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Abstract

Models with random effects, such as generalised linear mixed models (GLMMs), are often used for

analysing clustered data. Parameter inference with these models is difficult because of the presence of

cluster-specific random effects, which must be integrated out when evaluating the likelihood function.

Here, we propose a sequential variational Bayes algorithm, called Recursive Variational Gaussian Ap-

proximation for Latent variable models (R-VGAL), for estimating parameters in GLMMs. The R-VGAL

algorithm operates on the data sequentially, requires only a single pass through the data, and can pro-

vide parameter updates as new data are collected without the need of re-processing the previous data.

At each update, the R-VGAL algorithm requires the gradient and Hessian of a “partial” log-likelihood

function evaluated at the new observation, which are generally not available in closed form for GLMMs.

To circumvent this issue, we propose using an importance-sampling-based approach for estimating the

gradient and Hessian via Fisher’s and Louis’ identities. We find that R-VGAL can be unstable when

traversing the first few data points, but that this issue can be mitigated by introducing a damping fac-

tor in the initial steps of the algorithm. Through illustrations on both simulated and real datasets, we

show that R-VGAL provides good approximations to posterior distributions, that it can be made robust

through damping, and that it is computationally efficient.
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1 Introduction

Mixed models are useful for analysing clustered data, wherein observations that come from the same clus-

ter/group are likely to be correlated. Example datasets include records of students clustered within schools,

and repeated measurements of biomarkers on patients. Mixed models account for intra-group dependencies

by incorporating cluster/group-specific “random effects”. Inference with these models is made challenging by

the fact that the likelihood function involves integrals over the random effects that are not usually tractable

except for the few cases where the distribution of the random effects is conjugate to the distribution of the

data, such as in the linear mixed model (Verbeke et al., 1997), the beta-binomial model (Crowder, 1979), and

Rasch’s Poisson count model (Jansen, 1994). Notably, there is no closed-form expression for the likelihood

function in the case of the ubiquitous logistic mixed model.

Maximum-likelihood-based approaches are often used for parameter inference in mixed models. In the case

of linear mixed models, parameter inference via maximum likelihood estimation is straightforward (e.g.,

Wakefield, 2013). For mixed models with an intractable likelihood, integrals over random effects need to

be numerically approximated, for example by using Gaussian quadrature (Naylor and Smith, 1982) or the

Laplace approximation (Tierney and Kadane, 1986). The likelihood may also be indirectly maximised using

an expectation-maximisation type algorithm (Dempster et al., 1977), which treats the random effects as

missing, and iteratively maximises the “expected complete-data log-likelihood” of the data and the random

effects. Quasi-likelihood approaches such as penalised quasi-likelihood (PQL, Breslow and Clayton, 1993) and

marginal quasi-likelihood (MQL, Goldstein, 1991) approximate nonlinear mixed models with linear mixed

models, so that well-developed estimation routines for linear mixed models can be applied; see Tuerlinckx

et al. (2006) for a detailed discussion of these methods. These maximum-likelihood-based methods provide

point estimates and not full posterior distributions over the parameters.

Full posterior distributions can be obtained using Markov chain Monte Carlo (MCMC, e.g., Zhao et al.,

2006; Fong et al., 2010). MCMC provides exact, sample-based posterior distributions, but at a higher

computational cost than maximum-likelihood-based methods. Alternatively, variational Bayes (VB) methods

(e.g., Ong et al., 2018; Tan and Nott, 2018) are becoming increasingly popular for estimating parameters

in complex statistical models. These methods approximate the exact posterior distribution with a member

from a simple and tractable family of distributions; this family is usually chosen to balance the accuracy
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of the approximation against the computational cost required to obtain the approximation. VB methods

are usually computationally cheaper than MCMC methods. VB approaches can either batch-process the

data (e.g., Tran et al., 2016; Ong et al., 2018; Tan and Nott, 2018) or sequentially process data points (e.g.,

Broderick et al., 2013; Gunawan et al., 2021; Lambert et al., 2022). For settings with large amounts of data, a

method that targets the posterior distribution via sequential processing of the data offers several advantages.

The so-called Recursive Variational Gaussian Approximation (R-VGA, Lambert et al., 2022) algorithm is

a recently-developed sequential variational Bayes method that provides a fast and accurate approximation

to the posterior distribution with only one pass through the data, making it computationally efficient when

compared to MCMC or batch variational Bayes. Lambert et al. (2022) apply the R-VGA algorithm to linear

and logistic regression models without random effects.

In this paper, we build on the R-VGA algorithm by proposing a novel recursive variational Gaussian ap-

proximation, called Recursive Variational Gaussian Approximation for Latent variable models (R-VGAL),

for estimating the parameters in GLMMs. At each update, R-VGAL requires the gradient and Hessian of

the “partial” log-likelihood evaluated at the new observation, which are often not available in closed form.

To circumvent this issue, we propose an importance-sampling-based approach for estimating the gradient

and Hessian that uses Fisher’s and Louis’ identities (Cappé et al., 2005). This approach was inspired by

the work of Nemeth et al. (2016), who used Fisher’s and Louis’ identities to approximate the gradient and

Hessian in a sequential Monte Carlo context. The efficacy of R-VGAL is illustrated using linear, logistic

and Poisson mixed effect models on simulated and real datasets. The examples show that R-VGAL provides

good approximations to the exact posterior distributions estimated using Hamiltonian Monte Carlo (HMC,

Neal, 2011; Betancourt and Girolami, 2015) and at a low computational cost.

The paper is organised as follows. Sect. 2 provides some background on the sequential variational Bayes

framework and presents the R-VGAL algorithm. Sect. 3 applies the R-VGAL algorithm to simulated and real

datasets. Sect. 4 concludes with a discussion of our results and an overview of future research directions. This

article has an online supplement containing additional technical details, and the code to reproduce results

from the simulation and real-data experiments is available on https://github.com/bao-anh-vu/R-VGAL.

2 The R-VGAL algorithm

This section reviews GLMMs (e.g. Demidenko, 2013; Faraway, 2016) and provides some background on

the R-VGA algorithm of Lambert et al. (2022), and then introduces the R-VGAL algorithm for making

parameter inference with GLMMs.
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2.1 Generalised linear mixed models

GLMMs are statistical models that contain both fixed effects and random effects. Typically, the fixed effects

are common across groups, while the random effects are group-specific, and this is the setting we focus on.

We briefly discuss the potential application of R-VGAL to models with more complicated random effect

structures, such as crossed or nested random effects, in Sect. S7 of the online supplement.

Denote by yij the jth response in the ith group, for i = 1, . . . , N groups and j = 1, . . . , ni, where ni is the num-

ber of responses in group i. Let y ≡ (y⊤
1 , . . . ,y

⊤
N )⊤ be a vector of observations, where yi ≡ (yi1, . . . , yini)

⊤

are the responses from the ith group. The GLMMs we consider are constructed by first assigning each yij a

distribution yij | β,αi, ϕ ∼ p(·), where p(·) is a member of the exponential family with a dispersion param-

eter ϕ that is usually related to the variance of the datum, β are the fixed effect parameters, and αi are the

group-specific random effects for i = 1, . . . , N . Then, the mean of the responses, µij ≡ E(yij | β,αi, ϕ), is

modelled as

g(µij) = x⊤
ijβ + z⊤ijαi, i = 1, . . . , N, j = 1, . . . , ni, (1)

where xij is a vector of fixed effect covariates corresponding to the jth response in the ith group; zij is

a vector of predictor variables corresponding to the jth response and the ith random effect; and g(·) is a

link function that links the response mean µij to the linear predictor x⊤
ijβ + z⊤ijαi. We further assume that

αi ⊥⊥ αi′ for i ̸= i′. The random effects αi, for i = 1, . . . , N , are assumed to follow a normal distribution

with mean 0 and covariance matrix Σα, that is, each αi | Σα ∼ Gau(0,Σα). In practice, some structure

is often assumed for the random effects covariance matrix so that it is parameterised in terms of a smaller

number of parameters τ , that is, Σα = Σα(τ ). Inference is then made on the parameters θ = (β⊤, τ⊤, ϕ)⊤.

The main objective of Bayesian inference is to obtain the posterior distribution of the model parameters θ

given the observations y and the prior distribution p(θ). Through Bayes’ rule, the posterior distribution of

θ is

p(θ | y) = p(β, τ , ϕ | y) ∝ p(y | β, τ , ϕ)p(β, τ , ϕ). (2)

The likelihood function,

p(y | β, τ , ϕ) =
N∏
i=1

∫
p(yi | αi,β, ϕ)p(αi | τ ) dαi, (3)

involves integrals over the random effects αi, i = 1, . . . , N . The likelihood function can be calculated exactly

for the linear mixed model with normally distributed random effects, for which

yij = x⊤
ijβ + z⊤ijαi + ϵij , αi ∼ Gau(0,Σα(τ )), ϵij ∼ Gau(0, σ2

ϵ ), (4)
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for i = 1, . . . , N and j = 1, . . . , ni, where ϵij is a zero-mean, independent, normally distributed error term

with variance σ2
ϵ that is associated with the jth response from the ith group. At the group level, this model

can be written as

yi = Xiβ + Ziαi + εi, αi ∼ Gau(0,Σα(τ )), εi ∼ Gau(0, σ2
ϵ Ini),

where Xi ≡ (xi1, . . . ,xini)
⊤, Zi ≡ (zi1, . . . , zini)

⊤, and εi ≡ (ϵi1, . . . , ϵini)
⊤, with ni being the number of

observations in the ith group, for i = 1, . . . , N , and Im denotes an identity matrix of size m × m. The

likelihood function for this linear mixed model is

p(y | β, τ , σ2
ϵ ) =

N∏
i=1

p(yi | β, τ , σ2
ϵ ) =

N∏
i=1

Gau(Xiβ,ZiΣα(τ )Z
⊤
i + σ2

ϵ Ini). (5)

The gradient and Hessian of the log-likelihood for the linear mixed model are also available in closed form.

However, the likelihood p(yi | αi,β, ϕ) in (3) cannot be computed exactly for general random effects models.

One important case is the logistic mixed model given by

yij ∼ Bernoulli(πij), logit(πij) = x⊤
ijβ + z⊤ijαi, i = 1, . . . , N, j = 1, . . . , ni, (6)

where logit(πij) = log
(

πij

1−πij

)
. The gradient and Hessian of the log-likelihood function for this model can,

however, be estimated unbiasedly, as we show in Sects. 2.3.1 and 2.3.2.

2.2 Sequential VB and R-VGA

We begin this section with a review of VB and the sequential VB framework. We then present the main

steps in the derivations of the R-VGA algorithm of Lambert et al. (2022), on which our algorithm is based.

2.2.1 Sequential VB

VB is usually used for posterior inference in complex statistical models when inference using asymptotically

exact methods such as MCMC is too costly; for a review see, for example, Blei et al. (2017). Let θ be a

vector of model parameters. Here, we consider the class of VB methods where the posterior distribution

p(θ | y) is approximated by a tractable density q(θ;λ) parameterised by λ. The variational parameters λ

are optimised by minimising the Kullback-Leibler (KL) divergence between the variational distribution and
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the posterior distribution, that is, by minimising

KL(q(θ;λ) ∥ p(θ | y)) ≡
∫

q(θ;λ) log
q(θ;λ)

p(θ | y)
dθ. (7)

Many VB algorithms require processing the data as a batch; see, for example, Ong et al. (2018) and Tan

and Nott (2018). The variational parameters λ are typically updated in an iterative manner using stochastic

gradient descent (SGD, Hoffman et al., 2013; Kingma and Welling, 2013). In settings with large amounts

of data or continuously-arriving data, it is often more practical to use online or sequential variational Bayes

algorithms that update the approximation to the posterior distribution sequentially as new observations

become available. These online/sequential algorithms are designed to handle data that are too large to fit

in memory or that arrive in a continuous stream.

