenge of ∇ log ρ term as mentioned in the Schrodinger
equation. On the other side, Schrödinger bridge problem is a 2-point boundary value problem with given
ρ0, ρT but no prior knowledge about Φ0.

7. Conclusion. We close the discussion by summarizing that we developed a sampling based approach
called PWHF for solving WHF in this work. PWHF is derived by applying Hamiltonian mechanics in the
parameter space equipped with the pullback Wasserstein metric. Error estimates show that PWHF can
approximate WHF with provable accuracy provided the pushforward map being efficient in approximation.
Numerical examples demonstrate that our method is robust to the singularity of the equation and can scale
up to high dimensional problems. There are still many work to be done about the WHF, which includes
but not limited to: the application of PWHF to other Hamiltonian system such as Schrödinger equation or
Schrödinger Bridge system; theoretical analysis on the quantities δ0, δ1, δ2, λmin(Ĝ); extension of PWHF to
general Hamiltonian flow with on-quadratic kinetic energy. We hope the current study may serve as an starting
point for furthering those investigations.
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DMS-2307465, DMS-2307466, and ONR grant N00014-21-1-2891.

Appendix A. Derivation of Lagrangian L. Recall that we introduce Lagrangian L defined as

L(θ, θ̇) = L(Tθ]λ, (Tθ])∗θ̇).

We denote ρθ = Tθ]λ, then (Tθ])∗θ̇ = ∂ρθ
∂t . Actually, we can calculate the term ∂ρθ

∂t as follows (c.f. proof of
Theorem 3.4 of [39])

(A.1)
∂ρθ
∂t

=
∂ρθ(x)

∂θ
· θ̇ = −∇ · (ρθ(x)∇Ψθ(x)>θ̇).

Now the Lagrangian L can be computed as

L(θ, θ̇) = L(ρθ,
∂ρθ
∂θ
· θ̇)

=
1

2

(∫
Rd
−∇ · (ρθ(x)∇Ψθ(x)>θ̇)(−∆ρθ )

†(−∇ · (ρθ(x)∇Ψθ(x)>θ̇)) dx

)
−F(ρθ)

=
1

2

(∫
Rd
−∇ · (ρθ(x)∇Ψθ(x)>θ̇)Ψ>θ θ̇ dx

)
−F(ρθ)

=
1

2

(∫
Rd
θ̇>∇Ψθ(x)∇Ψθ(x)>θ̇ρθ(x) dx

)
−F(ρθ)

=
1

2
θ̇>G(θ)θ̇ − F (θ).

Appendix B. Further discussion on geometric property of the map τ .
Let us recall that τ is a map defined as

τ : T ∗Θ −→ T ∗PΘ ⊂ T ∗P,
(θ, p) 7−→ (Tθ]λ, Ψ>θ G(θ)−1p).

We are going to discuss the condition under which the map τ preserves the symplectic form. To express our
idea clearly, let us first introduce the symplectic forms on the phase spaces T ∗Θ and T ∗P.

Let us recall that Θ is an open subset of Rm. It is natural to treat T ∗Θ as a symplectic manifold equipped
with the symplectic form ωΘ whose associated matrix representation is

ΩΘ =

[
Im

−Im

]
.

This manuscript is for review purposes only.



34 H. WU, S. LIU, X. YE, AND H. ZHOU

That is, ωΘ is a bilinear form defined on T (T ∗Θ) such that for any two C1 curves {θ1
t , p

1
t}t≥0, {θ2

t , p
2
t}t≥0

starting at the same point (θ0, p0), ωΘ is defined as

ωΘ((θ̇1
0, ṗ

1
0), (θ̇2

0, ṗ
2
0)) = θ̇1>

0 ṗ2
0 − θ̇2>

0 ṗ1
0.

On the other hand, we can also treat T ∗P as a symplectic manifold equipped with the symplectic form
ωP whose associated matrix representation is

ΩP =

[
Id

−Id

]
. That is, ωP is a bilinear form defined on T (T ∗P) such that for any two C1 curves {ρ1

t ,Φ
1
t}t≥0, {ρ2

t ,Φ
2
t}t≥0

both starting at (ρ0,Φ0), ωP is defined as

ωP((ρ̇1
0, Φ̇

1
0), (ρ̇2

0, Φ̇
2
0)) =

∫
Rd
∂tρ

1
0 · ∂tΦ2

0 − ∂tρ2
0 · ∂tΦ1

0 dx.

We may treat both (T ∗Θ, ωΘ) and (T ∗P, ωP) as symplectic manifolds.
We say a map f : (M,ωM ) → (N,ωN ) preserves the symplectic form if f∗ωN = ωM . Such geometric

property is satisfied by a class of important maps in classical mechanics known as canonical transformations.
For the sake of the completeness of our paper, we will investigate whether τ used in our method satisfies such
a property.

Let us treat M = Θ, ωM = ωΘ and N = P, ωN = ωP . In order to calculate τ∗ωΘ, we pick two arbitrary
smooth curves {(θ1, p1)}, {(θ2, p2)} on T ∗Θ. Suppose the two curves intersect at (θ, p) when t = 0. The the
push-forward of vector fields (θ̇i, ṗi) (i = 1, 2) via τ is computed as

(B.1) τ∗(θ̇
i, ṗi) = (−∇ · (ρθ∇Ψ>θ θ̇

i), Ψ>θ G(θ)−1ṗi + θ̇i>∂θ(Ψ
>
θ G(θ)−1)pi) ∈ Tτ(θ,p)T ∗PΘ. i = 1, 2

Then we compute

ωP(τ∗(θ̇
1, ṗ1), τ∗(θ̇

2, ṗ2))