In a sequential VB framework, such as that proposed by Broderick et al. (2013), the observations y1, . . . ,yN

are incorporated sequentially so that at iteration i, i = 1, . . . , N , one targets an approximation qi(θ) ≡

q(θ;λi) that is closest in a KL sense to the “pseudo-posterior” p(yi | θ)qi−1(θ)/Zi, where

Zi ≡
∫

p(yi | θ)qi−1(θ) dθ. (8)

In this framework, qi−1(θ) is treated as the “prior” for the next iteration i, and the KL divergence between

qi(θ) and the “pseudo-posterior” is minimised at each iteration. Broderick et al. (2013) use a mean field VB

approach (e.g., Ormerod and Wand, 2010), which assumes no posterior dependence between the elements

of θ. The R-VGA algorithm proposed by Lambert et al. (2022) follows closely that of Broderick et al.

(2013), but uses a variational distribution of the form qi(θ) = Gau(µi,Σi), where Σi is a full covariance

matrix, and seeks closed-form updates for λi ≡ {µi,Σi} that minimise the KL divergence between qi(θ)

and p(yi | θ)qi−1(θ)/Zi for i = 1, . . . , N . Another sequential VB algorithm that is similar to that of Brod-

erick et al. (2013) is the Updating Variational Bayes (UVB, Tomasetti et al., 2022) algorithm, which uses

SGD (Bottou, 2010) at every iteration, i = 1, . . . , N , to minimise the KL divergence between qi(θ) and

p(yi | θ)qi−1(θ)/Zi. One advantage of UVB compared to R-VGA is that it does not have to assume that

the prior and variational distributions are Gaussian; see Sect. 5.2 of Tomasetti et al. (2022) for an example

of UVB where a beta prior is used for one of the parameters and the variational distribution is a mixture

of multivariate normal distributions. However, due to the lack of restrictions on the form of the variational

distribution, UVB requires running a full optimisation algorithm at each iteration, whereas the R-VGAL

updates are available in closed form.
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Detailed derivations for the R-VGA algorithm can be found in Lambert et al. (2022). We provide below a

sketch of the derivations to aid the exposition of the methodology in subsequent sections.

2.2.2 The R-VGA algorithm

Denote by y1:i ≡ (y⊤
1 , . . . ,y

⊤
i )

⊤ a collection of observations from groups 1 to i, i = 1, . . . , N . By assumption

of conditional independence between observations y1, . . . ,yi given the parameters θ, the KL divergence

between the variational distribution qi(θ) and the posterior distribution p(θ | y1:i) can be expressed as

KL(qi(θ) ∥ p(θ | y1:i)) ≡
∫

qi(θ) log
qi(θ)

p(θ | y1:i)
dθ

= Eqi (log qi(θ)− log p(θ | y1:i−1)− log p(yi | θ)) + log p(y1:i)− log p(y1:i−1).

The posterior distribution after incorporating the first i− 1 groups of observations, p(θ | y1:i−1), is approx-

imated by the variational distribution qi−1(θ) to give

KL(qi(θ) ∥ p(θ | y1:i)) ≈ Eqi(log qi(θ)− log qi−1(θ)− log p(yi | θ)) + log p(y1:i)− log p(y1:i−1). (9)

The R-VGA algorithm assumes a variational distribution of the form qi(θ) = Gau(µi,Σi) and seeks param-

eters µi and Σi that minimise (9). As the last two terms in the right hand side of (9) do not depend on θ,

the optimisation problem is equivalent to finding

argmin
µi,Σi

Eqi(log qi(θ)− log qi−1(θ)− log p(yi | θ)). (10)

Differentiating the expectation (10) with respect to µi andΣi, setting the derivatives to zero, and rearranging

the resulting equations, yields the following recursive updates for the variational mean µi and precision

matrix Σ−1
i :

µi = µi−1 +Σi−1∇µi
Eqi(log p(yi | θ)), (11)

Σ−1
i = Σ−1

i−1 − 2∇Σi
Eqi(log p(yi | θ)). (12)
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Then, using Bonnet’s Theorem (Bonnet, 1964) on (11) and Price’s Theorem (Price, 1958) on (12), we rewrite

the gradient terms as

∇µi
Eqi(log p(yi | θ)) = Eqi(∇θ log p(yi | θ)), (13)

∇Σi
Eqi(log p(yi | θ)) =

1

2
Eqi(∇2

θ log p(yi | θ)). (14)

Thus the updates (11) and (12) become

µi = µi−1 +Σi−1Eqi(∇θ log p(yi | θ)), (15)

Σ−1
i = Σ−1

i−1 − Eqi(∇2
θ log p(yi | θ)). (16)

These updates are implicit as they require the evaluation of expectations with respect to qi(θ). Under the

assumption that qi(θ) is close to qi−1(θ), Lambert et al. (2022) propose replacing qi(θ) with qi−1(θ) in (15)

and (16), and replacing Σi−1 with Σi on the right hand side of (15), to yield an explicit scheme

µi = µi−1 +ΣiEqi−1(∇θ log p(yi | θ)), (17)

Σ−1
i = Σ−1

i−1 − Eqi−1
(∇2

θ log p(yi | θ)). (18)

Equations (17) and (18) form the so-called R-VGA algorithm of Lambert et al. (2022).

We note that an “order 1 form” of the R-VGA algorithm exists, which allows the variational precision matrix

to be updated using the first order derivatives of the log-likelihood without the need for the Hessian matrix.

However, these updates are implicit and not directly implementable. Corollary 1 of Lambert et al. (2022)

provides more details on this Hessian-free form.

2.3 R-VGAL

The R-VGA updates in (17) and (18) require the gradient ∇θ log p(yi | θ) and Hessian ∇2
θ log p(yi | θ) of the

“partial” log-likelihood for the ith observation. However, for the GLMMs discussed in Sect. 2.1, there are

usually no closed-form expressions for said quantities, as evaluation of the partial log-likelihood involves an

intractable integral over the random effects αi. Our R-VGAL algorithm circumvents this issue by replacing

∇θ log p(yi | θ) and ∇2
θ log p(yi | θ) with their unbiased estimates, ∇̂θ log p(yi | θ) and ∇̂2

θ log p(yi | θ),

respectively. These unbiased estimates are obtained by using an importance-sampling-based approach applied

to Fisher’s and Louis’ identities (Cappé et al., 2005), which we discuss in more detail in Sects. 2.3.1 and 2.3.2.
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Algorithm 1 R-VGAL

Input: observations y1, . . . ,yN , initial values µ0 and Σ0.
Output: variational parameters µi and Σi, for i = 1, ..., N .
Set q0(θ) = Gau(µ0,Σ0).
for i = 1, . . . , N do

µi = µi−1 +ΣiEqi−1(∇̂θ log p(yi | θ))
Σ−1

i = Σ−1
i−1 − Eqi−1

(∇̂2
θ log p(yi | θ))

end for

We summarise the R-VGAL algorithm in Algorithm 1.

To approximate the expectations with respect to qi−1(θ) in the updates of the variational mean and precision

matrix in Algorithm 1, we generate Monte Carlo samples, θ(l) ∼ qi−1(θ), l = 1, . . . , S, and compute:

Eqi−1(∇̂θ log p(yi | θ)) ≈
1

S

S∑
l=1

̂∇θ log p(yi | θ(l)),

Eqi−1
(∇̂2

θ log p(yi | θ)) ≈
1

S

S∑
l=1

̂∇2
θ log p(yi | θ(l)),

for i = 1, . . . , N .

The following sections discuss approaches to obtain unbiased estimates of the gradient and the Hessian of

the log-likelihood with respect to the parameters.

2.3.1 Approximation of the gradient with Fisher’s identity

Consider the ith iteration. Fisher’s identity (Cappé et al., 2005) for the gradient of log p(yi | θ) is

∇θ log p(yi | θ) =
∫

p(αi | yi,θ)∇θ log p(yi,αi | θ) dαi. (19)

If it is possible to sample directly from p(αi | yi,θ) (e.g., as it is with the linear random effects model in

Sect. 3.1), the above identity can be approximated by

∇θ log p(yi | θ) ≈
1

Sα

Sα∑
s=1

∇θ log p(yi,α
(s)
i | θ), α

(s)
i ∼ p(αi | yi,θ). (20)

In the case where direct sampling from p(αi | yi,θ) is difficult, we use importance sampling (e.g., Tok-

dar and Kass, 2010) to estimate the gradient of the log-likelihood in (19). Specifically, we draw samples
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{α(s)
i : s = 1, . . . , Sα} from an importance distribution r(αi | yi,θ), and then compute the weights

w
(s)
i =

p(yi | α(s)
i ,θ)p(α

(s)
i | θ)

r(α
(s)
i | yi,θ)

, s = 1, . . . , Sα.

The gradient of the log-likelihood is then approximated as

∇θ log p(yi | θ) ≈
Sα∑
s=1

w̄
(s)
i ∇θ log p(yi,α

(s)
i | θ), (21)

where Wi ≡ {w̄(s)
i : s = 1, . . . , Sα} are the normalised weights given by

w̄
(s)
i =

w
(s)
i∑Sα

q=1 w
(q)
i

, s = 1, . . . , Sα.

One possible choice for the importance distribution is the distribution of the random effects, that is, p(αi | θ).

In this case, the weights Wi reduce to

w
(s)
i = p(yi | α(s)

i ,θ), s = 1, . . . , Sα.

We use this importance distribution in all of the case studies illustrated in Sect. 3.

2.3.2 Approximation of the Hessian with Louis’ identity

Consider again the ith iteration. Louis’ identity (Cappé et al., 2005) for the Hessian ∇2
θ log p(yi | θ) is

−∇2
θ log p(yi | θ) = ∇θ log p(yi | θ)∇θ log p(yi | θ)⊤ − ∇2

θp(yi | θ)
p(yi | θ)

, (22)

where

∇2
θp(yi | θ)
p(yi | θ)

=

∫
p(αi | yi,θ)∇θ log p(yi,αi | θ)∇θ log p(yi,αi | θ)⊤ dαi

+

∫
p(αi | yi,θ)∇2

θ log p(yi,αi | θ) dαi. (23)

The first term on the right-hand side of (22) is obtained using Fisher’s identity, as discussed in Sect. 2.3.1.

The second term consists of two integrals (see (23)), which can also be approximated using samples. Specif-
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ically,

∇2
θp(yi | θ)
p(yi | θ)

≈ 1

Sα

Sα∑
s=1

(
∇θ log p(yi,α

(s)
i | θ)∇θ log p(yi,α

(s)
i | θ)⊤ +∇2

θ log p(yi,α
(s)
i | θ)

)
,

where α
(s)
i ∼ p(αi | yi,θ) for s = 1, . . . , Sα. If obtaining samples from p(αi | yi,θ) is not straightforward,

importance sampling (as in Sect. 2.3.1) can be used instead. Following Nemeth et al. (2016), for computa-

tional efficiency, we use the same samples {α(s)
i : s = 1, . . . , Sα} that were used to approximate the score

using Fisher’s identity and their corresponding normalised weights Wi to obtain the estimates of the second

term in Louis’ identity. Then

∇2
θp(yi | θ)
p(yi | θ)

≈
Sα∑
s=1

w̄
(s)
i

(
∇θ log p(yi,α

(s)
i | θ)∇θ log p(yi,α

(s)
i | θ)⊤ +∇2

θ log p(yi,α
(s)
i | θ)

)
.

2.4 Damped R-VGAL

A possible problem with R-VGAL is its instability in the first few observations, making it sensitive to the

ordering of the observations. In Sect. S3 of the online supplement, we run the R-VGAL algorithm on a

dataset in its original order, and also on a random reordering of the observations, and find that the R-VGAL

parameter estimates from these two runs differ. Figures S13 and S14 in Sect. S3 show that the first few

observations can heavily influence the trajectory of the variational mean. Here, we propose a damping

approach to stabilise the R-VGAL algorithm during the initial few steps.

In damped R-VGAL, the updates of the mean and precision matrix for each observation are split into K

steps, where K is selected on a case by case basis. In each step, we multiply the gradient and the Hessian

of log p(yi | θ) by a factor a = 1
K (which acts as a “step size”), and then update the variational parameters

K times during the ith iteration. Intuitively, in this way, one observation is split into K “parts” and

incorporated into the updates one part at a time. Using a smaller step size helps stabilise the R-VGAL

algorithm, particularly for the first few observations. Sect. S3 of the online supplement shows that damping

the first few iterations makes the R-VGAL algorithm more robust to different orderings of the data.

The damped R-VGAL approach we present here is inspired by the so-called damped Newton’s method. In the

case where the model is linear and the likelihood is Gaussian, the original R-VGA algorithm, upon which

R-VGAL is based, can be shown to be equivalent to an online version of Newton’s method; see Appendix 8.2

of Lambert et al. (2022) for a proof. Newton’s method seeks the minimiser of a continuously differentiable

function f : Rd → R, d ∈ N, by beginning with some starting value u0 ∈ Rd and sequentially minimising the
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quadratic approximation of the function f(·) around the current value in order to find the next value:

uk+1 = argmin
u

f(uk) +∇uf(uk)
⊤(u− uk) +

1

2
(u− uk)

⊤∇2
uf(uk)(u− uk), k = 0, 1, 2, ...

Provided that ∇2
uf(uk) is positive definite, the minimiser of f(·) is unique and can be computed iteratively

as

uk+1 = uk − (∇2
uf(uk))

−1∇uf(uk), k = 0, 1, 2, ... (24)

These iterations stop when ∥∇f(uk+1)∥ ≤ ϵ0, where ϵ0 is some small tolerance parameter. Often, in practice,

Newton’s method is modified to include a step size 0 < ρ ≤ 1 to improve convergence:

uk+1 = uk − ρ(∇2
uf(uk))

−1∇uf(uk), k = 0, 1, 2, ..., (25)

resulting in the damped Newton’s method. This step size ρ is similar to the multiplicative factor a in our

damped R-VGAL approach.

We also note that, in the case where the model is linear or when the likelihood function comes from an

exponential family and the model is linearised, the R-VGA algorithm of Lambert et al. (2022) is equivalent

to an online natural gradient algorithm with step size 1
1+t , where t denotes the iteration. A proof of this

equivalence can be found in Appendix 8.3 of Lambert et al. (2022). Viewed from the perspective of natural

gradient optimisation, the damping factor a in damped R-VGAL can be interpreted as a reduction of the

step size in natural gradient updates.

We summarise the damped R-VGAL algorithm in Algorithm 2.

3 Applications of R-VGAL

In this section, we apply R-VGAL to estimate parameters in linear, logistic and Poisson mixed models using

three simulated datasets and two real datasets: the Six City dataset from Fitzmaurice and Laird (1993),

and the Polypharmacy dataset from Hosmer et al. (2013). The linear and logistic models have univariate

random effects, while the Poisson model has bivariate random effects. There are two additional examples in

Sect. S6 of the online supplement: a real data example with the Poisson model applied to the Epilepsy dataset

from Thall and Vail (1990), and a synthetic data example with a high number of observations simulated

from the logistic mixed model.
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Algorithm 2 Damped R-VGAL

Input: observations y1, . . . ,yN , initial values µ0 and Σ0, number of observations to damp ndamp, number

of damping steps K.

Output: variational parameters µi and Σi, for i = 1, ..., N .

Set q0(θ) = Gau(µ0,Σ0).

for i = 1, . . . , N do

if i ≤ ndamp then

Set a = 1/K, µi,0 = µi−1,Σi,0 = Σi−1

for k = 1, . . . ,K do

Set qi,k−1(θ) = Gau(µi,k−1,Σi,k−1).

µi,k = µi,k−1 + aΣi,kEqi,k−1
(∇̂θ log p(yi | θ))

Σ−1
i,k = Σ−1

i,k−1 − aEqi,k−1
(∇̂2

θ log p(yi | θ))

end for

Set µi = µi,K ,Σi = Σi,K , qi(θ) = Gau(µi,Σi).

else

µi = µi−1 +ΣiEqi−1(∇̂θ log p(yi | θ))

Σ−1
i = Σ−1

i−1 − Eqi−1(∇̂2
θ log p(yi | θ))

end if

end for

We validate R-VGAL against Hamiltonian Monte Carlo (HMC, Neal, 2011; Betancourt and Girolami, 2015),

which is implemented using the Stan programming language (Stan Development Team, 2023) in R (R

Core Team, 2022). In examples with real data, the true parameters are unknown. We instead compute

the maximum likelihood estimates for the parameters using the R package lme4 (Bates et al., 2015), and

also treat results from HMC as the “ground truth”, as HMC provides samples from the true posterior

distributions. For all examples, we run 2 HMC chains for 15000 iterations each, and discard the first

5000 from each chain as burn in. We find that the effective sample sizes are high and the R̂ statistics

are close to 1 for all examples, indicating that the HMC chains are well-mixed and have converged; see

Sect. S5 of the online supplement for further details. Reproducible R code for all examples is available on

https://github.com/bao-anh-vu/R-VGAL.

For all applications in this paper, we use the damped R-VGAL algorithm described in Sect. 2.4. We show

that damping makes the algorithm more robust to different orderings of the observations in Sect. S3 of the

online supplement. The values of ndamp and K used in damping observations should be kept as small as

possible to limit the extra computational overhead, while also be sufficiently large to reduce the instability
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observed with the R-VGAL algorithm in the initial stages. In our applications, we experimented with a

few different settings of ndamp and K and plotted the trajectories of the variational mean under those

settings. We found that the trajectories were most unstable during the first 10 observations, so we chose

ndamp = 10 observations and the number of steps K = 4 to reduce the initial instability at the expense of a

small additional computational cost. These values are used throughout our examples. Adaptive schemes for

selecting the values of ndamp and K are left as future research directions.

3.1 Linear mixed effect model

In this example, we generate data from a linear mixed model with N = 200 groups and n = 10 responses

per group. The jth response from the ith group is modelled as

yij = x⊤
ijβ + zijαi + ϵij , αi ∼ Gau(0, σ2

α), ϵij ∼ Gau(0, σ2
ϵ ), (26)

for i = 1, . . . , N and j = 1, . . . , n, where xij is drawn from a Gau(0, I4) distribution and zij is drawn from

a Gau(0, 1) distribution. For this example, we did not include an intercept term, but it can be added if

necessary. The true parameter values are β = (−1.5, 1.5, 0.5, 0.25)⊤, σα = 0.9, and σϵ = 0.7. Since R-VGAL

uses a multivariate normal distribution as the variational approximation, we consider the log-transformed

variables ϕα ≡ log(σ2
α) and ϕϵ ≡ log(σ2

ϵ ) so that ϕα and ϕϵ are unconstrained. We then make inference on

the parameters θ = (β⊤, ϕα, ϕϵ)
⊤ using R-VGAL.

At the group level, the linear mixed model is

yi = Xiβ + ziαi + εi, i = 1, . . . , N, (27)

where yi ≡ (yi1, . . . , yin)
⊤, Xi ≡ (xi1, . . . ,xin)

⊤, zi ≡ (zi1, . . . , zin)
⊤, and εi ≡ (ϵi1, . . . , ϵin)

⊤. At each

iteration, i = 1, . . . , N , the R-VGAL algorithm makes use of the “partial” likelihood of the observations

from the ith group, p(yi | θ) = Gau(µy|θ,Σy|θ), where µy|θ = Xiβ and Σy|θ = σ2
αziz

⊤
i + σ2

ϵ In. For this

model, the gradient and Hessian of log p(yi | θ) with respect to each of the parameters are available in closed

form; see Sect. S1.1 of the online supplement. In this case, we are therefore able to compare the accuracy of

R-VGAL implemented using approximate gradients and Hessians with that of R-VGAL implemented using

exact gradients and Hessians.
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The prior distribution we use, which is also the “initial” variational distribution, is

p(θ) = q0(θ) = Gau




0

log(0.52)

log(0.52)

 ,


10I4 0 0

0⊤ 1 0

0⊤ 0 1


 . (28)

A Gau(log(0.52), 1) prior distribution for ϕα and ϕϵ is equivalent to a log-normal prior distribution with mean

0.41 and variance 0.29 for both σ2
α and σ2

ϵ . Using this prior distribution, the 2.5th and 97.5th percentiles for

both σ2
α and σ2

ϵ are (0.035, 1.775).

At each iteration i = 1, . . . , 200, we use Sα = 100 Monte Carlo samples (of αi) to approximate the gradient

and Hessian of log p(yi | θ) using Fisher’s and Louis’ identities. We use S = 100 Monte Carlo samples (of θ)

to approximate the expectations with respect to qi−1(θ) in the R-VGAL updates of the mean and precision

matrix. These values were chosen based on an experimental study on the effect of S and Sα on the posterior

estimates of R-VGAL in Sect. S2 of the online supplement.

We validate R-VGAL against HMC, which we implemented in Stan. Figure 1 shows the marginal posterior

distributions of the parameters, along with bivariate posterior distributions as estimated using R-VGAL with

approximate gradients and Hessians, R-VGAL with exact gradients and Hessians, and HMC. The posterior

distributions obtained using R-VGAL are clearly very similar to those obtained using HMC, irrespective of

whether exact or approximate gradients and Hessians are used.

3.2 Logistic mixed effect model

In this example, we generate simulated data from a random effects logistic regression model with N = 500

groups and n = 10 responses per group. The random effect logistic regression model we use is

yij ∼ Bernoulli(πij), πij ≡ Pr(yij = 1 | β, τ2) =
exp(x⊤

ijβ + αi)

1 + exp(x⊤
ijβ + αi)

, αi ∼ Gau(0, τ2), (29)

where xij is drawn from a Gau(0, I4) distribution, for i = 1, . . . , N and j = 1, . . . , n. For this example,

we did not include an intercept term, but it can be added if necessary. The true parameter values are

β = (−1.5, 1.5, 0.5, 0.25)⊤ and τ = 0.9.

As in the linear case, although the parameters of the model are β and τ , we work with θ = (β⊤, ϕτ )
⊤ where

ϕτ ≡ log(τ2). The gradient and Hessian of the “partial” log-likelihood log p(yi | θ) in this model are not

analytically tractable, but can be estimated unbiasedly using Fisher’s and Louis’ identities as discussed in
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Figure 1: Exact posterior distributions (from HMC, in blue) and approximate posterior distributions (from
R-VGAL with estimated gradients and Hessians in red, and from R-VGAL with exact gradients and Hessians
in yellow) for the linear mixed model experiment. Diagonal panels: Marginal posterior distributions with
true parameters denoted using dotted lines. Off-diagonal panels: Bivariate posterior distributions with true
parameters denoted using the symbol ×.

Sects. 2.3.1 and 2.3.2. These identities require the expressions for ∇θ log p(yi, αi | θ) and ∇2
θ log p(yi, αi | θ),

which are provided in Sect. S1.2 of the online supplement.

The prior distribution we use, which is also the “initial” variational distribution, is

p(θ) = q0(θ) = Gau


 0

log(0.52)

 ,

10I4 0

0⊤ 1


 . (30)

A Gau(log(0.52), 1) prior distribution for ϕτ is equivalent to a log-normal prior distribution with mean 0.41

and variance 0.29 for τ2. The prior 2.5th and 97.5th percentiles for τ2 are (0.035, 1.775). At each iteration

i = 1, . . . , 500, we use Sα = 100 Monte Carlo samples (of αi) to approximate the gradient and Hessian of

log p(yi | θ) during importance sampling, and S = 100 samples (of θ) to approximate the expectations with

respect to qi−1(θ) in the R-VGAL updates of the mean and precision matrix.
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Figure 2: Exact posterior distributions from HMC (in blue) and approximate posterior distributions from
R-VGAL with estimated gradients and Hessians (in red) for the logistic mixed model experiment. Diagonal
panels: Marginal posterior distributions with true parameters denoted using dotted lines. Off-diagonal
panels: Bivariate posterior distributions with true parameters denoted using the symbol ×.

Figure 2 shows the marginal posterior distributions of the parameters, along with bivariate posterior dis-

tributions as estimated using R-VGAL and HMC. The posterior distributions obtained using R-VGAL are

again very similar to those obtained using HMC.