=

∫
Rd
−∇ · (ρθ∇Ψ>θ θ̇

1)Ψ>θ G(θ)−1ṗ2 dx+

∫
Rd
−∇ · (ρθ

∂Tθ
∂θ
◦ T−1

θ (·)θ̇1)θ̇2>∂θ(p
2>G(θ)−1Ψθ) dx

−
∫
Rd
−∇ · (ρθ∇Ψ>θ θ̇

2)Ψ>θ G(θ)−1ṗ1 dx−
∫
Rd
−∇ · (ρθ

∂Tθ
∂θ
◦ T−1

θ (·)θ̇2)θ̇1>∂θ(p
1>G(θ)−1Ψθ) dx

Notice that we replace −∇ · (ρθ∇Ψ>θ θ̇
i) by −∇ · (ρθ ∂Tθ∂θ ◦ T

−1
θ (·) θ̇i) for the second and the third term above.

Now the first integral equals

θ̇1>
(∫

Rd
∇Ψθ∇Ψ>θ ρθ dx

)
G(θ)−1ṗ2 = θ̇1>G(θ)G(θ)−1ṗ = θ̇1>ṗ2.

Similarly, the fourth term equals θ̇2>ṗ1.
In order to analyze the second and the third term, we focus on the following third-order tensor

(B.2) χθ =

∫
Rd

[
∂Tθ
∂θ

(x)
>
∂θ(∇(G(θ)−1Ψθ)k) ◦ Tθ(x)

]m
k=1

dλ.

Let us denote ϕθ,k = (G(θ)−1Ψθ)k, i.e., ϕθ,k is the k−th component function of G(θ)−1Ψθ. Notice that ∂θ
does not really take the derivative of Tθ. Then one can verify that for all k, 1 ≤ k ≤ m,[
∂Tθ
∂θ

(x)
>
∂θ(∇ϕθ,k) ◦ Tθ(x)

]m
k=1

= ∂θ

[
∂Tθ
∂θ

(x)
>
∇Ψθ ◦ Tθ(x)

>
G(θ)−1

]
︸ ︷︷ ︸

(1)

−

[
∂2Tθ
∂θ2

(x)
>

∇ϕθ,k ◦ Tθ(x)

]m
k=1︸ ︷︷ ︸

(2)

−

[
∂Tθ
∂θ

(x)
>
∇2ϕθ,k ◦ Tθ(x)

∂Tθ(x)

∂θ

]m
k=1︸ ︷︷ ︸

(3)
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Let us integrate (1) w.r.t. λ, by swapping integration and ∂θ, it is not hard to verify that the integration of
(1) equals 0, since the integral inside the square brackets equals identity matrix Im, which is independent of
θ. Thus we know that the tensor χ(θ) is the integration of the sum of terms (2) and (3), i.e.,

(B.3) χθ =

∫
Rd

[
∂2Tθ
∂θ2

(x)
>

∇ϕθ,k ◦ Tθ(x) +
∂Tθ
∂θ

(x)
>
∇2ϕθ,k ◦ Tθ(x)

∂Tθ(x)

∂θ

]m
k=1

dλ.

Thus one can verify that

(B.4) ωP(τ∗(θ̇
1, ṗ1), τ∗(θ̇

2, ṗ2)) = θ̇1>ṗ2 − θ̇2>ṗ1 − χθ(θ̇1, θ̇2, p)− χθ(θ̇2, θ̇1, p).

Here, for any u, v, w ∈ Rm, the tensor-vector multiplication is defined as

χ(θ)(u, v, w) =

∫
Rd
u>

∂2Tθ
∂θ2

v · ∇(w>G(θ)−1Ψθ) ◦ Tθ(x)

+
∂Tθ(x)

∂θ
u
>
∇2(w>G(θ)−1Ψθ) ◦ Tθ(x)

∂Tθ(x)

∂θ
v dλ.

By definition of pullback of differential form, we have τ∗ωP((θ̇1, ṗ1), (θ̇2, ṗ2)) = ωP(τ∗(θ̇
1, ṗ1), τ∗(θ̇

2, ṗ2)); We
can further verify that θ̇1>ṗ2 − θ̇2>ṗ1 = ωΘ((θ̇1, ṗ1), (θ̇2, ṗ2)). Also, χθ is symmetric w.r.t. the first two
components, i.e., χθ(θ̇1, θ̇

2, ·) = χθ(θ̇
2, θ̇1, ·); Thus the above calculation (B.4) leads to

(B.5) τ∗ωP((θ̇1, ṗ1), (θ̇2, ṗ2)) = ωΘ((θ̇1, ṗ1), (θ̇2, ṗ2))− 2χθ(θ̇
1, θ̇2, p).

This implies that the symplectic matrix associated with τ∗ωP takes the following form

(B.6) Ω(θ, p) =

[
−2χθ(·, ·, p) −Im

Im Om

]
.

In most cases, it is not guaranteed that τ preserves the symplectic form ωP since the parametrized push-
forward map Tθ may not guarantee that χθ = 0.

It is worth mentioning that the preservation of the symplectic form is not the necessary condition for the
convergence of our numerical method: Although our τ is not guaranteed to preserve the symplectic form, we
still have theoretical guarantees on the numerical accuracy of our method (c.f. Section 3.4).

We end our discussion with two interesting questions that may serve as future research directions.
1. Does there exist a special family of pushforward maps Tθ that vanish the tensor χθ and thus preserve

the symplectic form?
2. We may recast our PWHF by using the directly pull-backed symplectic matrix Ω(θ, p), i.e., we consider

the modified PWHF

(θ̇, ṗ)> = Ω(θ, p)−1∇H(θ, p).

Will the above modified PWHF gain better theoretical or numerical properties?
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