3.3 Poisson mixed model

We now apply R-VGAL to a model with bivariate random effects. For this example, we simulate data with

N = 200 groups and n = 10 responses per group from the following Poisson mixed effect regression model:

yij ∼ Poisson(λij), λij = exp(x⊤
ijβ + z⊤ijαi), αi ∼ Gau(0,Σα),

where xij ≡ (1, xij,1)
⊤, with xij,1 drawn from a Gau(0, 1) distribution, and zij ≡ (1, zij,1)

⊤, with zij,1 drawn

from a Gau(0, 1) distribution, for i = 1, . . . , N and j = 1, . . . , n. We denote the fixed and random effects as
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β ≡ (β0, β1)
⊤ and αi ≡ (αi,1, αi,2)

⊤, respectively. The true parameter values are

β = (−1.5,−0.5)⊤, Σα =

0.15 0.05

0.05 0.20

 .

We parameterise Σα = LL⊤, where L denotes the lower Cholesky factor of Σα and takes the form

L =

exp(ζ11) 0

ζ21 exp(ζ22)

 .

In the algorithm, we consider the unconstrained parameters θ = (β⊤, ζ⊤)⊤, where ζ ≡ (ζ11, ζ22, ζ21)
⊤. The

gradient ∇θ log p(yi,αi | θ) and Hessian ∇2
θ log p(yi,αi | θ), which are necessary in the computation of the

gradient and Hessian of the group-specific log likelihood log p(yi | θ), are provided in Sect. S1.3 of the online

supplement.

We use the following prior/initial variational distribution:

p(θ) = q0(θ) = Gau


0
0

 ,

 I2 0

0⊤ 0.1I3


 .

Using a Gau(0, 0.1) prior distribution for ζ11, ζ22 and ζ21 leads to having 2.5th and 97.5th percentiles of

(0.290, 3.485) for Σα11
, (0.342, 3.577) for Σα22

, and (−0.713, 0.713) for the off-diagonal entries Σα21
and Σα12

.

As with the linear and logistic examples, we use Sα = 100 for the importance sampling step and S = 100

samples for approximating the expectations with respect to qi−1(θ) in the R-VGAL updates. Figure 3

shows the marginal posterior distributions of the parameters, along with bivariate posterior distributions as

estimated using R-VGAL and HMC. For all parameters, the R-VGAL and HMC posterior densities are very

similar, though the posterior densities of Σα11 from both methods appear a bit biased.

To assess the robustness of the results in these simulation studies, we also include repeated simulation studies

on the linear, logistic and Poisson mixed models in Sect. S4 of the online supplement. For each of these

models, we simulate 100 datasets using the same parameter settings, and compare the posterior estimates

from R-VGAL and HMC on these simulated datasets. We find that the R-VGAL and HMC posterior

estimates are very similar across simulations for the linear and logistic models, while for the Poisson model,

the estimates from the two methods are close for most simulations, with only a few cases where estimates
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Figure 3: Exact posterior distributions from HMC (in blue) and approximate posterior distributions from
R-VGAL with estimated gradients and Hessians (in red) for the Poisson mixed model experiment. Diagonal
panels: Marginal posterior distributions with true parameters denoted using dotted lines. Off-diagonal
panels: Bivariate posterior distributions with true parameters denoted using the symbol ×.

are slightly different. We also find that the posterior standard deviations from R-VGAL tend to be slightly

smaller than those from HMC.

3.4 Real data examples

We now apply R-VGAL to two real datasets: the Six City dataset from Fitzmaurice and Laird (1993), and

the Polypharmacy dataset from Hosmer et al. (2013).

For the Six City dataset, we follow Tran et al. (2017) and consider the random intercept logistic regression

model

log

(
πij

1− πij

)
= β0 + βageAgeij + βsmokeSmokeij + αi, αi ∼ Gau(0, τ2), (31)

where πij ≡ Pr(yij = 1 | β, τ2), with β ≡ (β0, βage, βsmoke)
⊤, for i = 1, . . . , 537 and j = 1, . . . , 4. The binary

response variable yij = 1 if child i is wheezing at time point j, and 0 otherwise. The covariate Ageij is the
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age of child i at time point j, centred at 9 years, while the covariate Smokeij = 1 if the mother of child i is

smoking at time point j, and 0 otherwise. Finally, αi is the random effect associated with the ith child. The

parameters of the model are θ = (β⊤, ϕτ )
⊤, where ϕτ ≡ log(τ2).

For the Polypharmacy dataset, we consider the random intercept logistic regression model from Tan and

Nott (2018):

log

(
πij

1− πij

)
= β0 + βgenderGenderi + βraceRacei + βageAgeij + βM1MHV1ij

+ βM2MHV2ij + βM3MHV3ij + βIMINPTMHVij + αi, αi ∼ Gau(0, τ2), (32)

where πij ≡ Pr(yij = 1 | β, τ2), β ≡ (β0, βgender, βrace, βage, βM1, βM2, βM3, βIM )⊤, for i = 1, . . . , 500 and

j = 1, . . . , 7. The response variable yij is 1 if subject i in year j is taking drugs from three or more different

classes (of drugs), and 0 otherwise. The covariate Genderi = 1 if subject i is male, and 0 if female, while

Racei = 0 if the race of subject i is white, and 1 otherwise. The covariate Ageij is the age (in years and

months, to two decimal places) of subject i in year j. The number of outpatient mental health visits (MHV)

for subject i in year j is split into three dummy variables: MHV1ij = 1 if 1 ≤ MHVij ≤ 5, and 0 otherwise;

MHV2ij = 1 if 6 ≤ MHVij ≤ 14, and 0 otherwise; and MHV3ij = 1 if MHVij ≥ 15, and 0 otherwise. The covariate

INPTMHVij = 0 if there were no inpatient mental health visits for subject i in year j, and 1 otherwise. Finally,

αi is a subject-level random effect for subject i. The parameters of the model are θ = (β⊤, ϕτ )
⊤, where

ϕτ ≡ log(τ2).

We use similar priors/initial variational distributions for both examples. For the Six City dataset, the

prior/initial variational distribution we use is

p(θ) = q0(θ) = Gau


0
1

 ,

10I3 0

0⊤ 1


 , (33)

and for the Polypharmacy dataset, we use

p(θ) = q0(θ) = Gau


0
1

 ,

10I8 0

0⊤ 1


 . (34)

A Gau(1, 1) prior distribution for ϕτ leads to a log-normal prior distribution with mean 4.48 and variance

34.51 for τ2. Using this prior distribution, the 2.5th and 97.5th percentiles for τ2 are (0.383, 19.297), which

cover most values of τ2 in practice. At each R-VGAL iteration, the gradient and Hessian of log p(yi | θ) are
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Figure 4: Exact posterior distributions from HMC (in blue) and approximate posterior distributions from R-
VGAL with estimated gradients and Hessians (in red) for the experiment with the Six City dataset. Diagonal
panels: Marginal posterior distributions with the maximum likelihood estimates marked using dotted lines.
Off-diagonal panels: Bivariate posterior distributions with the maximum likelihood estimates marked using
the symbol ×.

approximated using Sα = 200 Monte Carlo samples (of αi), and the expectations with respect to qi−1(θ) in

the R-VGAL updates are approximated using S = 200 Monte Carlo samples (of θ).

As there are no ground truths to these examples, we compare the posterior density estimates from R-VGAL

to those from HMC. In addition, we also compute the maximum likelihood estimates using the lme4 package

in R. Figures 4 and 5 show the marginal posterior distributions with maximum likelihood estimates of the

parameters, along with bivariate posterior distributions estimated using R-VGAL and HMC for the Six

City and Polypharmacy datasets, respectively. In the Six City example, there is a slight difference in the

marginal and bivariate posterior densities from R-VGAL and HMC for the fixed effect βsmoke, but the

posterior densities for other parameters are very similar between the two methods. For the intercept β0 and

the random effect standard deviation τ , the posterior modes of HMC are closer to the maximum likelihood

estimates than the posterior modes of R-VGAL, but for the other parameters, the posterior modes from

both R-VGAL and HMC are close to the maximum likelihood estimates. For the Polypharmacy example,

there are slight differences between the R-VGAL and HMC marginal and bivariate posterior densities for

the intercept β0 and the fixed effects βgender and βrace, but for other parameters, the posterior densities are

comparable between the two methods. The posterior modes of both R-VGAL and HMC are close to the
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Figure 5: Exact posterior distributions from HMC (in blue) and approximate posterior distributions from
R-VGAL with estimated gradients and Hessians (in red) for the experiment with the Polypharmacy dataset.
Diagonal panels: Marginal posterior distributions with the maximum likelihood estimates marked using
dotted lines. Off-diagonal panels: Bivariate posterior distributions with the maximum likelihood estimates
marked using the symbol ×.

maximum likelihood estimates for all parameters in this example.

3.5 Computing time

Table 1 compares the computing time (in minutes) of R-VGAL and HMC for all simulated and real data

examples that we have discussed in Sect. 3 and Sect. S6 of the online supplement, and includes the cor-

responding dataset size for each example. The last column in the table shows the average time taken (in

seconds) for a single iteration of R-VGAL. For the linear example, where we run R-VGAL with both the

theoretical and estimated gradients/Hessians, the displayed time is that of R-VGAL with the estimated

gradients/Hessians. All experiments were carried out on the High Performance Computer system of the Na-

tional Institute for Applied Statistics Research Australia, with an NVIDIA Tesla V100 PCIe 32GB graphics

processing unit (GPU). The GPU was used to parallelise the computations in the importance sampling

step, so that the gradient and Hessian of the joint log-likelihood log p(yi,α
(s)
i | θ), s = 1, . . . , Sα, and their
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N n HMC (min) R-VGAL (min) One R-VGAL iteration (s)
Linear (simulated data) 200 10 2.5 0.6 0.17
Logistic (simulated data) 500 10 7.2 1.1 0.13
Poisson (simulated data) 200 10 11.3 3.1 1.05
Logistic (Six City) 537 4 3.4 1.2 0.13
Logistic (Polypharmacy) 500 7 18.5 2.4 0.29
Poisson (Epilepsy)* 59 4 3.3 1.2 1.25
Logistic (simulated data)* 5000 10 133.6 16.8 0.20

Table 1: Computing time (in minutes) for R-VGAL and HMC on simulated and real datasets, with accom-
panying dataset sizes. Timings for one R-VGAL update is shown (in seconds). Examples with the * symbol
are in the online supplement.

corresponding weights Wi, are computed all at once. The GPU was also used to parallelise over the Monte

Carlo samples used in the estimation of the expectations with respect to qi−1(·) in Algorithm 1. We use the

R interface to Tensorflow (Abadi et al., 2015) to facilitate GPU computations.

The table shows that the R-VGAL algorithm is generally 3 to 8 times faster than HMC. This is substantial

given that our code is not as highly optimised as that in Stan. The difference in computing times also

becomes more notable with a bigger dataset: in the logistic example with 50000 synthetic observations

(see Sect. S6.2 of the online supplement), R-VGAL takes only 17 minutes to produce posterior estimates,

while HMC takes more than 2 hours. Furthermore, since R-VGAL is a sequential algorithm, posterior

approximations from R-VGAL can be easily updated as new observations become available. To incorporate

an additional observation, R-VGAL needs to perform a single update, while an algorithm like HMC requires

rerunning the entire sampling procedure.

4 Conclusion

In this article, we propose a sequential variational Bayes algorithm for estimating parameters in GLMMs

based on an extension of the R-VGA algorithm of Lambert et al. (2022). The original R-VGA algorithm

requires the gradient and Hessian of the partial log-likelihood at each observation, which are computationally

intractable for most GLMMs. To overcome this, we use Fisher’s and Louis’ identities to obtain unbiased

estimates of the gradient and Hessian, which can be used in place of the closed form gradient and Hessian

in the R-VGAL algorithm.

We apply R-VGAL to the linear, logistic and Poisson mixed effect models with simulated and real datasets.

In all examples, we compare the posterior distributions of the parameters estimated using R-VGAL to those

obtained using HMC (Neal, 2011; Betancourt and Girolami, 2015). The examples show that R-VGAL yields

comparable posterior estimates to HMC while being substantially faster, and the R-VGAL posterior modes
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are very close to the maximum likelihood estimates for most parameters in the models we consider. R-VGAL

would be especially useful in situations where new observations are being continuously collected.

In the current paper, we assume that the random effects are independent and identically distributed between

subjects or groups. We discuss the potential application of R-VGAL to models with more complicated

random effect structures, such as crossed or nested effects, in Sect. S7 of the online supplement. Future

work will attempt to extend R-VGAL to cases where the random effects are temporally correlated. This will

expand the set of models on which R-VGAL can be used to include time series and state space models.
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Bates, D., Mächler, M., Bolker, B., and Walker, S. (2015). Fitting linear mixed-effects models using lme4.

Journal of Statistical Software, 67(1):1–48.

Betancourt, M. and Girolami, M. (2015). Hamiltonian Monte Carlo for hierarchical models. Current Trends

in Bayesian Methodology with Applications, 79(30):2–4.

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. (2017). Variational inference: a review for statisticians.

Journal of the American Statistical Association, 112(518):859–877.

Bonnet, G. (1964). Transformations des signaux aléatoires a travers les systemes non linéaires sans mémoire.
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S1 Appendix A: Gradient and Hessian derivations

S1.1 Derivation of gradient and Hessian expressions for the linear mixed model

In the linear mixed model, the theoretical gradient and Hessian for the likelihood at observation i for

i = 1, . . . , N are available. This section gives the expressions for both the theoretical gradient and Hessian,

as well as their approximations when using Fisher’s and Louis’ identities.

S1.1.1 Theoretical gradient and Hessian

The “partial” log-likelihood for observations from the ith group is given by

log p(yi | θ) = −n

2
log(2π)− 1

2
log
∣∣Σy|θ

∣∣− 1

2
(yi −Xiβ)

⊤Σ−1
y|θ(yi −Xiβ), i = 1, . . . , N, (S1)

where Σy|θ = exp(ϕα)ziz
⊤
i + exp(ϕϵ)In.

The gradient of the log-likelihood with respect to the parameters θ is given by

∇θ log p(yi | θ) = (∇β log p(yi | θ)⊤,∇ϕα log p(yi | θ),∇ϕϵ log p(yi | θ))⊤,

where the components are, respectively,

∇β log p(yi | θ) = X⊤
i Σ

−1
y|θ(yi −Xiβ) (S2)

∇ϕα log p(yi | θ) = −1

2
Tr

(
Σ−1

y|θ
∂Σy|θ

∂ϕα

)
+

1

2
(yi −Xiβ)

⊤Σ−1
y|θ

∂Σy|θ

∂ϕα
Σ−1

y|θ(yi −Xiβ) (S3)

∇ϕϵ
log p(yi | θ) = −1

2
Tr

(
Σ−1

y|θ
∂Σy|θ

∂ϕϵ

)
+

1

2
(yi −Xiβ)

⊤Σ−1
y|θ

∂Σy|θ

∂ϕϵ
Σ−1

y|θ(yi −Xiβ), (S4)

with

∂Σy|θ

∂ϕα
= exp(ϕα)ziz

⊤
i ,

∂Σy|θ

∂ϕϵ
= exp(ϕϵ)In. (S5)

The Hessian is given by

∇2
θ log p(yi | θ) =


∇2

β log p(yi | θ) ∇β∇ϕα log p(yi | θ) ∇β∇ϕϵ log p(yi | θ)

∇β∇ϕα
log p(yi | θ)⊤ ∇2

ϕα
log p(yi | θ) ∇ϕα

∇ϕϵ
log p(yi | θ)

∇β∇ϕϵ
log p(yi | θ)⊤ ∇ϕα

∇ϕϵ
log p(yi | θ) ∇2

ϕϵ
log p(yi | θ)

 . (S6)
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The diagonal terms in the Hessian are the second derivatives

∇2
β log p(yi | θ) = −X⊤

i Σ
−1
y|θXi, (S7)

∇2
ϕα

log p(yi | θ) = −1

2
Tr(Gϕα

) +
1

2
(yi −Xiβ)

⊤Hϕα
(yi −Xiβ), (S8)

where

Gϕα
= −Σ−1

y|θ
∂Σy|θ

∂ϕα
Σ−1

y|θ
∂Σy|θ

∂ϕα
+Σ−1

y|θ
∂2Σy|θ

∂ϕ2
α

(S9)

Hϕα
= −2Σ−1

y|θ
∂Σy|θ

∂ϕα
Σ−1

y|θ
∂Σy|θ

∂ϕα
Σ−1

y|θ +Σ−1
y|θ

∂2Σy|θ

∂ϕ2
α

Σ−1
y|θ, (S10)

with
∂2Σy|θ
∂ϕ2

α
= exp(ϕα)ziz

⊤
i . The expression for ∇2

ϕϵ
log p(yi | θ) is the same as in (S8), but with all

derivatives with respect to ϕα replaced by those with respect to ϕϵ. Note that
∂2Σy|θ
∂ϕ2

ϵ
= exp(ϕϵ)In.

The off-diagonal terms in the Hessian are

∇β∇ϕα
log p(yi | θ) = −X⊤

i Σ
−1
y|θ

∂Σy|θ

∂ϕα
Σ−1

y|θ(yi −Xiβ)

∇β∇ϕϵ
log p(yi | θ) = −X⊤

i Σ
−1
y|θ

∂Σy|θ

∂ϕϵ
Σ−1

y|θ(yi −Xiβ)

∇ϕα
∇ϕϵ

log p(yi | θ) = −1

2
Tr(Gϕαϕϵ

) +
1

2
(yi −Xiβ)

⊤Hϕαϕϵ
(yi −Xiβ),

where

Gϕαϕϵ
= −Σ−1

y|θ
∂Σy|θ

∂ϕα
Σ−1

y|θ
∂Σy|θ

∂ϕϵ
(S11)

Hϕαϕϵ = −Σ−1
y|θ

∂Σy|θ

∂ϕα
Σ−1

y|θ
∂Σy|θ

∂ϕϵ
Σ−1

y|θ −Σ−1
y|θ

∂Σy|θ

∂ϕϵ
Σ−1

y|θ
∂Σy|θ

∂ϕα
Σ−1

y|θ. (S12)

S1.1.2 Expressions for the gradient and Hessian using Fisher’s and Louis’ identities

Fisher’s identity (19) requires the gradient ∇θ log p(yi, αi | θ), while Louis’ identity (22) requires the Hessian

∇2
θ log p(yi, αi | θ). We now give the expression for these quantities for the linear mixed model considered

in Sect. 3.1.

S2



For i = 1, . . . , N , the gradient ∇θ log p(yi, αi | θ) can be written as

∇θ log p(yi, αi | θ) = ∇θ log p(yi | αi,θ) +∇θ log p(αi | θ), (S13)

= ∇θ log p(yi | αi,β, ϕϵ) +∇θ log p(αi | ϕα), (S14)

where

log p(yi | αi,β, ϕϵ) = −n

2
log(2π)− 1

2
log|exp(ϕϵ)In|−

1

2 exp(ϕϵ)
(yi−Xiβ−ziαi)

⊤(yi−Xiβ−ziαi), (S15)

and

log p(αi | ϕα) = −1

2
log(2π)− ϕα

2
− α2

i

2 exp(ϕα)
. (S16)

Thus, the gradient of the joint ∇θ log p(yi, αi | θ) is

∇θ log p(yi, αi | θ) =
(
∇β log p(yi, αi | θ)⊤,∇ϕα

log p(yi, αi | θ),∇ϕϵ
log p(yi, αi | θ)

)⊤
, (S17)

where each component is given by

∇β log p(yi, αi | θ) = ∇β log p(yi | αi,β, ϕϵ)

=
1

exp(ϕϵ)
X⊤

i (yi −Xiβ − ziαi), (S18)

∇ϕα
log p(yi, αi | θ) = ∇ϕα

log p(αi | ϕα)

= −1

2
+

α2
i

2 exp(ϕα)
, (S19)

∇ϕϵ
log p(yi, αi | θ) = ∇ϕϵ

log p(yi | αi,β, ϕϵ)

= −n

2
+

1

2 exp(ϕϵ)
(yi −Xiβ − ziαi)

⊤(yi −Xiβ − ziαi). (S20)

Similarly, the approximation of the Hessian using Louis’ identity requires ∇2
θ log p(yi, αi | θ), in particular,

∇2
θ log p(yi, αi | θ) =


∇2

β log p(yi, αi | θ) ∇β∇ϕα
log p(yi, αi | θ) ∇β∇ϕϵ

log p(yi, αi | θ)

∇β∇ϕα log p(yi, αi | θ)⊤ ∇2
ϕα

log p(yi, αi | θ) ∇ϕα∇ϕϵ log p(yi, αi | θ)

∇β∇ϕϵ
log p(yi, αi | θ)⊤ ∇ϕα

∇ϕϵ
log p(yi, αi | θ)⊤ ∇2

ϕϵ
log p(yi, αi | θ)

 . (S21)
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The components of (S21) are given by

∇2
β log p(yi, αi | θ) = − 1

exp(ϕϵ)
X⊤

i Xi, (S22)

∇2
ϕα

log p(yi, αi | θ) = − α2
i

2 exp(ϕα)
, (S23)

∇2
ϕϵ

log p(yi, αi | θ) = − 1

2 exp(ϕϵ)
(yi −Xiβ − ziαi)

⊤(yi −Xiβ − ziαi), (S24)

∇β∇ϕα
log p(yi, αi | θ) = 0, (S25)

∇β∇ϕϵ
log p(yi, αi | θ) = − 1

exp(ϕϵ)
X⊤

i (yi −Xiβ − ziαi), (S26)

∇ϕα
∇ϕϵ

log p(yi, αi | θ) = 0. (S27)

S1.2 Derivation of gradient and Hessian expressions for the logistic mixed

model

The parameters of interest are θ = (β⊤, ϕτ )
⊤, where ϕτ = log(τ2). The likelihood function p(yi | θ) is not

available in closed form for this model, so the gradient and Hessian of the log likelihood with respect to the

parameters θ need to be approximated via Fisher’s and Louis’ identities.

The evaluation of Fisher’s identity requires the gradient ∇θ log p(yi, αi | θ), where

log p(yi, αi | θ) = log p(yi | αi,θ) + log p(αi | θ)

= log p(yi | αi,β) + log p(αi | ϕτ ).

Individually,

log p(yi | αi,β) =

n∑
j=1

yij log

(
1

1 + exp(−(x⊤
ijβ + αi))

)
+ (1− yij) log

(
1− 1

1 + exp(−(x⊤
ijβ + αi))

)

and

log p(αi | ϕτ ) = −1

2
log(2π)− ϕτ

2
− 1

2

α2
i

exp(ϕτ )
.
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The components of ∇θ log p(yi, αi | θ) = (∇β log p(yi, αi | θ)⊤,∇ϕτ log p(yi, αi | θ))⊤ are derived below:

∇β log p(yi, αi | θ) = ∇β log p(yi | αi,β) (since log p(αi | θ) does not depend on β)

=

n∑
j=1

yij [1 + exp(−(x⊤
ijβ + αi))]

∂

∂β

(
1

1 + exp(−(x⊤
ijβ + αi))

)

−
n∑

j=1

(1− yij)
1 + exp(−(x⊤

ijβ + αi))

exp(−(x⊤
ijβ + αi))

∂

∂β

(
1

1 + exp(−(x⊤
ijβ + αi))

)
, (S28)

where

∂

∂β

(
1

1 + exp(−(x⊤
ijβ + αi))

)
= xij

exp(−(x⊤
ijβ + αi))

[1 + exp(−(x⊤
ijβ + αi))]2

. (S29)

Substituting (S29) into (S28) and reducing terms gives

∇β log p(yi, αi | θ) =
n∑

j=1

yijxij

exp(−(x⊤
ijβ + αi))

1 + exp(−(x⊤
ijβ + αi))

−
n∑

j=1

(1− yij)xij
1

1 + exp(−(x⊤
ijβ + αi))

(S30)

=

n∑
j=1

xij

[
yij −

1

1 + exp(−(x⊤
ijβ + αi))

]
. (S31)

The other component of ∇θ log p(yi, αi | θ) is

∇ϕτ log p(yi, αi | θ) = ∇ϕτ log p(αi | ϕτ ) (since log p(yi | αi,β) does not depend on ϕτ )

= −1

2
+

α2
i

2 exp(ϕτ )
. (S32)

Evaluation of Louis’ identity similarly requires

∇2
θ log p(yi, αi | θ) =

 ∇2
β log p(yi, αi | θ) ∇β∇ϕτ

log p(yi, αi | θ)

∇β∇ϕτ log p(yi, αi | θ)⊤ ∇2
ϕτ

log p(yi, αi | θ)

 , (S33)

the components of which are

∇2
β log p(yi, αi | θ) =

n∑
j=1

∂

∂β⊤

(
xij

1 + exp(−(x⊤
ijβ + αi))

)
= −

n∑
j=1

xijx
⊤
ij

exp(−(x⊤
ijβ + αi))[

1 + exp(−(x⊤
ijβ + αi))

]2 ,
(S34)

∇2
ϕτ

log p(yi, αi | θ) = − α2
i

2 exp(ϕτ )
, (S35)

∇β∇ϕτ log p(yi, αi | θ) = 0. (S36)
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S1.3 Derivation of gradient and Hessian expressions for the Poisson mixed

model

In this section, we derive the gradient and Hessian for the Poisson model with bivariate random effects in

Sect. 3.3. We note that the formula for the gradient in this section can be generalised to an arbitrary number

of random effects.

The parameters of interest in this model are the fixed effects, β, and the lower-diagonal elements of the

Cholesky factor L of the random effect covariance matrix Σα. We parameterise L as

L =

exp(ζ11) 0

ζ21 exp(ζ22)

 , (S37)

and collect the parameters in a vector θ = (β⊤, ζ)⊤, where ζ ≡ (ζ11, ζ22, ζ21)
⊤. The likelihood function

p(yi | θ) is not available in closed form for this model, so the gradient and Hessian of the log likelihood with

respect to the parameters θ need to be approximated via Fisher’s and Louis’ identities.

The evaluation of Fisher’s identity requires the gradient of log p(yi,αi | θ), where

log p(yi,αi | θ) = log p(yi | αi,β) + log p(αi | ζ)

=

n∑
j=1

[yij(x
⊤
ijβ + z⊤ijαi)− exp(x⊤

ijβ + z⊤ijαi)]

− r

2
log(2π)− 1

2
log|Σα| −

1

2
α⊤

i Σ
−1
α αi, (S38)

for i = 1, . . . , N, j = 1, . . . , n, and where r is the number of random effects. The gradient is

∇θ log p(yi,αi | θ) = (∇β log p(yi,αi | θ),∇ζ log p(yi,αi | θ))⊤.

As log p(αi | ζ) does not depend on β, the gradient with respect to β is simply

∇β log p(yi,αi | θ) = ∇β log p(yi | αi,β) =

n∑
j=1

[yij − exp(x⊤
ijβ + z⊤ijαi)]xij . (S39)
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Similarly, as log p(yi | αi,β) does not depend on ζ, the gradient with respect to ζ reduces to

∇ζ log p(yi,αi | θ) = ∇ζ log p(αi | ζ)

= Tr(A⊤∇ζkl
L), k = 1, 2, l < k,

where A = −L−⊤ + L−⊤L−1αiα
⊤
i L

−⊤, with M−⊤ denoting the inverse of the transpose of a matrix M,

and

∇ζkl
L =


J∗
kk if k = l,

Jkl otherwise,

(S40)

for k = 1, 2, l < k, where Jkl is a 2× 2 matrix that has 1 in the (k, l)th element and 0 elsewhere, and J∗
kk is

a 2× 2 matrix that has exp(ζkk) in the (k, k)th element and 0 elsewhere.

The Hessian for the subject-specific log likelihood is

∇2
θ log p(yi,αi | θ) =

 ∇2
β log p(yi,αi | θ) ∇ζ∇β log p(yi,αi | θ)⊤

∇ζ∇β log p(yi,αi | θ) ∇2
ζ log p(yi,αi | θ)


=

∇2
β log p(yi,αi | θ) 04×3

03×4 ∇2
ζ log p(yi,αi | θ)

 ,

where 0m×n is a matrix of size m × n. Here the cross-derivative ∇ζ∇β log p(yi,αi | θ) is zero because

∇β log p(yi,αi | θ) does not depend on ζ. The remaining components of the Hessian matrix are

∇2
β log p(yi,αi | θ) =

n∑
j=1

[yij − exp(x⊤
ijβ + z⊤ijαi)]xijx

⊤
ij , (S41)

and

∇2
ζ log p(yi,αi | θ) =


∇2

ζ11
log p(yi,αi | θ) ∇ζ22∇ζ11 log p(yi,αi | θ)⊤ ∇ζ21∇ζ11 log p(yi,αi | θ)⊤

∇ζ22∇ζ11 log p(yi,αi | θ) ∇2
ζ22

log p(yi,αi | θ)⊤ ∇ζ21∇ζ22 log p(yi,αi | θ)⊤

∇ζ21∇ζ11 log p(yi,αi | θ) ∇ζ21∇ζ22 log p(yi,αi | θ)⊤ ∇2
ζ21

log p(yi,αi | θ)⊤


where

∇2
ζkl

log p(yi,αi | θ) = Tr((∇ζkl
A)⊤∇ζkl

L+A⊤∇2
ζkl

L), k = 1, 2, l < k. (S42)
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Separately,

∇2
ζkl

L =


J∗
kk, if k = l

02×2, otherwise,

(S43)

and

∇ζkl
A = ∇ζkl

(−L−⊤ + L−⊤L−1αiα
⊤
i L

−⊤)

= −∇ζkl
L−⊤ + (∇ζkl

L−⊤)B+ L−⊤∇ζkl
B, (S44)

where B = L−1αiα
⊤
i L

−⊤, and ∇ζkl
B = (∇ζkl

L−1)αiα
⊤
i L

−⊤ + L−1αiα
⊤
i (∇ζkl

L−⊤), for k = 1, 2, l < k.

We derive the terms ∇ζkl
L−⊤ individually:

∇ζ11L
−⊤ =

 − exp(−ζ11) 0

ζ21 exp(−ζ11 − ζ22) 0

 ,

∇ζ22L
−⊤ =

 0 0

ζ21 exp(−ζ11 − ζ22) − exp(−ζ22)

 ,

∇ζ21L
−⊤ =

 0 0

− exp(−ζ11 − ζ22) 0

 .
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S2 Variance of the R-VGAL posterior densities for various Monte

Carlo sample sizes

In this section, we study the effects of increasing the number of samples S, for estimating the expectations in

the variational mean and precision matrix updates, and Sα, for estimating the gradient of the log-likelihood on

the R-VGAL posterior estimates. The results are obtained using the simulated logistic data in Sect. 3.2 and

the Polypharmacy dataset in Sect. 3.4 of the main paper. Similar results are obtained for other datasets.

For all simulations in this section, we use the damped R-VGAL algorithm in Sect. 2.4 with ndamp = 10

observations and K = 4 damping steps per observation.

S2.1 Simulated logistic data

The simulated data used in this section is the same as that used in Sect. 3.2 of the main paper. The same

values for S and Sα are used and they are taken from the set {50, 100, 500, 1000}. For each pair of S and Sα

values, we independently run R-VGAL 10 times on the simulated dataset, and plot the posterior densities

from all 10 runs for each parameter. These posterior densities are shown in Figures S1 to S4. For comparison,

the HMC posterior distributions (from a single run, with 2 chains and 20000 total posterior samples after

burn-in) are also plotted in each figure.

Figure S1: R-VGAL posterior distributions from 10 runs on simulated logistic data are plotted in colour.
Damping is done on the first 10 observations, and the Monte Carlo sample sizes are S = 50 and Sα = 50.
HMC posterior distributions are plotted in black for comparison.

Figure S2: R-VGAL posterior distributions from 10 runs on simulated logistic data are plotted in colour.
Damping is done on the first 10 observations, and the Monte Carlo sample sizes are S = 100 and Sα = 100.
HMC posterior distributions are plotted in black for comparison.

As the Monte Carlo sample sizes increase, the R-VGAL posterior density estimates get closer and closer to
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Figure S3: R-VGAL posterior distributions from 10 runs on simulated logistic data are plotted in colour.
Damping is done on the first 10 observations, and the Monte Carlo sample sizes are S = 500 and Sα = 500.
HMC posterior distributions are plotted in black for comparison.

Figure S4: R-VGAL posterior distributions from 10 runs on simulated logistic data are plotted in colour.
Damping is done on the first 10 observations, and the Monte Carlo sample sizes are S = 1000 and Sα = 1000.
HMC posterior distributions are plotted in black for comparison.

each other, which shows that increasing the values of S and Sα helps reduce the variability of the R-VGAL

posterior estimates across multiple independent runs.

S2.2 Polypharmacy dataset

The Polypharmacy dataset used in this section is the same as that used in Sect. 3.4 of the main paper. Similar

to Sect. S2.1, the same values for S and Sα are used and they are taken from the set {50, 100, 500, 1000}.

We independently run R-VGAL 10 times on the Polypharmacy dataset for each pair of S and Sα values, and

plot the posterior densities from all 10 runs for each parameter. These posteriors are shown in Figures S5

to S8. For comparison, the HMC posterior distributions (from a single run, with 2 chains and 20000 total

posterior samples after burn-in) are also plotted.
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Figure S5: R-VGAL posterior distributions from 10 runs on the Polypharmacy dataset are plotted in colour.
Damping is done on the first 10 observations, and the Monte Carlo sample sizes are S = 50 and Sα = 50.
HMC posterior distributions are plotted in black for comparison.

Figure S6: R-VGAL posterior distributions from 10 runs on the Polypharmacy dataset are plotted in colour.
Damping is done on the first 10 observations, and the Monte Carlo sample sizes are S = 100 and Sα = 100.
HMC posterior distributions are plotted in black for comparison.
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Figure S7: R-VGAL posterior distributions from 10 runs on the Polypharmacy dataset are plotted in colour.
Damping is done on the first 10 observations, and the Monte Carlo sample sizes are S = 500 and Sα = 500.
HMC posterior distributions are plotted in black for comparison.

Figure S8: R-VGAL posterior distributions from 10 runs on the Polypharmacy dataset are plotted in colour.
Damping is done on the first 10 observations, and the Monte Carlo sample sizes are S = 1000 and Sα = 1000.
HMC posterior distributions are plotted in black for comparison.
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As with the previous example, the results in this example also show that increasing the values of S and

Sα reduces the variability of the R-VGAL posterior estimates across multiple runs. This phenomenon is

particularly pronounced for the random effect standard deviation τ . Suitable values for S and Sα are likely

to be application-dependent. However, from our studies, we conclude that S and Sα need to be at least 100

for the Monte Carlo sample sizes not to have a substantial effect on the final estimates.

S3 Robustness check of the R-VGAL algorithm

In this section, we use the Polypharmacy dataset in Sect. 3.4 to check the robustness of the R-VGAL

algorithm given different orderings of the data. The simulations in this section show that R-VGAL can be

unstable while traversing the first few observations, which makes it sensitive to the ordering of observations.

This instability can, however, be alleviated with the damped R-VGAL algorithm, as described in Sect. 2.4

of the main paper.

Figures S9 and S10 show the R-VGAL posterior density estimates from 10 independent runs using the

original ordering of the data and a random ordering of the data, respectively. In both simulations, the

number of Monte Carlo samples S to estimate the expectation with respect to qi−1(θ) and the number of

samples Sα to estimate the gradients/Hessians are fixed to 100. In both figures, the HMC posterior densities

for each parameter are plotted in black for comparison. The figures show that the R-VGAL estimates are

quite far away from those of HMC estimates when using the original ordering of the data, while the R-VGAL

estimates are reasonably close to those of HMC when using the random ordering of the data. This suggests

that the R-VGAL estimates are not robust with respect to the ordering of the data.

To confirm that the source of variability in the R-VGAL estimates is from different data orderings and not

from the low number of Monte Carlo samples, we increase the number of Monte Carlo samples S and Sα.

Figures S11 and S12 show the R-VGAL posterior density estimates from 10 independent runs using the

original ordering of the data and a random ordering of the data, respectively, with the Monte Carlo sample

sizes set to S = Sα = 1000. The posterior densities for each parameter are different for the two orderings;

for instance, with the original ordering, the posterior of τ is centred around 4.5, while with the random

ordering, the posterior of τ is centred around 2.4.

A plot of the trajectory of the variational mean across R-VGAL iterations reveals that R-VGAL is unstable

during the first few iterations. The blue lines in Figures S13 and S14 show the trajectories of the variational

mean for each of the parameters across 10 independent runs of the R-VGAL algorithm, on the original
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Figure S9: R-VGAL posterior distributions from 10 independent runs using the original ordering of the data
are plotted in different colours. The Monte Carlo sample sizes are S = 100, Sα = 100. HMC posterior
distributions are plotted in black for comparison.

ordering and on a random ordering of the data, respectively. The initial trajectories of the fixed effect

parameters in Figure S13 vary significantly (for example, between -50 and 0 for the intercept β0), and the

trajectory of τ is dragged up to nearly 7 before progressively dropping towards 4. This potentially contributes

to the biased posterior mean of τ . In Figure S14, where the data were randomly reordered, the trajectories

of the parameters are less variable initially, which then allows the variational mean to converge towards the

true values more rapidly. This shows that the R-VGAL algorithm is unstable while traversing the first few

observations, making the algorithm sensitive to the ordering of the data.

We propose a damping approach (in Sect. 2.4 of the main paper) to make the R-VGAL algorithm more robust.

By damping the first few observations, the R-VGAL posterior estimates become much more consistent across

different data orderings. Figures S15 and S16 show the posterior density estimates from 10 independent runs

of the R-VGAL algorithm using the original ordering of the data and a random ordering of the data,

respectively, with damping done on the first 10 observations, and with Monte Carlo sample sizes S = Sα =

100. These figures show that the posterior density estimates of R-VGAL with damping are consistent across

two different orderings of the data, and also consistent with those obtained from HMC.

Figures S17 and S18 display the R-VGAL posterior densities using the original ordering and the random
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Figure S10: R-VGAL posterior distributions from 10 independent runs using the random ordering of the
data are plotted in different colours. The Monte Carlo sample sizes are S = 100, and Sα = 100. HMC
posterior distributions are plotted in black for comparison.

ordering of the data, respectively, with damping done on the first 10 observations, and Monte Carlo sample

sizes increased to S = Sα = 1000. There is now very little difference between the posterior densities using the

original and the random ordering of the dataset. The red lines in Figures S13 and S14 show the parameter

trajectories obtained from damped R-VGAL, on the original ordering and the random ordering of the data,

respectively. The trajectories with damping (plotted in red) are much more stable than those without

damping (plotted in blue), especially during the first few iterations. These figures suggest that damping

is effective in reducing the variability of R-VGAL estimates while traversing the first few observations and

increases the algorithm’s robustness to different data orderings. Other random orderings of the data give

similar results.
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Figure S11: R-VGAL posterior distributions from 10 independent runs using the original ordering of the data
are plotted in colour. The Monte Carlo sample sizes are S = 1000, Sα = 1000. HMC posterior distributions
are plotted in black for comparison.

Figure S12: R-VGAL posterior distributions from 10 independent runs using the random ordering of the data
are plotted in colour. The Monte Carlo sample sizes are S = 1000, Sα = 1000. HMC posterior distributions
are plotted in black for comparison.
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Figure S13: Trajectories of the variational mean without damping (in blue) and with damping (in red) for
each parameter across 10 independent runs of R-VGAL on the original ordering of the data. The Monte
Carlo sample sizes are S = 1000 and Sα = 1000.

Figure S14: Trajectories of the variational mean without damping (in blue) and with damping (in red) for
each parameter across 10 independent runs of R-VGAL on the random ordering of the data. The Monte
Carlo sample sizes are S = 1000 and Sα = 1000.
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Figure S15: R-VGAL posterior distributions from 10 independent runs using the original ordering of the
data are plotted in colour. Damping is done on the first 10 observations. The Monte Carlo sample sizes are
S = 100, Sα = 100. HMC posterior distributions are plotted in black for comparison.

Figure S16: R-VGAL posterior distributions from 10 independent runs using a random reordering of the
data are plotted in colour. Damping is done on the first 10 observations. The Monte Carlo sample sizes are
S = 100, Sα = 100. HMC posterior distributions are plotted in black for comparison.
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Figure S17: R-VGAL posterior distributions from 10 independent runs using the original ordering of the
data are plotted in colour. Damping is done on the first 10 observations. The Monte Carlo sample sizes are
S = 1000, Sα = 1000. HMC posterior distributions are plotted in black for comparison.

Figure S18: R-VGAL posterior distributions from 10 independent runs using a random reordering of the
data are plotted in colour. Damping is done on the first 10 observations. The Monte Carlo sample sizes are
S = 1000, Sα = 1000. HMC posterior distributions are plotted in black for comparison.
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Figure S19: Plot of the R-VGAL posterior means against those from HMC for 100 datasets simulated from
the linear mixed model.

S4 Repeated simulations

In this section, for each of the linear, logistic and Poisson mixed models, we simulate 100 datasets with

the same parameter settings. We run R-VGAL and HMC on each of the 100 datasets, and compare their

posterior density estimates.

S4.1 Repeated simulations from the linear mixed model

The synthetic datasets in this section are simulated according to the number of observations and parameter

values detailed in Sect. 3.1. Figure S19 plots the R-VGAL posterior means against those from HMC for each

of the 100 simulated datasets. The red dotted diagonal line marks the “ideal” scenario where the posterior

means from the two methods are equal. Figure S20 plots the ratio between the R-VGAL and HMC posterior

standard deviations, with the dotted horizontal line marking the ideal ratio of one. Figure S21 compares the

distribution of the differences between the R-VGAL means and the true parameter values to the distribution

of the differences between the HMC means and the true parameter values. We see that posterior means and

standard deviations from the two methods are very similar across the 100 replicated datasets.
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Figure S20: Plot of the ratio between the R-VGAL posterior standard deviations and those from HMC for
100 datasets simulated from the linear mixed model.

Figure S21: Comparison of the distribution of the differences between the R-VGAL posterior means and the
true parameters (in red), against the distribution of the differences between the HMC posterior means and
the true parameters (in blue), for 100 datasets simulated from the linear mixed model.
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Figure S22: Plot of the R-VGAL posterior means against those from HMC for 100 datasets simulated from
the logistic mixed model.

S4.2 Repeated simulations from the logistic mixed model

The synthetic datasets in this section are simulated according to the number of observations and parameter

values detailed in Sect. 3.2. As with the previous section, we present plots comparing the R-VGAL and HMC

posterior means in Figure S22, the ratio between the R-VGAL and HMC posterior standard deviations in

Figure S23, and the distributions of the differences between each method’s posterior mean estimates and

the true parameters in Figure S24. The R-VGAL and HMC posterior means are similar, though R-VGAL

tends to slightly underestimate the random effect variance when compared to HMC.
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Figure S23: Plot of the ratio between the R-VGAL posterior standard deviations and those from HMC for
100 datasets simulated from the logistic mixed model.

Figure S24: Comparison of the distribution of the differences between the R-VGAL posterior means and the
true parameters (in red), against the distribution of the differences between the HMC posterior means and
the true parameters (in blue), for 100 datasets simulated from the logistic mixed model.
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Figure S25: Plot of the R-VGAL and HMC posterior means for 100 datasets simulated from the Poisson
mixed model.

S4.3 Repeated simulations on the Poisson mixed model

The synthetic datasets in this section are simulated according to the number of observations and parameter

values detailed in Sect. 3.3. As with the previous sections, we present plots comparing the R-VGAL and

HMC posterior means in Figure S25, the ratio between the R-VGAL and HMC posterior standard deviations

in Figure S26, and the distributions of the differences between each method’s posterior mean estimates and

the true parameters in Figure S27. The R-VGAL and HMC posterior means and standard deviations are

quite similar across simulations, although R-VGAL has a mild tendency for overestimating the parameter

Σα11
and underestimating the posterior variance of Σα11

and Σα22
compared to HMC.
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Figure S26: Plot of the ratio between the R-VGAL and HMC posterior standard deviations for 100 datasets
simulated from the Poisson mixed model.

Figure S27: Comparison of the distribution of the differences between the R-VGAL posterior means and the
true parameters (in red), against the distribution of the differences between the HMC posterior means and
the true parameters (in blue), for 100 datasets simulated from the Poisson mixed model.
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S5 Convergence statistics for HMC

This section contains some statistics on the convergence of HMC in the simulated and real data examples

in Sect. 3. In particular, we show the effective sample size (ESS) and R̂ values obtained from the RStan

diagnostics. The ESS is a measure of the number of uncorrelated posterior samples, and the higher the

ESS the better; see Gelman et al. (2013) for further details on how STAN calculates ESS. The R̂ statistic

proposed by Gelman and Rubin (1992) measures the ratio of the average variance of samples within each

chain to the variance of the pooled samples across chains; an R̂ close to 1 indicates that the chains have

converged. Gelman and Rubin (1992) recommends that the independent Markov chains be initialized with

diffuse starting values for the parameters and sampled until all values for R̂ are below 1.1.

The ESS and R̂ values for each parameter in each of the examples we considered in Sect. 3 are shown in

Table S1.

Example Parameter ESS R̂
Linear β1 42590.45 0.9999355
Linear β2 46091.76 0.9999275
Linear β3 45614.94 0.9999371
Linear β4 44814.06 0.9999292
Linear σα 39572.87 0.9999377
Linear σϵ 36754.35 0.9999034
Logistic β1 14116.662 1.0002822
Logistic β2 12974.649 1.0000641
Logistic β3 26374.149 1.0001275
Logistic β4 31828.214 0.9999238
Logistic τ 3700.836 1.0004196
Poisson β1 14313.12 1.0000291
Poisson β2 14433.41 1.0001494
Poisson Σα11

20022.85 1.0000592
Poisson Σα21

17313.42 1.0004479
Poisson Σα22

19660.59 0.9999396
Six City β1 2041.219 1.0001195
Six City β2 21906.059 0.9999014
Six City β3 6902.207 0.9999044
Six City τ 1406.197 1.0007235

Polypharmacy β0 8724.835 1.0001990
Polypharmacy βgender 7868.562 1.0003835
Polypharmacy βrace 8810.641 1.0000568
Polypharmacy βage 17864.738 1.0000620
Polypharmacy βM1 17248.489 0.9999448
Polypharmacy βM2 15052.711 1.0000169
Polypharmacy βM3 14499.271 0.9999639
Polypharmacy βIM 31828.214 0.9999535
Polypharmacy τ 37289.351 1.0001344

Table S1: Effective sample size and R̂ values for the parameters in each model.
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S6 Additional examples

This section contains two additional examples: the first one applies the Poisson model in Sect. 3.3 of the

main paper to the Epilepsy dataset from Thall and Vail (1990), and the second involves a bigger synthetic

dataset simulated from the logistic mixed model in Sect. 3.2 of the main paper.

S6.1 Real data example: Poisson mixed model

In this example, we apply R-VGAL on the well-known Epilepsy dataset from Thall and Vail (1990). This

dataset includes N = 59 epileptic patients who were treated with either a new drug (Progabide) or placebo

in a clinical trial. The response variable is the number of seizures patients have during n = 4 follow-up

periods. We index the patients as i = 1, . . . , N and the responses for each patient as j = 1, . . . , n. We

follow Tan and Nott (2018) and use the following covariates: the logarithm of 1/4 the number of baseline

seizures (Base); the Treatment, coded as 1 for Progabide and 0 for placebo; the log-transformed and centred

age, Ãgei = Agei− 1
N

∑N
i=1(Agei), where Agei is the logarithm of the age of the ith individual; and the follow

up period, Visit, coded as Visit = −0.3 for the first visit, Visit = −0.1 for the second, Visit = 0.1 for

the third and Visit = 0.3 for the fourth.

We consider the following model with random slope and random intercept:

yij ∼ Poisson(λij), (S45)

log(λij) = β0 + βbaseBasei + βtreatmentTreatmenti + βagẽAgei + βvisitVisitij + αi,1 + αi,2Visitij , (S46)

where α ≡ (αi,1, αi,2)
⊤ ∼ Gau(0,Σα), with Σα = LL⊤ and L =

exp(ζ11) 0

ζ21 exp(ζ22)

. In the algorithm,

we consider the unconstrained parameters θ = (β⊤, ζ⊤)⊤, where β ≡ (β0, βbase, βtreatment, βage, βvisit)
⊤ and

ζ ≡ (ζ11, ζ22, ζ21)
⊤. The gradient ∇θ log p(yi,αi | θ) and Hessian ∇2

θ log p(yi,αi | θ), which are necessary in

the computation of the gradient and Hessian of the subject-specific log likelihood log p(yi | θ), are provided

in Sect. S1.3 of the online supplement.

The initial variational distribution we use is

p(θ) = q0(θ) = Gau


0
0

 ,

 I2 02×3

03×2 0.1I3


 .

Using a Gau(0, 0.1) prior distribution for ζ11, ζ22 and ζ21 leads to having 2.5th and 97.5th percentiles of
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Figure S28: Exact posterior distributions from HMC (in blue) and approximate posterior distributions from
R-VGAL with estimated gradients and Hessians (in red) for the Poisson mixed model experiment. Diagonal
panels: Marginal posterior distributions with the maximum likelihood estimates marked using dotted lines.
Off-diagonal panels: Bivariate posterior distributions with the maximum likelihood estimates marked using
the symbol ×.

(0.290, 3.485) for Σα11
, (0.342, 3.577) for Σα22

, and (-0.713, 0.713) for the off-diagonal entries Σα21
and Σα12

.

As with the simulated Poisson model in Sect. 3.3, we run damped R-VGAL with ndamp = 10 observations

and K = 4 steps per observation. We use Sα = 200 Monte Carlo samples in the importance sampling step,

and S = 200 samples to approximate the expectations with respect to qi−1(θ) in the R-VGAL updates of

the variational mean and the precision matrix. Figure S28 shows the marginal posterior distributions with

maximum likelihood estimates of the parameters, along with bivariate posterior distributions as estimated

using R-VGAL and HMC. We find that the estimates from R-VGAL and HMC agree quite well for all

parameters, and posterior modes for all parameters from both methods are close to the maximum likelihood

estimates.

S28



Figure S29: Exact posterior distributions from HMC (in blue) and approximate posterior distributions
from R-VGAL with estimated gradients and Hessians (in red) for the logistic mixed model experiment with
50000 observations. Diagonal panels: Marginal posterior distributions with true parameters denoted using
dotted lines. Off-diagonal panels: Bivariate posterior distributions with true parameters denoted using the
symbol ×.

S6.2 Big data example: Logistic mixed model

For this experiment, we simulate data from the logistic mixed model in Sect. 3.2 with N = 5000 and n = 10,

resulting in a total of 50000 observations. We find that it is necessary to increase the number of Monte

Carlo samples to S = 200 and Sα = 200 to achieve accurate posterior estimates in this example. The prior

distribution and the settings for damping in R-VGAL are kept the same as in the example in Sect. 3.2.

Figure S29 shows the marginal posterior densities, along with bivariate posterior plots from R-VGAL and

HMC. As with previous simulations, the posterior distributions obtained using R-VGAL are very similar to

those obtained using HMC.
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S7 Application of R-VGAL to models with other random effect

structures

In the main paper, we considered the application of R-VGAL to models where the random effects are

correlated within subjects (individuals), but independent between subjects. In practice, there are many cases

where other random effect structures, such as crossed or nested random effects, are needed; see Pinheiro and

Bates (2006); Gelman and Hill (2007); West et al. (2014) or Papaspiliopoulos et al. (2023) for examples.

Here, we briefly discuss the application of R-VGAL to some classes of models with crossed or nested random

effects. The implementation of R-VGAL to these models is left for future endeavours.

Models with crossed effects are often used to model data that can be organised in the form of contingency

tables between categorical variables. For example, consider a study of annual income, in which a number

of characteristics from participants are recorded using categorical variables, such as their age range, sex,

ethnicity, and highest level of education. In this case, the data can be organised into a multi-dimensional

contingency table between age range, sex, ethnicity, and level of education. Participants who have the same

combination of characteristics may have similar income levels, and the correlation between people in the

same set of categories may be modelled with the addition of category-specific random effects.

The notation we use in the following crossed effect model follows that in Chapter 11 of Gelman and Hill

(2007) and Sect. 2 of Papaspiliopoulos et al. (2023). Suppose that there are K categorical variables, and

the kth variable has Lk levels, for k = 1, . . . ,K. The logarithm of the income of the ith individual may then

be modelled as

yi = x⊤
i β +

K∑
k=1

α
(k)
lk[i]

+ ϵi, α
(k)
l ∼ Gau(0, σ2

α), ϵi ∼ Gau(0, σ2
ϵ ), (S47)

for i = 1, . . . , N , where xi denotes a vector of covariates associated with the fixed effects β, and α
(k)
l denotes

the random effect associated with the lth level of the kth categorical variable. The notation lk[i] denotes the

level of the kth category that the ith individual falls into; for example, if the first categorical variable in the

model is age range, where the categories are 1 for 18–30 years old, 2 for 30–50 years old, and 3 for 50 years

old and above, then l1[4] = 2 means that the 4th individual in the dataset is in level 2 of the “age” variable

(between 30 and 50 years old). Here we have assumed that the random effects α
(k)
l have the same variance

for all l = 1, . . . , L and k = 1, . . . ,K. Thus the parameters of interest in this model are θ = (β⊤, σ2
α, σ

2
ϵ )

⊤.

In this model, there are G = L1×L2× . . . LK combinations of levels. The R-VGAL updates would therefore

be based on the log-likelihood of all individuals within the same combination (group). For each combination
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(group) g = 1, . . . , G, the vector of responses of people in this group is denoted as yg. Then for each group

g = 1, . . . , G, the gradient of the group-specific log likelihood can be expressed via Fisher’s identity as

∇θ log p(yg | θ) =
∫

∇θ log p(yg, α
(1)
l1,g

, . . . , α
(K)
lK,g

| θ) p(α(1)
l1,g

, . . . , α
(K)
lK,g

| yg,θ) dα
(1)
l1,g

. . . dα
(K)
lK,g

, (S48)

where, here, the notation lk,g denotes the level of the kth categorical variable associated with group g.

The Hessian of the group log likelihood can be similarly expressed via Louis’ identity (22), which we do

not restate here. The gradient and Hessian of the group log likelihood can then be approximated using

the importance-sampling-based approach described in Sects. 2.3.1 and 2.3.2. Note that there are analytical

formulae for the gradient (and Hessian) in this case, as the model is linear; but this approach is applicable

to a wide class of GLMMs with crossed random effects.

R-VGAL is also applicable to models with nested random effects. One popular example of such models is

that of students being nested within classes, which are then nested within schools (see, for example, Chapter

4 of West et al. (2014)). Suppose that we are interested in the final exam marks of Year 12 students across

a number of schools in the year 2023. If we write the final mark of the kth student in the jth class at the

ith school as yijk, for i = 1, . . . , N , j = 1, . . . , ni and k = 1, . . . , nij , then a simple linear model with one

random intercept at both the school level and the class level is

yijk = x⊤
ijkβ + αi + γij + ϵijk, αi ∼ Gau(0, σ2

α), γij ∼ Gau(0, σ2
γ), ϵijk ∼ Gau(0, σ2

ϵ ), (S49)

where xijk is a vector of fixed covariates for the kth student (which may include, for instance, the average

number of hours they spend studying per week, or the average number of hours slept per night), β are the

corresponding fixed effects, αi is the random effect associated with the school that the student attends, γij

is the random effect associated with the class they are in at their school, and ϵijk is an error term associated

with each student.

At the class level, the model (S49) may be written as

yij = Xijβ + 1nijαi + 1nijγij + εij , αi ∼ Gau(0, σ2
α), γij ∼ Gau(0, σ2

γ), εij ∼ Gau(0,Σϵ,i), (S50)

where yij ≡ (yij1, . . . , yijnij
)⊤ is a vector containing final exam marks for all students in class j of school i,

Xi ≡ (x⊤
ij1, . . . ,x

⊤
ijnij

)⊤ is a design matrix containing fixed covariates from all students in class j of school

i, 1d denotes a d × 1 vector of ones, and εij ≡ (ϵij1, . . . , ϵijnij )
⊤, for classes j = 1, . . . , ni and schools

i = 1, . . . , N . For simplicity, we assume here that the error terms ϵijk, k = 1, . . . , nij , are uncorrelated, so
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that Σϵ,i = σ2
ϵ Inclass,i

, where Id denotes a d×d identity matrix, and nclass,i is the number of students in each

class at school i, which we assume does not change with class; that is, we let nij = nclass,i, for j = 1, ..., ni

and i = 1, ..., N .

We will now go one step further and write the model at the school level as

yi = Xiβ + Ziαi +Wiγi + εi, αi ∼ Gau(0, σ2
α), γi ∼ Gau(0,Σγi), εi ∼ Gau(0, Ini ⊗Σϵ,i), (S51)

where ⊗ denotes the Kronecker product between two matrices, Xi ≡ (Xi1, . . . ,Xini)
⊤, Zi ≡ 1ninclass,i

,

Wi = Ini
⊗1nclass,i

, γi ≡ (γi1, . . . , γini
)⊤ is a vector of all random effects from classes j = 1, . . . , ni in school

i, and εi ≡ (ε⊤i1, . . . , ε
⊤
ini

)⊤ is a vector of random error terms for all students in school i, i = 1, . . . , N .

Here we allow the random effects γij , j = 1, . . . , ni to be correlated between classes in the same school, so

that for each school i = 1, . . . , N , the covariance matrix Σγi
is potentially dense. We also assume that the

school-specific random effects αi are independent and identically distributed for all schools i = 1, . . . , N .

The parameters of interest in this model are θ = {β, σ2
α,Σγ1 , . . . ,ΣγN

, σ2
ϵ }. To make inference on these

parameters, the R-VGAL updates can be performed by processing the data one school at a time. That is,

for i = 1, . . . , N , the R-VGAL updates are made in terms of the gradient and Hessian of the school-specific

log-likelihood, ∇θ log p(yi | θ) and ∇2
θ log p(yi | θ). Using Fisher’s identity (19), the gradient ∇θ log p(yi | θ)

can be written as

∇θ log p(yi | θ) =
∫

p(αi,γi | θ)∇θ log p(yi, αi,γi | θ) dαi dγi, i = 1, . . . , N, (S52)

where the term log p(yi, αi,γi | θ) can be expanded further as

log p(yi, αi,γi | θ) = log p(yi | αi,γi,θ) + log p(αi,γi | θ), (S53)

with

p(yi | αi,γi,θ) = Gau(Xiβ + Ziαi +Wiγi,Σϵ,i ⊗ Ini
),

p(αi,γi | θ) = Gau


0
0

 ,

σ2
α 0⊤

0 Σγi


 , i = 1, . . . , N,

based on (S51). Approximation of the gradient ∇θ log p(yi | θ) can then proceed via the importance-

sampling-based approach in Sect. 2.3.1, and a similar procedure for the Hessian ∇θ log p(yi | θ) can be done
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as shown in Sect. 2.3.2. As the model is linear in this case, we note that the log-likelihood, gradient, and

Hessian are available analytically. However, this approach is applicable to a wide class of GLMMs with

nested random effects.
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